Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 JUL 2007</td>
<td></td>
<td>00-00-2007 to 00-00-2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Cargo Security</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prepared by ANSI Z39.18
Air Cargo Security

Summary

The air cargo system is a complex, multi-faceted network that handles a vast amount of freight, packages, and mail carried aboard passenger and all-cargo aircraft. The air cargo system is vulnerable to several security threats including potential plots to place explosives aboard aircraft; illegal shipments of hazardous materials; criminal activities such as smuggling and theft; and potential hijackings and sabotage by persons with access to aircraft. Several procedural and technology initiative to enhance air cargo security and deter terrorist and criminal threats have been put in place or are under consideration. Procedural initiatives include industry-wide consolidation of the “known shipper” program; increased cargo inspections; increased physical security of air cargo facilities; increased oversight of air cargo operations; security training for cargo workers; and stricter controls over access to cargo aircraft and air cargo operations areas. Technology being considered to improve air cargo security includes tamper-resistant and tamper-evident packaging and containers; explosive detection systems (EDS) and other cargo screening technologies; blast-resistant cargo containers and aircraft hardening; and biometric systems for worker identification and access control.

The Aviation and Transportation Security Act (ATSA, P.L. 107-71) contains general provisions for cargo screening, inspection, and security measures. Cargo carried in passenger airplanes must be screened or its security otherwise ensured. In practice, the Transportation Security Administration (TSA) has relied heavily on “known shipper” protocols to prevent shipments of cargo from unknown sources on passenger aircraft. ATSA also mandated that a security plan for all-cargo operations was to be put in place as soon as possible, but aviation security initiatives in the aftermath of the 9/11 attacks have primarily focused on passenger operations and full implementation of the air cargo strategic plan has not been fully completed.

The National Intelligence Reform Act of 2004 (P.L. 108-458) included provisions establishing a pilot program for evaluating the deployment of blast-resistant cargo containers; promoting the research, development, and deployment of enhanced air cargo security technology; evaluating international air cargo threats; and finalizing operational regulations of air cargo security. Those regulations, finalized by the TSA in 2006, require use of an industry-wide known shipper database, background checks of air cargo workers, and enhanced security measures at air cargo operations areas. In addition to these measures, the TSA has been provided with appropriations to hire more cargo inspectors and canine teams to step up screening and regulatory inspections of air cargo security. The TSA is also planning on deploying a freight assessment system to evaluate cargo risk and target shipments for detailed inspection.

In addition, appropriations legislation over the past three years has called for continued increases to the amounts of air cargo that is physically screened. The conference report on the Implementing the 9/11 Commission Recommendations Act (H.R. 1, H.Rept. 110-259) would establish a system to physically screen 100% of all air cargo within three years, with an interim requirement of screening 50% of air cargo within 18 months of enactment. This report will be updated as needed.
Contents

Overview of the Air Cargo System .. 1
Air Cargo Security Risks ... 5
 Explosives and Incendiary Devices .. 5
 Hazardous Materials ... 7
 Cargo Crime ... 8
 Aircraft Hijacking and Sabotage ... 9
Cargo Screening and Inspection .. 11
 "Known Shipper" Programs .. 12
 Cargo Inspection ... 15
 U.S. Mail Carried on Aircraft ... 18
Physical Security of Air Cargo Facilities .. 20
 Inspection and Oversight of Air Cargo Facilities 21
 Cargo Security Training .. 21
 Increased Control over Access to Aircraft and Cargo Facilities 21
 Arming All-Cargo Pilots ... 22
Technology For Air Cargo Security ... 24
 Tamper-Evident and Tamper-Resistant Seals 24
 Cargo Screening Technology .. 25
 Hardened Cargo Containers .. 28
 Biometric Screening Technology .. 31
Funding for Air Cargo Security ... 32
Potential Congressional Approaches .. 34

List of Figures

Figure 1. Air Cargo Volume — Historic Data and Forecasts
 (FY1999 - FY2017) .. 2
Figure 2. Distribution of Air Cargo Revenue Ton Miles by Type of
 Operation (FY1999 - FY2005) .. 5
Figure 3. Domestic Mail Carried on Scheduled Passenger Airlines 20

List of Tables

Table 1. Appropriations for Air Cargo Security 34
Table 2. Potential Benefits and Possible Risks of Various
 Congressional Approaches ... 36
Air Cargo Security

Overview of the Air Cargo System

The air cargo system is a complex, multi-faceted network responsible for moving a vast amount of freight, express packages, and mail carried aboard passenger and all-cargo aircraft. The air cargo system consists of a large, complex distribution network linking manufacturers and shippers to freight forwarders to airport sorting and cargo handling facilities where shipments are loaded and unloaded from aircraft. Business and consumer demand for fast, efficient shipment of goods has fueled the rapid growth of the air cargo industry over the past 25 years.

In FY2003, about 14.3 billion revenue ton miles\(^1\) (RTMs) of cargo\(^2\) were shipped by air within the United States, and another 18.5 billion RTMs of cargo were shipped by air on international flights to and from the United States. The volume of air cargo operations since FY1999 and the forecast volume of air cargo through 2016 is shown in Figure 1.

It is estimated that air cargo shipments, expressed in terms of revenue ton mileage (RTMs), will increase by 50% domestically, and by 110% internationally by FY2016 compared to FY2003 levels.\(^3\) In 2002, air cargo comprised about 0.3% by weight of all freight movement in the United States.\(^4\) While this percentage may seem small, it is much greater than the 0.07% percent of freight that traveled by air in 1965, indicating that not only is the volume of air cargo increasing significantly, but so is the percent of total freight movements that travel by air. Also, cargo shipments by air comprise a significant percent of the total value of cargo shipments. In fact, in 2002, while air freight movements accounted for only about 0.3% of total domestic freight shipments by weight, these shipments accounted for 4.3% of the total value of freight shipped within the United States.

In terms of global trade, air cargo accounted for 26.2% of the value of goods shipped to and from the United States, surpassed only by maritime shipping, which accounted for 41.9% of the import/export value of cargo in 2002. This demonstrates

\(^1\) A revenue ton mile is equivalent to one ton of cargo being transported one mile.

\(^2\) Cargo, as defined by the Federal Aviation Administration (FAA), includes freight, express packages, and mail.

\(^3\) Federal Aviation Administration. FAA Aerospace Forecasts Fiscal Years 2005-2016.

the importance of air cargo in the international trade of high-value goods. While the downturn in the aviation industry between 2000 and 2002 temporarily slowed the pace of growth in air cargo, shipments surpassed pre-9/11 levels in 2003. This increased demand reflects the importance of addressing air cargo security needs as the size and complexity of the air cargo system continues to expand.

Figure 1. Air Cargo Volume — Historic Data and Forecasts (FY1999 - FY2017)

![Air Cargo Volume Graph](image)

Given the sheer volume of cargo that must be expediently processed and loaded on aircraft, it has been generally argued that full electronic screening of all air cargo, as is now required of checked passenger baggage, is likely to present significant logistic and operational challenges. In 2002, it was reported that TSA computer models estimated that if full physical screening is implemented, only 4% of the daily volume of freight at airports could be processed due to the time that would be required to breakdown shipments, inspect them, and reassemble them for transport. Since that time, considerable progress has been made to increase the amount of cargo placed on passenger airliners that is screened and advance screening technologies to address concerns over the screening of cargo. What has resulted since is best described as a slow evolution of increasing inspections and screening of air cargo shipments placed on passenger aircraft since 2002. These inspections and screening operations are conducted by the airlines and freight shippers under the oversight of

the TSA. While the TSA does not divulge the percentage of cargo that currently undergoes physical inspection, language in the FY2005 Homeland Security Appropriations Act (P.L. 108-334) called for at least tripling the amount of cargo placed on passenger aircraft that was inspected at that time. FY2006 appropriations language (P.L. 109-90) directs the TSA to take all possible measures — including the certification, procurement, and deployment of screening systems — to inspect and screen air cargo on passenger aircraft and increase the percentage of cargo inspected beyond the level mandated in the FY2005 appropriations measure. FY2007 appropriations language (P.L. 109-295) directs the TSA to work with industry stakeholders to develop standards and protocols to increase the use of explosives detection equipment for screening air cargo. Along similar lines, the National Intelligence Reform Act of 2004 (P.L. 108-458) require the TSA to pursue screening technologies and enhance security procedures to improve the inspection, screening, and tracking of air cargo on passenger aircraft as recommended by the 9/11 Commission.

In the 110th Congress, the “Implementing the 9/11 Commission Recommendations Act of 2007” (H.R. 1) contains a provision that would require the inspection of all air cargo placed on passenger aircraft in a manner that provides a level of security equivalent to the screening of passenger checked baggage. The provision would phase-in the percentage of cargo required to be screened, setting these levels at 35% by the end of FY2007, 65% by the end of FY2008, and 100% by the end of FY2009. The measure is opposed by various stakeholders in the air cargo industry that believes its requirements are overly burdensome and costly.7 The Aviation Security Improvement Act (S. 509), introduced by Senator Inouye on February 6, 2007, instead calls for establishing a system for screening all cargo carried on passenger aircraft within three years of enactment. However, S. 509 would not explicitly require all cargo placed on passenger aircraft to be physically screened, because alternative screening methods and techniques, such as risk assessment screening tools, have historically been considered as screening systems. This language was included in the Improving America’s Security Act of 2007 (S. 4), which was included in the Senate-passed version of H.R. 1.

The conference report on H.R. 1 (H.Rept. 110-259) includes alternative language that more closely parallels the House-passed version of the legislation with regard to screening air cargo. Specifically, the conference report would require the TSA to establish a system for screening 100% of cargo placed on passenger aircraft within three years, with an interim requirements of screening 50% of such cargo within 18 months of enactment. The provision in the conference report (Sec. 1602) specifically defines screening in this context to mean a physical examination or other non-intrusive methods of assessing whether cargo poses a threat to transportation security. The bill identifies specific methods of screening that would be acceptable in meeting this requirement, including the use of x-ray systems, explosives detection systems, explosives trace detection, TSA-certified explosives detection canine teams, and physical searches conducted in conjunction with manifest verifications. Additional methods may be approved by the TSA; however, the provision would

specifically prohibit the use of cargo documents and known shipper verification by themselves as being acceptable screening methods. In other words, the provision clarifies that the screening of cargo is to involve some sort of inspection process that cannot be met solely by a records verification of shipment contents or shipper status. The language does, however, leave open the possibility that the TSA could implement some other non-intrusive methods for assessing whether cargo poses a risk that would not necessarily involve the use of physical screening technologies. However, it is, at this point, unclear what such methods may consist of. The TSA would be required to promulgate regulations to meet these requirements and would be required to provide justification for any exemptions to these air cargo screening requirements it may grant. Also, the GAO would be required to assess the methods used by the TSA in granting, modifying, or eliminating any exemptions to these requirements.

While the primary policy focus of legislation has been on cargo carried aboard passenger aircraft, air cargo security is also presents a challenge for all-cargo operators. The largest all-cargo operators in the United States include FedEx Express, UPS, Atlas Air, Polar Air Cargo, Kallita Air, ABX Air, Evergreen International Airlines, Gemini Air Cargo, and World Airways. In addition, some airlines with passenger service, such as Northwest Airlines and United, also have a fleet of all-cargo aircraft. Figure 2 shows the distribution of air cargo operations among passenger and all-cargo aircraft. International operations make up about half of the total system-wide air cargo operations in the United States. Historically, about 27% of revenue ton miles (RTMs) of domestic air cargo travels aboard passenger aircraft within the United States, while 40% of international cargo RTMs and to and from the United States is carried aboard passenger aircraft. The percentage of air cargo carried on passenger aircraft has dropped since September 11, 2001, with an estimated 19% of domestic RTMs and 36% of international air cargo RTMs carried on passenger aircraft in 2003. This reduction in the distribution of air cargo to passenger flights, which is much more pronounced in the domestic market, is primarily attributable to a post-9/11 restriction on mail parcels weighing more than 16 ounces and a prohibition against carrying cargo from unknown shippers aboard passenger aircraft. A post-9/11 reduction in passenger flights to certain locations has also contributed to an increased reliance on all-cargo aircraft for cargo shipments.

Since September 11, 2001, a variety of air cargo security measures have been put in place or are under consideration. The purpose of these security measures is to mitigate: (1) the risks associated with placing cargo on passenger and all-cargo aircraft; and (2) the high level of access to aircraft during cargo operations. This report will examine the key security risks associated with air cargo operations and options for mitigating these risks.

Air Cargo Security Risks

Potential risks associated with air cargo security include introduction of explosive and incendiary devices in cargo placed aboard aircraft; shipment of undeclared or undetected hazardous materials aboard aircraft; cargo crime including theft and smuggling; and aircraft hijackings and sabotage by individuals with access to aircraft.

Explosives and Incendiary Devices. Undetected explosive or incendiary devices placed in air cargo are potential threats to aircraft. Experts have warned that air cargo may be a potential target for terrorists because screening and inspection of air cargo is currently not as extensive as required screening of passengers and checked baggage. Cargo carried aboard passenger aircraft may be at particular risk since passenger aircraft are generally regarded as highly attractive targets to terrorists and have been attacked in the past. It has been reported that TSA considers the likelihood of a terrorist bombing of a passenger airplane to be between 35% and 65% based on 2002 intelligence reports, and TSA believes that cargo is either likely to become, or already is, the primary aviation target for terrorists in the short term.9 However, other terrorism experts regard placing explosives in air cargo as less

appealing to terrorists because typically a specific flight cannot be targeted without the assistance of an individual with access to aircraft. Furthermore, experts generally believe that all-cargo aircraft are less appealing targets to terrorists because an attack against an all-cargo aircraft is not likely to generate the degree of public and media attention that a bombing of a commercial passenger aircraft would have.

The December 22, 2001, attempted shoe bombing aboard a American Airlines Boeing 767 on a trans-Atlantic Paris to Miami flight and the foiled plot to allegedly bomb U.S.-bound airliners from the United Kingdom in August 2006 has heightened concerns over possible terrorist bombings of passenger aircraft. Historically, bombings of U.S. airliners have been rare and have mostly involved bombs placed in either the aircraft passenger cabin or in checked passenger baggage. The most catastrophic bombing of a U.S. airliner was the December 21, 1988 crash of Pan Am flight 103, a Boeing 747, over Lockerbie, Scotland that was attributed to an explosive device placed in a baggage container in the airplane’s forward hold.\footnote{United Kingdom Air Accidents Investigation Branch. \textit{Report on the accident to Boeing 747-121, N739PA at Lockerbie, Dumfriesshire, Scotland on 21 December 1988} (Aircraft Accident Report No 2/90 (EW/C1094)), July 1990.} Investigation of the deadliest bombing of a passenger aircraft, the June 23, 1985 downing of Air India flight 182 off the coast of Ireland, similarly revealed evidence of an explosive device that was most likely introduced in checked baggage and placed in the aircraft’s forward cargo hold.\footnote{Canadian Aviation Bureau Safety Board. \textit{Aviation Occurrence, Air India Boeing 747-237B VT-EFO, Cork, Ireland 110 Miles West}, June 23, 1985.} The most notable event involving detonation of an explosive device transported as cargo aboard an airliner in the United States was the November 15, 1979 explosion aboard an American Airlines Boeing 727 that made a successful emergency landing at Dulles Airport following the incident. Investigation revealed that the device was contained in a parcel shipped by U.S. mail that the Federal Bureau of Investigation (FBI) linked to convicted “Unabomber,” Theodore Kaczynski.\footnote{Affidavit of Assistant Special Agent in Charge, Terry D. Turchie, Before the U.S. District Court, District of Montana, April 3, 1996.}

While using cargo as a means to place explosive or incendiary devices aboard aircraft has historically been rare, heightened screening of passengers, baggage, and aircraft may make cargo a more attractive means for terrorists to place these devices aboard aircraft, including all-cargo aircraft as well as passenger aircraft, in the future. Investigations have suggested that al Qaeda terrorists had an interest in bombing all-cargo aircraft prior to September 11, 2001, and were planning to bomb U.S.-bound cargo flights in an operation run out of the Philippines.\footnote{National Commission on Terrorist Attacks Upon the United States. \textit{The 9/11 Commission Report}. New York, NY: W. W. Norton & Company.} Given al Qaeda’s continued interest in bombing aircraft and indications that they have already considered placing bombs in cargo, the specific vulnerability of air cargo is an issue of particular concern.
However, as previously noted, some terrorism experts believe that placing explosives or incendiary devices in cargo may be less appealing because it would be difficult to target specific flights without the cooperation of individuals with access to aircraft such as cargo workers. Thus, increased efforts to perform background checks of workers with access to aircraft and increased physical security around air cargo operations may further mitigate the threat of explosives and incendiary devices. Additionally, the use of hardened cargo containers capable of withstanding internal bomb blasts are being evaluated and may also provide a means of mitigating the risks of explosives and incendiary devices. The 9/11 Commission specifically recommended the deployment of at least one hardened cargo container in each passenger aircraft to mitigate the potentially catastrophic consequences of a bomb carried in air cargo. The National Intelligence Reform Act of 2004 (P.L. 108-458) calls for establishing a pilot program to evaluate this concept.

Hazardous Materials. Despite increased Federal Aviation Administration (FAA) and Department of Transportation (DOT) oversight and enforcement efforts, undeclared and undetected shipments of hazardous materials continues to pose a significant safety problem for air carriers. Most explosives and gases are prohibited aboard aircraft, however many properly handled hazardous materials are permitted aboard passenger and all-cargo aircraft within specified quantity limitations.

Risks are introduced when hazardous materials are not declared leading to the potential transport of prohibited materials by air or improper handling of hazardous goods during loading and while in transit. The dangers of undetected and improperly handled hazardous materials in air cargo shipments were highlighted by the May 11, 1996 crash of a ValuJet DC-9 in the Florida Everglades. The National Transportation Safety Board (NTSB) determined that improperly carried oxygen generators ignited an intense fire in one of the airplane’s cargo holds leading to the crash and issued several safety recommendations for improving the handling and tracking of hazardous materials to prevent improper carriage aboard passenger aircraft.

While safety concerns regarding hazardous cargo shipments aboard passenger aircraft are of particular concern, preventing unauthorized shipments of hazardous materials is a challenge for all-cargo aircraft operators as well. About 75% of hazardous materials shipped by aircraft are carried aboard all-cargo aircraft, while the

14 Ibid.

15 Hazardous materials or dangerous goods include explosives; gases; flammable liquids and solids; oxidizers and organic peroxides; toxic materials and infectious substances; radioactive materials; corrosive materials; and other miscellaneous dangerous goods (e.g. asbestos).

remaining 25% is shipped on passenger aircraft. Enhanced air cargo security measures may also improve air cargo safety by increasing the detection of undeclared hazardous materials.

Cargo Crime. Cargo crimes include theft of goods transported as cargo, and shipment and smuggling of contraband, counterfeit, and pirated goods through the cargo distribution network. It is estimated that direct losses due to cargo theft across all transportation modes total between $10 and $25 billion annually in the United States. The large range in this estimate reflects the fact that cargo theft has not been a specific crime category and therefore reliable statistics on cargo theft are unavailable. A provision in the USA PATRIOT Improvement and Reauthorization Act (P.L. 109-177), however, required the Department of Justice to establish a separate category for cargo theft in the Uniform Crime Reporting System. The act also refines relevant statutes and increases criminal penalties for cargo theft and stowaways.

The large estimated level of cargo theft and other cargo crimes is indicative of potential weaknesses in cargo security including air cargo security. Specific weaknesses in air cargo security have been highlighted in several high profile investigations of cargo theft. Major cargo and baggage theft rings have been uncovered at JFK International Airport in New York, Logan International Airport in Boston, and at Miami International Airport. In addition to theft, smuggling is a problem for air cargo security. Smuggling of contraband, counterfeit, and pirated goods undermines legal markets and reduces government tax and tariff revenues. Smuggling operations are often linked to organized crime, and may provide support for terrorist activities. A large portion of cargo crime is either committed by or with the assistance of cargo workers. Therefore, increased security measures such as conducting more stringent or more frequent background checks of cargo workers and enhancing physical security of cargo operations areas are likely to reduce cargo crimes and improve the capability to detect criminal activity in air cargo operations. A review of transportation security needs for combating cargo crime identified six key issues regarding cargo security:

- A lack of effective cargo theft reporting systems;
- Weaknesses in current transportation crime laws and prosecution;
- A lack of understanding regarding the nature of cargo crime by governments and industry;

Inadequate support for cargo theft task forces;
A need to improve local law enforcement expertise on cargo theft;
and
The need for more effective cargo security technology including cargo tracking systems, tamper-evident and tamper-resistant seals, high-speed screening devices, and integration of security technology into supply chain management systems.

Addressing these issues specific to cargo crime may also improve overall cargo security and could deter terrorist threats to cargo shipments. While these recommendations are directed toward cargo crime issues in all modes of transportation, they could be particularly applicable to air cargo security where other security concerns such as explosive and incendiary device detection, hazardous materials detection, and deterring hijackings and sabotage may also be addressed through the implementation of tighter controls to deter cargo crime.

Aircraft Hijacking and Sabotage. Individuals with access to aircraft may pose a risk of potential hijackings and aircraft sabotage. Instances of hijackings by individuals with access to aircraft have been extremely rare, but include two examples of particularly violent incidents by disgruntled individuals who had access to aircraft that facilitated their plots. A particularly dramatic hijacking attempt by an individual with access to aircraft and cargo operations facilities occurred on April 7, 1994. An off-duty Federal Express flight engineer attempted to hijack a FedEx DC-10 aircraft and crash it into the company’s Memphis, Tennessee headquarters. The hijacker boarded the airplane in Memphis under the guise of seeking free transportation to San Jose, California. His only luggage was a guitar case that concealed hammers, mallets, a knife, and a spear gun. At the time there was no requirement or company procedure to screen or inspect personnel with access to cargo aircraft or their baggage. The flight crew thwarted the hijacker’s attempt to take over the airplane by force and made a successful emergency landing in Memphis despite serious injuries to all three flight crew members.

Individuals have also used their access to aircraft credentials to bypass existing security measures. For example, on December 7, 1987, a PSA regional jet crashed near San Luis Obispo, California killing all 43 people on board. Investigation revealed that a disgruntled former USAir employee, recently fired for alleged theft, used his employee identification, which had not been returned, to bypass airport security with a loaded handgun. At altitude, he shot his former supervisor who was a passenger on the airplane. He then entered the flight deck, shot the two pilots, and then shot himself after putting the airplane into a crash dive. At the time, federal regulations permitted airline employees to bypass airport security checkpoints.

Since these incidents, airport and air cargo security regulations have been tightened to establish better controls over aircraft access including background checks and physical screening of individuals with access to aircraft. Background checks of workers with unescorted access to passenger aircraft was mandated under ATSA, and background checks of workers with unescorted access to air cargo are under consideration as part of proposed regulations issued by the TSA in November 2004.25 However, without full screening of air cargo and airport personnel, the potential still exists for persons with access to aircraft to pass weapons inside the secured areas of airports. Under recently imposed regulations, all-cargo operators must take steps to prevent unauthorized individuals from accessing aircraft and to ensure that crewmembers and individuals carried aboard large all-cargo aircraft are prevented or deterred from carrying weapons, explosives, or other destructive items on board aircraft.26

Heightened security measures on passenger aircraft since September 11, 2001 could make all-cargo aircraft more attractive to terrorists seeking to hijack large airplanes. Currently, federal air marshals are not deployed on all-cargo aircraft, and cargo airplanes are not required to have hardened cockpit doors so long as alternative TSA-approved security measures are implemented to control access to the aircraft and flight deck while the airplane is on the ground. Vision 100 (P.L. 108-176) expanded the Federal Flight Deck Officer program to include pilots of all-cargo aircraft. This program trains and deputizes pilots to carry firearms to protect the flight deck against a terrorist attack. (see CRS Report RL31674, \textit{Arming Pilots Against Terrorism: Implementation Issues for the Federal Flight Deck Officer Program}, by Bart Elias.)

Sabotage by individuals with access to aircraft is also a potential risk, although generally not considered a significant threat because of the high level of knowledge regarding aircraft systems needed to sabotage flight critical systems, the levels of redundancy of flight critical systems on modern transport category airplanes27, and the existing capabilities to detect sabotage attempts through aircraft systems checks and pre-flight inspections. While numerous cases of sabotage by disgruntled employees have been documented, these incidents of aircraft tampering have typically been discovered during pre-flight inspections resulting in aircraft groundings and delays and costly repairs, but have not resulted in catastrophes. Such incidents have not been linked to terrorism.

\begin{itemize}
\item 26 See 49 CFR §1544.202.
\item 27 Transport category airplanes include all jet-powered airplanes with 10 or more passenger seats or weighing more than 12,500 pounds maximum takeoff weight (MTOW), and all propeller-driven airplanes with 19 or more seats or weighing more than 19,000 pounds MTOW.
\end{itemize}
Cargo Screening and Inspection

Screening and inspection of air cargo may be an effective means for detecting explosives, incendiary devices, and hazardous materials in air cargo. The Aviation and Transportation Security Act (ATSA, P.L. 107-71) requires the screening of all property, including mail and cargo, carried aboard passenger aircraft in the United States. In implementing the security procedures for cargo carried aboard passenger airplanes, TSA has relied extensively on “known shipper” programs to prevent the shipment of cargo from unknown sources aboard passenger aircraft. ATSA also specifies that, as soon as practicable, a system must be implemented to screen, inspect, or otherwise ensure the security of all cargo transported in all-cargo aircraft using methods such as those outlined in this report. However, the General Accounting Office (GAO) noted that the TSA lacked specific long-term goals and performance targets for cargo security. In response, the TSA has developed an air cargo security strategic plan and has proposed comprehensive regulations designed to enhance air cargo security. The TSA’s strategy centers on risk-based assessments and targeted physical screening of cargo based on risk as well as increased random inspections of shipments.

Current aviation security regulations require that each passenger aircraft operator and indirect air carrier develop a security program for acceptance and screening of cargo to prevent or deter the carriage of unauthorized explosives or incendiaries. However, the volume of air cargo handled and the distributed nature of the air cargo system presents significant challenges for screening and inspecting air cargo. Presently, in the United States, about 50 air carriers transport air cargo on passenger aircraft handling cargo from nearly 2 million shippers per day. About 80% of these shippers use freight forwarders who operate about 10,000 facilities across the country. Since many experts believe that 100% screening of all air cargo is not a practical solution with currently available technology, security programs have relied on pre-screening of cargo to identify shipments for physical screening and inspection. The TSA notes that 100% physical screening of all cargo is not a viable alternative as no single technology is currently available to effectively and comprehensively screen all air cargo for various different types of explosives threats. The TSA, therefore, has adopted a risk-based strategy that relies heavily on the vetting of shippers through a known shipper process and on screening.

29 An indirect air carrier refers to an entity, such as a freight forwarder, that engages indirectly in the air transportation of property on passenger aircraft (See Title 49 Code of Federal Regulations, Chapter XII, Part 1544).

30 See S.Rept. 108-38.

32 Transportation Security Administration, TSA Takes Significant Steps to Strengthen Air Cargo Security.
shipments against databases of known shippers. Ultimately, the TSA plans to include other factors in its cargo risk assessment through the use of a freight assessment system that is currently under development.

The TSA is currently working toward fully implementing its Air Cargo Strategic Plan, which was released in November 2003. In keeping with the risk-based approach of implementing air cargo security measures typified in the known shipper concept, the core elements of this plan consist of: improving shipper and supply chain security through improved vetting of shippers and freight forwarders; enhancing cargo pre-screening processes; developing and deploying appropriate screening technologies to conduct targeted air cargo inspections; and implementing appropriate facility security measures. In addition to the known-shipper system, the TSA is also developing a more comprehensive targeting tool for air cargo, known as the “Freight Assessment System.” While few details of this system have been publicly disclosed, the TSA expects to fully deploy this system sometime in 2008.

“Known Shipper” Programs. The principal means for pre-screening or profiling cargo has been through the use of “known shipper” programs. In May 2006, the TSA issued a final rule establishing an industry-wide known shipper database for vetting all shipments placed on passenger aircraft. Previously, some air carriers and indirect air carriers had voluntarily participated in a system using a central database of known shippers to vet cargo destined for passenger aircraft as required under ATSA. Other air carriers and freight forwarders relied on internal databases and security protocols approved by TSA for determining whether shipments bound for a passenger airplane come from known sources and that shippers have adequate security measures in place to protect the integrity of those shipments. These protocols were collectively known as “known shipper” programs.

Known shipper programs were created to establish procedures for differentiating trusted shippers, known to a freight forwarder or air carrier through prior business dealings, from unknown shippers who have conducted limited or no prior business with a freight forwarder or air carrier. Using this system, packages from unknown shippers can then be identified for additional screening and inspection. Currently, shipments from unknown sources are prohibited from passenger aircraft. Additionally, air carriers and freight forwarders must refuse to transport any cargo from shippers, including known shippers, that refuse to give consent for searching and inspecting the cargo. ATSA provides for use of known shipper programs as an alternate means for ensuring the security of cargo carried aboard passenger aircraft

34 Executive Office of the President of the United States, Office of Management and Budget, Program Assessment, Transportation Security Administration: Air Cargo Security Programs. Washington, DC.

in lieu of screening of property by federal government employees prior to aircraft boarding.

The development of known shipper programs was prompted by industry experts and Congress in the mid-1990s who recognized that increased controls over air cargo shipments were needed to better ensure air cargo safety and security. Key concerns included the need for increased compliance with guidelines for the shipment of hazardous materials and the need to deter terrorists from using cargo as a means to place explosives or incendiary devices on aircraft. In addition, congressional hearings on the 1996 Valujet accident concluded that air cargo safety could only be achieved through a comprehensive inspection program encompassing all components of the air cargo network.36

In December 1996, the FAA’s Aviation Security Advisory Committee (ASAC) Security Baseline Working Group issued a series of recommendations that formed the basis for FAA’s effort to strengthen aviation security in response to this need. Recommendations issued by the working group regarding air cargo security included tightening the definition of a “known shipper”; using profiles to review the shipments of known shippers and apply additional security measures; and exploring technologies to develop a profile to be applied to cargo shipments. The White House Commission on Aviation Safety and Security, formed after the 1996 crash of TWA Flight 800 and commonly referred to as the Gore Commission, urged the adoption of the recommendations made by the FAA’s Baseline Working Group regarding the profiling of “known” and “unknown” shippers.37 As part of FAA’s efforts in air cargo safety and security, a “known shipper” program was subsequently established, outlining procedures for freight forwarders and air carriers to review the security practices of known frequent customers and establish a cargo security plan for handling cargo from known and unknown shippers. With the passage of ATSA, oversight of cargo security measures was transferred from the FAA to the TSA. The TSA has continued to rely on known shipper programs as a principle means for pre-screening air cargo.

A review of aviation security after the September 11, 2001 terrorist attacks by the Department of Transportation (DOT) Office of the Inspector General, drew attention to the vulnerabilities of air cargo and questioned the overall effectiveness of the known shipper program.38 In Congressional testimony following the terrorist attacks of September 11, 2001, DOT Inspector General, Kenneth Mead, referenced a 1998 report by the DOT Office of the Inspector General documenting a high rate of non-compliance with hazardous materials regulations and cargo security requirements across the air cargo industry and a lack of industry oversight to ensure

that security procedures were carried out by cargo workers. In 1998, the DOT Inspector General noted that FAA was making progress toward improving the policies, procedures, and controls over air cargo safety and security. However, Mead testified that a follow-up audit revealed continued weaknesses in FAA’s policy for allowing cargo on passenger aircraft. Several loopholes have been noted, including the relative ease of obtaining known shipper status, and the relative ease with which someone could pose as a known shipper by falsifying or counterfeiting shipping documents used to identify the source as a known shipper.

Two central issues regarding the post-9/11 implementation of known shipper programs have been the adequacy of procedures for auditing and monitoring known shippers, and consideration of the potential need for a consolidated database of known shippers, as has now been created. Critics of known shipper programs have argued that relatively little investigation of known shippers is required to demonstrate that these shippers are trustworthy and have adequate security measures in place to ensure the integrity of their shipments. Freight forwarders and air carriers have also questioned why extensive background checks and established relations with a particular customer are required to establish that the customer is a known shipper when that customer is already considered a known shipper to another air carrier or freight forwarder. Therefore, some had suggested a need for a standardized, centralized database of known shippers, as has now been created by the TSA. To address these concerns, the TSA initially instituted an industry-wide pilot program database of known shippers. This initiative poised the TSA to address Congressional interest in establishing an industry-wide known shipper database that was included in language passed by the Senate during the 108th Congress (see S. 165, S. 2845 as passed by the Senate). The administration’s subsequent initiatives in taking regulatory action to require an industry-wide known shipper database led Congress to ultimately drop the Senate-passed provision in the Intelligence Reform Act of 2004 (P.L. 108-458) that would have established a statutory requirement for establishing a standardized industry-wide known shipper program and database. Congress instead settled on including language calling for the TSA to finalize its rulemaking on air cargo security, including the proposed establishment of the industry-wide known shipper database, by September 2005. Those rules were not finalized until May, 2006, but are now being implemented, including the provision to establish an industry-wide known shipper database. The Congressional Budget Office (CBO) estimates that it will cost about $10 million per year to maintain an industry-wide database of known shippers.

43 See S.Rept. 108-38. Air Cargo Security Improvement Act: Report of the Committee on (continued...)
Cargo Inspection. Another issue for air cargo security is the adequacy of cargo inspection procedures and oversight of cargo inspections at air carrier and freight forwarder facilities. ATSA established requirements for screening and inspection of all individuals, goods, property, vehicles, and other equipment entering a secured area of a passenger airport that assures the same level of protection as passenger and baggage screening.

ATSA, however, did not establish specific requirements for the physical screening of air cargo. With regard to air cargo, current regulations specify that aircraft operators must use the procedures, facilities, and equipment described in their security program to prevent or deter the carriage of unauthorized explosives or incendiaries in cargo onboard a passenger aircraft and inspect cargo shipments for such devices before it is loaded onto passenger aircraft. With regard to all-cargo aircraft, ATSA mandates that a system to screen, inspect, or otherwise ensure the security of all-cargo aircraft is to be established as soon as practicable, but sets no specific deadlines or time frame for compliance. Additionally, aircraft operators must establish controls over cargo shipments, in accordance with their security program, that prevent the carriage of unauthorized explosive or incendiary devices aboard passenger aircraft and access by unauthorized individuals. Further, aircraft operators must refuse to transport any cargo presented by a shipper that refuses to consent to a search and inspection of their shipment.44

The Homeland Security Appropriations Act of 2005 (P.L. 108-334) called for tripling the amount of cargo placed on passenger airplanes that is screened or inspected, however the absolute number or percentage of cargo subject to inspection is considered security sensitive. FY2006 appropriations language (P.L. 109-90) directed the TSA to take all possible measures — including the certification, procurement, and deployment of screening systems — to inspect and screen air cargo on passenger aircraft and increase the percentage of cargo inspected beyond the level mandated in the FY2005 appropriations measure. Further, FY2007 appropriations language (P.L. 109-295) directed the TSA to work with industry stakeholders to develop standards and protocols to increase the use of explosives detection equipment for screening air cargo.

While Congress has acted to increase physical inspections of cargo carried aboard passenger aircraft, 100% screening of all cargo placed on passenger aircraft remains a particularly contentious issue. At the beginning of the 110th Congress, the House passed H.R. 1, which includes a provision that would require 100% screening of cargo placed on passenger aircraft by the end of FY2009. Specifically, the provision would phase-in the percentage of cargo required to be screened, setting these levels at 35% by the end of FY2007, 65% by the end of FY2008, and 100% by the end of FY2009. Air cargo industry stakeholders have largely opposed this approach, urging Congress instead to “...focus on realistic solutions based on a framework that identifies and prioritizes risks, works methodically to apply effective and practical security programs, and makes optimal use of federal and industry

43 (...continued)

44 See Title 49, Code of Federal Regulations, Chapter XII, Part 1544.205
resources.” They advocate for a risk-based screening system for cargo placed on passenger airlines that incorporates threat assessment and targeting capabilities, provides incentives for shippers to strengthen supply chain measures, and focuses increased inspections on cargo determined to be of elevated risk through risk assessment and targeting capabilities. This roughly parallels the TSA’s current strategic plan for air cargo security, which focuses on risk-based targeted screening of cargo, rather than 100% physical screening of cargo loaded on to passenger aircraft. The industry has specifically recommended increased use of canine explosives detection teams; enhanced supply chain security; enhanced targeting of shipments based on the Customs and Border Protection (CBP) experience with its Automated Targeting System (ATS); expanded use of explosive trace detection (EDT) technology for targeted screening; and accelerated research and development of technologies that can more efficiently inspect elevated risk cargo.

A significant challenge regarding cargo inspection is the feasibility of implementing inspection procedures that offer adequate assurances for security without unduly affecting cargo shipment schedules and processes. In 1997, the Gore Commission recommended that unaccompanied express packages shipped on commercial passenger aircraft should be subject to examination by explosives detection systems. However, many in the air cargo industry have expressed continuing concerns that current technology does not offer a readily available, affordable solution for scanning cargo containers or cargo unit loading devices (ULDs) in an expeditious manner that would not unduly affect the schedule of air cargo operations. Also, scanning or inspecting individual packages is considered infeasible by many experts due to the volume of cargo handled and the schedule demands of the air cargo business. Therefore, most experts agree that the most practical solution, using available technology, is the application of physical screening and inspections on selected shipments and the use of cargo profiling procedures such as known shipper programs to identify shipments that may require additional screening and inspection.

Since the ability to screen and inspect cargo may be limited by available technology, flight schedules, and cargo processing demands, alternative measures for screening and inspection at cargo handling facilities have been suggested. In particular, the Gore Commission recommended a significant expansion of the use of bomb-sniffing dogs. Former TSA head, Admiral James Loy, testified that increased use of canine teams may be an effective means for increasing inspections of cargo

46 Ibid.

Canine teams may offer a viable alternative means for screening air cargo at a relatively low cost. As previously noted, air cargo industry stakeholders are presently advocating the increased use of explosives detection canine teams as an integral part of a risk-based approach to air cargo targeting and screening.

However, some believe that adequate assurances regarding the security of cargo placed upon passenger aircraft cannot be provided without 100% physical screening predominantly relying on explosives detection technology, as is currently required for all checked baggage. Despite considerable public policy discussion regarding the physical screening of air cargo placed on passenger airliners, there is relatively limited information regarding the estimated cost of carrying out proposals to conduct physical screening of 100% of cargo carried on passenger aircraft. A statement attributed to David Wirsing, Executive Director of the Airforwarders Association, asserted that implementing this proposal would cost “over $700 million in the first year alone.” The Transportation Security Administration (TSA) has not publicly disclosed a formal cost estimate for screening all cargo placed on passenger aircraft. However, a statement attributed to TSA spokeswoman Andrea McCauley, indicated that screening cargo placed on passenger aircraft “would cost an estimated $3.6 billion over 10 years.”

A CRS analysis, based on costs incurred to meet the mandate for 100% baggage screening and a comparison of the annual volume of cargo carried on passenger aircraft to the estimated annual volume of checked baggage, yielded a ten-year estimate of roughly $3.75 billion for meeting the proposed mandate to screen 100% of cargo placed on passenger aircraft, roughly in line with the estimate attributed to the TSA. However, additional complexities associated with air cargo, such as large sized and irregular shaped shipments, that were not taken into account in this analysis could further increase estimated costs by making the screening process more labor intensive, or by requiring the additional deployment of alternative technologies for screening. These and other factors may explain the larger anticipated initial year costs estimated by the Airforwarders Association, reflected in their estimate of $700 million in the first year of 100% screening. While these factors have generally been acknowledged by industry experts, it has not been fully determined how these unique factors may affect the overall cost of screening cargo. On the other hand, through leveraging technology development and applying operational efficiencies developed from experience with baggage screening, the total cost of implementing cargo screening may be reduced to some degree.

Regarding the costs for screening cargo, the potential for additional fees imposed on air cargo is a particular concern for air cargo industry stakeholders. While H.R. 1 proposes a mandate for 100% cargo screening, it does not include any provisions to create any air cargo security fees to pay for this mandate. Further,

House majority leadership has indicated that it will not propose new deficit spending to pay for this and other provisions in H.R. 1, and that “...airlines would be expected to pay for air cargo inspections.”51 Under such a scheme, it would be most likely that physical screening of air cargo would become an air carrier responsibility with TSA oversight to insure regulatory compliance. Under such a scheme, airlines would incur the direct costs for meeting the 100% screening requirements.

Besides the impact of direct costs for screening, passenger airlines may be competitively disadvantaged compared to all-cargo airlines if these new mandates are implemented. Industry stakeholders have expressed concerns that additional security screening requirements could slow shipments on passenger aircraft, and certain routes may no longer be profitable if cargo revenues are reduced or eliminated as a result of new screening requirements.52 Given that profit margins for most passenger airlines are relatively small, and most large passenger airlines have failed to achieve any consistent profitability in recent years, the additional burden of both direct and indirect costs associated with a mandate to screen all cargo placed on passenger aircraft may present particular fiscal challenges to the airlines. While estimated cargo revenues of about $4.7 billion53 annually make up only about 5% of total industry-wide operating revenues among passenger air carriers, these additional revenues can make the difference between profit or loss in an industry that has seen net losses averaging 3.8% of total revenue over the past three years.54

U.S. Mail Carried on Aircraft. Canine teams, which have been advocated by industry for increased use in screening and inspecting air freight, presently provide the only means approved by the TSA for screening mail weighing more than one pound that is put on passenger aircraft under a long-running pilot program in place at 11 airports.55 Mail weighing more than one pound is otherwise prohibited from carriage aboard passenger aircraft.

The transport of U.S. mail aboard aircraft introduces unique security challenges to prevent illegal hazardous material shipments and the introduction of explosive and incendiary devices. Inspecting first class, priority, and express mail prior to shipment by air is difficult because the Postal Service regards these items as private materials protected by the Fourth Amendment against search.56 The Postal Service has implemented a screening process to prevent unauthorized shipments of hazardous

substances that relies on customer screening by postal clerks who are trained to question individuals shipping packages weighing more than one pound by air. Items weighing less than one pound, on the other hand, are not subject to any inquiry and can be deposited in mailboxes thereby precluding any inquiry of the sender. However, only a small percentage of this mail is shipped by air. About 5 to 7.5 percent of all domestic mail shipments, regardless of weight, are transported by either passenger or all-cargo aircraft. Federal Express is the largest carrier of U.S. mail and its all-cargo operations account for about half of the total volume of U.S. mail shipments by air.57

In 1997, the Gore Commission recommended that the Postal Service obtain authorization from customers shipping mail weighing more than one pound allowing examination by explosive detection systems, and if necessary, seek appropriate legislation to accomplish this.58 Since September 11, 2001, postal shipments weighing more than one pound have been limited to all-cargo aircraft. Passenger air carriers have been pushing to have these restrictions lifted because of a significant loss of revenue from U.S. mail shipments. Items weighing less than one pound shipped by U.S. mail are not subject to this restriction from carriage aboard passenger airliners. As seen in Figure 3, there was a precipitous decline in mail shipments by passenger airlines that resulted from this restriction. While all-cargo air carriers have increased their mail carriage to some degree in response, most of the mail once carried aboard passenger aircraft is now being transported by other modes.

Assuring the safety and security of U.S. mail transported by aircraft, and preventing the introduction of explosives or incendiaries in mail shipped by aircraft while maintaining privacy rights of postal patrons remains an important issue in the debate over air cargo security. Following the events of September 11, 2001 and the Postal Service anthrax incidents, the Technology Subcommittee of the President’s Commission on the United States Postal Service recommended that the Postal Service, in coordination with the Department of Homeland Security, should explore technologies and procedures for utilizing unique sender identification on all mail.59 Such procedures may provide a means of pre-screening all mail shipped by air, including packages weighing less than one pound.

57 “Northwest to drop U.S. mail; Canceled domestic routes to cost 250 ground jobs.” Detroit Free Press, September 5, 2003.

Physical Security of Air Cargo Facilities

Air cargo facilities present unique challenges for physical security. The large physical size of these facilities and relatively continuous high-volume cargo operations introduce numerous individuals, vehicles, and shipments into secured access areas around aircraft. Key issues regarding physical security of these air cargo facilities include the adequacy of:

- Inspections and oversight of air cargo facilities to ensure compliance with aviation security regulations and procedures established in the approved security programs of air carriers and freight forwarders;
- Training for air cargo personnel with regard to security procedures and guidelines; and
- Access control requirements for personnel with access to air cargo facilities and aircraft.

These issues are presently being addressed through newly implemented air cargo security regulations issued by the TSA in May 2006 that are currently being phased-in for air carrier and freight forwarder compliance.60 Congressional oversight of

60 Department of Homeland Security, Transportation Security Administration, “Air Cargo Security Requirements, Final Rule,” Federal Register, 71(102), May 26, 2006, pp. 30477-
industry implementation and compliance with these regulations may, therefore, be an issue of particular interest during the 110th Congress.

Inspection and Oversight of Air Cargo Facilities. Current regulations specify that all air carriers and freight forwarders must allow the TSA to conduct inspections and to review and copy records in order to determine compliance with applicable laws and regulations pertaining to aviation security. The Homeland Security Appropriations Act for FY2005 provided the TSA with $40 million to hire an additional 100 inspectors and carry out oversight and enforcement activities related to air cargo security. The TSA has responded by launching focused inspections of air cargo operations and conducting monthly “blitz” audits or “strikes” of selected air cargo facilities. In FY2006, Congress again provided the TSA with a $10 million set-aside to hire 100 more air cargo inspectors and for travel related to carrying out regulatory oversight and inspections of air cargo shipping and handling facilities, but the TSA has been slow to obligate funds for air cargo security. For FY2007, appropriations report language directed the TSA to hire additional permanent staff to enhance TSA’s analytic air cargo security capabilities.61

The ability to establish and maintain increased oversight of air cargo facilities is likely to be highly dependent on the continued availability of resources and funding. The effectiveness of this oversight will also likely be highly dependent on the adequacy of available tools and procedures to track needed corrective actions and ensure compliance among air carriers and freight forwarders. Therefore, the adequacy of TSA’s oversight of air cargo security could be a significant area of focus for congressional oversight during the 110th Congress.

Cargo Security Training. Currently, air cargo handlers are not required to receive any specific or formal training on security procedures or identification of suspicious activities. However, air cargo handlers may be considered the front line in protecting against security threats by adhering to procedures that would mitigate physical security breaches at cargo operations facilities, and by increasing their awareness of suspicious activities and knowing the proper procedures for reporting their observations. Security training for cargo workers may focus on security procedures for ensuring cargo integrity, protecting facilities, reporting suspicious activities, and so on. Under the newly imposed TSA’s regulations, workers for all-cargo carriers and for indirect air carriers with security-related duties — such as carrying out security inspections of shipments — are now required to receive specific training on the company’s security program and their individual security-related responsibilities under that program. Similar training is already required of workers for passenger airlines that are assigned security-related duties.

Increased Control over Access to Aircraft and Cargo Facilities. Under ATSA, TSA was directed to work with airport operators to strengthen access control points in secured areas and was authorized to use biometric screening procedures to positively identify individuals with access to secure airport areas.

60 (...continued)
30517; 49 CFR 1544.239.

ATSA contains provisions for TSA oversight of secured-area access control to assess and enforce compliance with access control requirements. These requirements include screening and inspection of individuals, goods, property, vehicles and other equipment seeking to access secure airport areas. Background checks for individuals having access to passenger aircraft are required and vendors with direct access to airfields where passenger operations take place are required to have a TSA-approved security program in place. Presently, background checks and displayed identification serve as the principal means for screening airport workers including cargo handlers.

There has been growing concern over the adequacy of these procedures for screening and monitoring airport workers. One particular concern is the integrity of airport worker credentials and the potential that unauthorized individuals could gain access to secure areas of the airport using stolen or fraudulent identification. TSA currently has ongoing contracts to conduct field tests of various technologies for transportation worker identification, including biometric markers, in an effort to develop a common and universally recognized Transportation Workers Identification Credential (TWIC). Biometric technology has received considerable attention from Congress as a means to authenticate individuals, particularly airport workers, and improve access controls to secured areas of airports. These proposals are discussed in further detail below in the section titled Biometric Screening Technology.

Another concern has been raised over the use of identification checks in lieu of physical screening of airport workers, including cargo handlers. Representative Peter DeFazio recently expressed concern over this practice noting that workers who bypass physical screening could potentially carry threat objects into secured areas of the airport or on board aircraft. Congress may consider whether existing security procedures regarding airport worker access to secured airport areas meets the intent of ATSA with regard to providing at least the same level of protection of secured airport areas and passenger aircraft as screening passengers and their baggage.

In addition to ongoing concerns over access controls around passenger aircraft, access control and monitoring of workers at all-cargo facilities remains a significant challenge. Regulations promulgated in 2006 establish an all-cargo security program detailing the physical security measures for air cargo operations areas, cargo placed aboard all-cargo aircraft, and background checks and screening of individuals having access to their aircraft on the ground or in flight. In addition, these new air cargo security rules require airports to designate cargo operations areas, including areas where all-cargo aircraft are loaded and unloaded, as security identification display areas (SIDAs). This effectively elevates the required security measures for these cargo handling areas and requires that workers with unescorted access to these areas be vetted through fingerprint based criminal history records checks, as has been required for workers having access to secured areas around passenger aircraft for some time.

Arming All-Cargo Pilots. During the 108th Congress, proponents for arming all-cargo pilots urged Congress to allow all-cargo pilots to join the ranks of passenger

airline pilots who can volunteer for selection and training in the Federal Flight Deck Officers (FFDO) program. This program, established by the Homeland Security Act of 2002 (P.L. 107-296), trains and deputizes qualified pilots to carry firearms and use deadly force to protect the flight deck against terrorist attacks (see CRS Report RL31674, Arming Pilots Against Terrorism: Implementation Issues for the Federal Flight Deck Officer Program, by Bart Elias). While the plan was originally limited to only pilots of passenger airliners, Vision 100 (P.L. 108-176) expanded the program to allow all-cargo pilots and flight engineers to participate as well.

Proponents for including all-cargo pilots in the program point out that all-cargo aircraft lack hardened cockpit doors, federal air marshals, and passengers that may assist in thwarting a hijacking attempt. They also point out that physical security and access control to cargo operations areas and all-cargo aircraft is lax compared to the tight screening of passengers and baggage since September 11, 2001, and the current lack of screening of individuals and property at these sites could offer the opportunity for terrorists plotting to hijack an aircraft to board an all-cargo aircraft as stowaways and seize the cockpit in flight. All-cargo aircraft include more than 1,000 transport category jet airplanes, of which about half are wide-body jets similar to those used in the September 11, 2001 terrorist attacks. Proponents for arming all-cargo pilots contend that the provision in Vision 100 that includes cargo pilots in the FFDO program will mitigate the risk of a hijacking aboard all-cargo aircraft. They further argue that training for cargo pilots is needed expediently given the limited measures currently in place to mitigate this risk.

Cargo airlines, on the other hand, had opposed allowing their pilots to join the FFDO program. Air carriers, in general, have been hesitant about the program because of liability concerns even though specific liability protections were extended to the airlines and pilot participants when the FFDO program was established under the Homeland Security Act of 2002 (P.L. 107-296). Proponents for the program and the inclusion of cargo pilots in the program have voiced concerns that the manner in which the program has been implemented and the remoteness of the training facilities have limited the program’s overall effectiveness. The program, along with other flight crew security training initiatives, received $27 million for FY2006 and $25 million in 2007. Few, if any, changes to the program are expected in the near term. Nonetheless, Congress may address some lingering concerns over the program such as the convenience of training and requalification sites, the carriage of firearms outside the cockpit, which is presently highly restricted, and program liability surrounding the role of the federal flight deck officer as both an airline pilot and a deputized federal officer.

64 Federal Aviation Administration. FAA Aerospace Forecast Fiscal Years 2003-2014.
Technology For Air Cargo Security

Because the capability of available technology is seen as a significant constraining factor on the ability to screen, inspect, and track cargo, initiatives to improve cargo screening technology have been a focus of recent legislation to enhance air cargo security.

In response to the 9/11 Commission recommendation that the TSA intensify its efforts to identify, track, and appropriately screen potentially dangerous cargo, the National Intelligence Reform Act of 2004 (P.L. 108-458) directs the TSA to develop technologies for this purpose and authorizes $100 million annually in FY2005 through FY2007 for the research, development, and deployment of enhanced air cargo security technology. The act also establishes a competitive grant program to foster the development of advanced air cargo security technology.

Appropriations for research and development of technologies specifically tailored for air cargo security had increased significantly, totaling $55 million in FY2004 and $75 million for FY2005. In FY2006, TSA research and development functions were realigned into the Department of Homeland Security’s Science and Technology Directorate and research and development funding for air cargo was scaled back to $30 million, and specifically designated for conducting three cargo screening pilot programs testing different concepts of operation. In FY2007, the aviation security research and development functions were realigned within the TSA and appropriated a total of $92 million. The appropriations measure did not specify what portion of this would be allocated to air cargo-related research and development, but did urge the TSA to work with industry stakeholders to develop standards and protocols to increase the use of explosives detection equipment for screening air cargo.

Various technologies are under consideration for enhancing the security of air cargo operations. Tamper-evident and tamper resistant packaging and container seals may offer a relatively low cost means of protecting cargo integrity during shipping and handling. Cargo screening technology using x-rays, chemical trace detection systems, or possibly neutron beams or other techniques may offer means to screen cargo prior to placement aboard aircraft. Additionally, canine teams may be used to augment cargo screening technology or to screen cargo independently. Hardened cargo container technology may be used to mitigate the threat of in-flight explosions or incendiary fires aboard aircraft. Finally, biometric technologies are being evaluated and may be useful in authenticating cargo worker identification and improving access control to aircraft and cargo operations areas.

Tamper-Evident and Tamper-Resistant Seals. Various technologies exist for sealing cargo shipments and cargo containers to prevent tampering. Relatively low cost solutions such as tamper-evident tapes that provide visual indications of tampering are readily available and could easily be implemented during

65 Technologies for enhancing the security of passenger flight operations are detailed in CRS Report RL31151, Aviation Security Technologies and Procedures: Screening Passengers and Baggage, by Daniel Morgan.
packaging. Such technology could be used in combination with “known shipper” protocols to insure that known shippers provide sufficient security in their packaging facilities and deter tampering during shipping and handling. Tamper-evident tape can identify cargo during inspections processes for further screening and inspection to safeguard against the introduction of explosives and incendiary devices. Tamper-evident tape may also be an effective tool to deter cargo crime, including cargo theft and the introduction of contraband, counterfeit, and pirated goods during shipment.

At cargo handling facilities, tamper evident seals and locks can be utilized on cargo containers to prevent theft and the introduction of contraband or threat objects into air cargo shipments. Electronic seals may serve as an additional deterrent to terrorist and criminal activity by providing more immediate detection of tampering. Electronic seals have alarms, some triggered by fiber optic cable loops, that activate a transmitted signal when tampered with. Electronic seals cost about $2,500 per unit, but are reusable. However, the utility of electronic seals in air cargo operations has been questioned by some experts because currently available electronic seals have a limited transmission range, which may make detecting and identifying seals that have been tampered with difficult. In addition, there is some concern that they may interfere with aircraft electronic systems.

In addition to tamper-evident and tamper-resistant seals, technologies to better track cargo shipments are being considered to maintain better control and tracking of cargo shipments along the supply chain. Both global positioning system (GPS) and radio-frequency identification (RFID) technologies are seen as emerging technologies for improving the tracking of air cargo in the supply chain.

Cargo Screening Technology. Various technologies are available for detecting explosives, incendiary devices, and the presence of various chemical and biological agents and nuclear weapons in cargo. Key technologies under consideration for screening air cargo for threat objects include x-ray screening, x-ray based explosive detection systems, chemical trace detection systems, and technologies based on neutron beams. In addition to these technological approaches, several experts and TSA officials have been advocating and pursuing an increased use of canine teams for screening cargo and mail. The main drawback to any of these screening techniques is that the screening process takes time and may significantly impact cargo delivery schedules. While the various technologies differ in their capabilities and performance, in general, more detailed screening analyses require more time and could affect cargo throughput. Another concern regarding these technologies is the cost associated with acquisition, operation, and maintenance of screening systems.

X-Ray Screening. The most common systems currently available for large-scale screening of cargo shipments utilize x-ray technology. These systems rely on well understood transmission and backscatter x-ray techniques to probe cargo containers. Many of these systems utilize low-dose x-ray sources that emit narrow x-ray beams thus virtually eliminating the need for shielding. These devices are

66 “Electronic cargo security seals” *Frontline Solutions*, 3(6), 42 (June 2002).

compact and lightweight, thus allowing them to be mounted on moving platforms that can scan over containers.68 X-ray devices are becoming more common at major ports of entry, border crossings, and airports overseas as post-September 11th security concerns are spurring increased development and deployment of these devices. The systems are being utilized to screen for drugs and other contraband as well as explosives in cargo shipments.

One of the most significant operational challenges in using x-ray screening devices is the performance of the human operator. A variety of human factors considerations contribute to the operator’s ability to detect threat objects when viewing x-ray images. These include the monotony of the task, fatigue, time pressure, the adequacy of training, and working conditions. These human factors are important to consider in fielding x-ray screening systems to ensure high detection rates of threat objects while minimizing false alarm rates that would unnecessarily slow the cargo inspection and handling process. Technologies such as threat image projection (TIP), that superimpose stored images of threat objects on x-ray scans can help keep operators alert and may be effective tools for training and performance monitoring. Additional technologies, such as computer algorithms for highlighting potential threat objects, may also be considered to aid human observers.

Explosive Detection Systems. Currently, explosive detection systems (EDS) are being used extensively in the aviation security environment, particularly in response to the mandate in ATSA requiring screening of all checked passenger baggage by EDS. These systems use x-ray computed tomography (CT) to scan objects, and computational algorithms that assess the probability of threat object detection based on object density characteristics. Certified EDS systems must meet acceptable detection and false alarm rates for bulk explosives detection. While most specific performance criteria of certified EDS systems are classified, EDS systems used for passenger checked baggage must meet or exceed a throughput rate of 450 bags per hour.

In 1997, the Gore Commission specifically recommended that unaccompanied express packages carried on passenger aircraft should be subject to EDS examination,69 however to date this recommendation has not been acted upon by regulatory agencies and has not been proposed in legislation. Undoubtedly, the TSA has gained considerable experience with the large scale deployment and use of EDS equipment to meet the mandate for full explosives detection screening of checked passenger bags. Many of the lessons learned by TSA from this experience will be useful for assessing the technical and operational challenges of applying large-scale EDS screening initiatives for air cargo operations. Efforts are also underway at TSA to improve the performance of EDS equipment and reduce its cost. However, air cargo operations are likely to present some of their own unique challenges for implementing large scale EDS screening of freight, express packages, and mail. Some of the potential operational challenges associated with effectively fielding existing EDS equipment for screening air cargo include:

68 David S. De Moulpied & David Waters. “Cargo Screening Techniques Become More Widely Accepted.” *Port Technology International, 10*, pp. 127-129.

The limited size of objects that can be placed in EDS machines, which would require objects to be screened before being placed in containers or on pallets;

- The distributed nature of the air cargo system often involves loading containers at remote sites, and EDS screening at these remote sites may leave the system vulnerable to possible introduction of explosives or incendiary devices at points along the supply chain beyond the screening site;

- Reported high false alarm rates of current generation EDS systems may lead to high levels of secondary screening and detailed inspections that could impact the ability to meet the schedule demands of cargo operations; and

- The processing rate of EDS equipment may require the purchase of large numbers of EDS machines and investment in the research and development of alternative technologies, thus increasing program costs, to minimize the impact on cargo operations scheduling and meet desired security program goals, although the throughput of EDS equipment has markedly improved over the last few years.

Chemical Trace Detection Systems. Chemical trace detection systems, referred to commonly as explosive trace detection (ETD) devices are being widely used as secondary screening tools for passenger carry-on and checked baggage. Items identified for closer scrutiny by initial screening methods or selected at random may undergo further examination using these systems. These systems use a variety of technical principles to analyze the chemical composition of sample residue wiped from suspect articles. These systems compare the chemical composition of such a sample to the signature of known explosive materials and signal an alarm to the operator if the probability of a match exceeds a specified threshold.

The use of chemical trace detection systems is now common practice in the screening of checked and carry-on bags. It has been reported that TSA is considering expanding the use of chemical trace detection systems for screening cargo carried aboard passenger aircraft. However, screening procedures using these systems is very labor intensive and time consuming. Like the manner in which this technology is used to perform secondary screening of checked and carry on bags, chemical trace detection may be employed in air cargo operations to perform detailed screening of suspicious packages identified through known shipper databases, or can be used for detailed secondary screening in conjunction with primary screening performed by x-ray and EDS systems similar to procedures currently in use for checked baggage screening. Random screening of cargo using chemical trace detection systems as a primary screening method is unlikely to be effective given the very low percentage of cargo that could be screened using this technique without significantly impacting cargo operations schedules.

Neutron Beam Technologies. Another potential class of technologies for screening air cargo is based on neutron beams. These systems use a pulsed neutron generator to probe an object, initiating several low energy nuclear reactions with the

chemical elements comprising the object. Detectors can then measure the nuclear signature of the transmitted neutrons and/or the gamma-rays emitted from the reactions. Since neutrons and gamma-rays have the ability to penetrate through various materials to large depths in a non-intrusive manner, neutron technologies may have advantages for cargo screening, and some of these technologies are currently being operationally evaluated for use in contraband and explosives detection.71 However, the GAO noted that currently available neutron-based technologies cost about $10 million per machine and require about one hour per container for screening thus making this option very expensive and time consuming.72

In addition to the cost and time factors associated with neutron beam technologies, the National Research Council (NRC) has raised considerable doubts about performance capabilities for screening the full spectrum of cargo containers or pallets for explosives.73 The NRC also expressed potential safety concerns over the use of radiation-producing particle accelerators, and expressed concerns over the practicality of using this technology in the aviation environment because of the size and weight of the equipment.

In 1999, the NRC advised the FAA against further funding for research, development, and deployment of a neutron-based explosive detection system known as pulsed fast/thermal neutron spectroscopy (PFTNS) for primary screening of carry-on baggage, checked baggage, or cargo citing low current explosive threat levels and inadequate performance. In 2002, the NRC concluded that another neutron-based technique, pulsed fast neutron analysis (PFNA), is not ready for airport deployment or testing. However, the NRC conceded that PFNA has greater potential for screening containerized cargo that any other technology currently under consideration.74

Because the perceived threat of explosives has increased since September 11, 2001, neutron-based detection technology continues to be mentioned as a possible means for screening air cargo. However, wide-scale deployment of this technology for air cargo security in the near term seems unlikely.

Hardened Cargo Containers. In addition to cargo screening technology, hardened cargo container technology is being considered as a means to mitigate the threat of an explosion or fire caused by a bomb or incendiary device that makes its way onto an aircraft undetected. The 9/11 Commission formally recommended the deployment of at least one hardened cargo container on every passenger aircraft that

72 U.S. General Accounting Office. *Aviation Security*.

also hauls cargo to carry suspicious cargo. The National Intelligence Reform Act of 2004 (P.L. 108-248) requires the TSA to establish a pilot program to explore the feasibility of this concept and authorizes the use of incentives to airlines to offset added fuel, maintenance, and other operational costs associated with using hardened cargo containers in an effort to encourage voluntary participation in the pilot program. The act authorized $2 million for the pilot program.

Both the House- and Senate-passed versions of the Implementing the 9/11 Commission Recommendations Act of 2007 (H.R. 1) would require the TSA to evaluate the results of the pilot program by January 1, 2008, and, based on this evaluation, to develop a system for deploying hardened cargo containers on commercial flights on a random or risk-based manner. A slightly modified version of this provision is included in the conference bill. The conference substitute makes clear that the program to acquire, maintain, and replace blast-resistant cargo containers will be paid for by the federal government.

This concept of deploying hardened cargo containers has been a topic of ongoing research for some time. Following the December 21, 1988 bombing of Pan Am flight 103 over Lockerbie, Scotland, the British Air Accident Investigation Branch recommended that regulatory authorities and airplane manufacturers study methods to mitigate the effects of in-flight explosions. The FAA has had a active research program in blast-resistant containers for more than 10 years examining the airworthiness, ground handling, and blast resistance of hardened containers, which is now overseen by the TSA’s Transportation Security Laboratory. These containers, or hardened unit-loading devices (HULDs), are seen as a potential means for mitigating the threat of explosives placed aboard passenger aircraft in either checked baggage or cargo. These containers must withhold an explosive blast of a specified magnitude without any rupturing or fragment penetration of the container wall or the aircraft structure, and must contain and “self-extinguish” any post-blast fire in order to meet the FAA-established test criteria.

However, the increased weight of these containers could have significant operational impacts on airlines by increasing fuel costs and decreasing payload capacity for carrying revenue passengers and cargo. Challenges associated with deploying hardened cargo containers include:

- Increased weight affecting aircraft range and payload capacity;
- Increased procurement cost for hardened containers;

75 Currently the TSA’s resource for vetting whether cargo is suspicious is the known shipper program, and under ATSA all suspicious cargo from unknown sources must be prohibited from passenger aircraft. The TSA envisions using additional risk-based screening tools in the future to determine whether a shipment is suspicious. Under current law, such a tool would likely be needed to implement the hardened cargo container concept offered by the 9/11 Commission.

• Potentially higher maintenance costs for hardened container materials;
• Potential reduction in cargo volume (in addition to reduced payload weight) due to thicker container walls; and
• Possible design specifications, such as door hinging and positioning, that are not compatible with current airline baggage and cargo loading procedures and operations facilities.78

The National Research Council (NRC) estimated that the per unit cost for acquiring hardened cargo containers would be $10,000, and recommended that the FAA continue efforts to operationally test HULDs and establish more rigorous protocol for certifying HULDs, but should not deploy them unless deemed to be a necessary security measure based on the assessments of cost, operational, and deployment studies by FAA and other stakeholders.

The NRC panel also recommended further economic assessment of their proposed deployment plan for fielding one HULD per wide-body aircraft. The NRC panel also noted that research and development on the use of HULDs on narrow-body aircraft was lagging far behind the work done on wide-body aircraft, and recommended an increased emphasis on research in this area to assess the operational effectiveness of HULDs in narrow-body aircraft before any further recommendations could be made. The NRC panel estimated that the cost of deploying enough HULDS for airlines to carry at least one HULD per passenger flight would require an industry-wide procurement cost of $125 million, and would create an annual industry-wide economic impact of $11 million in increased fuel burn and reduced payload revenue.79 Given the recent increase in aviation jet fuel costs, the economic impact would likely be higher than the NRC originally estimated eight years ago.

The recommendation made by the 9/11 Commission calls for the deployment of at least one hardened cargo container on every passenger aircraft for carrying any suspect cargo.80 This recommendation implies that a cargo pre-screening or risk evaluation process such as a known shipper program or the proposed freight assessment system would be used to determine what cargo should be loaded into the hardened container. Presently, ATSA requires shipments from unknown sources to travel on all-cargo aircraft. The known-shipper program is the currently implemented risk-based tool for determining what cargo must be kept off passenger flights. One strategic objective of the TSA’s Air Cargo Strategic Plan is to develop a means for identifying elevated risk cargo through pre-screening.81 Such a tool would likely be needed to assess risk and determine what cargo should be placed in a hardened container. Besides the need for a pre-screening process, the use of hardened cargo containers is likely to be opposed by the airline industry because of the direct costs

78 Ibid.
79 Ibid.
of acquiring these units as well as the increased operational cost associated with increased fuel burn and lost payload capacity. The benefits of using hardened cargo containers would likely be highly dependent on the security of the pre-screening process and its ability to detect high risk cargo since the benefits of a hardened container would largely be negated if the pre-screening process could be circumvented by terrorists. A key policy issue that is likely to emerge as the feasibility of hardened cargo containers is further evaluated is the potential implications of allowing suspicious cargo to travel on passenger aircraft even if this cargo is secured in hardened cargo containers. In other words, policymakers may debate what the risks and benefits of loading suspicious cargo on passenger airplanes in hardened cargo containers is as compared to the alternative of offloading this suspicious cargo to all-cargo aircraft.

In any case, under a plan in which only one hardened cargo container is deployed per aircraft, it is likely that only a relatively small fraction of available cargo space will be reinforced. For example, a Boeing 747-400 passenger jet is capable of holding up to 13 full-width, or 26 half-width containers.82 Thus, providing just one full sized hardened cargo container for a 747-400 would provide reinforcement for less than 10% of the available cargo storage area. While a greater percentage of available cargo space on smaller jets could be protected by hardened containers, any policy regarding the use of just one hardened container per aircraft will likely need to carefully evaluate the criteria and methods for vetting cargo to determine what cargo should be designated for carriage inside these hardened cargo containers.

In addition to hardened cargo containers, the FAA recently proposed rulemaking83 that would require newly certified aircraft type to have improved fire suppression capabilities in their cargo holds to withstand and suppress a sudden intensive fire from an explosive or incendiary device. Additionally, the proposed rule would require each newly certified aircraft type to include a “least risk bomb location,” an accessible location where crewmembers could place a suspected explosive device to minimize the potential for catastrophic damage to the aircraft if the item explodes. The proposal would also require aircraft designer to isolate flight critical systems and maximize separation of systems, to minimize the chances that a bomb detonation would render the aircraft unflyable. However, because these proposals would only be applied to newly certified aircraft types, these changes would not have a substantial operational impact on aviation safety and security for several years.

Biometric Screening Technology. Provisions of ATSA give the TSA authority to use biometric technology to verify the identity of employees entering the secured areas of airports and directed the TSA to review the effectiveness of biometrics systems currently used by airports such as San Francisco International

Airport. Additionally, the Maritime Transportation Security Act of 2002 (P.L. 107-295) requires the issuance of biometric transportation security cards for identity authentication of individuals with background checks for entry to any secured area of a vessel or facility. The TSA’s approach to meet these various mandates is through the establishment of a universal Transportation Worker Identification Credential (TWIC) to be used across all transportation modes for any personnel requiring unescorted access to secure areas of the national transportation system. The proposed TWIC Program is currently under evaluation at two regional pilot sites: the Philadelphia/Delaware River and Los Angeles/Long Beach ports. Available biometric technologies such as fingerprint, retinal scan, and facial pattern recognition are being evaluated in the current operational evaluation phase of the TWIC program. It is likely that system-wide deployment of a common transportation worker credentialing system will evolve from this program and could be applied to improve access control to air cargo operations areas and cargo handling facilities.

The National Intelligence Reform Act of 2004 (P.L. 108-458) contains extensive provisions requiring the TSA to develop specific guidance for the use of biometric or other technologies for airport access control systems by March 31, 2005. The guidance is to include comprehensive technical and operating system requirements and performance standards for the use of biometric identifier technology in airport access control systems; a list of products and vendors meeting these specifications; and specific procedures for implementing biometric identifier systems; and a discussion of best practices for incorporating biometric identifier technologies into airport access control systems. The act also provides authorization for $20 million for the research and development of advanced biometric technology applications for aviation security. Given the proposed regulatory changes to enhance access controls to all-cargo facilities and improve existing access controls around passenger aircraft, it is likely that the implementation of biometric identifier technology will play an increasingly important role in air cargo security policy.

Funding for Air Cargo Security

The cost of air cargo security options are significant to both the Federal government and the air cargo industry. Furthermore, the indirect costs of air cargo security on air cargo operations may pose significant long-term challenges. On the other hand, the potential costs of a terrorist attack, both in terms of the loss of life and property and the long term economic impacts may also be significant but are difficult to predict and quantify. An ongoing debate tied to air cargo appropriations and oversight of aviation security is the amount of physical screening and inspection of air cargo that is needed and achievable and whether risk-based pre-screening tools can provide an adequate means to ensure the security of air cargo by identifying at-risk cargo for targeted physical inspections. Besides the logistic complexities of inspecting large amounts or 100% of cargo on passenger flights, many are concerned that the cost of doing may outweigh the potential benefit given the capabilities of current screening systems and beliefs that comparable levels of security may be achievable through risk-based targeting and selective screening of cargo shipments.

While expenditures on air cargo security measures have been growing over the past two years, these efforts are a relatively small element (about 2%) of TSA’s overall operating budget for aviation security. While these expenditures are presently a small component of the overall cost for aviation security, they could continue to grow if additional technology and resources are devoted to the tracking and screening of cargo shipments. In contrast to passenger and baggage screening, which are, with few exceptions, the operational responsibility of the TSA, under the current scheme, much of the cost of inspection and screening of cargo is borne by the airlines and shippers, while TSA only maintains oversight responsibility. If 100% inspections of air cargo were made mandatory as some have proposed, TSA estimates that this could result in a cost of more than $650 million in the first year of implementation, and would likely total $3.6 billion over 10 years.\footnote{Department of Homeland Security, Transportation Security Administration. “Air Cargo Security Requirements; Proposed Rule;” and Jeff Bliss, “Air-Cargo Screening ‘A Disaster Waiting to Happen,’ Critics Say,” Bloomberg.com, November 29, 2005.} To address concerns over funding such an initiative, some past legislative proposals calling for the TSA to physically screen all cargo shipments bound for passenger aircraft incorporated a fee schedule for shippers to cover costs associated with screening cargo transported in passenger aircraft that is similar to the security service fee imposed on airline passengers (see H.R. 2455 and H.R. 3798 introduced in the 108th Congress). Imposing a fee on air cargo shipments for security could provide offsetting collections for security costs. Regardless of how such a fee is collected — either through fees assessed to air carriers or freight forwarders or through direct fees applied to each shipment — the costs will ultimately be borne by shippers and ultimately passed on to the customers of their products. The overall impact of fees on air cargo is dependent on the relative cost of the fee. Since air cargo shipments tend to consist of relatively high value goods, it is likely that the relative cost of a security fee in relation to the value of the shipment will be low, which would minimize the economic impact of imposing such a fee. However, if fees applied to air cargo carried on passenger aircraft are higher than fees for transporting that same cargo on all-cargo aircraft, a significant impact on passenger air carrier revenues from cargo may result. Equity in fee collections will likely be an important consideration in assessing if and how air cargo security fees should be collected. As previously noted, H.R. 1 does not include an aviation security fee proposal in connection with its proposal to require 100% screening of cargo placed on passenger aircraft by the end of FY2009. This leaves open funding questions regarding who would be responsible for operationally carrying out the screening, the federal government or the airlines, and how these screening functions would be funded.

Another possible concern over the increased cost of cargo security and proposals to impose fees on shippers is the potential to increase shipment costs related to manufacturing, particularly the distribution of time-critical parts. If unit shipping costs rise enough because of security-related costs and fees, it is possible that domestic manufacturing and assembly costs will not be able to remain competitive in a global market. For example, if the costs of shipping time-critical parts from Asia for final assembly in the United States rise because of security-related fees, it may become cost advantageous to manufacture the entire product overseas. In the long term, this could result in a possible loss of manufacturing jobs in the United States.
For this reason, the economic implications of any proposal to impose security-related fees on air cargo will likely need to be carefully evaluated to avoid or minimize any unintended impacts on manufacturers and their suppliers.

While Congress continues to debate the needed level of physical screening and inspection of cargo, current appropriations figures are predicated on continuing and expanding the risk-based approach of pre-screening cargo and conducting targeted inspections of elevated-risk cargo and increasing random inspections of other shipments. In FY2003, the TSA received $20 million for cargo screening improvements. For FY2004, the TSA was appropriated $30 million for air cargo security operations. Additionally, research and development related to air cargo security was appropriated $55 million. For FY2005, the Administration recommended flat funding for air cargo, while the House and the Senate agreed to increases to both the air cargo operations and air cargo research and development accounts totaling $115 million. In FY2006, there was a shift in funding with, for the first time, a larger proportion being allocated to air cargo operations ($55 million) as compared to research and development ($30 million) (see Table 1). Also, as previously noted, the FY2006 air cargo research and development funding has been more specifically directed to focus on three pilot projects. This may reflect a maturation in the approach to air cargo screening and inspections in the near term with technologies and approaches being migrated from purely a research activity to an operational concept. In FY2007, appropriations for air cargo security operations were again set at $55 million. A specific funding amount for air cargo security-related research and development initiatives was not specified in the FY2007 appropriations. However, the TSA and the DHS Science and Technology Directorate are continuing their efforts to adopt EDS technologies to the air cargo environment, and the TSA has been directed to work with industry stakeholders to develop standards and protocols to increase the use of explosives detection equipment for screening air cargo.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations:</td>
<td>30.0</td>
<td>40.0</td>
<td>55.0</td>
<td>55.0</td>
</tr>
<tr>
<td>Research and Development:</td>
<td>55.0</td>
<td>75.0</td>
<td>30.0</td>
<td>—</td>
</tr>
</tbody>
</table>

Potential Congressional Approaches

Under ATSA, a mandate for screening or otherwise ensuring the security of all cargo placed on passenger aircraft already exists. ATSA also mandated that a system to screen, inspect, or otherwise insure the security of cargo carried aboard all-cargo aircraft is put in place as soon as possible. The law gives the TSA broad authority to carry out these requirements. Therefore, many of the proposed cargo security initiatives could be accomplished under existing law as reflected in the TSA’s air cargo strategic plan and the comprehensive proposed rulemaking to enhance air cargo security for both passenger and all-cargo operations. While ATSA gives the
administration flexibility in meeting the mandate to screen and inspect air cargo, it is likely that TSA will continue to rely heavily on “known shipper” programs for air cargo security for two key reasons. First, many of the proposed options for increasing air cargo security, such as full cargo screening, are costly. Second, the potential impacts on the air cargo industry are not fully understood but could be significant. Therefore, any significant changes in air cargo security practices will likely be dependent on Congressional action.

An appropriate course of action for air cargo security was debated extensively since the 108th Congress and continues to be a significant issue for debate and oversight in the 110th Congress. Initial proposals for immediate 100% screening of all cargo shipments placed on passenger aircraft were seen by many as too complex to implement given available technology and logistic challenges, but gave rise to compromise language in the FY2005 Homeland Security Appropriations Act (P.L. 108-334) calling for a tripling of physical inspections of cargo placed on passenger aircraft and additional direction in the FY2006 Homeland Security Appropriations Act (P.L. 109-90) requiring the TSA to increase air cargo screening and inspections beyond this enhanced level. FY2007 appropriations (P.L. 109-295) directed the TSA to work with industry stakeholders to develop standards and protocols to increase the use of explosives detection equipment for screening air cargo. Similarly, a recommendation by the 9/11 Commission calling for the TSA to intensify its efforts to identify, track, and screen potentially dangerous cargo and deploy hardened cargo containers led to the inclusion of numerous provisions to enhance air cargo security technology in the National Intelligence Reform Act of 2004 (P.L. 108-458). Oversight of the implementation of these provisions as well as the recent regulatory actions to enhance air cargo security are likely to remain issues of considerable interest during the 110th Congress. Also, revisiting the issue of whether 100% screening of cargo placed on passenger aircraft is feasible and needed is likely to be a central focus of policy debate during the 110th Congress spurred by the House passage of H.R. 1 and its provision to achieve 100% screening of such cargo by the end of FY2009.

A variety of options for implementing air cargo security measures may be revisited during the 110th Congress. Some possible approaches and the potential benefits and risks associated with implementing these approaches are provided in Table 2. In general, for any of the listed approaches, there is a tradeoff between program costs and potential impacts on the air cargo industry on the one hand and the level of security that can be achieved by implementing the option on the other hand. Currently, there are two main positions or views on air cargo security. One position argues that full screening of air cargo and extensive security measures would be too costly and too disruptive to the air cargo industry to successfully implement. The alternative position argues that full screening and enhanced security measures are needed to adequately mitigate the risks associated with air cargo to the maximum extent possible and maintain public confidence in air travel. The focus of the administration and Congress prior to the 110th Congress, as reflected in enacted legislation, has been to intensify air cargo security using available risk-based techniques and targeted screening, while investing in the research and development of technology that can enhance the capability to identify, screen, and track cargo shipments on passenger aircraft as recommended by the 9/11 Commission. In the 110th Congress, options for more extensive physical screening, such as proposals to
conduct 100% screening of cargo placed on passenger aircraft are being revisited and have been proposed in the Implementing the 9/11 Commission Recommendations Act of 2007 (H.R. 1).

Table 2. Potential Benefits and Possible Risks of Various Congressional Approaches

<table>
<thead>
<tr>
<th>Option</th>
<th>Potential benefits</th>
<th>Possible risks</th>
</tr>
</thead>
</table>
| Support the industry-wide known shipper program for vetting air cargo, refine this program as needed, and deploy a freight assessment system or similar targeting tool for identifying elevated-risk shipments | • Relatively low cost
• Consistent with administration approach
• Provides administration flexibility to meet changing threat levels with a relatively small budget | • Provides limited security that could be circumvented
• Possible over-reliance on known shipper programs
• Limited screening of cargo may not adequately mitigate the risk of explosives
• Limited funds to initiate targeted security in response to threats |
| Increase requirements, funding and grants for physical security of air cargo facilities | • Could deter a variety of risks to cargo including cargo crime, hijacking, and sabotage | • May be difficult and costly to provide increased physical security
• May not mitigate the risk of explosives introduced in pre-packaged cargo |
| Mandate the use of tamper resistant and tamper evident packaging and containers | • Could deter terrorists from attempting to place explosives in air cargo
• Could mitigate cargo crime such as theft and contraband | • Low cost solutions may be circumvented relatively easily
• More sophisticated solutions, such as fiber optic loops, may be relatively costly |
| Mandate physical screening of all persons with access to air cargo facilities and aircraft | • Ensure that workers with access to aircraft meet the same level of security as passengers
• Mitigate risk of weapons and explosives introduced by cargo workers | • Relatively high cost
• Would require additional screeners and screening stations at air cargo facilities |
| Mandate increased screening and inspection of air cargo shipments | • Deter terrorists from attempting to place explosives in air cargo
• Addresses the 9/11 Commission recommendation to intensify efforts to identify, track, and screen air cargo | • Without full screening, explosives may not be detected
• May impact air cargo operations and schedules |
<table>
<thead>
<tr>
<th>Option</th>
<th>Potential benefits</th>
<th>Possible risks</th>
</tr>
</thead>
</table>
| Mandate full (100%) screening of air cargo on passenger flights | • Ensure that cargo placed on passenger aircraft meets the same level of security as passengers and their property | • Relatively high cost
• May significantly impact air cargo schedules
• May significantly impact air carrier revenues from air cargo if shipments are diverted to all-cargo flights in response to requirement |
| Increase funding for air cargo security research and development | • May lead to new technologies and procedures for improving air cargo security. | • Numerous technical challenges and uncertainty regarding the performance of screening technologies continue to exist
• Currently funded programs may have operational limitations that limit their practical application |
| Deploy hardened cargo containers on passenger aircraft as recommended by the 9/11 Commission | • May mitigate the effect of an in-flight explosion
• Congressionally mandated pilot program can help evaluate the feasibility of the concept with a relatively small investment | • Effectiveness is largely negated if the cargo pre-screening process can be circumvented by terrorists
• Increased operational costs may prevent passenger airlines from being cost competitive with all-cargo carriers |