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INTRODUCTION:   
 
Telomeres are the ends of chromosomes. By capping the chromosomes, they are 
responsible for chromosomal integrity to prevent genomic instability. Two-dimensional 
studies of interphase nuclei have been unable to precisely describe the position of 
telomeres in either normal or cancer cells. Recent three-dimensional (3-D) imaging of the 
mammalian interphase nucleus, followed by highly sophisticated computerized image 
analysis, has resulted in the description of organized, dynamic telomere territories (TT) in 
normal cells. These TT are cell-cycle dependent: in G2, the telomeres are organized into 
telomeric disc (TD). TT, and in particular, the TD, are disrupted as a result of c-Myc 
deregulation1. In some tumor cells, the same disruption of TT is seen. Notably, BRCA1- 
related breast cancers often show c-Myc deregulation2: the role of c-Myc alterations in 
BRCA2-related breast cancer is less clear, but in general, more aggressive breast cancers 
are more likely than quiescent tumors to have elevated levels of c-Myc protein. Thus, we 
postulate that disorganization of telomeres in BRCA1 and/or BRCA2-related breast cancer 
is a key step in the development of these cancers. 
 
BODY:   
 
Task 1:  To conduct telomere hybridizations and examination of 3D telomeric 
organization      
This work was completed. 
 
Task 2: To determine whether regulatable BRCA1 and BRCA2 mutations alter the levels 
of telomeric aggregation and genomic instability in 3D nuclei  
This work was commenced, is on-going but has not been completed. 
 
Task 3:  To examine whether BRCA1 and BRCA2 mutations in conjunction with c-Myc 
deregulation accelerate aggregation and genomic instability. 
This work is just starting now, and will be completed over the next year. Grants have 
been awarded on the basis of our preliminary findings that will allow us to complete this 
work. 
 
KEY RESEARCH ACCOMPLISHMENTS:  
 
• More than 25 breast tumours were analysed in detail 
• Cell lines with and without BRCA1 and BRCA2 mutations were also analysed. 
• BRCA1 and BRCA2 mutations appear to influence telomere structure 
• Further studies on this subject have been made possible because of this award. 
 
REPORTABLE OUTCOMES:   
 
1. Presentations (by Soumya Panigrahi): 
 
September 9-13, 2006 
Sherif F. Louis, Bart Vermolen, Soumya Panigrahi, William D. Foulkes, Yuval Garini 
and Sabine Mai 



 

Title: Telomeric aggregates in c-Myc-dependent genomic instability and tumorigenesis 
in general. 
Fifth Annual Symposium of Hormonal Carcinogenesis 
Montpellier, FRANCE 
 
May 11-14, 2006 
Panigrahi S, Wark L, Vermolen B, Watson P, Snell L, Chuang A, Kotar K, Garini Y, 
Foulkes W, Mai S. 
Title: Three Dimensional Organization of Telomeres in Human Breast Cancer. 
Canadian Telomere Symposium 
Calgary, CANADA 
 
October 20-21, 2005 
CME: The First International Symposium on the Hereditary Breast and Ovarian Cancer 
Susceptibility Genes 
Montreal, CANADA 
 
June 2004 
Panigrahi et al. 
Title: Three Dimensional Organizations of Telomeres in Human Breast Cancer 
(Poster presentation) 
Canadian Telomere Group  
 
2. Cell lines: we developed 2 new BRCA1 cell lines to allow us to look at telomere 
organization in BRCA1 heterozygotes. 
 
3. Sabine Mai (co-PI) was awarded a Susan G Komen breast cancer grant (with the PI) on 
the basis of the preliminary work done here. 
 
4. Members of the research community have visited Dr. Mai’s lab on CIHR-funded short 
training grants; some of these awards were made possible because of this and similar 
work that has been carried out in Dr. Mai’s laboratory. 
 
5. Patent: Mai, S., Chuang, T., Moshir, S, Garini, Y.  Method of monitoring genomic 
instability by 3D microscopy and analysis. – Serial No. 9157-51. 
 
CONCLUSION:   
 
This study has shown that cell lines derived from BRCA1 and BRCA2 carriers are 
statistically significantly more likely to show telomere aggregations than cell lines 
derived from non-carriers. Results form formalin-fixed, paraffin-embedded breast tumors 
support these findings, but the results are not conclusive. Our main focus now will be to 
study more tumors, and to look at the interaction between MYC and BRCA1 or BRCA2 
in determining the extent of telomere aggregations. This work is important, as recent 
research suggests that MYC and BRCA1 may have an important joint role in sporadic 
breast cancer.3
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The Significance of Telomeric Aggregates
in the Interphase Nuclei of Tumor Cells

Sabine Mai1* and Yuval Garini2

1Manitoba Institute of Cell Biology, CancerCare Manitoba, University of Manitoba,
Winnipeg, Manitoba, Canada R3E 0V9
2Department of Imaging Science & Technology, Faculty of Applied Sciences,
Delft University of Technology, Quantitative Imaging Group, 2628 CJ Delft, The Netherlands

Abstract Telomeres are TTAGGG repetitive motifs found at the ends of vertebrate chromosomes. In humans,
telomeres are protected by shelterin, a complex of six proteins (de Lange [2005] Genes Dev. 19: 2100–2110). Since
(Müller [1938] Collecting Net. 13: 181–198; McClintock [1941] Genetics 26: 234–282), their function in maintaining
chromosome stability has been intensively studied. This interest, especially in cancer biology, stems from the fact that
telomere dysfunction is linked to genomic instability and tumorigenesis (Gisselsson et al. [2001] Proc. Natl. Acad. Sci.
USA 98: 12683–12688; Deng et al. [2003] Genes Chromosomes Cancer 37: 92–97; DePinho and Polyak [2004] Nat.
Genetics 36: 932–934; Meeker et al. [2004] Clin. Cancer Res. 10: 3317–3326). In the present overview, we will discuss
the role of telomeres in genome stability, recent findings on three-dimensional (3D) changes of telomeres in tumor
interphase nuclei, and outline future avenues of research. J. Cell. Biochem. 97: 904–915, 2006. � 2006 Wiley-Liss, Inc.

Key words: oncogenes; 3D nucleus; genomic instability; telomeres; telomeric aggregates; chromosomes; breakage-
bridge-fusion cycle; genomic instability

SIGNIFICANT EARLY WORK
ON TELOMERE BIOLOGY

Müller [1938] and McClintock [1941] were the
first to observe breakage-bridge-fusion (BBF)
cycles. These are cycles where chromosomal
end-to-end fusions contribute to the onset of
chromosomal rearrangements and genomic
instability. Studying broken chromosomes in

Zea mays, McClintock [1942] observed the
formation of dicentric and ring chromosomes,
rearrangements, terminal deletions, and chro-
matin bridges at anaphase that then broke
apart unequally (‘‘non-median breaks’’). She
also observed continuous cycles of these events,
that is cycles of new fusions followed by new
breakages in the following anaphases [McClin-
tock, 1941, 1942]. Focusing on chromosome 9 in
Zea mays, she was able to follow distinctive
types of variegation and to link them to specific
rearrangements on previously broken chromo-
somes. Broken chromosomes were then able to
fuse with sister chromatids or with other
chromosomes. This affected not only kernel
color but also starch formation, growth condi-
tions, and propagation of the plants [McClin-
tock, 1942].

The questions McClintock asked then are still
valid today. ‘‘(1) Must two chromosomes or more
chromosomes be in intimate contact at the time
of breakage in order that fusions may occur? (2)
If no intimate contact is necessary at the time
of breakage, are the broken ends ‘‘unsaturated,’’
that is capable of fusion with any other

� 2006 Wiley-Liss, Inc.
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unsaturated broken end? (3) If question (2) can
be answered in the affirmative, what forces are
involved which lead to the contact and subse-
quent fusion of the two unsaturated ends?
Likewise, (4) how long will these broken ends
remain unsaturated, that is, capable of fusion?’’
[McClintock, 1942]. We found it important to
use Barbara McClintock’s own words to sum-
marize some of the key questions in the field.
Please note that these questions were formu-
lated in 1942. Today, the concept of chromoso-
mal localization is still under intense debate
with respect to specific rearrangement of chro-
mosomes. The ‘‘unsaturated ends’’ are indeed
broken chromosomal ends that are free of
telomeres and therefore able to fuse with sister
chromatids or other chromosomes, and yes,
chromosome ends can ‘‘be healed.’’

STRUCTURAL ORGANIZATION OF
TELOMERES IN MAMMALIAN NUCLEI

Most studies with telomeres have been
performed on metaphase chromosomes. Meta-
phase chromosomes reflect events that
occurred prior to the metaphase being exam-
ined and, with respect to some aberrations,
researchers infer from studying the meta-
phase chromosomes that ‘telomere dysfunc-
tions’ were likely. For example, unbalanced
translocations, dicentric chromosomes, and
terminally deleted chromosomes suggest a
defect in telomeres that may involve capping
defects, DNA damage affecting the telomeric
ends, oncogene activation or other stimuli
[Artandi et al., 2000; Gisselsson et al., 2001;
Lo et al., 2002; Deng et al., 2003; Murnane and
Sabatier, 2004; Louis et al., 2005].

Advances in imaging allow us to now focus on
the events that occur prior to the metaphase,
namely in preceding cell cycle stages of inter-
phase nuclei. While two-dimensional (2D)
imaging of nuclei did not allow us to visualize
the spatial organization of telomeres, three-
dimensional (3D) and live cell imaging permit
the analysis of the structural organization
of telomeres in the nucleus of mammalian
cells. Studies in recent years have then shown
us that telomeres in normal nuclei have a
dynamic cell cycle- and tissue-dependent orga-
nization. For example, in G0/G1 nuclei, telo-
meres are widely distributed throughout the
whole nuclear space [Weierich et al., 2003;
Chuang et al., 2004]. Measurements of telomere

positions in the 3D space of primary mouse
lymphocyte nuclei have given a precise value to
telomeres in this phase of the cell cycle. The a/c
ratio indicates that telomeric positions in inter-
phase nuclei is small in G0/G1 lymphocytes, and
one usually measures values of 1.4� 0.1
[Vermolen et al., 2005a]. This number is
indicative of the distribution of telomeres
throughout the entire nuclear space of primary
lymphocytes, which is roughly spherical. Simi-
larly, in S phase, thea/c ratio is small (1.5� 0.2;
[Vermolen et al., 2005a]). The nuclear distribu-
tion of telomeres changes when cells enter into
G2: telomeres align in the center of the nucleus
and form a telomeric disk [Chuang et al., 2004].
At this time, the a/c ratio is large due to the
organization of the telomeres in a disk-like
volume, and the a/c ratio measurements
usually are 14� 2 [Vermolen et al., 2005a].
Telomere dynamics in interphase nuclei of
human osteosarcoma (U2OS), human cervical
carcinoma (HeLa), and mouse MS5 cells has
been carefully measured by live cell imaging
approaches. Long ranging as well as short
movements were observed over a time period
of 20 min [Molenaar et al., 2003]. Telomere
dynamics has also been observed in interphase
nuclei of human keratinocytes [Ermler et al.,
2004]. Telomere movement is not only depen-
dent on cell cycle but also on cell shape [Chuang
et al., 2004; Ermler et al., 2004]. Thus, we
conclude that telomeres are not static in
mammalian nuclei but perform cell cycle and
cell-type specific movements.

Another important feature of telomeres in
normal interphase nuclei is the fact that the
telomeres do not overlap. Each telomere of a
normal nucleus is found in its specific 3D space
and does not form clusters or aggregates with
other telomeres [Chuang et al., 2004]. Normal
cells have a limited life span [Hayflick, 1965].
Their mitotic clock is linked to telomere
length. Telomere length is known to be short-
ening linearly with each cell division (approxi-
mately 50–200 base pairs per division
[Lansdorp, 2000]). When the telomeres
become too short, normal cells will eventually
stop division cycles and enter into a state
of replicative arrest that is also called senes-
cence. The senescent phenotype has been
extensively studied [for review, see Campisi,
2000]. Senescence is bypassed during tumor
development [Campisi, 2000; Romanov
et al., 2001].
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TELOMERE ORGANIZATION IN TUMOR CELLS

Telomeres in tumor cells are different from
telomeres in normal cells; they are generally
shorter, even critically short [Vukovic et al.,
2003; Meeker et al., 2004]. However, they may
also be elongated or different subpopulations of
telomere lengths may be present [Meeker et al.,
2004]. It was shown that telomeres in tumor
cells commonly manifest telomere dysfunction,
and chromosomal aberrations indicative of
these defects are observed. Telomerase is
activated in 85% of the tumors, while it is not
present in the rest of the tumors, some of which
have demonstrated alternative lengthening of
telomeres (ALT) [Muntoni and Reddel, 2005].

A remarkable difference between normal and
tumor cells becomes apparent when 3D imaging
approaches are applied. 3D imaging revealed a
specific 3D telomeric signature for tumor cells.
In contrast to the non-overlapping nature of
telomeres in normal nuclei, telomeres of tumor
nuclei tend to form aggregates. Various num-
bers and sizes of such telomeric aggregates
(TAs) can be found in tumor nuclei [Chuang
et al., 2004]. The formation of TAs is indepen-
dent of telomere length and telomerase activity
[Louis et al., 2005].

There are at least two types of telomeric
dysfunction in tumor cells. One type of telomere
dysfunction involves critically short telomeres
[DePinho and Polyak, 2004]. The other one
involves the formation of TAs and is indepen-
dent of telomere size or telomerase activity
[Chuang et al., 2004; Louis et al., 2005]. Both
types of telomeric dysfunction can lead to BBF
cycles that contribute to deletions, gene ampli-
fication, non-reciprocal translocation, and over-
all genetic changes that are associated with
tumorigenesis [Artandi et al., 2000; DePinho
and Polyak, 2004; Murnane and Sabatier,
2004].

MEASUREMENT OF TELOMERE DYSFUNCTION
(3D VOLUMES AND POSITIONS)

Quantitative measurement of the telomeres
parameters is based on 3D data that are usually
captured by acquiring many optical sections
of the nucleus with a high numerical aperture
oil-immersed objective lens followed by an
appropriate deconvolution algorithm. The most
reliable one uses constrained iterative deconvo-
lution [Schaefer et al., 2001; Vermolen et al.,
2005b]. Telomere measurements are done with

a special algorithm and software package that
we developed, TeloViewTM [Chuang et al., 2004;
Vermolen et al., 2005a]. First, the position of
each telomere is identified by using a threshold.
Then, the center of gravity and the integra-
ted intensity of each telomere are calculated.
The integrated intensity of each telomere is
the appropriate parameter for determining the
length of the telomere, or the telomere copy
number, which estimates the number of telo-
meres that are taking part in an aggregate.
Aggregates are easily observed when looking at
a 3D visualization of the nucleus and it can be
quantitatively calculated by analyzing the
integrated intensity of each telomere (Fig. 1).

IMPACT OF TELOMERE AGGREGATES ON
CHROMOSOMAL ORGANIZATION

It is not just a transient aberration in the 3D
organization of the nucleus when telomeres
aggregate. Since some of the aggregates repre-
sent fusions, dicentric chromosomes can form.
These end-to-end fused chromosomes cannot
appropriately separate during cell division, but
will first generate anaphase bridges and then
break apart, leaving one chromosome too short
(with a terminal deletion) and the other one with

Fig. 1. Histogram illustrating the concept of telomeric aggre-
gates (TAs) and their quantitative analysis. This histogram
demonstrates how TAs are found using TeloViewTM [Vermolen
et al., 2005a]. Each point represents the copy number of a
telomere that is found in the nucleus. The intensity of an average
telomere is calculated by analyzing the smaller telomeres in the
nucleus (which are the majority of telomeres). See the change in
the graph slope at about telomere number 37. All the telomeres
smaller than telomere number 37 are interpreted as single copies
while telomeres that are larger are interpreted as aggregated
copies. The copy number is calculated by dividing the integrated
intensity of each telomere by that of telomere number 37. The
telomeres are sorted for convenience from smallest to largest
(based on their integrated intensity).
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a new piece (generating an unbalanced translo-
cation). Both chromosomes are ‘new’ structures
and both are unable to persist the way they were
left after this cell division. Since both new
chromosomes have telomere free ends and
represent a double-strand break, they will each
find a new chromosome partner, and they will
fuse with it to heal their broken ends. This series
of events is termed a BBF cycle and goes back to
Müller and McClintock’s seminal findings [Mül-
ler, 1938; McClintock, 1941]. Importantly, a BBF
cycle isnota single event. One BBF cycle initiates
the next and so forth until no more free ends
persist to permit fusions with other chromosomes
[McClintock, 1941, 1942; Louis et al., 2005].

Once aggregates form and fusions occur, BBF
cycles result and with such BBF cycles, the
genetic information of the chromosomes will be
remodeled [Louis et al., 2005]. TAs and fusions
are different from the reversible telomeric asso-
ciations that have been reported for Chinese
hamster embryonic cells [Slijepcevic et al., 2000].
Which events lead to such telomere-mediated
nuclear remodeling? We have studied oncogenic
remodeling of the 3D telomere organization. The
deregulation of the oncoprotein c-Myc was able to
remodel the telomeric organization from
non-overlapping telomeres to TAs of various
numbers and sizes [Louis et al., 2005]. A single
deregulation event of c-Myc, where the oncogene
was overexpressed in the nucleus for 2 h, was
sufficient to initiate the formation of TAs. More-
over, TAs/fusions caused the formation of
dicentric, end-to-end fused chromosomes. The
latter generated anaphase bridges and broke
apart as anaphase progressed, leaving behind
terminal deletions and unbalanced transloca-
tions. Two hours of c-Myc deregulation initiated
three BBF cycles. Twelve hours of c-Myc dereg-
ulation led to five such cycles. Thus, the time of c-
Myc deregulation was directlyproportional to the
number of BBF cycles observed [Louis et al.,
2005]. The scoring of chromosomal aberrations
over a 120-h period documented the BBF cycles:
from fusion to breakage with terminal deletions
and non-reciprocal translocations to telomere-
free ends and new fusions (ibid).

WHICH ABERRATIONS ARE GENERATED
WHEN TELOMERES ARE REMODELED IN THE

3D SPACE OF THE NUCLEUS?

Two sets of parallel experiments involving
chromosome painting to determine the 3D

organization of chromosomes in interphase
nuclei and spectral karyotyping (SKY) of meta-
phase chromosomes were carried out to exam-
ine the effects of TA formation on chromosomal
positions and aberrations [Louis et al., 2005].
SKY data showed non-random chromosomal
rearrangements affecting chromosomes 5þ 13,
7þ 10, 7þ 17. Other chromosomes were some-
times, but not regularly involved and judged as
random aberrations. When examining the posi-
tions of chromosomes 5þ 13, 7þ 10, and 7þ 17
in interphase nuclei, we found no overlap
between these pairs prior to Myc activation,
while they changed their positions over the time
course of c-Myc deregulation and showed sub-
stantial overlap [Louis et al., 2005].

MEASUREMENTS OF CHROMOSOMAL
OVERLAPS IN THE INTERPHASE NUCLEUS

Chromosomal overlaps measurements are
performed after 3D image acquisition and
constrained iterative deconvolution. First, the
3D boundary of the nucleus is determined based
on the DAPI counterstain image. Within this
volume, a threshold level is determined for each
chromosome and the total volume V1 and V2 of
each chromosome pair is calculated (by count-
ing only the voxels that has an intensity value
above the threshold). The total volume that is
occupied by both chromosome pairs is also
measured (V0). By dividing V0 by the total
volume of each one of the chromosome pairs, the
relative overlap ratio is calculated, V0/V1 and
V0/V2. By following the same procedure for each
time point since c-Myc deregulation, we finally
get the relative overlap as a function of time.

SIGNIFICANCE OF OVERLAPPING
CHROMOSOMES

Chromosomal overlap is a problem for gen-
ome stability if the overlapping chromosomes
fuse at their telomeric ends or are involved
in illegitimate recombination events. TAs
brings chromosomes into close vicinity. If TAs
represent fusions, then BBF cycles will occur.
This was found after experimentally-induced
c-Myc deregulation [Louis et al., 2005; Mai and
Garini, 2005].

There are two possibilities for the initiation of
BBF cycles after TA formation and chromosome
overlap. The occurrence of non-random chro-
mosomal aberrations suggests either a non-
random formation of chromosomal overlaps

Telomeric Aggregates 907



resulting in end-to-end chromosomal fusions.
Alternatively, one may argue that there is a
non-random occurrence of TA formation result-
ing in chromosomal overlaps and causing the
initiation of BBF cycles. At the present time, we
cannot distinguish between both possibilities
and both remodeling events may coexist.

TAs AND TUMORS

Genomic instability is viewed as an event
through which genetic changes occur or have
occurred [Hanahan and Weinberg, 2000; Gollin,
2005; Mitelman et al., 2005]. These changes can
be structural and numerical, and this is the
classical view of genomic instability. We would
like to expand this view and include epigenetic
changes that coincide with genetic alterations
and/or precede them, point mutations, and
alterations in nuclear organization that affect
the genome. Organizational changes in the 3D
space of the nucleus need to be considered as an
important factor not only in tumors but also
much earlier that is during the initiation of

genomic instability and the establishment of
tumorigenic potential.

The analysis of primary tumors revealed that
TAs are common [Chuang et al., 2004]. Various
cell types and tissues were examined, including
primary head and neck cancer, primary mouse
plasmacytoma, human neuroblastoma, and
colon carcinoma cell lines [Chuang et al.,
2004]. While normal cells do not show TAs,
tumor cells (primary tumor cells and tumor cell
lines) consistently display TAs (Fig. 2).

Importantly, being a feature of tumor cells
makes one wonder if such changes in the
telomeric organization of the interphase
nucleus do not occur earlier, that is when cells
become tumorigenic. Early data suggest that
this is indeed the case. For example, in cervical
cancer, non-invasive lesions, such as CIN I,
show TAs in some of cells (Fig. 3). During the
development of mouse plasmacytoma, early
plasmacytotic foci display TAs in a subpopula-
tion of the foci (Fig. 4). Additional analyses are
ongoing and will help us understand the earliest

Fig. 2. Telomere organization in primary nuclei of a B cell, a primary mouse plasmacytoma and a Burkitt
lymphoma line (Raji). The top panel shows two-dimensional (2D) representations of the above nuclei; the
bottom panel shows the three-dimensional (3D) organization of telomeres in the above nuclei. Telomeres
are shown in red, nuclei are shown in blue. Arrows point to TAs. Hybridizations were preformed as described
[Chuang et al., 2004; Louis et al., 2005].
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time point during tumor development in vivo
that show TA formation. In vitro, in a model of c-
Myc-induced genomic instability in PreB and
Ba/F3 mouse lymphocytes, we have shown that
c-Myc deregulation elicits TA formation within
12 h [Louis et al., 2005]. Additional studies
propose even earlier time points (unpublished
data). Taken together, the above data indicate
that the formation of TAs is an intrinsic factor in
the transformation of the normal cell into a
malignant one. Therefore, in the future, the
knowledge of TA formation during tumor
development can be used as a diagnostic tool
and for monitoring of treatment success.

MECHANISMS OF TA FORMATION

How do these aggregates form? This is an area
that requires intense research. At this point,
nothing is known about the mechanisms that
cause TA formation. One may speculate that
one of the shelterin proteins [de Lange, 2005] is
causally involved in TA formation. However,
this has not been demonstrated in tumor
models. We know from studies of de Lange and
colleagues that the absence of TRF2 leads to the
formation of telomeric fusions which lead to cell
death and senescence [van Steensel et al., 1998;
Celli and de Lange, 2005]. Whether these

fusions involve TA formation and can be linked
to genomic instability and cancer has not been
investigated.

BOVERI’S LEGACY: IN SEARCH OF THE
MECHANISMS THAT REGULATE ABERRANT

NUCLEAR AND GENOMIC ORGANIZATION

Although we described the formation of TAs
in tumors and after c-Myc deregulation for the
first time [Chuang et al., 2004; Louis et al.,
2005], the concept of the nucleus and its
chromosomal order has been studied long
before. Theodore Boveri (1862–1915) was the
first researcher who linked nuclear organiza-
tion and genome stability. StudyingAscaris and
sea urchin eggs, he described for the first time
‘chromosomal regions’ (‘chromosome territories’
[Cremer and Cremer, 2001]). Chromosomal
regions are regions within the 3D nuclear space
in which chromosomes tend to be found in
normal cells. Boveri also noted that an aberrant
chromosome constitution leads to aberrant cell
division cycles and mis-segregation of chromo-
somes. He found that aberrant chromosome
constitution resulted in aberrant embryo devel-
opment or cell death [Boveri, 1902, 1914]. From
the simple organisms he studied, he inferred for
tumor development that similar pathways are

Fig. 3. Telomere organization in cervical biopsy tissue of a CIN 1 lesion. a: 2D image of a section showing
the identical nuclei (blue) and their telomeric signals (red) that are shown in (b) and (c) as 3D images. Black
arrows point to TAs that are observed in some of the cells. Frozen sections of 5-mm thickness were hybridized
as described [Chuang et al., 2004; Louis et al., 2005].
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Fig. 4. Plasmacytotic focus examined by telomere hybridization. Telomere hybridizations were performed
on 5-mm sections of paraffin-embedded tissues. A: Overview of plasmacytotic focus in 2D. Nuclei are shown
in blue, telomeres in red. White box indicates area of the section that is shown in (b). B: Insert from (a)
showing 2D and 3D organization of the telomeres. Black arrows point to TAs seen in front view (b) and in side
view (c). The blue arrow points to a structure that appears to be a replicating telomere.
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in operation [Boveri, 1914]. The centrosome
cycles and aberrations thereof were also
described by Boveri [1914] for the first time
and later translated into English by his wife
[Boveri, 1929]. Since his time, more details
about the 3D organization of the nucleus and
the genome have been investigated. However,
the big picture that he first put forward is as
valid today as it was in his time.

CURRENT CONCEPTS AND OPEN QUESTIONS

In the following paragraphs, we will discuss
some of the issues that are important for future
research in the area of the 3D organization of
the nucleus and its alteration in the contribu-
tion to tumor development.

WHICH STIMULI LEAD TO THE
FORMATION OF TAs?

Due to the impact of telomeric remodeling on
genome stability, it will be important to char-
acterize the conditions that lead to the forma-
tion of TAs. We have recently studied c-Myc-
dependent TA formation and the effects of TAs
on genomic instability [Louis et al., 2005]. We
anticipate that other oncogenes may cause
similar effects. One candidate is Ha-Ras. This
oncogene was already studied with respect to its
ability to alter chromatin organization [Fischer
et al., 1998]. A more recent study using Balb/
3T3 cells spontaneously immortalized and
transfected with mutated c-Ha-Ras-1 found
that Ha-Ras increased the level of chromosomal
rearrangements involving telomeric sequences
threefold [Peitl et al., 2002]. However, it is not
known whether these rearrangements followed
TA formation. It is also not known whether
additional genetic changes occurred in these
immortalized cells that contributed to the above
results.

Other stimuli that converge at the chromoso-
mal ends and elicit genomic instability may
involve viruses that are able to immortalize or
transform the host cells. Wan et al. [1997]
examined telomeres after human papilloma
viral infection and found a high frequency of
telomeric associations and rearrangements.
Using human ovarian epithelial cells immorta-
lized by human papilloma oncoproteins, E6 and
E7, the authors observed that 30–100% of all
metaphases examined displayed telomeric asso-
ciations (ibid). Whether these associations

followed TA formation has not been investi-
gated. However, one may postulate that this is
very likely if the c-Myc-mediated remodeling of
telomeres and chromosomes can be considered a
general pathway to nuclear remodeling of the
genome. The impact of viruses on telomeric
organization and genomic instability requires
further investigation. The above effects may be
cell-type, host, and/or virus-specific since work
by Argilla et al. [2004] demonstrates that
transgenic mice expressing SV40 or HPV16
in the absence of telomerase do not exhibit
telomere dysfunction or increased genomic
instability.

TELOMERES AND EVOLUTION

It has been reported that human subtelomeric
sequences are recombination and dupli-
cation hot spots [Linardopoulou et al., 2005].
Subtelomeric sequences are involved in inter-
chromosomal recombinations and segmental
duplications. This not only is a feature of tumor
cells, but also occurs frequently during evolu-
tion. For example, half of the known subtelo-
meric sequences have formed recently during
primate evolution. Interestingly, the subtelo-
meric gene duplication rate is significantly
higher than the genome average. Thus, the
authors conclude that this is both advantageous
for evolution and may also have pathological
consequences [Linardopoulou et al., 2005]. In
the context of our discussion, we emphasize that
telomeres and subtelomeric sequences are hot
spots of evolution and genomic instability. The
formation of TAs may contribute to both.

DO TAs AFFECT THE CHROMOSOMAL
ORDER IN VIVO?

Since previous studies were done in estab-
lished tumors or tumor cell lines [Chuang et al.,
2004], one cannot say whether the chromosomal
order changed due to tumor formation or due to
TA formation or both. While data are emerging
that TAs occur early in tumor development
(Figs. 3 and 4), it is still unclear whether this is
mechanistically linked to the remodeling of the
nuclear order of chromosomes and to rearran-
gements in vivo. Thus, the cause-relationship in
vivo is not yet established and needs to be
examined carefully.

The closest cause-relationship study to date
involved oncogenic remodeling of the telomeres
and chromosomes in the nucleus [Louis et al.,
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2005]. In this in vitro study using mouse
lymphocytes, c-Myc deregulation led to TA
formation that preceded chromosomal rearran-
gements via BBF cycles [Louis et al., 2005; Mai
and Garini, 2005].

WHEN IS THE EARLIEST TIME POINT
FOR TA FORMATION AND WHEN IS THE

TUMORIGENIC POTENTIAL ESTABLISHED?

This question is critical for our understand-
ing of the impact of nuclear remodeling in
tumor development. We speculate that TAs
formation may be the earliest event in tumor
development and occur subsequent to onco-
gene deregulation. This is solely based on our
in vitro studies and on studies we performed
with pre-neoplastic and non-invasive lesions.
More detailed studies in several tumor models
will be necessary to establish this point. Is it
enough for a cell to carry TAs to be tumori-
genic? Are TAs and chromosomal rearrange-
ments required before a cell becomes
tumorigenic? Is a specific genetic background
more susceptible to TA formation? Is the
formation of TAs reversible? Can cells repair
TAs? When do TAs become irreversible?
Appropriate cell culture and mouse models
will allow researchers to address such ques-
tions in the future.

WILL CELLS UNDERGO APOPTOSIS WHEN A
CRITICAL THRESHOLD OF TAs IS REACHED?

Data on repeated c-Myc inductions suggest
this may be the case. When mouse Pre B
lymphocytes are stimulated to overexpress c-
Myc every 12 h, >96% of all nuclei display large
or several TAs. In this experimental set-up, all
cells die of apoptosis within 30 h [Louis et al.,
2005]. In contrast, a single activation of c-Myc
deregulation for 2 h or for 12 h led to the
formation of three or five TA cycles, respec-
tively, which represent BBF cycles, without
significant elevation in cell death (ibid). Thus,
we propose that a critical threshold of TAs is
tolerated by the cells and leads to genomic
instability through chromosome remodeling by
TA-induced BBF cycles. A low level of TAs
allows for cell survival and cell proliferation
while genomic rearrangements can occur. The
latter situation is the critical one, since it
contributes to the propagation of genomically
unstable cells.

REMODELING OF
THE NUCLEUS THROUGH TAs

In c-Myc deregulated cells, TAs form and
chromosomes change their positions. Not only
are there more chromosomal overlaps, but also
more chromosomal ends become linked through
TAs and fusions [Louis et al., 2005]. Several
questions arise from these findings. Do chromo-
somes move normally? This is an open question,
since the available data do not allow for a
consensus in interpretation. While some
research groups do not find substantial chro-
mosomal movements [Abney et al., 1997; Ger-
lich et al., 2003], others find chromosomal
reorganization during the cell cycle [Ferguson
and Ward, 1992; Vourc’h et al., 1993; Bridger
et al., 2000; Chubb et al., 2002; Walter et al.,
2003; Essers et al., 2005], cellular differentia-
tion [Stadler et al., 2004], and during quiescence
and senescence [Bridger et al., 2000].

Whether chromosomes move normally or not,
there are conditions that induce movement,
such as c-Myc deregulation [Louis et al., 2005].
In the presence or absence of pre-existing
movements, the potentially dynamic nature of
chromosome order is a very complex issue. For
example, are there specific neighborhood rela-
tionships that become established due to spe-
cific stimuli (such as oncogenic activation, viral
infection, DNA damage)? Or do chromosomes
that are observed in specific chromosomal
neighborhoods come closer to each other dimin-
ishing the intrachromosomal space? Would this
favor fusions, illegitimate recombinations, and/
or non-homologous end joining?

There is evidence that a non-random nuclear
order of chromosomes with specific chromoso-
mal neighborhood relationships is important for
specific rearrangements. Data by Neves et al.
[1999] suggest this for bcr/abl in chronic
myeloid leukemia. Chromosomes 9 and 22 are
in close enough proximity to permit this trans-
location. This finding is supported by Kozubek
et al. [1999] who state that the positions of
chromosomes 9 and 22 have a determinative
role in the induction of t(9;22) and in the
development of t(9;22) leukemias. For mouse B
cells, chromosomes 12 and 15 are found in a
close neighborhood in lymphocytes (where they
are involved in balanced translocations in
mouse plasmacytoma) but are found more
distant in mouse hepatocytes [Parada et al.,
2004]. There are more studies that support this
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chromosome neighborhood concept. Thomas
and Diehl [2003] state that the proximity
between translocating chromosomes is a pre-
requisite for their rearrangement. Roix et al.
[2003] support this interpretation.

In a survey of >11,000 constitutional translo-
cations, Bickmore and Teague [2002] concluded
that the frequency of constitutional transloca-
tions depended on three main factors, and these
included the chromosome positions, chromo-
some sizes, and specific DNA sequences.

We conclude from the above that chromosome
specific neighborhood relationships exist in a
cell-type specific manner and are consistent
with the resulting chromosomal translocations.
However, the experimental proof for this con-
cept is lacking. For example, if a chromosome
involved in translocations was moved to a new
nuclear position would it still be involved in the
same translocations or not? Do approaching
gene loci or gene loci in the same nuclear
compartment contribute to possible illegiti-
mate recombination events? To date, these
questions remain unanswered and await future
investigation.

It is now possible to view all chromosomes in a
nucleus [Bolzer et al., 2005]. Such 3D localiza-
tion of all chromosomes needs to be combined
with 3D FISH studies to assess potential gene
and chromosomal region-associated move-
ments.

CONCLUSIONS

Further research is required to fully under-
stand the complexity of nuclear organization in
normal cells and during malignancy. Studies
using various approaches are required to inves-
tigate the complexity of 3D nuclear space that is
crucial for understanding genome organization
and stability. Geneticists, evolutionary biolo-
gists, cancer researchers, cell biologists, pro-
gram developers, physicists, mathematicians,
and biostatisticians are all necessary in a
multidisciplinary effort to understand and
model the nuclear structure and its regulation
in normal and tumor cells. Only when we fully
understand who the key players are, will we be
able to learn how to modulate them for patient-
specific treatments.
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Telomeres of tumor cells form telomeric aggregates (TAs)
within the three-dimensional (3D) interphase nucleus.
Some of these TAs represent end-to-end chromosomal
fusions and may subsequently initiate breakage–bridge–
fusion cycles. Wild-type (wt) and myc box II mutant (mt)
Myc induce different types of genomic instability when
conditionally expressed in mouse proB cells (Ba/F3). Only
wt Myc overexpressing Ba/F3 cells are capable of tumor
formation in severe combined immunodeficient mice. In
this study, we investigated whether telomere dysfunction
leading to TA formation is linked to the genetic changes
that permit wt c-Myc-dependent transformation of Ba/F3
cells. To this end, we examined the 3D organization of
telomeres after the deregulated expression of deletion myc
boxII mutant (D106) or wt Myc. D106-Myc overexpres-
sion did not induce TAs, whereas wt-Myc deregulation
did. Instead, D106-Myc remodelled the 3D telomeric
organization such that telomeres aligned in the center of
the 3D interphase nucleus forming a telomeric disk owing
to a D106-induced G1/S cell cycle arrest. In contrast, wt-
Myc overexpression led to distorted telomere distribution
and TA formation. Analysis of chromosomal alterations
using spectral karyotyping confirmed D106-Myc and wt-
Myc-associated genomic instability. A significant number
of chromosomal end-to-end fusions indicative of telomere
dysfunction were noted in wt-Myc-expressing cells only.
This study suggests that TAs may play a fundamental role
in Myc-induced tumorigenesis and provides a novel way to
dissect tumor initiation.
Oncogene advance online publication, 4 September 2006;
doi:10.1038/sj.onc.1209928

Keywords: three-dimensional nuclear organization; telo-
mere aggregates; c-Myc; genomic instability; telomeric
fusions

Introduction

Chromosomes are organized into discrete territories in
the interphase nucleus. This nonrandom organization of
chromosomes, conserved during evolution, suggests a
role for a spatial organization in the control of gene
expression and replication (for reviews, see Cremer and
Cremer, 2001; Parada et al., 2002). A number of reports
describe an architectural stability of the chromosomal
positions in the nucleus (Gerlich et al., 2003), whereas
other studies described considerable changes in chromo-
somal positions during the cell cycle (Gasser, 2002;
Essers et al., 2005). In particular, chromosome motility
increases during mitosis and early-stage G1, but it is
limited to local diffusion during the rest of cell cycle
(Walter et al., 2003). The spatial organization of
chromosomes might contribute to chromosomal trans-
locations found in many tumors (Kozubek et al., 1999;
Neves et al., 1999).

Three-dimensional (3D) fluorescent in situ hybridiza-
tion (FISH) is an innovative approach to study the
nuclear architecture in fixed cultured cells during cell
cycle, cell differentiation and malignant transformation
(Solovei et al., 2002; Cremer et al., 2003).

Using 3D FISH experiments with peptide-nucleic-acid
(PNA)-telomeric probes, we demonstrated that telo-
meres of normal cells are organized in a nonoverlapping
manner in the 3D interphase nucleus (Chuang et al.,
2004; Louis et al., 2005). In contrast, tumor cells display
an aberrant organization of telomeres and form clusters
of telomeres, the so-called telomeric aggregates (TAs)
(Chuang et al., 2004; Mai and Garini, 2005, 2006).

The position of telomeres during the cell cycle is an
important indicator of the stage at which these fusions
may occur. It has been shown previously that the 3D
telomere organization varies during different phases of
the cell cycle and displays a highly ordered, dynamic
assembly in the interphase nucleus. During G0/G1 and S
phases, telomeres are widely distributed throughout the
nucleus, whereas in late G2 phase, they align in the
middle of the nucleus forming a telomeric disk (Chuang
et al., 2004; Vermolen et al., 2005).

The deregulation of Myc protein is found in a wide
range of human cancers and is associated with disease
progression. The deregulated expression of Myc canReceived 21 March 2006; revised 26 June 2006; accepted 7 July 2006
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drive cells into proliferation (Deb-Basu et al., 2006),
reduce cell adhesion (Frye et al., 2003), promote
metastasis (Pelengaris et al., 2002) and genomic in-
stability (for a review see Mai and Mushinski 2003;
Kuttler and Mai, 2005).

The N-terminus of Myc has three highly conserved
elements, known as Myc boxes. Of these, Myc box I has
been implicated in Myc turnover (Bahram et al., 2000).
Myc box I is essential for Myc function in vivo and is
required for full transactivation and repression of many
target genes (Oster et al., 2003). Myc box II is required
for all the known biological functions of Myc (Stone
et al., 1987) but not all Myc target genes require the
integrity of this box for activation, which shows that
there are other mechanisms of Myc-dependent activa-
tion (Nikiforov et al., 2002)

The conditional expression of wild-type (wt) Myc and
deleted box II mutant-Myc (D106-Myc) in sponta-
neously immortalized mouse Ba/F3 pro-lymphocytes
was previously characterized (Fest et al., 2002). Mutant
Myc protein induced lower level of apoptosis but higher
level of genomic instability than its wt counterpart. It is
of note that in these cells, genomic instability and
tumorigenesis are two separable events: Only wt-Myc
but not D106-Myc-expressing cells induced tumor
formation in the severe combined immunodeficient
mouse model (Fest et al., 2005).

We have recently reported that c-Myc deregulation
induces cycles of TA formation and remodels the
interphase nucleus by changing the organization of
telomeres and chromosomes (Louis et al., 2005, for
reviews, see Mai and Garini, 2005, 2006). In addition,
the presence of TAs in cells constitutively expressing
Myc contributed to genomic instability by forcing
abnormal chromosome segregation during mitosis
(Ermler et al., 2004).

Telomere function is essential for the preservation of
chromosomal integrity (for a review see Feldser et al.,
2003). Loss of various telomere-capping proteins or
critical shortening of the telomeric repeats led to
dysfunctional telomeres. The formation of dicentric
chromosomes that led to specific rearrangements was
observed more than 60 years ago by Barbara McClin-
tock. Dicentric chromosomes can initiate ongoing
chromosomal instability via breakage–bridge–fusion
(BBF) cycles (McClintock, 1941). During mitotic
segregation, the two centromeres of a dicentric chromo-
some are pulled to opposite poles and chromosomes can
break. These breaks generate telomere-free ends and
new chromosome fusions, nonreciprocal translocations
and overall genetic changes that contribute to genomic
instability. Our previous study showed that c-Myc is one
key factor that initiates chromosomal rearrangements
through BBF cycles (Louis et al., 2005).

In the present study, we investigated whether Myc box
II is required for TA formation in Ba/F3 cells. In order
to evaluate the difference in initiating and promoting
tumorigenesis between wt-Myc and D106-Myc-expres-
sing cells, we analysed the organization of telomeres in
the interphase nucleus and the presence of chromosomal
rearrangements resulting from BBF cycles.

Results

Telomere disk after cell cycle synchronization
It has been shown previously that varying telomere
organization is observed during different phases of the
cell cycle with telomeric disks forming in the G2 phase
of the cell cycle (Chuang et al. 2004). Telomere positions
in the 3D nucleus were calculated by using a program
(Teloview) and algorithms that we have developed for
this purpose (Chuang et al. 2004; Vermolen et al., 2005).
Briefly, using an adequate threshold, the program
calculates the center of gravity, the volume and intensity
for each telomere. Using the quick-hull algorithm
(Barber et al. 1996), the distribution of the telomeres
in the nucleus volume is found by fitting the smallest set
of polygons that contains all the telomeres. In general,
this volume is an ellipsoid with two similar radii (a¼ b)
and one dissimilar radius (c) (i.e. spheroid). Therefore,
the level of flatness of the volume occupied by the
telomeres can be described by an a/c ratio. The larger
the ratio, the more disk-like is the shape of the volume
occupied by the telomeres.

In order to confirm the position of telomeres during
different phases of the cell cycle and the presence of
telomeric disk, mouse diploid immortalized Pre-B
lymphocytes were synchronized in late G2 with 0.5mg/ml
of nocodazole. Synchronized cells were reintroduced
into culture and harvested again after 8 h at G1 phase
(Figure 1a).

Using PNA-FISH hybridization in 3D fixed Pre-B
lymphocytes, we confirmed the formation of a telomeric
disk at the time of synchronization (Figure 2b). Eight
hours after release from synchronization, telomeres
returned to a wide distribution throughout the inter-
phase nucleus (Figure 2c). The calculated a/c ratios in the
cells arrested in G2/M phase and in the cells in G1 phase
were 11.872.9 and 8.171.7, respectively (Table 1).

To detect telomere positions after G1/S synchroniza-
tion, Pre-B cells were incubated for 42 h in RPMI 1640
that had been depleted of the amino acids methionine,
cysteine and L-glutamine, and then returned to complete
RPMI 1640 with mimosine at a concentration of
0.4 mg/ml 8 h (Kuschak et al., 2002). The G1/S block
was confirmed by fluorescent-activated cell sorter
(FACS) analysis (Figure 1a). Eight hours after release
from the G1/S block, Pre-B cells returned to normal
cycling conditions (Figure 1b). Under conditions of
G1/S synchronization, the telomeres aligned in the
center of 3D interphase nucleus and formed a telomere
disk (Figure 2d). The high value of the a/c ratio
(9.672.9 time 0), calculated for G1/S synchronized
cells, confirmed the flatness of the volume occupied by
the telomeres. Eight hours after release from the G1/S
arrest, the telomeres were widely distributed in 3D
interphase nucleus with a calculated a/c ratio of 7.771.4
(Table 2, Figure 2e).

The 3D organization of telomeres in wt-Myc and
D106-Myc-induced Ba/F3 cells
To study the organization of telomeres in the nucleus
after conditional wt-Myc and D106-Myc induction in
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immortalized mouse pro-B lymphocytes (Ba/F3) stably
transfected with MycER (Fest et al., 2002), we
performed PNA-telomere FISH hybridization. After
addition of a single dose of 4-hydroxytamoxifen (4HT),
nuclear c-Myc signal was quantified by quantitative
fluorescent immunostaining (Kuschak et al., 1999). In
nontreated control cells, MycER was found in the
cytoplasm. The nuclear signal of both wt and D106-Myc
proteins increased threefold over a 2–4-h period and
decreased to the levels of nontreated cells after 6 h (data
not shown).

Consistent with our previous results (Louis et al.,
2005), Ba/F3 cells without MycER activation showed
nonoverlapping telomere positions (Figure 3a). At 24 h
after wt-Myc activation, Ba/F3 cells displayed a wide
spatial telomere distribution and the presence of TAs
(Figure 3b). At the same time point, in D106-myc-
induced Ba/F3 cells, telomeres were aligned in the center
of the 3D interphase nucleus (Figure 3c).

To better describe telomere distribution in 3D
nucleus, we measured a/c ratios after wt and D106-
Myc activation (Table 3). Telomeres were widely

Figure 2 Three-dimensional analysis of telomere position after
G2/M and G1/S synchronization. (a) Fixed control cell untreated.
(b) Fixed cells harvested 0 h after having been synchronized at G2/
M with nocodazole. (c) Fixed cells harvested 8 h after release from
synchronization with nocodazole. (d) Fixed cells harvested 0 h after
synchronization at G1/S with depleted medium/mimosine. (e)
Fixed cells harvested 8 h after release from synchronization with
depleted medium/mimosine. Telomeres are shown in red; nuclei
were stained with DAPI (blue). 3DF (3D front view), 3DS (3D side
view).
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Figure 1 FACS analysis for Pre-B cells. Control group prolifer-
ated normally with no detectable sign of cell cycle arrest (a). Cells
were harvested 0 h after having been synchronized at G2/M with
nocodazole and 8 h after release from synchronization with
nocodazole. (b) For G1/S synchronization, Pre-B cells were
incubated for 42 h in RPMI media that had been depleted of the
amino acids methionine, cysteine and L-glutamine, released from
G1/S synchronization and placed in normal media. Cells were then
harvested at 0 h after synchronization and once every hour for 8 h.
The cell cycle profile was expressed as the percentage (7s.d.) of
cells in each phase (G0/G1; S; G2/M). These values were calculated
from data collected from three independent experiments.

Table 1 Effect of G2/M synchronization on telomeres distribution in
3D nucleus

Cell culture conditions a/c ratio Telomere distribution in 3D

Pre-B control 6.372.3 Widely distributed throughout
the nucleus

Pre-B 0 h+nocodazole 11.872.9 Disk formation
Pre-B 8 h�nocodazole 8.171.7 Widely distributed throughout

the nucleus

3D, three-dimensional. Thirty nuclei were analysed for each time
point. These values were calculated from data collected from three
independent experiments. Values are means of three experiments7s.d.
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distributed throughout the nucleus after wt-Myc induc-
tion with a calculated a/c ratio of 4.171.1 at 24 h and
4.970.7 at 48 h, which means a spherical-like volume of
distribution. However, after D106-Myc induction, the
a/c ratio was 10.174.3 at 24 h and 9.272.9 at 48 h.

The possible relationship between telomere distribu-
tion and cell cycle in this model was investigated by flow
cytometry. Propidium iodide staining of cellular DNA
indicated that non-4HT-treated Ba/F3 cells proliferated
normally with no detectable sign of cell cycle arrest
(Figure 4, 0 h). As expected, the overexpression of
wt-Myc increased G1/S transition after 24 and 48 h
(Figure 4a). In contrast, the D106-Myc-expressing cells
accumulated at G1/S phase of the cell cycle. By 24 h,
over 80% of the cells were arrested in G1/S (Figure 4b).

D106-Myc expression does not induce TA formation
in interphase nuclei
In tumor cells, the ordered and nonoverlapping 3D
nuclear space that telomeres normally occupy is
compromised and telomeres can form aggregates that

Table 2 Effect of G1/S synchronization on telomeres distribution in
3D nucleus

Cell culture conditions a/c ratio Telomere distribution
in 3D

Pre-B 0 h (amino-acid
deprivation plus mimosine)

9.672.9 Disk formation

Pre-B 8 h after release from
G1/S block

7.771.4 Widely distributed
throughout the nucleus

Thirty nuclei were analysed for each time point. These values were
calculated from data collected from three independent experiments.
Values are means of three experiments7s.d. 3D, three-dimensional.

Figure 3 Telomere distribution in 3D interphase nuclei of Ba/F3
cells at 24 h after wt-Myc and D106-Myc activation. (a) Control
(non-4HT treated) Ba/F3 cells; (b) wt-Myc-activated Ba/F3 cells
with a wide distribution of telomeres and with TAs formation
(yellow arrow); (c) in D106-Myc expressing cells, telomeres are
aligned in the center of the interphase nucleus, forming a disk-like
structure without TAs. Telomeres are shown in red; nuclei were
stained with DAPI (blue). 3DF (3D front view), 3DS (3D side
view).

Table 3 Effect of wt-Myc and D106-Myc expression on telomeres
distribution in 3D nucleus

Cell culture conditions
in the presence of 4HT

a/c ratio Telomere distribution in 3D

BaF3 wt-Myc 0 h 6.771.3 Widely distributed throughout
the nucleus

BaF3 wt-Myc 24 h 4.171.1 Widely distributed throughout
the nucleus

BaF3 wt-Myc 48 h 4.970.7 Widely distributed throughout
the nucleus

BaF3 D106-Myc 0 h 6.771.1 Widely distributed throughout
the nucleus

BaF3 D106-Myc 24 h 10.174.3 Disk formation
BaF3 D106-Myc 48 h 9.272.9 Disk formation

Thirty nuclei were analysed for each time point. These values were
calculated from data collected from three independent experiments.
Values are means of three experiments7s.d. 3D, three-dimensional.
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Figure 4 Effect of wt-Myc and D106-Myc expression on cell cycle
profiles. Cell cycle analysis of Ba/F3 cells at 24 and 48 h after
wt-MycER (a) and D106-MycER (b) activation. The cells were
collected, permeablized and DNA was stained with propidium
iodide. The overexpression of wt-Myc increased G1/S transition
after 24 and 48 h. The D106-Myc-expressing cells accumulated at
G1/S phase of the cell cycle. The cell cycle profile was expressed as
the percentage (7s.d.) of cells in each phase (G0/G1, S, G2/M).
These values were calculated from data collected from three
independent experiments.
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may fuse their respective chromosomes, favoring struc-
tural chromosomal aberrations. In order to investigate
whether the mutation in Myc box II impacted on the
formation of TAs, we analysed wt and D106-Myc-
expressing cells. To this end, cells were harvested every
6 h over a time period of 48 h. Measurement of TAs was
performed after 3D image acquisition and constrained
iterative deconvolution (Louis et al., 2005).

This time course experiment confirmed that only
wt-Myc expression in Ba/F3 cells induced TAs. Repre-
sentative images showed that TAs varied in number in
wt-Myc-expressing cells at 24 h (Figure 5B, b). In
contrast, TAs were not detectable in the 3D nucleus at
24 h, with control Ba/F3 cells (non-4HT treated cells)
and D106-Myc-expressing cells (Figure 5B, a and c,
respectively). A single dose of 4HT induced the highest
levels of TA formation after 24 h in wt-Myc-expressing
cells. Thus, only a single TA cycle is observed in Ba/F3
after wt-Myc activation (Figure 5A). In Ba/F3 cells, the
nuclear localization of Myc completely disappeared 6 h
after 4HT-induced MycER activation (data not shown).
As reported previously (Louis et al., 2005), the number
of TA cycles was directly linked to the duration of

wt-Myc deregulation. As wt-Myc but not D106-Myc-
expressing cells induced tumorigenesis in vivo (Fest
et al., 2005), the presence of TAs seems to be linked
to the initiation and/or progression of tumorigenic
potential seen in Ba/F3 cells with deregulated wt-Myc
expression.

A significant number of chromosomal fusions were noted
only in wt-Myc-expressing cells
To determine whether the formation of TA was
associated with BBF events, spectral karyotyping
(SKY) analysis on metaphase chromosomes was per-
formed at different times: prior (6 h), during (24 h) and
after (42 h) the peak of TA formation in both wt and
D106-Myc-expressing cells. Table 4 summarizes the
genomic aberrations detected in wt-Myc-expressing
Ba/F3 cells. As expected for an immortalized cell line
(Fest et al., 2005), control Ba/F3 cells (non-4HT treated)
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Figure 5 Overview of TA formation in nuclei of Ba/F3 cells
expressing wt-Myc or D106-Myc. (A) Fold increase in TAs over
control level during a period of 48 h. The highest levels of TAs were
observed at 24 after wt-Myc activation. Error bars represent a 95%
confidence interval of binomial distribution. (B) Representative
individual images showing TA formation over the time frame
shown in (A). (B, a) Control (non-4HT treated) Ba/F3 cells display
nonoverlapping telomeres. (B, b) wt-Myc activated Ba/F3 show the
formation of TAs (yellow arrow). (B, c) D106-Myc-expressing cells
do not show TAs.

Table 4 Chromosomal rearrangements in wt-Myc-activated Ba/F3
cells

Time
point
(h)

Aberrations % P-value

0 Fusions: none
Translocation: T5;X, T4;9
Metaphase with translocations: 2/20 10 0.1468
Average number of translocations per
metaphase: 1
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

6 Fusions: none
Translocation: T4;9, T5;X, T14;X
Metaphase with translocations: 3/20 15 0.0717
Average number of translocations per
metaphase: 3
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

24 Fusions: 8:19, 14:11, X:X, 10:9, 19:X, 18 :18,
11:6
Translocation: T15;9, T15;2, T5;X, T15; 10
Metaphase with translocations: 6/20 30 0.0101
Average number of translocations per
metaphase: 5
Metaphases with chromosomal fusions: 7/20 35 0.0036
Fusions per metaphase: 3

42 Fusions: 10:11, X:X
Translocation: T5;X, T8;4, T4;10, T15;10
Metaphase with translocations: 2/20 10 0.1468
Average number of translocations per
metaphase: 3
Metaphases with chromosomal fusions: 6/20 30 0.0101
Fusions per metaphase: 2

The table summarizes data obtained by spectral karyotyping.
Metaphases were prepared and analysed after a single administration
of 4-hydroxytamoxifen to wt-MycER Ba/F3 cells (Figure 3). End-to-
end fusions were detected at 24 h in 30% of the metaphases
(P¼ 0.0101). Nonreciprocal translocation were also found at 24 h (in
35% of the metaphases) and reached significance. As time progresses,
fusions decreased whereas translocations remained steady. The table
shows the description of the aberrations found, their percentage of
occurrence, average number of fusion and translocation per meta-
phase, and significance P-values. A minimum of 20 metaphases was
examined per time point.
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showed some chromosomal alterations. At 24 h, six out
of 20 metaphases in wt-Myc-expressing cells showed a
significant increase in end-to-end chromosomal fusions
and nonreciprocal translocations over control levels. At
42 h after wt-Myc activation, the percentage of fusions
and translocation decreased. The karyotype of sponta-
neously immortalized, tetraploid (Ba/F3) cells is shown
in Figure 6a. Representative images (Figure 6b), 24 h
after wt-Myc activation, show fusions at telomeric ends

between two chromosomes X and between chromo-
somes 10 and 9. Nonreciprocal translocation between
chromosomes 15 and 9 and broken chromosomes (4, 16
and 9) were observed. Other aberrations included the
insertion of chromosome X material into chromosome 1
and of chromosome 19 material into chromosome 4.

The analysis of 20 metaphases from D106-Myc-
expressing cells revealed an increased number of
nonreciprocal translocations over 42 h in comparison
with control (non-4HT treated) Ba/F3 cells. In contrast
to wt-Myc-overexpressing Ba/F3 cells, D106-Myc-over-
expressing cells did not show chromosomal end-to-end
fusions. Nonreciprocal translocations were found in
wt-Myc-expressing cells at 24 h in 30% of the meta-
phases (P¼ 0.0101). As time progressed, translocations
increased (in 40% of metaphases Po0.001) (Table 5).
Figure 6c summarizes the most common aberrations
seen in D106-Myc-expressing cells at 24 h. SKY analysis
confirmed the presence of unbalanced translocation
involving chromosomes 2, 3, 4 and 15.

Both wt and D106-Myc proteins showed high levels of
significant karyotypic instability. The main difference
between D106-Myc and wt-Myc-expressing cells were
that the latter exhibited a significant number of
chromosome fusions related to telomere dysfunction.

Discussion

There are at least two types of telomere dysfunction in
tumor cells. One type involves critically short telomeres
(DePinho and Polyak, 2004). The other one involves the
formation of TAs and is independent of telomere size
and telomerase activity (Louis et al., 2005). Telomeres of
normal cells are organized in a nonoverlapping manner
in the 3D interphase nucleus. In contrast, tumor cells
display an aberrant organization of telomeres that
impact on the numbers of TAs (Chuang et al., 2004).

Telomere dynamics have been observed and measured
by live cell imaging approaches in different cell lines.
Long and short ranging movements were observed over
a time period of 20 min (Molenaar et al., 2003). 3D
imaging has permitted to determine that the telomere
organization in the nucleus is cell cycle dependent. As
such the position of telomeres during the cell cycle is an
important indicator of the stage at which these TAs may
occur (Chuang et al., 2004).

In the present study, we have investigated a possible
correlation between telomere positions during the cell
cycle and the formation of TAs and the different
tumorigenic potential of wt and mutant Myc proteins
(Fest et al., 2005). At the G1/S boundary of a
synchronized cell cycle, the telomeres of Pre-B cells
have a tendency to align in the center of the nucleus, in a
structure we had termed earlier a telomeric disk
(Chuang et al., 2004). This is the first time such a
telomere organization has been found during an induced
G1/S block. This alignment of telomeres dissociates and
telomeres are observed throughout the nucleus when
cells re-enter into the cycle after release from the
synchronization event.

Figure 6 SKY of Ba/F3 wt-MycER and D106-MycER cells.
Representative images of Ba/F3 cells control (non-4HT treated)
(a), 24 h after MycER activation (þ 4HT) for (b) wt-Myc and
D106-Myc (c) are shown. Notice the presence of fusion between
two chromosomes X and between chromosome 10 and 9 (see
yellow arrows) after wt-Myc activation. No fusions were detected
by SKY after D106-Myc activation. For a detailed overview of the
aberration detected by SKY, see Tables 4 (wt-Myc) and 5 (D106-
Myc). Each panel of the figure shows the following order of images,
the raw spectral image of the metaphase (top left corner), the
classified image of the identical metaphase (top middle panel), the
inverted DAPI image of the identical metaphase (top right corner)
and the classified karyotype of the identical metaphase is displayed
in the bottom panel. A minimum of 20 metaphases was analysed
per time point.
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The telomeric disk naturally reforms at the G2/M
transition of the cell cycle (Chuang et al., 2004).
Thereafter, the telomeres resume their distribution
throughout the nucleus. This feature of a dynamic
telomeric organization throughout the cell cycle is
mimicked by an experimental G2/M synchronization.
Eight hours after release from the G2/M block,
telomeres will assume their normal cell cycle-dependent
organization.

The expression of wt-Myc stimulates the G1/S
transition by regulating the levels and the activity of
the cyclins (Trumpp et al., 2001). In Ba/F3 cells, wt-Myc
activation promotes G1/S transition and is accompanied
by a distorted telomere distribution that results from the
presence of TAs (Figure 3, yellow arrow). In contrast,
Myc box II mutants expressing cells were blocked in

G1/S and the telomeres were aligned in the center of the
3D interphase nucleus, forming a telomere disk. These
results agree with the data obtained in synchronized
Pre-B cells in G1/S phase of the cell cycle.

Previous work had shown in Ba/F3 cells that wt and
mutant Myc proteins induced genomic instability but
only wt-Myc protein had the potential of initiating and
promoting tumorigenesis in vivo (Fest et al., 2005).
Using PNA-telomere FISH hybridization in 3D-fixed
cells, we demonstrated that the formation of TAs takes
part in MYC-induced tumorigenesis.

TAs were detectable only in wt-Myc expressing and
tumorigenic Ba/F3 cells (Fest et al., 2005) reaching the
highest peak after 24 h after Myc activation, whereas
D106-Myc expressing and nontumorigenic Ba/F3 cells
(Fest et al., 2005) did not show a significant number of
TAs. The presence of TAs in malignant cells is
supported by data from different cell lines and human
tumors (Chuang et al., 2004).

SKY data show that conditional wt-Myc protein
expression (Table 4) led to a higher level of chromo-
somes end-to-end fusions than conditional D106-Myc
protein expression (Table 5). These results are in
agreement with the absence of TAs in the mutant
Myc-expressing cells.

TAs are not just a transient aberration in the 3D
organization of the nucleus, but these events precede the
formation of BBF cycles. As reported in our previous
work, once aggregates form and chromosome fusions
occur, BBF cycles result and the genetic information of
the chromosomes will be remodelled (Louis et al., 2005).

Nothing is known about the mechanisms that cause
TA formation in the context of c-Myc deregulation.
Shelterin is a protein complex with DNA remodelling
activity that, together with several DNA repair protein,
such as WRN, the Mre1 complex and DNA-PK,
protects the integrity of the chromosome ends (De
Lange, 2005). In cells constitutively expressing Myc and
characterized by the presence of TAs (Ermler et al.,
2004), the level of TRF2 protein, a shelterin subunit
protein, was reduced. These data lend support to the
hypothesis that Myc may somehow interact with
proteins of the shelterin or DNA repair complexes to
mediate TAs formation. This capacity is lost in myc box
II mutant. Understanding whether TAs may be the
earliest events in tumor development and which genetic
background is more susceptible to TA formation will
provide a novel way to dissect the benign-to-malignant
transition in cancer.

Materials and methods

Cell cultures and treatments
Mouse Pre-B lymphocytes (Mai et al., 1999) were grown in
RPMI 1640 supplemented with 0.1% b-mercaptoethanol, 1%
L-glutamine, 1% sodium-pyruvate, 1% penicillin/streptomycin
and 10% fetal bovine serum (FBS; Gibco, Burlington ON,
Canada) at 371C, in a humidified atmosphere and in the
presence of 5%CO2.

For G2/M synchronization, Pre-B cells were incubated for
8 h in standard RPMI 1640 medium (Gibco, Burlington ON,

Table 5 Chromosomal rearrangements in D106-Myc activated Ba/F3
cells

Time
point
(h)

Aberrations % P-value

0 Fusions: none
Translocation: T5;X
Metaphase with translocations: 2/20 10 0.1468
Average number of translocations per
metaphase: 1
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

6 Fusions: none
Translocation: T5 ;1, T3 ;16, T 7 ;13
Metaphase with translocations: 3/20 15 0.0717
Average number of translocations per
metaphase: 3
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

24 Fusions: none
Translocation: T5;X, T1;15, T15;4, T12;3,
T2;10

Metaphase with translocations: 6/20 30 0.0101
Average number of translocations per
metaphase: 4
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

42 Fusions: none
Translocation: T15;4, T7;13, T8;4, T14;X

Average number of translocations per
metaphase: 8/20

40 o0.001

Translocations per metaphase: 4
Metaphases with chromosomal fusions: 0/20 — —
Fusions per metaphase: 0

The table summarizes data obtained by spectral karyotyping.
Metaphases were prepared and analysed after a single administration
of 4-hydroxytamoxifen at D106-MycER Ba/F3 cells (Figure 3b). End-
to-end fusions were not observed over the 42 h of the experiment.
Nonreciprocal translocations were found at 24 h in 30% of the
metaphases (P¼ 0.0101). As time progressed, translocations increased
(in 40% of metaphases Po0.001). The table shows the description of
the aberrations found, their percentage of occurrence, average number
of fusion and translocation per metaphase, and significance P-values.
M, metaphase. A minimum of 20 metaphases was examined per time
point.
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Canada) with nocodazole (Sigma-Aldrich, Oakville ON,
Canada) at a concentration of 1 mg/ml. Upon completion of
synchronization, cells were removed from nocodazole and
returned to nocodazole-free media and harvested at 0 and 8 h.

For G1/S synchronization, Pre-B cells were incubated for
42 h in RPMI 1640 that had been depleted of the amino acids
methionine, cysteine and L-glutamine, and then returned to
complete RPMI 1640 with mimosine at a concentration of
0.4 mg/ml for 8 h (Kuschak et al., 2002). Cells were then
harvested at 0 h and once every hour for 8 h.

The two Ba/F3 cell lines with conditional wt-MycER
(Littlewood et al., 1995) and D106-MycER used in this study
have been previously described (Fest et al., 2002). Cells were
grown in RPMI 1640 containing 10% FBS, 1% WEHI cells
supernatant (mouse myelomonocytic leukemia macrophage-
like cells derived from a BALB/c mouse; the cells produce
IL3 supernatant) and 0.21% of plasmocin (Cayla, Toulouse,
France).

Wt-Myc and D106-Myc cells were induced with 4-hydro-
xytamoxifen (4HT) (Sigma-Aldrich, Oakville ON, Canada) to
a final concentration of 100 nM in 105 cells/ml to activate the
c-Myc protein. Cells were split 24 h prior induction and every
48 h after 4HT induction.

Cells were grown and maintained at a density of 105–
106 cells/ml. Cell viability was determined by hemocytometer
counts using trypan blue (Sigma-Aldrich, Oakville ON,
Canada).

Immunohistochemistry
Immunohistochemistry was performed as described previously
(Fukasawa et al., 1997). The primary antibody used was a
rabbit polyclonal anti-c-Myc (N262) at a dilution of 1:100
(Santa Cruz, Santa Cruz, California, USA) visualized by using
a secondary goat anti-rabbit IgG fluorescein isothiocyanate
antibody at a dilution of 1:100 (Sigma-Aldrich, Oakville ON,
Canada). Images were acquired using a Hamamatsu CCD
SensiCam Camera and the Northern Eclipse v 6.0 software.

FACS analysis
For FACS analysis, Pre-B and Ba/F3 cells were fixed in 70%
cold ethanol and stained with propidium iodide (Sigma-
Aldrich, Oakville ON, Canada) (1 mg/ml) following RNAse
digestion (Sigma-Aldrich, Oakville ON, Canada) (20 mg/ml).
The stained cells were analysed for DNA content by flow
cytometry in an EPICS Altra cytometer (Beckman-Coulter,
Mississauga, ON, Canada).

Telomere FISH and 3D image analysis
Cells were fixed using 3:1 methanol/acetic acid fixative (Fluka,
Oakville, ON, Canada) and then placed on 26� 76mm2

microscope slides. Telomeres were stained using quantitative
fluorescent FISH with a telomere-specific CY3-labeled PNA
probe (DAKO, Mississauga, ON, Canada). Nuclear volumes
did not significantly change during the denaturation protocol

used for 3D telomere FISH. Counterstaining was performed
with 40-6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich,
Oakville ON, Canada). Three independent experiments were
performed and at least 30 nuclei were examined per time point.

Cells were imaged on a Zeiss Axioplan 2 microscope with a
Zeiss Axiocam HRm and deconvolution module, including
Axiovision (Zeiss, North York, ON, Canada) software v3.1.
Images were deconvolved using a constrained iterative
algorithm (Schaefer et al., 2001). Analysis was performed with
TeloView (Chuang et al., 2004; Vermolen et al., 2005).

By choosing a simple threshold for the telomeres, the
volume, intensity and center of gravity are calculated. The
integrated intensity of each telomere is calculated because it is
proportional to the telomere length (Poon et al., 1999). The
integration region is determined by growing a sphere on top of
the found coordinate. After every step of growth (iteration),
the sum under this volume (the telomere) is subtracted by the
sum immediately surrounding it (background level). When the
process of the growth of the sphere does not contribute to an
integrated intensity increase, the algorithm stops and the
integrated intensity of the telomere with an automatic back-
ground correction is obtained.

The telomeric distribution inside the nucleus is described by
fitting an ellipsoid to the volume occupied by the telomeres.
The distributions were found to be either oblate or spherical. It
is therefore convenient to describe the distribution volume as a
spheroid (i.e. an ellipsoid having two axes of equal length). As
such, it is simpler to describe the spheroid degree of variation
from a perfect sphere by the ratio a/c where a and b are the
similar semiaxes and c is the third dissimilar axis. Such a
description reflects the degree to which the telomere’s volume
is oblate. Nuclear flattening that may affect a/c ratios was
considered in this study. All cells (samples) in an experiment
were processed at the same time. If nuclei on one slide
consistently showed high a/c ratios, whereas nuclei on parallel
processed slides did not, we assumed that the a/c ratio reflected
the flatness of telomere distribution of nuclei within that
specific sample. All experiments were performed three times.

SKY analysis
SKY was performed by using the ASI (Applied Spectral
Imaging, Vista, CA, USA) kit for mouse and Spectra Cube on
a Carl Zeiss Axioplan 2 microscope. At least 20 metaphases
were examined per time points.
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Extra View

Oncogenic Remodeling of the Three-Dimensional Organization
of the Interphase Nucleus
c-Myc Induces Telomeric Aggregates Whose Formation Precedes
Chromosomal Rearrangements

ABSTRACT
The three-dimensional (3D) organization of the normal interphase nucleus permits the

regulated completion of transcription and replication and assures proper chromosome
organization. Aberrations from the normal 3D structural order of the nucleus are found in
tumor cells. When examining the 3D organization of telomeres in nuclei of normal and
tumor cells, we found that telomeres of normal nuclei do not overlap, while telomeres of
tumor cells form aggregates of various numbers and sizes. To understand how such
changes occur and what their implications are we have recently examined the role of the
oncoprotein c-Myc in inducing changes in the 3D nuclear organization of telomeres. We
found that c-Myc remodels the organization of telomeres and chromosomes in the
interphase nucleus. It induces the formation of telomeric aggregates and fusions that are
followed by breakage-bridge fusion cycles, and lead to the onset of chromosomal
rearrangements that are typical of tumor cells.

The three-dimensional (3D) organization of the nucleus has long been studied. It has
become evident that replication and transcription occur at specific nuclear compartments.1-3

Furthermore, the majority of laboratories have described a probable and nonrandom orga-
nization of chromosomes into chromosome territories.4-9 Chromosomes have frequent
neighbors, and the proximity to other chromosomes is tissue-specific.8,10

Chromosome territories are maintained during evolution.11 Data collected over the
past decades indicate that gene-dense human chromosomes are found in the center of
the nucleus, while gene-poor chromosomes are found towards the periphery of the
nucleus.6,8,12-15

Taking all the available information together, it thus becomes evident that nuclear orga-
nization is highly specific and has functional relevance to the cell assuring proper gene
expression, replication and the stability of the genome.

An altered picture is found in the nuclei of tumor cells. For pathologists, the morphology
and shape of tumor nuclei have long been crucial hallmarks for diagnostic evaluation
compared to normal nuclei.16-18 Research laboratories have been trying to define what
causes this difference and whether it can be used to understand mechanisms of the
structural changes that are relevant to the oncogenic process and to design new diagnostic
tools. In the end, the best scenario would be the identification of changes that are diag-
nostically relevant and to define how they occur so that one can design proper means to
interfere with these changes therapeutically.

We have recently examined the 3D organization of telomeres in nuclei of normal,
immortalized and tumor cells.19 This study allowed us to conclude that telomeres of nuclei
from normal cells do not overlap. Moreover, telomeres are organized in a cell cycle-dependent
manner.19 In G0/G1, they are widely distributed throughout the nucleus of primary mouse
and human lymphocytes. In S phase, they occupy this same space. In the G2 phase,
however, telomeres change their nuclear positions and form a new structure that we
termed the telomeric disk (TD). In a TD, telomeres align in the center of the interphase
nucleus. This novel disk structure is different from the metaphase plate. When the TD
forms in G2, the nucleus is not yet in pro-metaphase, and chromosome condensation has
yet to begin. We have therefore proposed that the TD may align chromosomes prior to
mitosis and may constitute a new checkpoint.19

In contrast to this organization in normal cells, tumor cells have distorted TDs. Tumor
cell nuclei show telomeric aggregates (TAs) of various sizes and numbers. Thus, the ordered
and non-overlapping 3D nuclear space that telomeres normally occupy is compromised.
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Figure 1. The 3D nuclear organization of telomeres in control (A) and c-Myc activated mouse Pre B lymphocytes (B–D). Telomeres are shown in green. Note
the formation of telomeric aggregates as a result of c-Myc deregulation. Arrows point to aggregates. Images were acquired as described.20

Figure 2. Examples of fused and dicentric chromosomes that form as a result of c-Myc deregulation. (A) Spectral karyotyping (SKY) analysis. c-Myc-dependent
formation of a dicentric chromosomes (see arrows). Left panel: raw spectral image of a metaphase, middle panel: spectral image of the same metaphase,
right panel: inverted DAPI image of the same metaphase, bottom panel: spectral karyotype of the above metaphase. (B) Additional examples of chromosomal
fusions as determined by SKY.
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This striking difference between
normal and tumor cells prompted us to
investigate I) whether the formation of
telomeric aggregates was associated
with events linked to cellular transfor-
mation, and II) whether TAs impacted
on the chromosomal organization and
genome stability in the 3D interphase
nucleus.20

We chose to study the role of c-Myc
in TA formation since this oncoprotein
is associated with at least 70% of
human cancers (see ref. 21, and
http://www.myc-cancer-gene.org/
index.asp). The role of c-Myc in pro-
moting genomic instability has been
studied for the past decade, and it is
now clear that c-Myc induces a very
complex network of genomic instabili-
ty (reviewed in refs. 22 and 23). For
example, c-Myc promotes locus-specific
gene amplification24-28 chromosomal
rearrangements,25,29,30 illegitimate
DNA replication,31 karyotypic instabil-
ity,29,32 DNA breakage,33 and alters
DNA repair.34,35 Since Myc is a
multi-functional protein, it also affects
transcription (reviewed in refs. 36 and
37), promotes angiogenesis,38,39 apop-
tosis40,41 and alters the immune
response of the host so that cells can escape immune surveillance.42

While deciphering the puzzle of how c-Myc alters genome stabil-
ity, we have recently shown that c-Myc deregulation can remodel the
interphase nucleus by changing the organization of telomeres and
chromosomes. These two downstream effects are directly causal to
the formation of c-Myc-dependent chromosomal rearrangements.20

The following findings led to these conclusions.
(1) In cell lines with conditional c-Myc expression, we showed

that a single dose 4-hydroxy-tamoxifen (4HT)-activation of
MycERTM was sufficient to generate telomeric aggregates in diploid
mouse preB cells and in tetraploid Ba/F3 lymphocytes. Both cell
types are immortalized but nontumorigenic. In addition, in the
absence of c-Myc deregulation, telomeric aggregates in these cells are
rare (up to 5% of TAs can be detected). Figure 1 shows an example
of telomeric aggregate formation in PreB cells.

(2) Variation of MycERTM activation was also carried out; for
example, MycERTM activation was performed for two hours, for 12
hours, every 12 hours, or for the duration of the biological effective-
ness of 4HT. All activation schemes lead to the formation of TAs.
The formation of TAs was directly proportional to the time of Myc
deregulation. c-Myc deregulation induced cycles of TA formation.
Fewer cycles (three) were observed after a 2 h pulse of Myc activation
than after a 12 h pulse (five cycles).

(3) The formation of TA cycles was most consistent with breakage-
bridge-fusion (BBF) cycles as first described by Mueller43 and
McClintock.44 Chromosomes that fuse at their telomeric ends may
form dicentric chromosomes that will break apart during anaphase.
The result of this breakage is an unbalanced translocation. Moreover,
the ends of the translocation partners are now ‘open DNA ends’ and
represent a double strand break. They are free of telomeres and will

fuse with other chromosomes propagating the BBF cycles. Thus, a
single deregulation of c-Myc that is as short as 2 hours already leads
to the remodeling of the interphase nucleus. Figure 2 shows exam-
ples of fused and dicentric chromosomes that were observed as a
result of c-Myc deregulation.

(4) As telomeres aggregate, their chromosomes come into closer
vicinity. This was measured for the following chromosome pairs:
chromosomes 5 and 13, chromosomes 7 and 10, and chromosomes
7 and 17. This close proximity may favor chromosomal rearrangements
as we had documented by spectral karyotyping. However, close
proximity alone is not sufficient to cause chromosomal rearrange-
ments as chromosomes 11 and 15 that were also found in close prox-
imity and showed mixed color signatures in 3D imaging were only
occasionally involved in rearrangements. Figure 3 summarizes the
series of events that lead to chromosomal rearrangements.

The previous findings are based on quantitative analyses of the
3D measurements that we have performed. The amount of data and
its complexity requires quantitative, standardized and convenient
image processing analysis, and it is based on a program and algorithms
that we have developed for this purpose. Two main algorithms were
developed and used, one for measuring the level of telomeric aggre-
gates and one for measuring chromosome overlap in the nucleus as
a function of time.

Telomere measurements were done with TeloViewTM.19,45 By
using an adequate threshold, the position of each telomere is found.
We then calculate the center of gravity and the integrated intensity
of each telomere.19 The integration region is determined by taking
into account the limited optical resolution of the microscope and
therefore selecting the correct 3D volume that is occupied by each
telomere.

Oncogenic Remodeling of the Three-Dimensional Organization of the Interphase Nucleus

Figure 3. Overview of c-Myc-dependent remodeling of the interphase nucleus. The figure illustrates the formation
of telomeric aggregates that represent in part telomeric fusions and move chromosomes into closer vicinity to
each other. In anaphase, dicentric chromosomes break generating unbalanced translocations and two telomere-
free chromosomal ends. The latter will fuse with new chromosome partners, thus initiating breakage-
bridge-fusion (BBF) cycles. c-Myc deregulation induces multiple such BBF cycles.20



Measurements of chromosomal overlaps were performed after 3D
image acquisition and constrained iterative deconvolution.20

Chromosomes were stained by FISH using two different fluorochromes
for each of the two chromosome pairs, e.g., 5 and 13. The nuclear
volume was determined based on the DAPI counterstain image and
measurements are performed only within its volume. We then deter-
mined intensity threshold, and calculated the total volume for each
chromosome and for each chromosome type, V1 and V2. Each of
these values is the sum of volumes of the single chromosomes that
belong to the same chromosome type. The total volume that is occu-
pied by both chromosome pairs is then calculated, V0. The ratio of
the overlap with respect to each chromosome type is finally found as
V0/V1 and V0/V2. These overlap-ratios however, seems to follow the
same trend for each chromosome pair.20

Implications. The above data demonstrate that the 3D nuclear
organization is altered as a result of c-Myc deregulation. Since similar
telomeric alterations were seen in premalignant and tumor cells, we
propose that c-Myc deregulation initiates nuclear remodeling consis-
tent with a tumor phenotype in which, as documented,20 a novel
genomic order is brought about through resulting chromosomal
rearrangements. Currently, it is not known whether other oncogenes
have similar effects on the nuclear organization. Data by others,
however, propose nuclear alterations that are observed in association
with the Ras oncogene.46,47

We propose that the remodeling of the nucleus can be used as a
sensitive diagnostic for nuclear aberrations that are associated with
diseases like cancer. This approach does not require the presence of
metaphases and relies on the 3D organization of the interphase
nucleus for its analysis of tumor vs. normal cells. Moreover, nuclear
remodeling of telomeres may not only play a role in cancer but also
in the generation of mental retardation and malformations in which
subtelomeric regions are involved.48
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Background: Quantitative analysis can be used in combi-
nation with fluorescence microscopy. Although the
human eye is able to obtain good qualitative results, when
analyzing the spatial organization of telomeres in inter-
phase nuclei, there is a need for quantitative results based
on image analysis.
Methods: We developed a tool for analyzing three-dimen-
sional images of telomeres stained by fluorescence in situ
hybridization in interphase nuclei with DNA counterstained
with 40,6-diamidino-2-phenylindole. After deconvolution of
the image, we segmented individual telomeres. From the
location of the telomeres we derived a distribution para-
meter rT, which indicated whether the telomeres were in a
disk (rT � 1) or not (rT � 1). We sorted mouse lymphocyte
nuclei and measured rT. We also performed a bromodeox-
yuridine synchronous cell sorting experiment on live cells
and measured rT at several instances.

Results: Measuring rT for nuclei in G0/G1, S, and G2
produced 1.4 6 0.1, 1.5 6 0.2, and 14 6 2, respec-
tively, showing a significant difference between G2 and
G0/G1 or S. For the bromodeoxyuridine synchronous
cell sorting experiment, we found a cell cycle depen-
dency of rT and a correlation between rT and an
observer.
Conclusions: In this study we present a quantitative
method to characterize the organization of telomeres using
three-dimensional imaging, image processing, and image
analysis. q 2005 International Society for Analytical Cytology

Key terms: telomeres; three-dimensional imaging; image
processing; fluorescence microscopy; fluorescence in situ
hybridization

Mack Fulwyler was a pioneer in the introduction of
modern technology for the analysis of cells and cellular
constituents. His work was essential in turning qualitative
descriptions in biology into quantitative ones. Further, he
understood how it was possible to use these quantitative
descriptions to study the dynamics of cellular processes.
His interests were not limited to the use of fluorescence in
flow cytometry; he realized how fluorescence digital ima-
ging microscopy could provide the tools to answer many
questions that were not approachable through fluores-
cence-activated cell sorting. He also saw how the combi-
nation of the two, flow cytometry and image cytometry,
could provide an even more powerful mechanism for
studying what we have come to know as system biology.

With the advent of sequence-specific DNA probes, the
use of fluorescence microscopy in cancer and genetics
research has steadily grown. Continuous improvements in
fluorescence microscopic methods (hardware and soft-
ware), specific labeling methods (wetware), and better
understanding of the genome function and structure
(bioinformatics) currently enable us to detect almost any

DNA sequence, gene, or chromosome region with high
sensitivity and to address the central question: ‘‘What does
it mean?’’
Because fluorescence methods in most cases are based

on digital imaging, quantitative analysis can be used and
has become a crucial part of the methodologies. These
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methods, therefore, require suitable quantitative image
analysis procedures and algorithms. As one of the last
links in the chain, the algorithms being used must take
into account the entire procedure that is being used,
including the optical properties of the microscope and
system, nature of the probes, and instrument parameters
for the acquisition.

The organization of the interphase nucleus has been stu-
died since the late 19th century (1). It is now well accepted
that the position of chromosomes in the nucleus plays an
important role in gene regulation (2). Recently, interest has
also focused on telomeres whose importance to genomic
stability was recognized as early as in the 1930s (3).

We have developed a method of studying the spatial
organization of the genome in the three-dimensional (3D)
interphase nucleus using flow sorted living cells. We ana-
lyze digital images of the 3D organization of the telomeres
and how their positions change during the cell cycle. This
method enables us to determine for the first time that telo-
mere organization is cell cycle dependent with assembly
of telomeres into a telomeric disk in G2 phase. Further,
this disk formation is disrupted in tumor cells (4).

In this work we describe in more detail the algorithms
that have been developed for the quantitative analysis of
the telomeres in interphase nuclei. It can be extended to
include centromeres and whole chromosomes.

MATERIALS AND METHODS
Cell Preparation

We studied two different cell nuclei populations based
on mouse B lymphocytes. In the first case, immortalized
mouse B lymphocyte cells were sorted according to their
DNA content for the determination of G0/G1, S, or G2
phase. Cell cycle fractions were quantified through fluor-
escent-activated cell sorted analysis (4). Flow analyses
were performed on an EPICS Altra cytometer operating
under Multicycle software (Beckman-Coulter, Paris, France).
Approximately 10 to 15 nuclei from each phase were ana-
lyzed for this study, representing a total of 35 cell nuclei.

To further study the phase transition timing along the
cell cycle, we used the synchronous bromodeoxyuridine
(BrdU) sorting method (4). The mouse B lymphocytes
were labeled in vivo with BrdU. All BrdU-positive cells
(i.e., cells in S phase, replicating their DNA) were live

sorted and placed into culture. Populations of nuclei were
then harvested at different times (3, 3.5, 4.5, 5.5, 6.5, 7.5,
8, 8.5, and 9.5 h) of which approximately 20 nuclei were
analyzed, representing a total of 180 cell nuclei.
For measurement of the telomeric disk, cells were first

fixed and then telomere fluorescence in situ hybridization
(FISH) was performed as describe previously (5) using a
Cy3-labeled peptide nucleic acid (PNA) probe (DAKO,
Glostrup, Denmark). 4

0
6-Diamidino-2-phynylindole (DAPI)

was used as a DNA-specific counterstain. Telomere hybridi-
zations were specific and we verified the correct number of
telomeric signals observed at the ends of chromosomes pre-
pared from primary cells using two-dimensional (2D) FISH
metaphase spreads. The lymphocytes were fixed in such a
way that the 3D structure of the nuclei was conserved (4).

3D Image Acquisition

For analysis of the telomere distribution, images were
acquired with a Zeiss Axioplan 2 with a cooled AxioCam
HR CCD in combination with a PlanApo 6331.4 oil
immersion objective (Zeiss). This gave a pixel (sampling)
distance in the lateral plane of Dx 5 Dy 5 106 nm. The
axial sampling distance between planes was Dz 5 200
nm. The point spread function ( psf ) of the objective,
which determines the optical resolution, gave a full width
at half maximum of approximately 200 nm in the lateral
direction and 400 nm in the axial direction. Typical image
size was 200 3 200 3 100 pixels. Table 1 shows a sum-
mary of these values for this imaging system.
Figure 1 illustrates the system resolution. An image of a

pair of telomeres relatively far apart and an image of a pair
close together are shown. It is clear that the telomeres at a
distance of 1200 nm can be easily distinguished and telo-
meres at a distance of 400 nm are just barely separable.

Table 1
Characteristics of Microscope System*

FWHMlateral 200 nm
FWHMaxial 400 nm
Dx 106 nm
Dy 106 nm
Dz 200 nm
M 633
NA 1.4
Filters DAPI, Cy3
Typical image size 2003 2003 100 pixels

*FWHM, full width at half maximum; M, magnification; NA,
numerical aperture.

FIG. 1. Demonstration of the spatial resolution of our measurements.
Two pairs of telomeres are shown: 1200 nm apart (top), which can be
easily separated, and 400 nm apart (bottom). Inserts show the original
image and graphs show the line section though the telomeres.
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3D Image Processing

The 3D digital images were processed to improve the
resolution by using constrained iterative maximum likeli-
hood deconvolution (6), which is available in AxioVision
3.1 (Zeiss) software. This deconvolution method was cho-
sen for this work because it has been shown to provide
the best results (7). In this procedure we seek to find the
most likely original image that could have produced the
observed data. This devolves into minimizing a measure-
ment between the recorded image and a blurred estimate
of the object assuming (a) a certain model for the image
noise (Poisson) and (b) separate estimates for the back-
ground and the psf. Poisson noise is an excellent model
for the random variations found in fluorescent images
acquired through high-quality CCD cameras. Our estimate
for the psf was based on a theoretical calculation (8). In
this specific case we work with the log-likelihood function
f(f) which is given by:

fðfÞ ¼
X

Hf � gT lnðHf þ bÞ þ gjf j2 ð1Þ

where g is the digital fluorescence image that was
recorded, b is an estimate of the digital image background,
H is the psf of the imaging system, g is a scalar ‘‘regulariza-
tion’’ parameter that we are free to choose, and f is the ori-
ginal image that we would like to estimate. Equation 1 is a
concatenation of equations 4 and 5 in Verveer et al. (7).
The iterative algorithm seeks an image f that minimizes
f(f) and thereby produces the most likely f that could
have given rise to the measured g.

Further, the deconvolution works with the constraint
that the final restored image should consist of only non-
negative numbers because we cannot have a negative
number of photons. An example of the result of applying
this procedure to telomere images is shown in Figure 2.
After restoration, the image is interpolated in the axial (z)
direction from Dz to Dz

0
so that the sampling distance in

all three directions is the same: Dz
0
5 Dx 5 Dy5 106 nm.

3D Image Segmentation and Analysis

Image segmentation and analysis of deconvolved 3D
images of cells with labeled telomeres have been per-
formed with a sequence of procedures that we have
bundled together and named TeloView. The procedures
themselves are from our image software library DIPImage,
which is available as public domain software (http://
www.qi.tnw.tudelft.nl/DIPlib/). The version of DIPImage
used in this development operates under MatLab (The
MathWorks, Natick, MA, USA).
TeloView loads the 3D image and displays a maximum

projection along the three main optical axes. Although
thresholds and other parameters can be adjusted for dis-
play purposes, the analysis is performed on the original
3D data. After segmentation the 2D display indicates the
location of the automatically found spots for verification.
The user interface is shown in Figure 3.

FIG. 2. Demonstration of the effect of deconvolution. The left image is before deconvolution and the right after deconvolution. We clearly see that the left
image has more blur and has less contrast than the right image. Both images are shown with a linear contrast stretch.

FIG. 3. Screenshot of the interface of TeloView. The screen shows three
displays with maximum intensity projections along the three main axes.
It also shows crosses at the locations where the software identified a telo-
mere.
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Segmentation

Before starting the segmentation we pre-process the
data by smoothing with a 3D Gaussian kernel. Figure 4
shows how the data are transformed during the different
steps of segmentation. For segmentation of the individual
telomeres we have chosen an algorithm based on a mor-
phologic TopHat transformation (9,10). The TopHat trans-
form on an image A with structuring element B is defined
as follows (11).

To find objects with high intensity (‘‘light’’ objects):

TopHatðA;BÞ ¼ A�max
B

ðmin
B

ðAÞÞ ð2Þ

To find objects with low intensity (‘‘dark’’ objects):

TopHatðA;BÞ ¼ min
B

ðmax
B

ðAÞÞ � A ð3Þ

The ‘‘structuring element,’’ B, can be a quite general 3D
gray-value object, but in our case we have chosen for the
simple case that B is spherical. B should be larger than the
objects that are being sought but smaller than any shading
in the background. For a gray-scale image of telomeres,
the telomeres would be our objects and any nonspecific
binding of Cy3 uniform spread over the nucleus gives us
shading. Thus, for our case, this translates to a spherical B
with radius 742 nm (7 pixels).

After the TopHat transform, the resulting image is thre-
sholded with a user-chosen value to produce a binary
mask. To eliminate noise spikes that may remain, we con-
clude with an erosion. This algorithm gives satisfying
results for small telomeres. Using the binary image mask
from the segmentation, the center of gravity of each dot is

found. This gives coordinates (xi, yi, zi) for each individual
dot, where i is the index number of the dot.

Analysis

Observing the organization of telomeres in many cells,
we see that the envelope shape of the telomeres is usually
a spheroid, as illustrated in Figure 5. A spheroid is a geo-

FIG. 4. Working of the algorithm. First we
see the raw ‘‘image data.’’ A line through the
center of this image gives a line section seen
in ‘‘original data.’’ After we ‘‘smooth,’’ we per-
form a ‘‘TopHat’’ transform. Note that shad-
ing is now removed. We ‘‘threshold’’ and end
up with two spots. One last ‘‘erosion’’ is per-
formed to make sure that there are no
remaining noise spikes.

FIG. 5. The telomeric territory can be given by a convex body contain-
ing all the telomeres. In most cases this envelope can be approximated by
a geometric figure called a spheroid.
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metric figure, like an ellipsoid, where the two main axes,
a and b, are equal, and the third axis c has a different
length, c. This is shown in Figure 6. If a 5 c, we have a
sphere; if a < c, we have a prolate spheroid; and if a > c,
we have an oblate spheroid. We can therefore define a tel-
omere ratio parameter, rT, which gives us a measurement
of the disk-like nature of this organization. If rT � 1, then
the telomeres are distributed in a spherical way within the
cell. However, if rT > 1, then the telomeric territory is
more disk-like. In the following, we describe how we
determine rT.

Given the spatial coordinates of every spot (xi, yi, zi |
i 5 1, 2, . . ., N), we rotate the original spatial coordinates
(x, y, z) to a new orthogonal coordinate system such that
the distance from the spots to the new axes is minimized.
This procedure is known as a principal component analy-
sis (12). To accomplish this, we calculate the singular
values (eigenvalues) of the covariance matrix of the data
points. The three singular values, l1 � l2 � l3, are real
and positive and can be ordered. They are the variances of
the distances from the spots to the new principal axes.
The standard deviation for each new axis is then given by:

si ¼
ffiffiffiffiffi
li

p
ð4Þ

From these standard deviations, we then define rT as:

rT ¼
ffiffiffiffiffiffiffiffiffiffi
s1s2

p
s3

ð5Þ

Given that we work with ordered ls, we have:

rT � 1 ð6Þ

RESULTS

Results of the analysis of the cell-sorted mouse lympho-
cytes are presented in Table 2. Here we see small values
(close to 1) of rT for nuclei in G0/G1 and S phases, which
indicate that telomeres are distributed throughout the

cell. For the telomeres in G2, however, there is a high
value of rT, indicating that the telomeres form a disk. A sta-
tistical analysis, using a two-sample Student’s t test with
unequal variances, indicates a significant difference in rT
between G0/G1 and G2 phases (P < 0.01) and between S
and G2 phases (P < 0.01). An example of typical distribu-
tions of telomeres in lymphocytes is shown in Figure 7.
The results of the BrdU synchronization experiment

can be seen in Figure 8. In the left graph we see the
results of nuclei counted by a human observer. The obser-
ver was presented with a 2D computer display of the 3D
distribution. A display of the DAPI counterstain indicated
the position of the total DNA.
The nuclei are divided into three groups: (a) nuclei with

telomeres in a disk, (b) nuclei in mitosis, and (c) other
nuclei (interphase nuclei without a telomeric disk). At 3.5
h, 90% of nuclei show a telomeric disk. Based on timing
since S phase, most nuclei are believed to be in late G2.
After this point, cells continue through the cell cycle,
enter into prometaphase and metaphase (i.e., mitosis),
and the number of cells in G2, accordingly, decreases.
This correlates with the observation that the fraction of
cells with a telomeric disk decreases and the number of
cells going into mitosis increases.
In the right graph of Figure 8 we show the result of rT

calculations on the same population of nuclei. We also

FIG. 6. The telomeric territory is characterized as an oblate spheroid,
where two of the main axes, a and b, are of equal length and the third
main axis, c, is shorter. The ratio rT 5 a/c now gives a measure of the flat-
ness of the spheroid.

Table 2
Results of Phase-Sorted Cells

Phase rT

G0/G1 1.4 6 0.1
S 1.5 6 0.2
G2 14 6 2

FIG. 7. Three typical distributions of telomeres. A nucleus is seen in
G0/G1 phase (top), S phase (middle), and G2 phase (bottom). Every
nucleus is shown in top view (xy plane), in side view (xz plane), and as a
3D visualization. We clearly see that the telomeres in G0/G1 and S phases
are distributed throughout the nucleus, whereas those in G2 phase line
up into a disk.
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observe that the spread of rT increases and reaches a max-
imum at 7.5 h. This coincides with the left graph, where
we see an increase in the number of cells without a telo-
meric disk relative to the number with a telomeric disk.
The right graph, however, does not correspond exactly to
the left graph calculated by the observer because it calcu-
lates the average rT value of the complete population of
nuclei at that time point; the nuclei can be in different cell
phases. By using a threshold on the rT value, it is possible
to imitate the classification of nuclei in a disk. If we
choose a threshold of 6.7 between nuclei in a disk (rT >
6.7) and others, we can calculate the fraction of these
nuclei and get approximately the same curve as the
human observer got. Apparently this is the subjective
threshold that was selected when the left graph of Figure
8 was created.

In Figure 8 we notice that the fraction of cells in mitosis
at 7.5 h is twice as high as those with a disk. In Figure 9
we see the histogram of the data at 7.5 h, which suggests
two populations with twice the amount of low rT cells
compared with high rT cells. In the box plot in Figure 8,
we also see outliers that are easily explained if the data
within the box and whiskers are from the population with
low rT and the outliers are from the population with high
rT. The outliers in Figure 8 at t 5 8.5 h, for example, are
due to the last few cells from the G2 population that have
not yet entered mitosis.

DISCUSSION

For the first time we show that the telomere organiza-
tion in the nucleus can be characterized and is cell cycle
dependent. It is very important to recognize the need for
3D image processing for quantification where objective
measurements are preferable above the subjective view of
an individual. We have developed an objective means to
quantify and analyze the spatial arrangement of telomeres,
a task that is, essentially, too difficult for ordinary human
vision that can only do qualitative estimates. This is done
by calculating a parameter, rT, whose value measures the
disk-like compactness of the telomere distribution. We
show that rT is significantly higher in cells in G2 than in
G0/G1 or S, which suggests that the telomeres form a disk
during G2. This is also observed in a synchronous BrdU
sorted population, where high rT values are observed after

3.5 h and where the disk phenomenon decreases as cells
leave G2. Although a human observer can only threshold
the data into fractions called ‘‘disk’’ or ‘‘no disk’’ with a
subjective threshold, our method allows this threshold,
but we can distill more information out of the data like
the distribution of the rT values. It may be valuable in the
future to combine these data with the DAPI intensity dis-
tribution that may allow distinguishing nuclei in mitosis
(based on intensity uniformity) from the other cell cycle
phases.
These findings shed new light on the cell cycle mechan-

ism. It remains to be determined whether the telomeric
disk is a precursor structure that will later position the
chromosomes into the equatorial disk.
Nevertheless, we have already observed that, in cancer

cells, the telomeres tend to form aggregates (4), which is
another indication to the large role that the organization
of the genome in the nucleus has in cancer development.
We are developing methods to quantify the size of a tel-

omere or telomere aggregates, where telomeres are found
in close association, as previously shown (4). It is there-
fore important to quantify such aggregates and test their
correlation with cancer progress. Aggregates are usually
significantly larger then individual telomeres. As a result,
our current algorithm tends to miss these spots because

FIG. 8. Results of synchronous BrdU sort-
ing experiment. In the left graph we show
the results obtained by a human observer.
For each time point approximately 20 nuclei
were analyzed and sorted into 3 categories:
nuclei with a telomeric disk (black line with
circles), nuclei in mitosis (dashed line with
squares), and nuclei in interphase without a
telomeric disk (dotted line with triangles). In
the right graph we show a box plot of rT cal-
culations on the same population. Asterisks
indicate the mean rT at every time point and
boxes and whiskers represent the 0th, 25th,
50th, 75th, and 100th percentiles of the mea-
surement. Plus signs denote outliers.

FIG. 9. Histogram of measured rT at 7.5 h after BrdU pulse labeling. The
histogram suggests two populations: one with low rT and one with high
rT.
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the TopHat transform is sensitive to the size of the telo-
meres. Therefore, we are currently working on an
improved segmentation procedure based on a scale-space
algorithm (13) that looks most promising. Another sug-
gested path of research is to follow telomeres through the
entire cell cycle in living cells.
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In previous work, we showed that telomeres of normal cells are
organized within the 3D space of the interphase nucleus in a
nonoverlapping and cell cycle-dependent manner. This order is
distorted in tumor cell nuclei where telomeres are found in close
association forming aggregates of various numbers and sizes. Here
we show that c-Myc overexpression induces telomeric aggrega-
tions in the interphase nucleus. Directly proportional to the dura-
tion of c-Myc deregulation, we observe three or five cycles of
telomeric aggregate formation in interphase nuclei. These cycles
reflect the onset and propagation of breakage-bridge-fusion cycles
that are initiated by end-to-end telomeric fusions of chromosomes.
Subsequent to initial chromosomal breakages, new fusions follow
and the breakage-bridge-fusion cycles continue. During this time,
nonreciprocal translocations are generated. c-Myc-dependent re-
modeling of the organization of telomeres thus precedes the onset
of genomic instability and subsequently leads to chromosomal
rearrangements. Our findings reveal that c-Myc possesses the
ability to structurally modify chromosomes through telomeric
fusions, thereby reorganizing the genetic information.

genomic instability � 3D nucleus � breakage-bridge-fusion

Multiple alterations accompany tumor initiation and progres-
sion resulting in the modulation of gene expression and in

genomic instability. These interconnected changes occur within
nuclei that harbor an altered 3D organization (1–3). In agreement
with this concept, recent reports suggest tumor-associated changes
of chromosomal organization in an altered 3D nucleus (3–8).
However, mechanisms leading to structural changes of telomeres
and chromosomes remain elusive.

We recently reported that the normal interphase nucleus has a
unique 3D telomeric organization that is cell cycle dependent (9,
10). Telomeres are organized in a nonoverlapping manner and align
into a central telomeric disk during the late G2 phase of the cell cycle
(9). In contrast, tumor cells display an aberrant organization of
telomeres that can be objectively measured in nuclei showing
telomeric aggregates of various complexity and sizes (9).

Constitutive expression of c-Myc due to chromosomal translo-
cations, mutation, or amplification contributes to the development
and progression of many cancers (11, 12). c-Myc deregulation
directly promotes genomic instability (13), causing locus-specific
and karyotypic instability (14–18). Additionally, c-Myc induces
illegitimate replication initiation (19, 20), DNA breakage (21),
alterations of DNA repair (22, 23), and a low level of point
mutations (24, 25). Effects of c-Myc on genomic instability are
reversible after a transient experimental activation of c-Myc (15).
However, c-Myc continues to generate instability after constitutive
deregulation (16). In vivo, c-Myc deregulation directly initiates and

promotes tumorigenesis (26–30). When c-Myc deregulation is
abolished, in vivo tumorigenesis is reversible, provided that no
additional mutations had occurred (29–34).

Prompted by the complexity of downstream genetic alterations
that result from c-Myc deregulation, we investigated whether c-Myc
affected the 3D organization of the mammalian interphase nucleus
and whether this remodeling had an impact on genomic stability.
We show that c-Myc deregulation causes remodeling of the 3D
nuclear organization of telomeres and chromosomes, thus creating
the topological conditions that initiate genomic instability.

Materials and Methods
Cells and Conditional Myc Activation. Culture conditions have been
described for Ba�F3 (35) and PreB (36) cells. The plasmacytoma
cell line MOPC460D was a gift of J. Mushinski (National Institutes
of Health, Bethesda). Cell viability was determined by hemocy-
tometer counts by using trypan blue. The primary mouse plasma-
cytoma DCPC21 was isolated from a BALB�c mouse (37). v-abl�
myc-induced plasmacytomas (38) and primary lymphocytes were
collected from BALB�c mice (Central Animal Care protocol
02-039).

To activate MycER (39) in Ba�F3 or PreB cells, 105 cells per ml
were treated with 100 nM 4-hydroxytamoxifen (4HT). Cells were
split 24 h before 4HT treatment. Non-4HT treated control cells
were cultivated in ethanol, which is used to dissolve 4HT (25, 26,
39). Two different MycER activation schemes were performed.
First, analyses of c-Myc-induced changes in 3D telomere organi-
zation were carried out after a single addition of 4HT that was left
in the culture medium until its biological effects subsided (40– 42).
Nuclei were examined every 24 h over a 10-day period. A second
time course was performed every 6 h for 120 h (Fig. 1). To enable
a time-dependent analysis of Myc activation, 4HT was given for 2
or 12 h and was removed. Alternatively, 4HT was added every 12 h
or was given once but left in the culture. MycER activation was
determined by fluorescent immunohistochemistry.

Immunohistochemistry (IHC). Fluorescent IHC of Myc protein was
performed as described in ref. 43 by using a polyclonal anti-c-Myc
antibody (N262; Santa Cruz Biotechnology) and a goat anti-rabbit
IgG FITC antibody, each at a dilution of 1:100. Analysis was
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performed by using a Zeiss Axiophot 2 microscope. Images were
acquired with a Cooke CCD SensiCam Camera.

Cell Death. Apoptotic bodies for control and MycER-activated cells
were assessed by two independent observers who scored 300
DAPI-stained nuclei per time point in the presence or absence of
MycER activation.

Telomere FISH. Ba�F3, PreB, and plasmacytoma cells were collected
(200 � g for 10 min) and resuspended in PBS containing 3.7%
formaldehyde (Fluka) and incubated for 20 min. Thereafter, the
telomere FISH protocol was performed (9, 44) by using Cy3- or
FITC-labeled PNA probes (DAKO). Three independent experi-
ments were performed. At least 30 nuclei and 20 metaphases were
examined per time point. Imaging of metaphases after telomere
FISH was performed by using Zeiss Axioplan 2 with a cooled
AxioCam HR B&W, DAPI, Cy3, or FITC filters in combination
with Planapo 63x�1.4 oil objective lens. Images were acquired by
using AXIOVISION 3.1 (Zeiss) in multichannel mode. Because of the
presence of multiple variables, the general linear modeling proce-
dure was used. To test average aggregates among different groups,
a two-way ANOVA test was performed for normality and robust-
ness of the data. For details of all tests preformed, see Supporting
Materials and Methods, which is published as supporting informa-
tion on the PNAS web site.

3D Image Acquisition. At least 30 nuclei were analyzed for each time
point. AXIOVISION 3.1 with deconvolution module and rendering
module were used. For every fluorochrome, the 3D image consists
of a stack of 100 images with a sampling distance of 200 nm along
the z and 107 nm in the xy direction. The constrained iterative
algorithm option was used (45).

3D Image Analysis for Telomeres. Telomere measurements were
done with TELOVIEW (9, 46). By choosing a simple threshold for the
telomeres, a binary image is found. Based on that, the center of
gravity of intensities is calculated for every object resulting in a set
of coordinates (x, y, z) denoted by crosses on the screen. The
integrated intensity of each telomere is calculated because it is
proportional to the telomere length (47). The integration region is
determined by growing a sphere on top of the found coordinate.
After every step of growth (iteration), the sum under this volume
(the telomere) is subtracted by the sum just surrounding it (back-
ground level). When the process of the growth of the sphere does
not contribute to an integrated intensity increase, the algorithm
stops and the integrated intensity of the telomere with an automatic
background correction is obtained.

Chromosome Painting and Measurements of Chromosomal Overlap(s)
in Interphase Nuclei. Chromosome painting was carried out as
described in ref. 48 by using paints for mouse chromosomes 5 (Cy3),
13 (FITC), 7 (Cy3), 10 (FITC), and 17 (FITC) from Applied
Spectral Imaging (Vista, CA). 3D image acquisition of painted

nuclei was performed as described above. Measurements of chro-
mosomal overlaps were performed after 3D image acquisition and
constrained iterative deconvolution as follows: (i) based on the
DAPI counterstain image, we determined the 3D boundary of the
nuclear volume. Data outside that volume were ignored. (ii) For
each one of the chromosomes, we determined an intensity threshold
and referred only to voxels that were above the threshold that
belonged to the specific chromosomes. The total volume occupied
by each one of the chromosome pairs is measured (V1 and V2). (iii)
The volume occupied by both chromosome pairs is measured, Vo.
By dividing this value by V1 and by V2, the level of overlap relative
to the total volume of each chromosome pair was measured, V0�V1,
V0�V2 (for details, see Fig. 8 which is published as supporting
information on the PNAS web site).

Spectral Karyotyping (SKY). Mouse SKY was performed by using a
SKY system (Applied Spectral Imaging) (37). Twenty metaphases
were examined per time point. Significant values for chromosomal
rearrangements were determined after MycER activation. Mean
total chromosomes and numbers of each chromosome observed for
control and Myc-activated cells were compared over time by
two-way ANOVA. In addition, statistical analyses were performed
for the occurrence of translocations, breakages, and fusions over the
experimental period of 120 h. P values of �0.05 were considered
significant. Only the frequency procedure was used, followed by
Fisher’s exact test. The P value of the overall study was �0.0001.

Supporting Information. For additional information, see Figs. 9–12,
Movies 1–3, and Tables 2–4, which are published as supporting
information on the PNAS web site.

Results
The 3D Organization of Telomeres Before c-Myc Activation. We
examined whether c-Myc deregulation affected the 3D organization
of telomeres in the interphase nucleus. To this end, we analyzed the
effect of conditional c-Myc expression in two independent immor-
talized mouse B lymphocyte lines, Ba�F3 (35) and PreB (36), stably
transfected with MycER (39). For both cell lines, we first evaluated
the 3D organization of telomeres in nuclei of non-MycER-activated
cells by using primary BALB�c B lymphocytes as a control.
Consistent with our previous studies (9), telomeres of normal
primary BALB�c B nuclei showed nonoverlapping telomere posi-

Fig. 2. Telomeric organization in interphase nuclei of primary and immortal-
ized B lymphocytes without overlap in telomere positions. (a) Primary B cell
nucleus. (b) Nucleus of near diploid PreB cell. (c) Nucleus of tetraploid Ba�F3 cell.
Telomeres are shown in red; nuclei in blue. 3DF, 3D front view; 3DS, 3D side view.

Fig. 1. MycER activation scheme. The effects of 4HT last 15–24 h in cell lines
(40–42), as indicated by dashed lines. Cells were harvested every 6 h over a
time period of 120 h. Mock-treated control cells were processed in parallel.
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tions as determined by 3D imaging (Fig. 2a). Without MycER
activation, both PreB and Ba�F3 interphase nuclei also displayed
nonoverlapping telomere positions (Fig. 2 b and c, respectively).
Therefore, the above cell lines were appropriate to study the effects
of conditional c-Myc activation on the 3D telomeric organization.

c-Myc-Dependent Disruption of the 3D Telomeric Organization: For-
mation of Telomeric Aggregates (TAs) in Interphase Nuclei. We next
analyzed the effect of conditional c-Myc expression on the 3D
organization of telomeres. After a transient MycER activation with
4HT, nuclear c-Myc signals were observed in both PreB and Ba�F3
cells (Fig. 9 b and d). In non-4HT treated control cells, MycER was
found in the cytoplasm (Fig. 9 a and c; see also ref. 39).

To determine whether c-Myc deregulation affected the 3D
organization of telomeres, we performed time course experiments.
In the first set of experiments, c-Myc deregulation and 3D telomeric
organization were investigated in both PreB and Ba�F3 cells after
a single 4HT treatment. Nuclei were analyzed after c-Myc dereg-
ulation at 0, 24, 48, 72, and 96 h and at 10 days and compared with
nuclei from mock-treated control cells. In both cell lines, analyses
of the 3D nuclear organization of telomeres revealed that c-Myc
deregulation induced the formation of TAs. TAs are group(s) of
telomeres that are found in clusters and, thus, in close association
in the interphase nucleus. This 3D telomeric organization is distinct
from the normal 3D organization of non-MycER-activated PreB,
Ba�F3 cells and primary mouse lymphocytes (Fig. 2). Fig. 3
illustrates the presence of TAs in interphase nuclei of MycER-
activated PreB and Ba�F3 cells (Fig. 3 b and d, respectively).
Although such TAs had been observed in tumor cell nuclei previ-
ously (9), their presence in conditional c-Myc expressing cells is a
previously uncharacterized finding.

c-Myc Induces Cycles of TAs in Interphase Nuclei. In subsequent
experiments, we investigated the time relationship between c-Myc
deregulation and the formation of TAs more closely. To this end,
cells were harvested every 6 h over a time period of 120 h. We also
varied the duration of conditional c-Myc expression (Fig. 1),
confirming nuclear c-Myc staining as above (Fig. 9 and 11). Next,
the 3D organization of telomeres was determined (Fig. 4). At this
point, we focused on near diploid PreB cells only (49). Our positive
controls were cells constitutively overexpressing c-Myc [mouse
plasmacytomas (27) and a plasmacytoma line (Fig. 4Ae)]. Negative
controls were mock-treated PreB cells (Fig. 4Aa).

This time course confirmed that c-Myc deregulation induced
TAs. Representative images show that TAs varied in size and
numbers per MycER-activated PreB cell nucleus (Fig. 4A b–d, red
arrows). High induction levels of TAs were observed at 30, 48, 72,
and 96 h declining after 96 h (Fig. 4B, arrows). The highest levels

of TA formation will hereafter be referred to as peaks of TAs. The
6-h time course performed over 120 h indicated that TAs formed
in a c-Myc-dependent manner and showed a cyclic appearance (Fig.
4B). The number of TA cycles was directly linked to the duration
of c-Myc deregulation. For example, 2 h of Myc activation induced
three such cycles, whereas 12 h led to five cycles (Fig. 4B, black and
red lines, respectively). 4HT, left in the culture medium until its
biological effects on our cells subsided (Fig. 1), also induced five TA
cycles (Fig. 4B, green line). In this context, repeated consecutive
activations of MycER given every 12 h caused TAs in 96% of all
nuclei. These cells died after 30 h (Fig. 4B, blue line) because of
repeated cycles of c-Myc deregulation and not due to toxicity
exerted by 4HT (50). Thus, only a single TA cycle is observed in this
experimental setting (Fig. 4B, arrowhead). The increase in TAs and
3D volumes was significant (Table 3).

The c-Myc-Induced TA Cycles Represent Breakage-Bridge-Fusion (BBF)
Cycles and Chromosomal Rearrangements. The cycles of c-Myc
induced TAs in PreB nuclei showed similar periodicity for all c-Myc
activation periods (Fig. 4B). We reasoned that these cycles might
reflect both ongoing associations and dissociations of telomeres or
BBF cycles. The BBF cycle could be induced by the breakage of
dicentric chromosomes during anaphase-inducing apoptosis of cells

Fig. 3. c-Myc deregulation induces TAs in interphase nuclei of PreB and
Ba�F3 cells shown at 72 h after 4HT-treatment. (a) Mock-treated PreB cells
show nonoverlapping telomeres (red). (b) MycER-activated PreB cells with TAs
(green arrow). (c) Mock-treated Ba�F3 cells show nonoverlapping telomeres.
(d) MycER-activated Ba�F3 cells show the formation of TAs (green arrow).

Fig. 4. c-Myc-induced telomeric aggregates appear in cycles. (A) Conditional
c-Myc deregulation causes TA formation. (Aa) Negative control: non-Myc-
deregulated PreB nucleus with nonoverlapping 3D telomeric nuclear positions.
(bb–bd) TAs of various sizes and numbers are present after conditional c-Myc
expression at any given time point of TA formation. Telomeres are shown in
green; TAs by red arrows. (Ae) Positive control: plasmacytoma cell line,
MOPC460D, with constitutive c-Myc deregulation due to T12;15, shows TAs.
Similar results were obtained with primary plasmacytoma cells (data not shown).
(B) c-Myc induces cycles of TAs. Fold increase in TAs over control levels during a
period of 120 h. During this period, c-Myc had been up-regulated for different
lengths of time (see Fig. 1). Black, 4HT given for 2 h and removed; red, 4HT
administered for 12 h and removed; green, 4HT added once and not removed;
blue, 4HT added at 0, 12, and 24 h; gray, control cells. The highest levels of TA
formation and a single TA peak observed after consecutive activations of MycER
are shown by arrows and an arrowhead, respectively. Error bars represent a 95%
confidence interval of binomial distributions.
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having multiple or large TAs per nucleus. To address these possi-
bilities, we first examined metaphase chromosomes at different
times: prior, during, and after the peaks of TA formation for a 120-h
period. We used both whole-genome analysis by mouse SKY and
telomeric FISH of metaphase chromosomes. A significant level of
dicentric chromosomes was noted (Fig. 5). Control cells had normal
karyotypes (Fig. 12). In MycER-activated PreB cells, however,
fusions had occurred. We show as example fusions at the telomeric
ends of chromosomes 18 and 4 (Fig. 5a), red and green arrows) and
between two chromosomes 1 (Fig. 5a, green arrow). Chromosome
1 was probably broken in the previous anaphase (Fig. 5a, green
circle). An additional terminally deleted chromosome 1 is in the
center of the same metaphase plate, and chromosomes 2, 3, and 7
reveal terminal deletions (Fig. 5a). Telomeric fusions involving both
ends of chromosomes as well as sister chromatids were confirmed

by telomeric FISH (Fig. 5b). Anaphase bridges and ring chromo-
somes were present (Fig. 5c) and data not shown).

The nature of c-Myc-induced 3D structural changes in interphase
nuclei of conditionally Myc expressing cells was as follows: at peaks
of TA formation and thereafter, a significant increase in end-to-end
chromosomal fusions over control levels was observed. This result
was followed by a significant increase in broken chromosomes and
nonreciprocal translocations (Figs. 5d and 6 and Table 2). In
conclusion, TA cycles unveil BBF cycles, namely the fusions of two
chromosomes, consequently, the formation of dicentrics and their
subsequent breakage in anaphase (Fig. 5). The cycles are induced
by conditional Myc deregulation and lead to the onset of genomic
instability, demonstrated by the chromosomal rearrangements re-
sulting from these BBF cycles (Figs. 5 and 6 and Table 2).

Next, we investigated whether cells with TAs died during the
course of the experiments. If this possibility was the case, we would
expect a correlation of cell death in Myc-activated cells at the peak
of TA formation or shortly thereafter. The level of apoptosis was
�2-fold higher in Myc-activated cells than in control cells (Table 1).
There was no preference in apoptotic cell death for any specific time
point during the 120 h. We concluded that BBF cycles, not
apoptosis, contributed to the cycles of TA formation.

3D Organization of Chromosomes in c-Myc Activated Interphase
Nuclei. TAs and the initiation of BBF cycles with subsequent
chromosomal rearrangements prompted us to investigate whether
chromosomes were affected in their 3D nuclear positions during
MycER activation. To this end, we examined the overlap of specific
chromosomes over the 120-h period. SKY of MycER-activated
PreB cells suggested chromosomal rearrangements involving chro-
mosomes 7, 13, and 17. Additional rearrangements were found but

Fig. 5. Molecular cytogenetic evidence of BBF cycles in MycER-activated PreB
cells. (a) SKY analysis reveals telomeric fusions and chromosome breakage. (a
Upper) Metaphase, raw image (Left); metaphase, classified image (Center); and
metaphase, inverted DAPI image (Right). (a Lower) Spectral karyotype. End-to-
end fusion of chromosomes 18 and 4 (red arrow) and fusion of chromosome 1
with a broken piece of chromosome 1 (green arrow) are shown. One broken
chromosome 1 is circled. Note additional broken chromosomes 1, 2, 3, and 7. (b)
End-to-end fusions of chromosomes revealed by telomere FISH. (Upper) Centro-
meric fusion (see arrow and insert). (Lower) Telomeric fusion (see arrow and
insert). (c)Anaphasebridges. (Upper) ShortexposureofDAPI stainednucleus (100
msec). (Lower) Longer exposure (500 msec) of same image makes anaphase
bridge visible (white arrow) but overexposes nuclei. (d) SKY illustrating chromo-
somal fusions (red arrow) and nonreciprocal translocations (white arrows). Bro-
ken chromosomes are also present (chromosomes 4, 6, 12, and 17).

Fig. 6. Chromosomal aberrations in MycER-activated PreB
cells over a period of 120 h after a single administration of
4HT. End-to-end fusions (blue) increase to 40% in the first 12 h.
Over time, the percentage of fusions decreases. Transloca-
tions (orange) appear at 12 h and reach a maximum of 35% at
42 h. Telomere-free chromosomal end(s) (green) increase over
time peaking at 30 h with 75% of metaphases having at least
one telomere-free chromosomal end. Subsequently, the per-
centage of telomere-free chromosomal end(s) decreases. Q-
FISH experiments confirmed healing of telomeric ends at later
time points. The error bars show the 95% confidence interval
for binomial distributions (51). Because of a confidence inter-
val, the error bars are larger than expected when a standard
error would have been used, which was not applicable in this
situation. For details on each time point and aberration, see
Table 2.

Table 1. Apoptosis levels in non-MycER and MycER-activated
PreB cells

Time, h

% apoptosis

Fold
increaseControls

MycER-activated
PreB cells

0 3.0 3.0 1.0
12 2.0 4.0 2.0
24 6.0 12.0 2.0
30 4.0 10.0 2.5
42 2.0 8.0 4.0
48 5.0 10.0 2.0
66 4.0 11.0 2.75
72 3.0 8.0 2.7
84 3.0 5.0 1.7
96 3.0 3.0 1.0

102 2.0 3.0 1.5
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did not reach significant levels (data not shown). We examined
three combinations of chromosomes over a 96-h period. This period
covered all peaks of TA formation (Fig. 4B). As shown in Fig. 7, we
observed a change in overlaps between chromosomes 5 (red) and
13 (green) over the time course (Figs. 7 A and B). Both chromo-
somes were found in closer vicinity as the cells entered into the first
TA cycle. Chromosomes 10 (green) and 7 (red) also showed
increases in the percentage of overlap (Fig. 7 A and B), as did
chromosomes 7 (red) and 17 (green) (Fig. 7 A and B). Represen-
tative 3D movies are shown in Movies 1–3.

Discussion
c-Myc Induces Telomeric Aggregates, Fusions, and BBF Cycles. Previ-
ous studies have shown that c-Myc triggers a complex network of
genomic instability at the level of single genes (14, 15, 19) and whole
chromosomes (16–18) (for review, see ref. 13). In addition, c-Myc
induces illegitimate replication initiation (19, 20), chromosomal
rearrangements (18), DNA breakage, alterations of DNA repair
(21–23), and a low level of point mutations (24, 25). A previously
uncharacterized mechanism underlying c-Myc-dependent genomic
instability at the chromosomal level directly affects the integrity of
the telomeres and was revealed in this study.

The clear periodicity of the TA cycles that was found with four
different Myc-activating treatments suggested a biological relevant
Myc-dependent process. Theoretically, cycles of Myc-induced TAs
could reflect (i) nuclear remodeling with the transient association
and subsequent dissociation of telomeres; (ii) end-to-end chromo-
somal fusions that initiate BBF cycles (52, 53); (iii) c-Myc induced
cell death; and (iv) a combination of all of the above. Our data are
consistent with BBF cycles and exclude apoptosis as a direct
contributor to the TA cycles. Apoptosis occurred at equal levels

throughout the study and consistently reached about twice the
levels seen in the control cells. The loss of cells was compensated
by a 2-fold increase in proliferation in MycER-activated PreB (19).
These data also indicate that there is genetic separation of genomic
instability and apoptosis as reported in ref. 54. Whether telomere
associations and dissociations (55) contributed to the TA cycles is
presently unknown.

Direct evidence of BBF cycles in the periodicity of TAs came
from a detailed analysis of chromosomal fusions, breakage, and
rearrangements observed over the time course of five TA cycles.
We demonstrated the occurrence of end-to-end fusions that gen-
erated dicentric chromosomes and breaks during anaphase, leaving
one chromosome or chromatid with a piece from another chro-
mosome or chromatid. The resulting telomere-free ends continue
to undergo fusions with other chromosomes, a cycle of events
termed BBF cycle (52, 53). Experimental data support these events
from fusions to breakages and nonreciprocal translocations. The
periodicity of the TA cycles is consistent with a �12 h population
doubling time of the PreB cells (19). Each peak of TAs is consistent
with the repeated formation of TAs. Time points after the peak are
in agreement with the breakage of dicentric chromosomes. Te-
lomere-free ends initiate new BBF cycle(s) until no more telomere-
free chromosomal end(s) persist.

From Telomeres to Chromosomal Rearrangements: A New Pathway of
c-Myc-Dependent Genomic Instability. Muller (52) and McClintock
(53) first described BBF cycles, a mechanism of chromosomal
end-to-end fusion that contributes to the onset of genomic insta-
bility. BBF cycles contribute to deletions, gene amplification,
nonreciprocal translocation, and overall genetic changes that are
associated with tumorigenesis (56–63).

Fig. 7. Chromosome positions in Myc-activated nuclei. (A) Representative nuclei painted with chromosome paints over a period of 96 h after 4HT (Fig. 1). (Top)
Chromosomes 5 and 13. (Middle) Chromosomes 7 and 10. (Bottom) Chromosomes 7 and 17. (B) Measurements of chromosomal overlaps in nuclei of c-Myc
deregulated cells for chromosomes 5 and 13 (Left), 7 and 10 (Center), and 7 and 17 (Right) over a 96-h period.
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Our study showed that c-Myc is one key factor that initiates
genomic instability through BBF cycles. Such BBF cycles in telom-
erase-positive immortalized mouse PreB cells (unpublished data)
with long telomeres are distinct from BBF cycles reported for
critically short telomeres (61, 64). Some TAs (but not necessarily
all) represent fusions, as evident by the analysis of metaphase
chromosomes. TAs and end-to-end fusions depended on time and
levels of c-Myc activation. Analysis of frequencies of both events
showed that they are closely linked. As the fusions initiate BBF
cycles, the frequencies of breakage and nonreciprocal transloca-
tions increase over time.

A previously uncharacterized pathway of c-Myc-dependent
genomic instability thus starts at the telomeric ends of the chro-
mosomes. Both TAs and BBF cycles are the manifestation of
deregulated Myc expression, leading to chromosomal rearrange-
ments and subsequently to genomic instability.

Local chromosome movement increases chromosomal overlap in
the nucleus. This temporal change in local positioning may permit
the direct contact of chromosomal ends and facilitate recombina-
tions and�or fusions. Such movements were observed after c-Myc
deregulation and suggested an impact of the oncoprotein on local
nuclear positioning of chromosomes. Chromosome movements
were previously studied and found by others as well (65–69).

Several regulatory pathways involving oncogene deregulation
may affect the 3D nuclear organization. Oncoproteins, including

c-Myc, can alter the 3D nuclear organization and the organization
of chromatin (70–72). They also affect the nuclear matrix. High
mobility group protein I(Y) (HMGI(Y)) is a c-Myc-dependent
nuclear matrix protein (73) with increased expression during neo-
plasia (2). The analysis of myc-binding sites in the human genome
suggests that c-Myc binds to genes encoding nucleoskeletal com-
ponents (74). Furthermore, constitutive c-Myc expression was
shown to be associated with down-regulation of the telomere repeat
binding protein TRF2 (10), a protein required for telomere capping
and genome stability (75). Myc is also involved in the regulation of
DNA repair (22, 23) and has been shown to induce DNA breakage
(21). Thus taken together, many different c-Myc-dependent mech-
anisms could potentially affect the nuclear organization and, as
shown here, converge at the telomeres.
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Abstract
Background: The observation of multiple genetic markers in situ by optical microscopy and their
relevance to the study of three-dimensional (3D) chromosomal organization in the nucleus have
been greatly developed in the last decade. These methods are important in cancer research
because cancer is characterized by multiple alterations that affect the modulation of gene
expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome
organization of the interphase nucleus in both normal and cancer cells.

Results: We describe a novel approach to study the distribution of all telomeres inside the nucleus
of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ
hybridization followed by quantitative analysis that determines the telomeres' distribution in the
nucleus throughout the cell cycle. This method enables us to determine, for the first time, that
telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in
the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed.

Conclusions: The results emphasize a non-random and dynamic 3D nuclear telomeric
organization and its importance to genomic stability. Based on our findings, it appears possible to
examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and
tissues without the need to examine metaphases. Such new avenues of monitoring genomic
instability could potentially impact on cancer biology, genetics, diagnostic innovations and
surveillance of treatment response in medicine.
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Background
Cancer is characterized by multiple alterations that affect
the modulation of gene expression and the stability of the
genome. These interconnected changes occur within the
nuclei of cells that alter their three dimensional (3D)
organization during tumor initiation and progression
[1,2]. It seems reasonable to assume that the highly organ-
ized mammalian interphase nucleus is the structure that
ascertains genomic stability. In line with these concepts,
oncogenic activation remodels this nuclear order and sets
the stage for genomic instability as we have recently meas-
ured for conditional c-Myc deregulation. The deregulated
expression of c-Myc alters the 3D nuclear space of chro-
mosomes and telomeres, and makes genomic rearrange-
ments topologically feasible (Chuang et al., in
preparation).

Defining the structural organization of the interphase
nucleus is, therefore, essential to our understanding of the
3D genome organization in the interphase nucleus. Such
a study can be performed by fluorescence in situ hybridi-
zation (FISH). Two of the most attractive features of FISH
measurements of the 3D nucleus organization are the
ability to simultaneously visualize multiple targets and
the structural organization of nucleus and cells, some-
thing that cannot be achieved by array-based methods.

The organization of the interphase nucleus has been stud-
ied since the late nineteenth century [3]. It is now well
accepted that the position of chromosomes in the nucleus
plays an important role in gene regulation [4]. Neverthe-
less, some controversy exists. Most laboratories have
observed a non-random organization of chromosome ter-
ritories [2,5,6] that has been conserved during evolution
[7]. This has been further supported by studies that dem-
onstrate an architectural stability of the chromosomal
positions in the nucleus [8,9]. There are, however, differ-
ent observations on chromosomal positions [10-15] as
well as on positional changes of chromosomes during the
cell cycle [16,17].

Recently, interest has also focused on telomeres, whose
importance to genomic stability was recognized as early as
the 1930s [18]. Capping the chromosomes, telomeres are
responsible for chromosomal integrity [19] to prevent
genomic instability [20]. Some reports have been pub-
lished on the 3D organization of telomeres in the nucleus,
mainly with regard to the distances of telomeres from the
nuclear shell. Telomeres have been previously found at
the nuclear edge [21], at the nuclear periphery [22],
throughout the entire nucleus [13,23], in non-Rabl asso-
ciation [11], in association with the nucleolus [24] or in
the nuclear matrix [25].

Telomere dynamics also have been studied in living
human U2OS osteosarcoma cells [26]. Individual telom-
eres showed significant directional movements and tel-
omeres were shown to associate with promyelocytic
leukemia bodies in a dynamic manner. This means that
telomere structure is dynamic, and may be important for
both transcriptional processes and for stabilizing chromo-
some positions in the nucleus.

We have developed a method of studying the organiza-
tion of the genome by analysis of the 3D organization of
telomeres in the nucleus and their positional changes
along the cell cycle, using flow-sorted living cells. This
method enables us to determine, for the first time, that tel-
omere organization is cell-cycle dependent, with assem-
bly of telomeres into a telomeric disk in the G2 phase.
Moreover, we show for tumor cells that the 3D telomere
organization is distorted and that telomeric aggregates are
formed. These results emphasize a non-random and
dynamic 3D nuclear telomeric organization and its
importance to genomic stability.

Results and discussion
To study the organization and structure of the genome in
the nucleus, we took the approach of labelling only the
telomeres and measuring their 3D organization as indica-
tors for chromosomal distribution. After the 3D fluores-
cent measurements, the data were analyzed with a
programme that was developed for this study. The pro-
gramme finds all the telomeres in the nucleus; their size,
intensity and shape; and determines the telomeric organ-
ization inside the volume of the nucleus. One crucial
property that we analyzed was the distribution of the tel-
omeres inside the nuclear volume. We first segmented the
nucleus and found the centre of each telomere. We then
found the smallest convex set of polygons that contains all
the telomeres (Fig. 1). This was done by using the Quick-
hull algorithm [27]. In most cases, we found that the vol-
ume contained by the telomeres resembles either a sphere
or a flattened sphere (disk). It can be described as an ellip-
soid with two similar radii (a≈b) and a different third one
(c; Fig. 2). Such a shape is called a spheroid. The level of
flatness of the volume occupied by the telomeres can,
therefore, be described by the ratio of the two radii that
are different, a (or b) and c – a/c. The larger the ratio, the
more oblate (or disk-like) is the shape of the volume occu-
pied by the telomeres, while a/c≈1 means that the volume
is spherical.

The optical resolution and signal-to-noise ratio are pre-
sented in Fig. 3. The images of two neighbouring telom-
eres that are 1200 nm and 400 nm apart, and the
corresponding intensity along the line connecting the
pair, indicates the smallest telomere distance that can still
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be unambiguously distinguished (approximately 200
nm).

It is expected that 80 telomeres will be observed in the
interphase nucleus for normal mouse cells (92 for a nor-
mal somatic human cell), however, in our measurements
we were usually able to identify approximately 40 sepa-
rated telomere regions in each mouse cell (50 in human
cells). Similar results have been described before [23,28].
This is probably due to neighbouring telomeres that are
closer than the optical resolution (see Fig. 3), but it does
not affect the analysis of the telomere distribution in the
nucleus as long as the hybridization efficiency is high.
This was verified by two-dimensional measurements of all
the telomeres in a metaphase spread (using the same
probe), where at least 90% of the telomeres are unambig-
uously observed (Fig. 4).

We first described the major observation of primary
BALB/c mouse B lymphocytes that were studied along the
cell cycle. These studies were followed by the analysis of
immortalized cells. The lymphocytes were sorted accord-
ing to their DNA content for the determination of the G0/
G1, S or G2/M phases (see Methods).

The distribution of the telomeres in the nucleus volume is found by fitting a convex set of polygons that contains all the telomeresFigure 1
The distribution of the telomeres in the nucleus volume is 
found by fitting a convex set of polygons that contains all the 
telomeres. This volume usually looks like either a sphere or a 
disk and can be described as an ellipsoid.

In general, the ellipsoid's main axes along x'y'z' do not coin-cide with the microscope-slide plane and optical axes xyzFigure 2
In general, the ellipsoid's main axes along x'y'z' do not coin-
cide with the microscope-slide plane and optical axes xyz. 
Our programme finds an ellipsoid that contains all the telom-
eres and the size of its main axes a,b,c. In most of the cases 
the x'y' axes of the ellipsoid are similar, i.e. a≈b. Therefore, 
the ratio a/c is a good measure of the flatness level of the 
ellipsoid and of the telomere organization inside the nucleus.

Demonstration of the signal-to-noise and spatial resolution of our measurementsFigure 3
Demonstration of the signal-to-noise and spatial resolution 
of our measurements. The fluorescence intensity is bright 
(typical signal-to-noise ratio of 10:1). Two pairs of telomeres 
are shown, 1200 nm apart (top), which can be easily sepa-
rated, and 400 nm apart (bottom). The inserts show the 
actual images.
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By analyzing cell-cycle sorted primary mouse lym-
phocytes we found that the 3D telomere organization
changes during the cell cycle. Telomeres are widely distrib-
uted throughout the nucleus in the G0/G1 and S phases
with a calculated a/c ratio of 0.9 ± 0.4, which means a
spherical-like volume of distribution. However, during
G2, telomeres are not observed throughout the whole
nucleus. Their 3D organization changes, with all the tel-
omeres assuming a central structure that we call the telo-
meric disk, which has never been reported before. In this
ordered structure, all the telomeres align in the centre of
the nucleus as cells progress into the late G2 phase. The a/
c ratio they assume is 6.0 ± 2.0, which means a very flat
disk (almost a coin shape).

Typical lymphocytes from different phases are shown in
Fig. 5. The a/c ratio of these cells in the G0/G1, S and G2/
M phases is 0.8, 0.8 and 6, respectively, and clearly shows
the correlation of the a/c ratio with the telomere distribu-
tion and the organization of the telomeric disk that we
found in the G2 phase. The elongation of the telomeres
along the Z axis (the optical axis) relative to the XY plane
has the same ratio as the point spread function of our sys-
tem and results from the poorer optical resolution along
the optical axis. However, this has a very small effect on
the shape of the whole nucleus.

Similar results have been observed in primary human
lymphocytes, primary human fibroblasts and in normal
human epithelial tissue (see additional file for more
data). This suggests that chromosomes assume a very pre-
cise order that pre-aligns them prior to the onset of mito-
sis. In order to ascertain that the telomeric disk was not
the result of a distorted nucleus, our analysis programme

Metaphase plate prepared from fetal liver cells directly iso-lated from day 10 old mouse embryosFigure 4
Metaphase plate prepared from fetal liver cells directly iso-
lated from day 10 old mouse embryos. Metaphase chromo-
somes and spreads were prepared as described [30] and 
hybridized with a PNA-telomeric probe that was Cy3 
labelled. More than 90% of the telomeres are clearly 
observed.

The distribution of telomeres in the nucleus of three typical cells selected from the G0/G1 phase (upper row), S phase (middle row) and G2/M phase (lower row)Figure 5
The distribution of telomeres in the nucleus of three typical 
cells selected from the G0/G1 phase (upper row), S phase 
(middle row) and G2/M phase (lower row). Each telomere 
distribution is shown from a top view (the XY plane), along 
the optical axis Z (left column), from a side view (XZ plane) 
as observed along the Y axis (centre column) and as a 3D 
image of the telomeres in an open nucleus (right column). 
When shown from the top and side views, the telomeres are 
displayed on top of the projected image of the nucleus. This 
projection demonstrates the extent of the chromatin (and 
therefore chromosomes) and defines the volume and bor-
derline of the nucleus.
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compared the telomere distribution volume and shape
with that of the 4'-6-Diamidino-2-phenylindole (DAPI) –
stained nucleus, and verified that the nucleus itself still
had a spherical-like volume. We rarely found distorted
nuclei and excluded these cells from the analysis. The
nucleus shown in G2 is not fully spherical. Such a shape
is expected, because when the telomeres forms a disk, it
pools the chromosomes and forces them to be closer to
the disk, which results in an oblate shape as well.

To further study the phase transition timing along the cell
cycle we used the synchronous bromodeoxyuridine
(BrdU) sorting method. The cell population was pulse-
labelled with BrdU in the S phase and flow sorted. Cells
were placed back into culture and sub-populations har-
vested at 3.5, 4, 5, 6, 7, 8, 8.5, 9 and 10 hours after
labelling and sorting. The cells were then fixed for 3D
analysis. A minimum of 20 cells from each of these sub-
populations were measured, analyzed and divided into

the following three categories: 1) nuclei with a telomeric
disk; 2) cells in mitosis; 3) cells in interphase without tel-
omeric disk and mitotic figures (evaluated as G1 cells).
The cell fractions as a function of time are shown in Fig. 6.
Most cells (90%) form a telomeric disk 3.5 hours after
BrdU incorporation. These cells are, therefore, interpreted
as cells in the G2 phase. The fraction of metaphase cells
peaks at 7.5 hours (65%) and the cell fraction of
interphase cells that does not have a telomeric disk (and
is interpreted as being in the G1 phase) peaks at 8.5 hours
(57%).

These results reveal that the telomeric disk is formed in the
late G2 phase. As cells progress from G2 to M, chromo-
somes organize into metaphases and, therefore, the
number of cells in interphase with a telomeric disk
decreases. Because there is no other state of transition
between telomeric disk and mitosis, we conclude that the
telomeric disk is the 3D telomeric organization assumed
in late G2. Thus, it is also the final stage of the interphase
nucleus that permits the organization of the genetic mate-
rial prior to its entry into the M phase and prior to chro-
mosome segregation. Cells in late G2 with a telomeric
disk have additional characteristic features: i) they exhibit
a larger overall nuclear volume than their G1 or S phase
counterparts (this increase in size was also confirmed by
fluorescent activated cell sorter [FACS] analysis); and ii)
they begin to show signs of early re-organization of the
chromatin into partially condensed areas (as visualized
using the DAPI stained image).

At the end of the M phase, we observe cells that enter into
the G1 conformation of telomeres, with a wide spatial dis-
tribution of telomeres throughout a smaller nucleus.

In conclusion, this data indicates that the telomeric disk is
a novel structure within the interphase nucleus in late G2
that has not been previously described. Its existence
points to the fundamental importance of ordered nuclear
organization at the end of G2. The telomeric disk proba-
bly assures the proper organization of chromosomes prior
to mitosis and their organized segregation during mitosis.
Together with information that has been previously pub-
lished on telomeric dynamics [26,28], it is tempting to
speculate that telomeres take an active part in the process
of chromosome organization into a unique structure, the
telomeric disk, during G2. This alignment of telomeres
and chromosomes would facilitate the proper subsequent
organization of the chromosomes into an equatorial
plane during cell division. This process may be driven by
the telomeres themselves (that are free of the nuclear
matrix) or through the nuclear matrix. The telomeric disk
may also allow for a late G2 checkpoint.

BrdU-positive cells were live sorted and synchronized in the S phaseFigure 6
BrdU-positive cells were live sorted and synchronized in the 
S phase. They were harvested from a culture at time intervals 
of 3.5–9 hours. The cells were then fixed for 3D analysis. For 
each time point we have measured: 1. the fraction of nuclei 
with a telomeric disk; 2. the fraction of cells in mitosis; and 3. 
the fraction of cells with interphase nuclei but without a telo-
meric disk. Ninety percent of the cells formed a telomeric 
disk 3.5 hours after BrdU incorporation and were therefore 
interpreted as cells in the late G2 phase (black line and cir-
cles). Cells entering mitosis (dashed line and squares) peaked 
at 7.5 hours (65%) and cells in G1 (dotted line and triangles) 
peaked after 8.5 hours (57%). The increase in the number of 
metaphases at 9.5 hours cannot be explained and probably 
lies within the limits of experimental errors.
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Further work on the subject can also be performed in vivo,
as has been shown by Molenaar et al. [26]. In such a way
the full dynamic process can be observed, which is
complementary to the single time-points that are shown
in our work.

We have continued to observe the distribution of telom-
eres in cancer cells. Typical 3D images constructed from
normal nuclei and from a Burkitt lymphoma cell line
(Raji), as well as from primary mouse plasmacytoma
(PCT) and primary human head and neck squamous cell
carcinoma (HNSCC) stage IV (Fig. 7), show that telom-
eres form aggregates and thus a partially altered telomeric
disk. Such telomeric aggregates are characterized by both
a larger volume and larger integrated intensity than their
normal non-overlapping and non-aggregated counter-
parts. They are not observed in normal cells. Similar
results for altered telomeric organization have also been
found in human neuroblastoma and colon carcinoma
tumor cell lines.

In line with these concepts, oncogenic activation remod-
els this nuclear order and sets the stage for genomic insta-
bility as we have recently measured for conditional c-Myc
deregulation. We have found that deregulated expression
of c-Myc alters the 3D nuclear organization of chromo-
somes and telomeres, and makes genomic
rearrangements topologically feasible (Chuang et al., in
preparation).

Conclusions
In summary, we have shown that 3D optical imaging fol-
lowed by the analysis of telomeres in the interphase is an
important tool for basic research and cancer biology. We
have found cell-cycle dependence of the telomere organi-
zation in the nucleus, where telomeres align into a telom-
eric disk during the late G2 phase. Such an organization
has never before been reported.

Telomeric aggregates are found in tumor cells and, there-
fore, an alteration of the telomeric disk is seen. Transient
telomeric aggregations potentially cause irreversible chro-
mosomal rearrangements.

The above findings indicate that it is now possible to
examine the presence of telomeric aggregates suggestive of
genomic instability in individual interphase nuclei and
tissue, without the need to examine metaphases. Such
new directions of monitoring genomic instability could
potentially have an impact on cancer biology, genetics,
diagnostic innovations and surveillance of treatment
response in medicine.

Methods
Cells
Mouse primary cells were directly isolated from BALB/c
mice and stimulated with lipopolysaccharide to enter into
the cell cycle [29]. Primary mouse fetal liver cells were also
directly isolated from BALB/c mice. Mice were studied
according to the protocols approved by Canadian Central
Animal Care. Immortalized mouse pro B lymphocytes
have been described elsewhere [30]. Human primary cells
were obtained from healthy donors. Head and neck squa-
mous cell carcinoma and control tissue were obtained
from a patient at CancerCare Manitoba upon ethics
approval and informed consent.

Fixation techniques
Pro B lymphocytes [30] were fixed in four ways: i) follow-
ing cytospin preparations, cells were fixed in 3.7% formal-
dehyde (1×PBS/50 mM MgCl2); ii) cells were allowed to

Normal: A normal blood cell; RAJI: A Burkitt lymphoma cell line; PCT: A primary mouse plasmacytoma cell; HNSCC: A primary human head and neck squamous cell carcinoma (stage IV)Figure 7
Normal: A normal blood cell; RAJI: A Burkitt lymphoma cell 
line; PCT: A primary mouse plasmacytoma cell; HNSCC: A 
primary human head and neck squamous cell carcinoma 
(stage IV). The distribution of telomeres in cancer cells com-
pared with a normal cell. Images are shown as explained in 
Fig. 5. Aggregates of telomeres are formed and the telomere 
disk that appears in the G2 phase is distorted.
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grow on glass slides and were fixed in 1% formaldehyde
(3D fixation); iii) cells were fixed in suspension with 3.7%
formaldehyde (3D fixation); and iv) cells were fixed in
methanol:acetic acid (3:1) according to standard proto-
cols [29]. Tissue was fixed following cryosection (5 µm
sections were used) in 1% formaldehyde (1×PBS/50 mM
MgCl2). All hybridizations shown in this report were car-
ried out after 3D fixation.

Fluorescent activated cell sorter (FACS) analysis
For FACS analysis, primary lymphocytes were fixed in
70% cold ethanol and stained with propidium iodide (1
µg/mL) following RNAse (20 µg/mL) digestion. The
stained cells were analysed for DNA content by flow
cytometry in a EPICS Altra cytometer (Beckman-Coulter).
Cell cycle fractions were quantified with WinCycle soft-
ware (Phoenix Flow Systems, San Diego, CA).

Cell sorting
Cells were stained with Hoechst 33342 (Molecular
Probes) at a final concentration of 1 µg/mL for 90 minutes
at 37°C and 5% of carbon dioxide (CO2). Cells were
sorted according to their DNA content (G0/G1, S and G2/
M phases) with a EPICS Altra cytometer (Beckman-Coul-
ter) equipped with a UV laser (Coherent, excitation at 350
nm) and a 460 nm band-pass filter.

BrdU labelling
Pro B lymphocytes were labelled in vivo with 10 µM of
BrdU (5-Bromo-2'-deoxyuridine, SIGMA-ALDRICHT,
Lyon, France) for one hour at 37°C in humidified atmos-
phere (5% CO2). BrdU was then detected with 5 µL/
1×106 cells of anti-BrdU-FITC (fluorescein isothiocy-
anate) antibody (TEBU, Le Perray-en-Yvelines, France) at
identical conditions for 30 minutes. Thereafter, all BrdU
(i.e. FITC)-positive cells were live sorted, placed into cul-
ture for different times and harvested at 3.5, 4, 5, 6, 7, 8,
8.5, 9 and 10 hours after labeling and sorting. The cells
were then fixed for 3D analysis. For each time point we
have measured: 1. the fraction of nuclei with a telomeric
disk; 2. the fraction of cells in mitosis; and 3. the fraction
of cells in interphase nuclei without telomeric disk and
mitotic figures that were evaluated as G1 and S phase cells.

Telomere FISH using Cy3-labled PNA probes
Telomere FISH was performed as described [31] using a
Cy3-labelled PNA probe (DAKO, Glostrup, Denmark).
Telomere hybridizations were specific as shown by met-
aphase hybridizations and the correct number of the
telomeric signals observed at the ends of chromosomes
prepared from primary cells (Fig. 4).

3D image acquisition
Unless stated otherwise, 20–30 cells were analyzed by 3D
imaging from each cell type and phase type. Part of the

measurements were done with a confocal microscope
(Leica AOBS-SP) and most of them with a conventional
Axioplan 2 (Zeiss) with a cooled AxioCam HR CCD fol-
lowed by deconvolution [30]. DAPI, FITC and Cy3 filters
(Zeiss) were used in combination with Planapo 63×/1.4
oil (Zeiss). Axiovision 3.1 software with a deconvolution
module and rendering module were used (Zeiss). Both
methods gave similar results.

80–100 sections were acquired for each 3D nucleus, typi-
cally with 200 × 200 pixels per section with a ~100 × 100
nm nominal imaging area per pixel (steps of 200 nm
along Z). The point-spread function of our system has a
full width at half max of approximately 200 nm in the
plane and 400 nm along the optical axis.

3D analysis of telomeres
In order to analyze the telomere distribution in the
nucleus, we developed a special 3D image analysis pro-
gramme. The main algorithmic part is described below.
The programme (TeloView) is based on the Matlab com-
puter language (The MathWorks, Natick, MA, USA) and
some of the image processing algorithms are based on the
DipImage library (developed at the Quantitative Imaging
Group, Delft University of Technology, Delft, The Nether-
lands) [32].

The programme segments the nucleus volume by a deriv-
ative-based algorithm using a morphological top and bot-
tom-hat algorithm [33]. The volume, intensity and centre
of gravity are calculated for each spot. The programme
then finds a principle plane in the nucleus (x'y') that is the
closest to all the telomeres (Fig. 2). This is especially
important when a tissue section is analyzed, because this
plane should not necessarily be parallel to the microscope
slide plane.

The telomeric distribution inside the nucleus is described
by fitting an ellipsoid to the volume occupied by the tel-
omeres (three different main axes; Fig. 2). The distribu-
tions were found to be either oblate or spherical (i.e. the
two principle axes along the main x'y' plane of the sphe-
roid are similar). It is, therefore, convenient to describe
the distribution volume as a spheroid (i.e. an ellipsoid
having two axes of equal length). As such, it is simpler to
describe the spheroid degree of variation from a perfect
sphere by the ratio a/c where a and b are the similar semi-
axes and c is the third one. Such a description reflects the
degree to which the telomere's volume is oblate.
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 CURRICULUM  VITAE 
 
 WILLIAM DAVID FOULKES 
 
 
BIRTHPLACE    Penarth, Wales, UK. 
 
ADDRESS BUSINESS     

Division of Medical Genetics 
Montreal General Hospital 
1650 Cedar Avenue, Room L10-116 
Montreal, Quebec, H3G 1A4 
Tel:  (514) 934-1934, local 44121 
Fax: (514) 934 8273 

      Lab: (514) 937-6011, local 44201 
 

Department of Medical Genetics 
Cancer Prevention Centre 
Sir M.B. Davis-Jewish General Hospital 
3755 Cote Ste Catherine, Room C-107.1 
Montreal, Quebec, H3T 1E2 
Tel: (514) 340 8222, local 3851 
Fax: (514) 340 8222, pause 2116/  
(514) 340 8600Lab: (514) 340-8222, local 3361 
Email: william.foulkes@mcgill.ca 

 
HOME    45 Elmwood  

Senneville, Quebec 
H9X 1T6 
Tel:  (514) 457-6669 

 
CITIZENSHIP    Canadian, British  
 
MARITAL STATUS    Married - Norah Neylon 

3 children: Eleanor, Gabriel and Sarah 
EDUCATION & TRAINING  
 
1980      B.Sc. - Upper second class honours, Anatomy  

University of London 
 

1984      MB.BS  
University of London 

 

 



 

1984 -1985     House officer in Medicine and Surgery, 
Hackney and St. Bartholomew's Hospital, 
London 

 
EDUCATION & TRAINING (cont'd) 
 
 1985-1986     Senior House Officer  

Emergency Medicine,  
Whittington Hospital, London 
       

1986 - 1987     Rotating Senior House Officer  
Department of Medicine  
St. Mary's and St. Charles Hospitals, London 

 
1987 - 1988     Senior House Officer  

Departments of Medicine and Radiotherapy 
Royal Marsden Hospital, London 

 
1988 - 1989     Registrar in General and Respiratory Medicine  

Ealing Hospital, Middlesex 
 
1989 - 1990     Registrar in Gastroenterology  

Hammersmith Hospital, London 
 

1990 – 1994     Ph.D.  
A molecular genetic analysis of ovarian cancer 
Completed as an external student of the  
University of London, at the  
Imperial Cancer Research Fund 

      (Internal: Galton Laboratory, UCL) 
FELLOWSHIPS 
 
1990 - 1994     Clinical Research Fellow  

Human Immunogenetics Laboratory  
Imperial Cancer Research Fund  
London 

and 
Honorary Research Fellow, 
Family Cancer Clinic - St. Mark's Hospital, 

London 
(affiliated with the Division of  Medical 
and Molecular Genetics, KGT Medical School, 
University of London) 

 
 
 
APPOINTMENTS 
 

 



 

1994 -       Medical Scientist, Montreal General Hospital 
 
1996- 2002     Assistant Professor, Department of Medicine, 

McGill University, Montreal. 
 
 

1996- 2002     Assistant Professor, Department of Human 

Genetics, McGill University, Montreal 

  
1996-      Senior Research Associate, Epidemiology 

Research Centre, Pavillon Hotel Dieu, Centre 

Hospitalier Université de Montréal (CHUM). 

 
1996-      Project Director, Lady Davis Institute, Sir 

Mortimer B. Davis-Jewish General Hospital, 
Montreal 

 
1996-      Assistant Physician, Montreal General Hospital 

 
1996-      Assistant Physician, Royal Victoria Hospital, 
Montreal 
 
1996-      Assistant Physician, Sir Mortimer B.  Davis-

Jewish General Hospital, Montreal 

 

1998- 2002     Assistant 
Professor, Department of Oncology, McGill 
University, Montreal 

 
2001-      Principal Investigator, Canadian Genetic 

Diseases Network 
 
2001-      Director, Program in Cancer Genetics, 

Departments of Oncology and Human Genetics, 
McGill University      

 
2001-                                                             Vice-

Chair, Genetic VRC, Canadian Cancer Etiology 
Research Network 

 
2002-      Associate Professor (tenure), Departments of 

Medicine, Human Genetics and Oncology, 
McGill University, Montreal 



 

     
AWARDS RECEIVED 
 
1979: Junior Scholarship in Anatomy, Physiology and Biochemistry, St Bartholomew's 
Hospital. 
 
1983: Health Education Council Elective Scholarship "Diabetes in China". 
 
1990-1994: Clinical Research Fellow Bursary, Imperial Cancer Research Fund, London. 
 
1994-1997: Fast Foundation Award of the Montreal General Hospital Research Institute. 
 
1997-1999: Fonds de la recherche en Santé du Québec: Chercheur-boursier clinicien. Junior 
1 
 
1997-2000: 175th Anniversary Bursary, Montreal General Hospital Research Institute. 
 
1999-2002: Fonds de la recherche en Santé du Québec: Chercheur-boursier clinicien. Junior 
2 
 
2002-2007 : Fonds de la recherche en Santé du Québec: Chercheur-boursier clinicien. Senior 
 
2003-2008: William Dawson Scholar, McGill University (equivalent Canada Research 
Chair, tier 2) 
  
CURRENT COMPETITIVE GRANTS 
 
Principal Investigator
 
Principal applicant: Foulkes, WD 
CBCRA-IDEA: BRCA1 splice variants and breast cancer risk: novel approaches using 
nanobiology. 
($97,380 one year, 2006-2007) 
 
Principal applicant: Foulkes, WD 
Co-investigators: Bismar, T; Aloyz, R; Ghadirian, P 
CBCRA: Toward the biological treatment of BRCA1-related breast cancer: EGF, EGFR and 
tyrosine kinase inhibitors 

       ($413,834 over 3 years, 2006-2009) 

Principal applicant: Foulkes, WD 
Co-investigators: Nielsen, T; Mai, S 
CBCRA: BRCA1, CDC4, Cyclin E, and chromsomal instability in breast cancer 

       ($315,021 over 3 years, 2005-2008) 

Co-investigator 
 
Principal applicant: Mai, S 
Co-investigators: Foulkes, WD; Watson, P 



 

Susan G Komen Breast Cancer Foundation 
The three-dimensional telomeric signature(s) of DCIS 
(US $249,000 over three years 2006-2009) 
 
Principal applicant: Isaacs, W 
Co-applicants: Foulkes, WD; Epstein, J; Partin, A; Easton, D; Eeles, R; Maehle, L; Giles, G; 
Hopper, J; Whittemore, AS; Halpern, J; Hsieh, CL; Cussenot, O; Cancel, G; Jarvik, G; 
Bdzioch, M; Stanford, J; Ostrander, E; Schaid, D; Thibodeau, S; Gronberg, H; Cooney, K; 
Lange, E; Schleutker, J; Vogel, W; Cannon-Albright, L; Camp, N; Jianfeng Xu, Meyers, D. 
NIH (USA): Prostate cancer susceptibility: the ICPCG study. 
($US 228,000 as personal award over 4 years, 2002-2006) 
 
Principal applicant: Batista, R 
Co-applicants: Foulkes, WD; Blancquaert, I; Cleret de Langavant, G; Gaudet, D; Godard, B; 
Laflamme, N; Marcoux, A; Rousseau, F 
CIHR: Programme de recherche en appui aux politiques de santé en génétique dans un 
souci de qualité, d’effcience et de bien-être social. 
($ 1,000,000 over 4 years, 2003-2007, no financial award to WDF) 
 
Principal applicant: Bismar, T  
Co-applicants: Foulkes, WD; Rubin, M.A 
Prostate Cancer Research Foundation of Canada (PCRFC): Defining aggressive phenotype of 
prostate cancer using a multiplex of 12 gene model 
($ 60,000 over 2 years, 2005-2007) 
 
Principal applicant: Narod, S 
Co-applicants: Foulkes WD 
CBCRI(Canada): Risk factor analysis of hereditary breast and ovarian cancer  
($ 1,250,000 over 5 years, 2004-2009) 
 
CLINICAL RESEARCH FELLOWS 
 
Pierre Chappuis MD (1998-2001) 
Research: Cancer Genetics: in particular, treatment and outcome in hereditary breast cancer 
Current position: Head, Hereditary cancer clinics, Divisions of Oncology and Medicine, 
University Hospital of Geneva, Switzerland. 
 
Zhi Qi Yuan MD (1998-2000) 
Research: Genetics of Colorectal Cancer 
Current position: Instructor, Albert Einstein College of Medicine, Bronx, New York. 
 
David Farber MD (2001-2002) 
Research: Genetics of Colorectal Cancer 
Current position: Staff Gastroenterologist, Cité de la Santé, Laval, Québec 
 
John Goffin MD (2001-2002) 
Research : Survival following breast cancer in BRCA1/2 mutation carriers 



 

Current position: Instructor, Tufts University Medical Center, Boston, MA 
 
Rami Younan MD (2003) 
Research: Genomic deletions in MLH1 and MSH2 
Current position: Staff surgeon, Université de Montréal 
 
Polymnia Galiatsatos (2005) 
Research: Genetics of Colorectal Cancer 
Current Position: Staff gastroenterologist, SMBD-Jewish General Hospital 
 
STUDENTS 
 
Sophie Sun, MSc. Title: CDKN2A/p16 and familial cancer. FCAR scolar, 1995-1996. 
Current position: Oncology Fellow, University of British Columbia. 
 
Lucie Dupuis, MSc. Title: The incidence of cancer in the first degree relatives of women 
diagnosed with endometrial cancer before age 55. Genetic counselling Master’s project 
(Brandeis University, MA, USA, 1998. NB Ms. Dupuis obtained permission to work with me 
while at Brandeis). 
Current position: Genetic Counsellor, Hospital for Sick Children, Toronto, Ontario. 
 
Isabelle Thiffault, MSc student, 2002-2004:Towards a molecular understanding of proteus 
syndrome. 
Current Position: PhD student, Université de Montréal. 
 
Susan McVety, MSc student, 2003- 2005: Characterisation of cDNA deletions in MLH1 and 
MSH2. 
Current Position: Laboratory Technician. 
 
Ioli Makriyianni, MSc student, 2003-2005: Mitochondrial and somatic mutations in 
hereditary breast cancer. 
 
Tayma Khalil, MSc student 2005-: CDC4, cyclin E and hereditary breast cancer. 
 
McGILL UNIVERSITY SUMMER STUDENTS 
(2 month projects) 
 
Tamar Flanders 1996. Project: Familial studies of colorectal and endometrial cancer* 
Kevin Sanders 1996. Project: Familial risks of Thyroid Cancer and Breast/Thyroid cancer* 
Nathalie Ng Cheong 1997. Project: PTEN mutations in familial cancer* 
Marie-Noelle Hébert-Blouin 1998. Project: GSTT1 and risk of head and neck cancer* 
Nicola Matthews 1998. Project: Lobular breast cancer and familial cancer risk* 
Karen Buzaglo 2000. Project: Familial factors in fallopian tube cancer* 
Maral Ouzounian 2000. Project:  Germ-line mutations in hereditary breast cancer 
Annick Wong 2002. Project: Claudins and cancer* 
 
*work published as a result of their project 

 



 

 
McGILL UNIVERSITY INDEPENDENT STUDIES STUDENTS 
(3—4 credits) 

 
Kiersten Henderson 1999 Project: Association studies in thyroid cancer* 
Ayesha Islam 1999 Project: BRCA1/2 mutations in pancreas cancer among French-
Canadians 
Elsa Lanke 1999 Project: Thyroid cancer/Gastric Cancer genetics* 
Vanessa Rossigny 2003 Project: CHEK2 and breast cancer in the Ashkenazim 
David Novak 2005 Project: CHEK2 and breast cancer in French Canadians 
 
*work published as a result of their project 
 
COMPLETED POST DOCTORAL FELLOWSHIPS 
 
Ala-Eddin Moustafa PhD (1999-2002) 
Research: Genetic factors in squamous cell carcinoma of the head and neck 
Current position: Assistant Professor, Department of Oncology, McGill University 
 
Long Qi Chen MD PhD (2004-2005) 
Research: SNP Discovery in CHEK2 
Current position: Professor of Cardiothoracic Surgery, Szechuan Province, China. 
 
MEMBERSHIPS 
 
1984 General Medical Council: registration number 2921080 

1987  Royal College of Physicians (UK) 
1996 Collège des Médecins du Quebec, licence number 96-449 
2000 Association of Medical Geneticists of Québec (by examination)  
 
PROFESSIONAL SOCIETIES 
British Medical Association 
British Society of Human Genetics 
American Society of Human Genetics 
 
McGILL UNIVERSITY DEPARTMENTAL COMMITTEES 
 
2001-   Member, Curriculum Committee, Department of Human Genetics 
2001-   Member, Fellowship Committee, Department of Human Genetics 
2001-   Member, Standing Committee, Department of Human Genetics 
2001-   Member, Management Committee, Department of Oncology 
 
 
 
Ph.D. DEFENCE /M.Sc. REFEREE 
 
PhD, McGill Dept. Biology 



 

Ronald Lafreniere, June 17, 1997. 
 
MSc, McGill Dept. Epidemiology and Statistics 
Hela Makni, April 2000 
 
MSc, McGill Dept. Biology 
Sahar Sibani, January 2001 
 
MSc, McGill Dept Epidemiology and Statistics 
Nooshin Ahmadi Pour, January 2003 
 
PhD, University of Toronto Faculty of Medicine 
Alexander Liede, February 2003 
 
PhD, McGill Dept. Experimental Medicine 
Kevin Little, November 2004 
 
MSc, University of Toronto, Faculty of Medicine 
Sean Cleary, December 2004 
 
INTERNATIONAL CONFERENCE ORGANISER 
 
First International Symposium on Hereditary Breast and Ovarian Cancer, Montreal Oct 19-
21, 2005.  (www.odon.ca/brca/). Co-sponsored by the Program in Cancer Genetics and the 
Hereditary Breast and Ovarian Cancer Foundation (www.hboc.ca). Role: Scientific Director 
of Conference. 
 
INTERNATIONAL COMMITTEES etc 
 
Cancer Genetics Abstract Referee, ASHG meeting, San Francisco, CA, 1999. 
Co-Chair, Breast Cancer Genetics Session, ASHG, Denver, CO, 1998. 
Member, Steering Committee, International Prostate Cancer Genetics Collaborative Group 
(representing Eastern Canada) 1997- 
Writing committee, Cancer Genetics Certification Examination, Institute for Clinical 
Evaluation, American Board of Internal Medicine, Philadelphia, PA 1999-2000 
Scientific Organising Committee, UICC International Conference on Familial Cancer, 
Oklahoma City, OK, June 4-6, 2003. 
 
NATIONAL and INTERNATIONAL PEER-REVIEW GRANT COMMITTEE etc 
 
National Cancer Institute of Cancer, Epidemiology panel, 1997-2000 
Canadian Breast Cancer Research Initiative, IDEA grant panel, 2002-2003 
Canadian Institute for Health Research, Genetics Panel, 2003- 

ad hoc external reviewer of grants for MRC (Canada) (6), Alberta Heritage Fund for 
Medical Research (1), Cancer Research Campaign (UK) (5) Research Grants Council of 

Hong Kong (3), Yorkshire Cancer Research (1). 

http://www.odon.ca/brca/
http://www.hboc.ca/


 

Tenure review, Independent Investigator, National Human Genome Research Institute, 
January  2001. 

Promotion review (to Assistant Professor) Memorial Sloan-Kettering Cancer Center, June 
2001. 
Tenure review (to Associate Professor), University of Vermont, September 2002 
Tenure review (to Full Professor) Memorial Sloan-Kettering Cancer Center, January 2003 
Tenure review (to Full Professor) Sloan Kettering Institute and Memorial Sloan-Kettering 
Cancer Center, January 2003 
Promotion review (to Clinical Assistant Professor), Ohio State University, July 2003 
Promotion review (to Reader), University of London, May 2004 
Promotion review (to Clinical Assistant Professor), Ohio State University, August 2004 
Promotion review (to Clinical Assistant Professor), Ohio State University, August 2004 
Promotion review (to Clinical Associate Professor), Ohio State University, April 2005 
Promotion review (to Professor), University of London, April 2005 
 
PROVINCIAL EXPERT COMMITTEE 
 
Member, Advisory Board, Conseil d’Évaluation des technologies de la santé du Québec, 
1999- 
 
NIH CANCER WORKSHOP 
 
Invited attendee, NCI/NIDCFR/NIDCD Head and Neck Cancer Workshop, Bethesda, 
Maryland, February 21-23, 1999  
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September 15, 1998 
Title: Overview of studies of prognosis in familial and hereditary breast cancer 
Breast  Cancer Linkage Consortium, 
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Title:  Preventive Surgery and the High-risk Patient 
Surgical Grand Rounds - Royal Victoria Hospital 
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Title: Germline mutations in p16 and the risk of cancer  
McGill Genetics rounds: Case presentations-Royal Victoria Hospital 
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November 8, 1996 
Title: Controversies Surrounding New Genetic Testing (Panel Discussion) 
47th McGill University Annual Refresher Course for Family Physicians 
Montreal, Quebec  
 
November 14, 1996 
Title: The role of Preventive Surgery in the High-risk Individual 
Surgical Grand Rounds - Sir M.B. Davis Jewish General Hospital 
Montreal , Quebec 
 
November 22, 1996 
Title: Resolving uncertainty in hereditary breast and ovarian cancer 
McGill Genetics Rounds - Montreal Children’s Hospital 
Montreal, Quebec 
 
November 25, 1996 
Title: Familial Cancer (with Dr. Patricia Tonin) 
Grand Medical Rounds - Sir M.B. Davis Jewish General Hospital 
Montreal, Quebec 
 



 

February 20, 1997 
Title: Genetics and epidemiology of non-medullary thyroid cancer 
Endocrinology rounds, 
Montreal General Hospital 
Montreal, Quebec. 
 
March 20, 1997 
Title: Methods and recent results in the genetics of cancer susceptibility 
Montreal Cancer Research Group, 
McGill Cancer Centre, 
Montreal, Quebec. 
 
November 13, 1997 
Title: The genetics of breast cancer 
Department of Epidemiology and Biostatistics, 
Fall Seminar Series, 
McGill University, Montreal 
 
November 24, 1997 
Title: Female cancer and genetics 
Department of Obstetrics and Gynaecology Grand Rounds 
Primrose Amphitheatre, Royal Victoria Hospital, 
Montreal, Quebec. 
 
December 5, 1997 
Title: Female cancers and genetics 
Department of Obstetrics and Gynaecology Grand Rounds 
Block Amphitheatre, SMBD-Jewish General Hospital, 
Montreal, Quebec. 
 
December 10, 1997 
Title: Recent advances in cancer genetics 
Department of Medicine Grand Rounds 
JSL Browne Amphitheatre, Royal Victoria Hospital, 
Montreal, Quebec. 
 
December 15, 1997 
Title: Breast cancer: endocrine and genetic factors (with Professors M. Pollak and L. 
Pinsky) 
Department of Medicine Grand Rounds 
Block Amphitheatre, SMBD-Jewish General Hospital, 
Montreal, Quebec. 
 
February 5, 1998 
Title: Genetics of breast and colorectal cancer 
Department of Surgery Grand Rounds 
Osler Amphitheatre, Montreal General Hospital, 



 

Montreal, Quebec. 
 
February 17, 1998 
Title: Cancer genetics: an introduction 
Department of Medicine Grand Rounds 
Osler Amphitheatre, Montreal General Hospital, 
Montreal, Quebec. 
 
April 24, 1999 
Title: Hereditary ovarian cancer 
4th McGill International Symposium on reproductive endocrinology and infertility 
Jeanne Timmins Amphitheatre, 
McGill University, Montreal. 
 
May 12, 1999 
Title: Recent advances in breast and ovarian cancer genetics 
Surgical Grand Rounds, 
Royal Victoria Hospital, 
McGill University, Montreal 
 
August 25, 1999 
Title: The role of BRCA1 and BRCA2 in breast and ovarian cancer 
Obstetrics and Gynecology Rounds 
Royal Victoria Hospital, 
McGill University, Montreal 
 
December 13, 1999 
Title: Genetics and Adult Onset diseases: A changing role for medical genetics. (with Prof. 
D. Rosenblatt) 
Medical Grand Rounds, 
Sir M.B. Davis-Jewish General Hospital, 
McGill University, Montreal 
 
January 12, 2000 
Title: Genetic predisposition and outcome from cancer 
Montreal Cancer Research Group, 
McGill Cancer Centre, 
Montreal, Quebec. 
 
February 24, 2000 
Title: Non-medullary thyroid cancer 
Endocrinology Grand Rounds 
Sir MB Davis-Jewish General Hospital 
Montreal, Quebec. 
 
March 15, 2000 (with Ms. Lidia Kasprzak and Dr. Georges Chong) 
Title: Genetics and Cancer: How mutation analysis affects clinical management 



 

Medical Grand Rounds 
Royal Victoria Hospital 
MUHC, Montreal, Quebec 
 
April 4, 2000 (with Ms. Lidia Kasprzak) 
Title: Colorectal Cancer Genetics: How mutation analysis affects clinical management 
Medical Grand Rounds 
Montreal General Hospital 
MUHC, Montreal, Quebec 
 
November 7, 2000 
Title: Management of Hereditary Breast and Ovarian Cancer 
Medical Grand Rounds 
Montreal General Hospital 
MUHC, Montreal, Quebec 
 
November 8, 2000  
Title: Management of Hereditary Breast and Ovarian Cancer 
Medical Grand Rounds 
Royal Victoria Hospital 
MUHC, Montreal, Quebec 
 
October 22, 2001 
Title: Management of Hereditary Breast and Ovarian Cancer: Prevention, Early Detection 
and Treatment 
Medical Grand Rounds 
Sir M.B. Davis-Jewish General Hospital, 
McGill University, Montreal 
 
November 17, 2001 
Title: McGill Program in Cancer Genetics: Bringing together human genetics and oncology 
McGill Oncology Research Retreat, 
November 16-17, 
Hotel Days Inn, 
Montreal 
 
December 16, 2002 
Title: Genetics of Cancer: an update 
MUHC Radiation Oncology Group 
Montreal General Hospital 
 
November 23, 2004 
Title: Clinicopathological features of Hereditary Breast Cancer: Ten years on 
MUHC Clinical and Research Seminar 
Meakins Auditorium 
McIntyre Building 
McGill University 



 

 
December 15, 2004 
Title: Genetics of Colorectal cancer  
GI residents 
Montreal General Hospital 
 
Lectures to Interested Groups and/or the General Public 
 
October 26, 1996 
Title: Risk factors, prevention and early diagnosis in prostate cancer 
First Patient Advocates for Advanced Cancer Treatment (PAACT) Prostate Cancer 
Conference, 
Grand Rapids, MI, USA 
 
May 22, 2001 
Title: Genetics and Cancer: Prevention, Early Diagnosis and Treatment 
Research Governor’s Society First Lecture Series 
Lady Davis Institute for Medical Research, 
Montreal, Quebec. 
 
October 24, 2001 
Title: Genetic Testing for Cancer Susceptibility 
38th Annual André Aisenstadt Clinical Day 
The Use of Genetic tests in Medical Diagnosis and Treatment 
Sir M.B. Davis-Jewish General Hospital, 
McGill University, Montreal 
 
September 18, 2002 
Title: Genetic testing for colorectal cancer 
3rd Annual Montreal Colon and GI cancers pre-conference lay workshop 
Queen Elizabeth Hotel 
Montreal, Quebec 
 
October 1, 2002 
Title: Genetics of Breast Cancer 
CanSupport Public Lecture 
Omni Hotel, 
Montreal, Quebec 
 
September 27, 2004 
Title: The Why, Where and How of genes and diseases in the Jewish population 
National Council of Jewish Women of Canada 
The power of genealogy 
Gelber Conference Center Montreal, Quebec 
 
September 19, 2005 
Title: Role of genetic factors in cancer & familial diseases 



 

National Council of Jewish Women of Canada 
Gelber Conference Centre 
Montreal, Quebec 
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RESEARCH OVERVIEW 
 
  Genomic instability is a hallmark of pre-neoplastic and neoplastic cells. The mechanisms underlying 
the induction of genomic instability in cells have been poorly elucidated. 
   My laboratory was first to demonstrate that c-Myc deregulation induces locus-specific genomic 
instability (Mai, 1994) and karyotypic instability (Mai et al., 1996a). This finding was later confirmed by 
Felsher and Bishop (1999). Using c-Myc-inducible cell lines, we have identified the following genes as 
targets of c-Myc in genomic instability: dihydrofolate reductase (DHFR) (Mai, 1994, 1996b, Taylor et 
al., 1997, Taylor and Mai, 1998), ribonucleotide reductase R2 (Kuschak et al., 1999a), cyclin D2 
(CCND2) (Mai et al., 1999), and ornithine decarboxylase (ODC) (Smith et al., 2002, 2003). For review, 
see Mai and Mushinski, 2003. 
  Our ongoing work focuses on the initiating mechanisms of c-Myc-mediated genomic instability. 
This work is important for our understanding of oncogenesis. Furthermore, we apply our knowledge on 
genomic changes in cancer cells to the analysis of patient samples. Using advanced technologies, we can 
detect cancer cells earlier than standard procedures. We will apply this knowledge to patient samples 
with the goal to improve early detection, surveillance and monitoring.  
  Details on basic research and translational research are given in the two following sections. 
 
Basic research focus. 
1) c-Myc-induced illegitimate DNA replication and re-organization of the genome. 

We have shown that c-Myc deregulation induces illegitimate replication of the mouse 
ribonucleotide reductase R2 (R2) gene (Kuschak et al., 2002). This finding is novel in two ways, i) it 
shows that replication initiation does not have to occur in fixed regions of the mammalian genome. 
Rather, replication may occur at different sites. ii) c-Myc can act as a licensing factor for DNA 
replication. In addition, under conditions of induced c-Myc deregulation, we have observed genome-
wide alterations in replication patterns. 

To further investigate this process of Myc-dependent DNA replication, we propose to investigate 
the universal role of c-Myc in DNA replication through i) a genome-wide screen of c-Myc-dependent 
replication initiation. Our preliminary work has indicated that c-Myc-deregulation affects overall 
replication patterns throughout the mouse genome. ii) We will examine previously identified c-Myc 
target genes in genomic instability. We will examine whether or not their replication is altered under 
conditions of c-Myc deregulation. iii) We propose to study the involvement of c-Myc in the replication 
machinery at the R2 and other gene(s). 
2) c-Myc induces genomic instability and apoptosis; mutant Myc proteins, however, have lost this 
ability and induce genomic instability in the absence of apoptosis.  We have demonstrated that 
wild-type (wt) c-Myc is able to promote both genomic instability and apoptosis, while mutant (mut) c-
Myc proteins, that are common in Burkitt lymphoma patients, do not stimulate apoptosis, but merely 
promote genomic instability (Fest et al., 2002). Non-random genomic aberrations are caused by the 
deregulated expression of wild-type vs. myc box II-deleted D106 proteins (Fest et al., 2005). The non-
random genomic alterations differ between wt and mut Myc overexpressing cells (Fest et al., 2005). 
The tumorigenic potential of the cells expressing wt vs. mutant c-Myc was examined in SCID mice: 
Only wt-Myc overexpressing cells conferred tumorigenic potential, while D106 protein was unable to 
initiate tumor formation in SCID mice.  
3) c-Myc induces the formation of extrachromosomal elements (EEs).  Work carried out in my 
laboratory has demonstrated for the first time the induction of extrachromosomal elements (EEs) as a 
result of c-Myc deregulation. This work allowed us to identify some of the genes that are present on 
EEs (Mai et al., 1996a,b, Mai et al., 1999, Kuschak et al., 1999, Smith et al., 2003). We are now 



 

analyzing the formation, structure, and function of these EEs. EEs isolated from MycERTM-activated 
cells are significantly larger than EEs isolated from non-MycERTM-activated control cells. c-Myc-
induced EEs are associated with proteins. Immunohistochemistry and western blot analyses using pan-
histone-, H3 phosphorylation-, and H4 acetylation-specific antibodies indicate that the majority of EEs 
isolated from MycERTM-activated cells carry transcriptionally active chromatin. In addition, we were 
able to show that the c-Myc-activated  EEs can replicate automomously (Smith et al., 2003). While 
some of the genes on c-Myc-activated EEs have been identified in my laboratory, we wish to assess, in 
a genome- wide fashion, which other genes are present on these EEs. To this end, we will examine the 
use of EEs as probes for microarrays. 
4) Plasmacytoma development in p53-deficient BALB/c mice.  The induced expression of c-
Myc in plasmacytomas (PCTs) in BALB/c mice is regularly associated with non-random chromosomal 
translocations that juxtapose the c-myc gene to one of the immunoglobulin (Ig) loci on chromosome 12 
(IgH), 6(IgK) or 16(IgL). The most characteristic feature of the PCT-associated chromosomal 
translocation is that the ratio of the typical [T(12;15)] versus the variant translocation [T(6;15)], which 
differs significantly depending on the PCT-induction methods. More than 90% of pristane (2,6,10,14-
tetramethyl-pentadecane)-induced PCTs carry the typical T(12;15) translocation whereas the 
percentage of the variant T(6;15) is less than 10% (Wiener et al., 1980; Ohno et al., 1984a; Potter, 
1997).  

We have described the generation of PCTs in p53-deficient BALB/c mice. Interestingly, p53-/- 
mice develop PCTs earlier than their wild-type p53+/+ littermates. p53-/- mice also show an increase 
in variant translocations involving c-myc and immunoglobulin genes (Mai and Wiener, 2002). PCTs 
that carry variant T(6;15) translocations become as frequent as those with typical T(12;15) 
translocations (41.66%). In addition, in the absence of p53, the number of translocation-negative  PCTs 
increases from less than 1% to 16.66%. The important issues that need to be answered deal with the 
generation and survival of the c-myc/Ig-carrying B cells. We will address the question whether or not 
both types of translocations (typical and variant translocation) occur at equal ratios. Usually the typical 
translocation (T12;15)- carrying B cells would survive, while the variant translocation (T6;15, T15;16) 
-carrying B cells would be eliminate d by p53-dependent  apoptosis. However, under conditions of p53 
deficiency, both types of translocation-carrying cells would survive at equal ratios.  
5) The three-dimensional organization of the mammalian nucleus. Using high resolution 
deconvolution microscopy, we have elucidated the three-dimensional (3D) organization of   telomeres 
and chromosomes in the interphase nuclei of normal, immortalized and tumor cells. Here, we have 
established that the mammalian telomeres are organized dynamically and non-randomly in the 3D 
nucleus of normal cells around a central telomeric disk. The telomeric disk forms in late G2. On the 
other hand, 3D nuclei from tumor cells display a disrupted 3D nuclear telomeric organization: 
telomeres in tumor cell nuclei form aggregates of various numbers and sizes   (Chuang et al., 2004). 
Our ongoing studies focus the mechanism of telomere aggregation and their link to the initiation and/or 
promotion of genomic instability.  
6) c-Myc alters the 3D organization of the nucleus and thereby causes chromosomal 
rearrangements. We have recently shown that c-Myc deregulation induces alterations in the 3D 
organization of telomeres. Telomeres form aggregates of various numbers and sizes. Some of these 
aggregates represent telomeric fusions. Chromosomes whose ends are fused telomerically often form 
dicentric chromosomes. These chromosomes break in the subsequent anaphase and generate 
unbalanced translocations and terminal deletions. The initiation of such breakage-bridge-fusion cycles 
continues until no more free chromosome ends persist (Louis et al., 2005; Mai and Garini, 2005, Mai 
and Garini, 2006). 
 
 



 

Translational research focus. 
Basic research into cancer cell development can be used to examine the nature of cells, i.e. to 
determine whether cells are normal or tumor cells. It is my vision to translate the knowledge gained in 
my laboratory into clinical applications. This work is ongoing, in collaboration with clinical 
colleagues, using various cancer models and has led to the filing of three patent applications. Using 
advanced technologies (such as fluorescent in situ hybridization, spectral imaging, three-dimensional 
imaging and analysis), we identify genomic instability early. This will allow for the early detection of 
cancer and will also impact on the surveillance of the patient and allow for criteria to assess treatment 
success.  
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SUPPORTING DATA:  
 

                 
BRCA1-mutant carrier with breast cancer.                                      BRCA2-mutant carrier with breast cancer 
 
 

  
non-BRCA1/2 carrier with breast cancer 
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