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Introduction 
   
 Organic electronic devices such as light emitting diodes,1 photovoltaics,2 and 

transistors3 have been of particular interest since the discovery that the conductivity of 

conjugated polymers can be varied over many orders of magnitude through chemical 

doping.4  In particular, poly(3,4-ethylenedioxythiophene) (PEDOT) has been studied for 

a variety of applications because of its chemical stability, high visible light 

transmissivity, and relatively high conductivity.5  Some examples include antistatic 

coatings,6 electrode materials in capacitors,7 buffer layers in light emitting diodes,8 

electrochromic materials,9 and electrochemical microactuators.10  Although pristine 

PEDOT is insoluble in common solvents, it can be dispersed in water when polymerized 

in the presence of polystyrene sulfonate (PSS).  The PEDOT:PSS complex that results is 

readily processable, doped and highly conductive, and is available commercially from a 

number of sources. 

The use of doped conjugated polymers as the active layer in thin film transistors 

(TFTs) has been investigated by a number of groups.  MacDiarmid11 and Epstein12,13,14,15 

have reported on devices using PEDOT:PSS that exhibit an unexpected field effect upon 

the application of a positive gate bias.  While the operating mechanism of these devices is 

not completely understood, possibilities include the existence of an ion-leveraged 

mechanism to disrupt the percolation path,13 an electrochemical de-doping effect,16 or a 

combination of both.17  Electrochemical transistors have also been reported by 

Wrighton18,19,20,21,22 and others.17,23,24  These are commonly laterally arranged devices 

with a conjugated polymer whose redox state is modified by a gate bias.    These types of 

transistors generally have slower response times than transistors based on undoped 
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conjugated polymers (e.g. poly(3-hexylthiophene)) and small molecules (e.g. pentacene).  

As such, they do not necessarily compete with these more typical organic transistors, but 

rather have pertinence in areas such as sensors, molecular and flexible electronics, and 

fundamental materials chemistry. 

We have recently demonstrated that layer-by-layer assembly is an effective method 

of incorporating ultra-thin gate dielectric layers into these types of transistors.25  This 

method of assembly involves dipping a substrate between two dilute polyelectrolyte 

solutions of opposite charge to build up a thin film via the electrostatic interactions 

between the polyelectrolytes.  The depletion mechanism for these devices was shown to 

depend on an electrochemical redox reaction resulting in a de-doping of the active layer 

through the oxidation of water.  Here, the corresponding recovery behavior of doped 

organic TFTs using crosslinked PAH/PAA bilayers as the gate dielectric layer was 

investigated.  By examining the device performance under different environmental test 

conditions, a more complete understanding of the device operation and of the role that 

water plays in the mechanism was achieved.  In addition, in-situ Raman spectroscopy 

was used to quantify the influence that these effects have on the intrinsic doping level of 

the PEDOT:PSS active layer. 
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Experimental 

 Aqueous stock solutions of PEDOT:PSS, under the trade name of Baytron® P (H.C. 

Stark Inc.) with a reported concentration range of 1 – 5%, were filtered prior to use.  

Spin-coated films of PEDOT:PSS were prepared with solutions comprised of a mixture 

of the aqueous Baytron P stock solution with ethylene glycol in an 80/20 weight ratio 

with a small amount (< 1%) of dodecabenzene sulfonic acid.   The films were fabricated 

by spinning at 500 rpm for 10 s and then 3000 rpm for 60 s.  Polyelectrolyte solutions (10 

mM) were pH adjusted with NaOH and HCl using an Orion model 230A pH meter.  Each 

monolayer deposition cycle (~ 15 min) was followed by multiple rinse steps in deionized 

H2O (18 MΩ·cm) in a Carl Zeiss Microm DS-50 automatic slide stainer.  Silver and 

aluminum electrodes were thermally evaporated at a rate of 3 and 4 – 5 Å/s, respectively, 

in an Explorer 18 Denton Vacuum system (< 10-7 Torr) using a Telemark model 860 

deposition controller.  The aluminum gate electrode was deposited to a thickness of 350 – 

400 Å.  The size of the active channel was approximately 2 mm wide by 3 mm long.  

Film thicknesses were measured with a Tencor P-10 surface profiler at a stylus force of 

0.6 mg.  The TFT device performance was characterized with two Keithley 2400 

SourceMeters.®  Gases (air or N2) were bubbled through deionized water (18 MΩ·cm) to 

create humidified conditions (relative humidity (RH) ~ 75%), purged through Drierite® to 

create dry conditions, and a mixture of both to create intermediate conditions (RH = 

30%) in the test chamber.  Raman spectra were obtained with a Renishaw inVia Raman 

Microscope using a Melles Griot Argon Laser.   
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Results and Discussion 

 Thin film transistors using PEDOT:PSS as the active layer and layer-by-layer 

assembled PAH/PAA films as the gate dielectric were recently shown to operate via an 

electrochemical de-doping process.25  By way of describing this process, equation (1) is 

presented to illustrate the means by which depletion occurs in these devices.  Upon 

application of a positive gate bias, the gate electrode serves as the anode at which water is 

oxidized to produce O2(g).  The source electrode serves as the cathode at which PEDOT 

becomes reduced back to its neutral state (E1/2 ~ 0.2 V)26 resulting in a decrease in the 

conductivity of the active layer and device “turn-off.”  Sulfonic acid (SO3H) groups are 

generated on the PSS due to proton migration from the gate electrode.  As a result, the 

depletion behavior was shown to depend critically on the level of water and O2(g) in the 

test environment.25 

 To gain a better understanding of the overall device operating mechanism, we were 

also interested in examining the recovery behavior.  Our findings as a function of test 

environment serve as the subject of this report, and are presented below.  Figure 1 shows 

the time-dependent performance characteristics of a TFT device using a spin-coated film 

of PEDOT:PSS (thickness = 500 – 900 Å) as the active layer and a crosslinked, layer-by-

layer assembled film of PAH/PAA (thickness = 60 Å) as the gate dielectric.  Upon 

application of a positive gate bias (VG = 2.5 V), the source-drain current (IDS) decreases 

to turn the device to the “off” state.  This initial switching of the device was conducted 
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under humidified N2 conditions.  After the gate bias was removed (still under humidified 

N2 conditions), the device immediately began to recover as evidenced by an increase in 

IDS.  This recovery is due to trapped O2(g) remaining in the film, which causes the reverse 

of reaction (1) to occur and the concomitant increase in the level of doped PEDOT when 

the gate bias is removed.  When water is removed from the test environment by exposing 

the device to a purge of dry N2, this recovery behavior becomes almost completely 

arrested.  Although subsequent exposure of the device to dry air results in the resumption 

of the recovery due to a higher concentration of O2(g), the magnitude of IDS does not 

reach its initial value.  Only when the device is exposed to a humidified air environment 

does IDS reach (and even surpass) its initial value.  This behavior is consistent with the 

reversal of the mechanism put forth in equation (1).  In order for spontaneous recovery 

(i.e. re-doping of the active layer) to occur, O2(g) must be present in the film in a high 

enough concentration and with sufficient mobility.  Correspondingly, moisture contained 

in the film acts as both the reductant, as well as a plasticizer to increase the mobility 

within the film. 

 It is interesting to note that if a negative gate bias is applied after the device has been 

depleted (i.e. turned “off”), it can be induced to quickly recover.  In Figure 2, a positive 

gate bias of 3.0 V was used to initially deplete the device under humidified N2 conditions 

(75% relative humidity (RH)) to an Ion/off ratio ~ 70.  If this bias is applied for a relatively 

short amount of time (∼ 5 min), and then removed, the device begins to recover due to 

trapped O2(g) remaining in the film, consistent with the discussion above.  If, however, 

this positive gate bias is applied for a longer period of time (~ 27.5 min) and then 

removed (at time ~ 35 min in the figure), the recovery is completely inhibited because the 
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O2(g) has diffused out of the film.  The device remains in the “off” state despite the fact 

that the gate bias has been removed.  If a negative gate bias (VG = – 2.5 V) is 

subsequently applied, recovery is induced as seen by an increase in IDS.  However, once 

this gate bias is removed, IDS again begins to decrease.  This same negative gate bias was 

applied three more times, each for approximately two minutes with about nine minutes in 

between each application.  As shown, each time the gate bias was removed, IDS began to 

decrease, but at a slower rate and to a lesser extent.  In fact, if the negative gate bias is 

applied long enough, IDS does not decrease upon its removal, but remains stable and the 

device remains in the “on” state.  It should be noted that care must be taken to avoid 

overoxidation of the PEDOT in the active layer upon induced recovery.  The 

overoxidation of PEDOT is commonly suspected as the cause for permanent degradation 

of the active layer in analogous devices upon prolonged application of a negative gate 

bias.11,27 

 This induced recovery behavior is similar in nature but opposite in magnitude to the 

depletion behavior discussed above and in our previous report.25  The PEDOT:PSS active 

layer is electrochemically de-doped with a positive gate bias and it is subsequently 

induced to recover (i.e. re-doped) with a negative gate bias.  Equation (2) is thus 

presented to illustrate the means by which recovery occurs in these devices.  Upon 

application of a negative gate bias, the gate electrode serves as the cathode at which water 

is reduced to generate H2(g) and OH- ions.  The source electrode serves as the 
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corresponding anode to re-oxidize (i.e. re-dope) neutral PEDOT0 that was generated 

during depletion.  The OH- ions can subsequently migrate from the cathode to the anode 

to de-protonate the SO3H groups of PSS.  The overall net effect of a negative gate bias is 

to induce the recovery of the de-doped active layer through an electrochemical reduction 

of water to generate H2(g).  Maintaining the negative gate bias for a long enough period 

of time will enable H2(g) to diffuse out of the device, thereby shifting the state of reaction 

equilibrium to favor the “on” state.  It should be noted that the gate current observed 

during the switching of similar doped organic TFTs (Figure 2) has previously been 

attributed to an ionic current.28  For the devices shown here, the IG observed with an 

applied gate bias is attributed to a combination of both faradaic (redox) and non-faradaic 

(ionic) processes associated with the electrochemical reactions put forth in equations (1) 

and (2).  In addition, when the gate bias is removed, the magnitude of IG reverses 

direction and decays exponentially, which is attributed to the ions drifting back to their 

original state of equilibrium as the reverse of reactions (1) and (2) proceed.  It can be seen 

that the longer the negative gate bias is applied, the resulting gate current decreases due 

to the device being switched back to a stable “on” state.  This type of behavior involving 

the oxidation and reduction of water to control the doping level of organic materials 

systems has previously been demonstrated29 and is similar to what is observed here. 

 As a result of being able to systematically control the doping state of the film by the 

application of either a positive or negative gate bias, bistable device operation can be 

achieved as shown in Figure 3.  Although bistable operation of PEDOT/PSS 

electrochemical transistors has previously been demonstrated using lateral architectures 

of non-closed circuits,23 the bistability observed herein is obtained with controlled 
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environmental conditions.  In this case, the device was tested under a lower relative 

humidity (RH ∼ 30%) than that described above for Figure 2 (RH ∼ 75%).  The device 

was alternately switched between stable “off” and “on” states with a positive (VG = 4 to 6 

V) and negative (VG = – 4 to – 5 V) gate bias, respectively.  The magnitude of IDS 

changed from approximately 0.5 µA in the “off” state to approximately 10.5 µA in the 

“on” state.  Due to the fact that this device was tested at a lower RH than those discussed 

above, a higher VG was required to induce a change in IDS, the magnitude of IG (for any 

given VG) was lower, and the tendency to overoxidize PEDOT (as indicated by a rapid, 

irreversible drop in IDS
11) appeared to decrease.   

 Under these test conditions, each time the gate bias was removed (either positive or 

negative), the magnitude of IDS remained constant at the current value, and did not tend 

towards what it was previously, as was shown in Figures 1 and 2.  In those cases, the 

magnitude of IDS became stable only when the gate bias was applied for a long enough 

time to allow all of the O2(g) or H2(g) generated (see equations 1 and 2) to diffuse out of 

the film, thereby prohibiting the back reaction.  In this case, the gate bias was applied for 

a sufficiently short amount of time to suppress diffusion of O2(g) or H2(g) out of the film.  

Instead, the lower level of humidity that is used in the test environment is unable to 

“plasticize” the matrix enough to allow for significant diffusion of these species.  

Apparently, enough moisture is present to act as the reactant for both oxidation and 

reduction of PEDOT:PSS in equations (1) and (2), but not enough to permit whole-scale 

diffusion of the reaction products.  Consequently, while water acts as both the reactant 

and plasticizer in these devices, a lower RH provides a means to enable bistable device 

operation by reducing the mobility of other species in the film. 
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 Figure 4 offers additional support of this effect whereby a device was first 

equilibrated in a humidified N2 environment before operation.  Immediately before 

applying a positive gate bias, the test environment was switched to dry N2.  The device 

becomes depleted in approximately 5.5 minutes with an Ion/off ratio ~ 300 due to the 

presence of moisture still contained in the film.  Upon removal of the gate bias, IDS did 

not begin to recover as before, but rather the device remained in the “off” state because of 

the low mobility of the reactant products generated during depletion.  Once moisture was 

re-introduced into the film by exposing it to a humidified N2 environment, the device 

began to recover because of the increased mobility of the O2(g) trapped in the film and 

the ability to re-oxidize the neutral PEDOT0 generated during depletion.  It should be 

noted that when the device was operated in a dry environment, an unexpected increase in 

IG was sometimes observed.  This effect could be eliminated by re-equilibrating with 

moisture.  While not completely understood, this behavior is believed to be due to defects 

introduced into the polyelectrolyte multilayer gate dielectric resulting in an increase in 

the leakage current. 

 Raman scattering was used to elucidate the role that these effects have on the doping 

level of the PEDOT:PSS active layer during device operation under the environmental 

conditions described above.  The Raman spectra shown in Figure 5 were obtained using 

an excitation wavelength (λexc = 514 nm) that exhibits a resonance with the π → π* 

transition of PEDOT.30  Spectra A, B, and C were obtained in-situ during device 

operation at the times and under the conditions shown in Figure 4.  Before depletion, the 

spectrum appeared almost completely featureless (A), but after applying a gate bias (VG = 

2.5 V), peaks appeared at 989, 1365, 1428, and 1506 cm-1 (B).  These peaks have 
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previously been assigned to the ring deformation, Cβ – Cβ stretch, Cα – Cβ symmetrical 

stretch, and the Cα – Cβ asymmetrical stretch of PEDOT, respectively.31  An increase in 

the intensity of these peaks has been shown to correlate with a reduction in the doping 

level of PEDOT.30  These trends agree with the decrease in IDS after the gate bias was 

applied.  As the device begins to recover upon exposure to a humidified N2 environment, 

the peak intensities again decrease (C), consistent with an increase in both the PEDOT 

doping level and IDS. 

 The remaining spectra shown in Figure 5 were obtained by continued testing of this 

device under a humidified N2 environment.  The device performance characteristics 

associated with these spectra are shown in Figure 6.  The data for points D through H 

show that as the gate bias is increased from 0.0 to 2.0 V, the device becomes depleted 

(IDS decreases) due to an increase in the level of de-doping of the PEDOT (i.e. increasing 

peak intensities in the Raman spectra).  In addition, by comparing spectra B (dry N2) and 

H (humidified N2), the effects of humidity on the PEDOT doping level can be seen.  In 

particular, the level of de-doping that occurred under a dry N2 environment (B) was 

significantly lower than that under humidified N2 (H), despite the fact that a higher gate 

bias was applied for B.  The lower moisture content in the film at B limits the level of de-

doping that can occur, however, more subtle effects present themselves when comparing 

results obtained under these different conditions. It can be seen from the Raman spectra 

that at point B, the PEDOT has a higher level of doping (smaller peak intensities) than at 

point F.  However, IDS (and hence the conductivity) is larger for point F (see Figures 4 

and 6).  This effect is not completely understood but is possibly the result of a 
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morphology-dependent change in conductivity upon exposure to moisture that is 

analogous to the known, secondary doping effect of PEDOT:PSS.32,33,34 

 The effects of induced recovery observed upon application of a negative gate bias are 

shown for points I through K.  As expected, a negative gate bias induces the recovery of 

the device by re-doping the PEDOT active layer as seen by a decrease in the Raman peak 

intensities.  The data for points L through P reiterate the ability to achieve bistable device 

operation by switching the device between “on” and “off” states and associating these 

changes to a change in the PEDOT doping level, as seen in the Raman spectra.  All of 

these effects are consistent with the electrochemical device operation put forth in 

equations (1) and (2).   

 

Conclusions 

 A bistable, doped organic TFT has been demonstrated under a controlled N2 

environment.  Under humidified conditions, the depletion and recovery of the active layer 

can be induced with a positive and negative gate bias, respectively.  This behavior was 

explained through electrochemical reactions involving the oxidation and reduction of 

water.  Upon removal of VG, both IDS and IG slowly return to their original value due to 

the reversal of the electrochemical depletion and recovery reactions put forth.  Longer 

applications of the gate bias were required to stabilize the state of the device by allowing 

the reaction products to diffuse out of the film.  Moisture contained in the film was 

shown to act as the reactant for both oxidation and reduction in addition to acting as a 

plasticizer to control the mobility and diffusion of other species (O2(g) and H2(g)) in the 
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film.  Raman spectroscopy was utilized to show that the observed switching behavior in 

these devices is due to a change in the PEDOT doping level. 
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Figure 1.  Time-dependent performance characteristics (at VDS = 0.1 V) under different 

test conditions of a TFT device with PEDOT:PSS as the active layer and 20 PAH/PAA 

bilayers as the gate dielectric (deposited at a pH of 6 – 6.5 with a total thickness ~ 60 Å).   
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Figure 2.  Time-dependent performance characteristics (at VDS = 0.2 V) of a TFT device 

with PEDOT:PSS as the active layer and 40 PAH/PAA bilayers as the gate dielectric 

layer (deposited at a pH of 6 – 6.5 with a total thickness ~ 130 Å).  The device was tested 

under humidified N2 conditions (RH ~ 75%).   
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Figure 3.  Time-dependent performance characteristics (at VDS = 0.2 V) of the same 

device described in Figure 2, but tested under humidified N2 at 30% RH. 
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Figure 4.  Time-dependent performance characteristics (at VDS = 0.2 V) of a TFT device 

with PEDOT:PSS as the active layer and 40 PAH/PAA bilayers as the gate dielectric 

layer (deposited at a pH of 6 – 6.5 with a total thickness ~ 130 Å).  The device was 

initially exposed to humidified N2 (RH ~ 75%) and then purged with dry N2 immediately 

before the gate bias was ramped up to 2.5 V.  The labels A through C indicate the time at 

which the Raman spectra shown in Figure 5 were obtained. 
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Figure 5.  Raman spectra obtained in-situ during operation of the device described in 

Figures 4 and 6.  Labels A through P correspond to the times indicated in Figures 4 and 6. 
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Figure 6.  Time-dependent performance characteristics of the same device discussed in 

Figure 4, but tested under humidified N2 conditions.  Labels D through P correspond to 

the time at which the Raman spectra shown in Figure 5 were obtained.  

 

 

 

 
 
 
 
 
 



 22

Table of Contents Synopsis 

Bistability of a thin film transistor with an ultra-thin layer-by-layer assembled gate 

dielectric and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) as the active 

layer is demonstrated through control of environmental conditions.  Device operation is 

shown to require water as a redox reactant, which induces a corresponding change in the 

active layer doping level. 
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