Award Number: W81XWH-04-1-0195

TITLE: Endogenous 6-Hydroxymelatonin Excretion and Subsequent Risk of Breast Cancer: A Prospective Study

PRINCIPAL INVESTIGATOR: Paola C. Muti, M.D.

CONTRACTING ORGANIZATION: Italian National Cancer Institute
00144 Rome, Italy

REPORT DATE: March 2007

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Endogenous 6-Hydroxymelatonin Excretion and Subsequent Risk of Breast Cancer: A Prospective Study

Paola C. Muti, M.D.
E-Mail: muti@buffalo.edu

Italian National Cancer Institute
00144 Rome, Italy

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The prevalence of breast cancer is greatest in industrialized regions and exposure to light at night has been proposed as a potential risk factor. Modulation of melatonin secretion by light has been implicated in the causal pathway linking exposure to light and breast cancer risk. Recent evidence indicates that melatonin is a natural oncostatic agent capable of functioning through a variety of anti-proliferative, anti-oxidative, and immunostimulatory mechanisms. We conduct a study to investigate the association of prediagnostic melatonin production and subsequent breast cancer risk in a prospective cohort study, the Italian ORDET study. Thus, prediagnostic melatonin production will be measured as urine levels of the 6-hydroxymelatonin sulphate (6-OHMS), its primary enzymatic metabolite, in 12-hour urine (overnight) collection. The study will be conducted as a nested case-control study. We expect 533 breast cancer cases among cohort members during the 17 year-follow-up period. Four controls will be matched to each case on age, menopausal status, recruitment center and time of recruitment for a total number of 2,132 control subjects. This study would be the first one analyzing the potential effect of melatonin on breast cancer risk. It will provide important data on risk factors that are likely key to the development of this disease at great public health impact.
INTRODUCTION

Melatonin (N-acetyl-5methoxtryptamine) is synthesized and released by the pineal gland in response to darkness. Thus, melatonin displays a strong variation during a 24-hour period: its serum levels are low during daylight hours and high at night. The health effect of chronic alteration of this circadian rhythm in humans has received relatively little attention. There is strong evidence to indicate that melatonin acts as a natural oncostatic substance (Blansk, 1993). Consistent experimental evidence, from both in vitro and in vivo studies, identified specific anti-carcinogenic functions of melatonin such as anti-proliferation, anti-oxidation, and immunostimulation functions (Brzezinski, 1997; Panzer and Viljoen, 1997; Reiter et al, 1997).

Environmental factors that reduce nocturnal exposure to melatonin may increase breast cancer risk by increasing levels of estrogens, by increasing exposure to oxidative stress and by reducing immune function (Cohen et al, 1978; Stevens, 1987). Nighttime plasma melatonin is reported to be lower in women affected with estrogen-receptor-positive breast cancer in comparison with women affected by other pathologies (Tamarkin et al, 1989). Melatonin was also lower in breast cancer cases than in women with benign breast disease (Bartsh et al, 1989). We are conducting a study to evaluate the relationship between melatonin and breast cancer using data from a prospective cohort study in which several sources of possible biomarker variability have been controlled by study design. We measure pre-diagnostic urine levels of the main melatonin metabolite, 6-OHMS, in urine stored at –80º C during the 17 year follow-up period. At its completion, the study will allow us to investigate the role of prediagnostic melatonin as a potentially important factor underlying the association between environmental and life-style factors with breast cancer.
BODY OF REPORT

In accordance with the Statement of Work we completed determinations for the samples from post-menopausal women and are now determining samples from pre-menopausal women.

Background

The Lombardy Cancer Registry (LCR) conducts the follow-up of the ORDET cohort. LCR, established by the Regional County Council for Health and supervised by the Epidemiology Unit at the National Cancer Institute in Milan, has been operating since January 1, 1976. LCR registers and includes in the incidence figures all malignant tumors, according to the categories 140-208, chapter two of the International Classification of diseases, ninth revision (ICD-9). The ORDET study and LCR reside in the same institution at the Italian NCI in Milan (Instituto Nazionale per lo Studio e la Cura dei Tumori). The LCR searches for cases actively, using various information sources, primarily hospital clinical records and pathology department records. The Italian National Health Service (NHS) provides health assistance for all citizens. Most health care services are public. Private facilities are also partially supported by NHS. Among all breast cancer cases arisen among residents of Varese Province, only 1.3% is known to the registry on the basis of death certificates only, and 99% of breast cancer cases are microscopically verified. LCR incidence data are regularly published in the “Cancer Incidence in Five Continents” (International Agency for Cancer Research-World Health Organization, 1982-1997; 1998-2002) and in several international publications on population-based cancer survivals (Eurocare Study I, 1995; Eurocare Study II, 1999). In the context of these studies on cancer survival, the LCR collects clinical information of cancer cases. Among this information, LCR collects the receptor status of the breast cancers identified in the population. This variable is included in the data analysis of the present study.
The end of follow-up is determined by death, immigration outside Italy or last day of the follow-up: in the case of the present application the last day of the follow-up was June 30, 2006. The latency period between cancer diagnosis and detection by the LCR is 6 months.

The present study was based on the projected incidence of cancer in the cohort by June 30th, 2006, with 533 expected breast cancer cases.

At present we are conducting the melatonin determinations for each identified case and the four related controls. Study protocols have been developed and discussed. Determinations have been completed for samples from post-menopausal women and we are now determining samples from pre-menopausal women.

Methods

Breast Cancer Cases: Breast cancer cases are women with histologically confirmed invasive breast cancer diagnosed after their recruitment (date at interview) to the ORDET cohort and before the end of the last follow-up period.

Control Subjects: Eligible controls are all be women free of cancer at the time of the diagnosis of the case. For each breast cancer case, four controls are randomly chosen after matching for sources of hormone variability: a) age; b) same recruitment center to exclude differences due to transportation of samples to laboratory; c) recruitment date to control for the effect of long-term preservation of sera; d) daylight saving period to allow for possible changes in circadian rhythm.
12 Hour Urine Collection: For urine collection at baseline, each participant was asked to empty her bladder before retiring at 7:00 PM, and to collect any urine voided during the night, as well as the first morning void at 7:00 AM. Participants then delivered urine between 7:30 and 9:30 AM to the ORDET recruitment center, where it was filtered and stored at –80°C. Urine samples have not been thawed up to now. Therefore, there will be no effects of freezing-thawing cycles and we will thaw urine for this study at the time of the proposed 6-OHMS determinations.

Analytical Methods: Melatonin production at baseline is evaluated through the urine excretion of 6-OHMS, its primary enzymatic metabolite using radioimmunoassay method (Bühlmann Laboratories AG, Switzerland). We correct concentration levels of 6-OHMS for creatinine excretion. There is evidence that total nocturnal production of melatonin is well correlated with levels of 6-OHMS in 24 hour urine samples and with morning urine samples (Markey et al, 1985 and Bojkowski et al., 1987; Cook et al., 2000). 6-OHMS shows good reliability and low intra-individual variability, at least over a short time period (Bojkowski et al., 1987), reflecting a stable rate of melatonin production in the same individual (Bojkowski et al., 1987; Arendt J, 1978). Finally, 6-OHMS is extremely stable in urine stored at -20°C and at -12°C for at least two years of cryopreservation (Bojkowski et al., 1987).

Biological specimens of all cases and matched controls are retrieved from the ORDET biological specimen bank and sent, on dry ice, to the Hormone Research Laboratory, at the Department of Preventive and Predictive Medicine of the Istituto Nazionale Tumori under the direction of Dr. Giorgio Secreto. The Laboratory is located in the same building as the ORDET specimen bank. Stored samples from cases and controls are handled identically and assayed together in the same batch. Each batch includes cases and their matched controls. Laboratory personnel are blinded to case control status of samples. In addition,
we include blind control duplicates for 5% of the samples in each batch. All samples are assayed in duplicate.

The analytical determinations for all the biomarkers will be completed in the next year.

KEY RESEARCH ACCOMPLISHMENTS

• Completed the follow-up of the prospective cohort study
• Set up the nested case-control study
• Study protocols developed
• Melatonin determinations for cases and controls have begun and will be completed in the next year.

REPORTABLE OUTCOMES

Publications and Presentations
We have published a paper based on the research developed during the evaluation of the bioassay method reliability:

In 2006-2007, Dr. Muti has published other papers on hormones and cancer, as listed below:

5. Han D, Nie J, Bonner MR, McCann S, Muti P, Trevisan M, Ramirez F, Vito D, Freudenheim JL. Lifetime adult weight gain, central adiposity and the risk of pre- and postmenopausal breast cancer in the Western New York Exposures

Dr Muti has also presented new results from other studies at the Annual Meeting of the American Association for Cancer Research as well as other conferences:

5. Teter BE, Fuhrman BJ, Barba M, Muti P. Nocturnal 6-Sulfatoxymelatonin and Mammographic Breast Density as a Marker of Breast Cancer Risk in Postmenopausal Women. 5th Annual Meeting American Association for Cancer Research, Boston, November 15, 2006

In addition, Dr. Muti has several other manuscripts submitted for publication on hormone and related factors and cancer.

CONCLUSIONS

We are continuing the hormone determinations phase for this grant. Therefore, there are no conclusions to report at this time.
REFERENCES

Lynge E. Risk of breast cancer is also increased among Danish female airline cabin attendants. BMJ 312: 253; 1996

Micheli A, Krogh V. A computer program to calculate expected cases in a dynamic cohort. Epidemiologia e Prevenzione.18(60):164-9; 1994.

