Circadian rhythms of heart rate and locomotion after treatment with low-dose acetylcholinesterase inhibitors

Authors: Scremin, OU, Shih, T-M, Huynh, L, Roch, M, Sun, W, Chialvo, DR, and Jenden, DJ

Performing Organization:
US Army Medical Research Institute of Chemical Defense
3100 Ricketts Point Road
Aberdeen Proving Ground, MD 21010-5400

Performing Organization:
Chemical Defense
ATTN: MCMR-CDR-P
VA GLA Heathcare System, 11301 Wilshire Blvd, Bldg 115, Los Angeles, CA 90073

DISTRIBUTION / AVAILABILITY STATEMENT:
Approved for public release; distribution unlimited

Supplementary Notes:
Published in Pharmacology, Biochemistry and Behavior, 80, 529-540, 2005.

Subject Terms:
Nerve agents, sarin, pyridostigmine bromide, cerebral glucose utilization, cerebrovascular circulation, low dose cholinesterase toxicity

<table>
<thead>
<tr>
<th>SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>UNCLASSIFIED</td>
<td>12</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>UNCLASSIFIED</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>UNCLASSIFIED</td>
<td></td>
</tr>
</tbody>
</table>

Security Classification: UNCLASSIFIED

Telephone Number:
410-436-3414
Circadian rhythms of heart rate and locomotion after treatment with low-dose acetylcholinesterase inhibitors

Oscar U. Scremin,1,3*, Tsung-Ming Shih,2 Ly Huynh,1 Margareth Roch,1 Wei Sun,1 Dante R. Chialvo1,3 and Donald J. Jenden4

1 Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
2 Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
3 Departments of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
4 Medical and Molecular Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA

Received 20 December 2005; Revised 3 March 2006; Accepted 12 May 2006

ABSTRACT: This study tested the hypothesis that repeated exposure to low levels of sarin, pyridostigmine bromide (PB) or their combination, at doses equivalent to those possibly experienced by veterans of the 1991 Persian Gulf War, could lead to persistent or delayed autonomic effects and thus help to explain the cause of clinical findings in this population. Male Sprague-Dawley rats were treated for 3 weeks with: saline injection (0.5 ml kg−1, s.c., 3 times weekly) with tap drinking water (control); saline injection with PB (80 mg kg−1 in drinking water); sarin injection (62.5 μg kg−1, s.c., 0.5 × LD10, 3 times weekly) with tap drinking water (sarin); or sarin injection with PB in drinking water (sarin + PB). At 2, 4 or 16 weeks post-treatment, heart rate (HR) and locomotor activity (LA) were studied by radiotelemetry. Two weeks post-treatment, HR in drug-treated animals was significantly lower than in controls. A decrease in low-frequency HR power spectrum (PS) was found at 00:00 h and 08:00 h with sarin + PB and at 00:00 h with sarin, while total power was enhanced with sarin + PB at 22:00 h. Minimal effects of drug treatments on HR and LA were detected at 4 and 16 weeks post-treatment. No significant differences in LA between control and other groups were found. Since no consistent long-term effects were found in any of the variables studied, these experiments do not support the hypothesis that repeated administration of low doses of PB and the nerve agent sarin can induce persistent or delayed alterations in autonomic function. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: nerve agents; sarin; pyridostigmine bromide; heart rate variability; autonomic nervous system

Introduction

The possible effects of low-dose acetylcholinesterase (AChE) inhibitors on the function of the autonomic nervous system have recently attracted attention with regards to clinical findings in a population of veterans from the 1991 Persian Gulf War (PGW) (Haley et al., 1997a; Fukuda et al., 1998; Wolfe et al., 1998). Exposure of PGW veterans to subsymptomatic levels of sarin has been documented by field studies and modeling analyses of environmental contamination by this agent (McCauley et al., 2001; General Accounting Office, 2003), as well as in epidemiological studies (Wolfe et al., 1998). Treatment of soldiers with PB as a preventive measure against nerve agents occurred during the PGW (Keeler et al., 1991). By virtue of the prominent physiological role of acetylcholine (ACh) as a central and peripheral neurotransmitter within the autonomic nervous system, exposure to AChE inhibitors has the potential of altering autonomic function. Indeed, some PGW veterans complain of a number of symptoms that suggest autonomic dysfunction (Haley et al., 1997b), although the true significance and association with environmental exposure at the PGW theater of operations has been disputed (Doebbeling et al., 2000; Ismail et al., 1999). A recent report suggests alterations of circadian variations of heart rate (HR) in some PGW veterans (Haley et al., 2004). Analyses of the relationships between exposure to low (subsymptomatic) doses of AChE inhibitors and delayed symptoms and signs associated with the exposure in PGW veterans are limited by the paucity of objective biomarkers of exposure of human subjects and by the limited information regarding controlled experiments in animal subjects. Administration of AChE inhibitors at low levels can induce a number of changes in the autonomic control of the cardiovascular system. Central AChE inhibition increases arterial blood pressure (Varagic, 1955; Buccafusco, 1996) and decreases cerebrovascular resistance (Scremin and Shih, 1991; Scremin et al., 1993; Scremin et al., 1988). AChE inhibition...
with pyridostigmine bromide (PB), a carbamate AChE inhibitor that does not cross the blood–brain barrier, can induce dose-dependent bradycardia (Stein et al., 1997) or increase arterial blood pressure following a single intravenous dose of 2 mg/kg (Chaney et al., 2002). Continuous administration of PB in the drinking water for 7 days at a rate of 31 mg kg⁻¹ day⁻¹ has been shown to enhance heart rate (HR) variability and baroreflex sensitivity when assessed acutely in conscious rats with indwelling catheters (Soares et al., 2004). Similar results were observed after 3 days of continuous PB administration at 10 mg kg⁻¹ day⁻¹ with osmotic minipumps in mice, but only when the drug was associated with stress (Joaquim et al., 2004). No effects on heart rate were reported in the same species with 1 or 3 mg kg⁻¹ day⁻¹ (Bernatova et al., 2003). These effects have been reported during the administration of AChE inhibitors, but the existence of persistent or delayed cardiovascular effects beyond the period of drug administration, a condition that applies to the putative delayed effects in PGW veterans, has not been explored to date in experimental animals.

The heart rate is normally tightly coupled to locomotor activity (LA) (Basset et al., 2004). AChE inhibitors are known to induce changes in exploratory activity resulting in decreased locomotion in a novel environment (Scremin et al., 2003), as well as decreased spontaneous LA at night when rats are most active (Timofeeva and Gordon, 2002; Wang and Fowler, 2001). It is for these reasons that simultaneous recording of LA and HR is essential to determine if possible changes in HR caused by AChE inhibitors are due to direct modulation of parasympathetic innervation of the heart or by an indirect effect derived from changes in LA.

The present experiments were designed to test the hypothesis that repeated exposure to low levels of sarin, PB, or a combination of PB and sarin at doses equivalent to those possibly experienced by PGW veterans could lead to persistent or delayed effects on circadian variations in HR or LA.

Methods

Animals

Male Crl:CD(SD)IGSBR Sprague-Dawley rats, weighing 250–300 g at the beginning of treatment, were used in these studies. Animals were obtained from Charles River Laboratories (Kingston, NY) and housed individually in temperature (21 ± 2 °C) and humidity (50 ± 10%) controlled animal quarters maintained on a 12 h light–dark full spectrum lighting cycle with lights on at 07:00 h and off at 19:00 h. Laboratory chow and water were freely available. Treatment of animals was conducted at the U.S. Army Medical Research Institute of Chemical Defense (USAMRIID). All animals were then shipped by air conditioned vans and air-freight to the Laboratory of Neurophysiology, VA Greater Los Angeles Healthcare System (VAGLAHS), where the planned studies in these animals were performed. Regarding possible effects on animals of travel between laboratories, it is generally agreed that re-entrainment after a time zone change requires approximately 1 day per hour difference for east bound travel and 1 day per 1.5 h difference for westbound travel (Eastman et al., 2005; Benstaali et al., 2001). In the case of our animals, travel was westbound and the time zone difference 3 h. Thus, re-entrainment should have been complete after 2 days. The animals were allowed a minimum of 1 week recovery on arrival to the Los Angeles laboratory before commencing experimentation, to avoid detrimental effects of travel-induced stress and time zone change. The HR and LA were recorded by telemetry starting 1 week after receiving the animals during a minimum of 1 week, and in some cases (data not shown) several weeks. No drifts in circadian rhythms of control animals were observed during the first week of recording that might indicate incomplete adaptation to the time zone change.

The research environment and protocols for animal experimentation were approved at each site by their respective institutional animal care and use committees. Animal facilities at both institutions are accredited by AAALAC-International. The animals used in these studies were handled in accordance with the principles stated in the Guide for the Care and Use of Laboratory Animals, by the Institute of Laboratory Animal Resources, National Research Council, and published by National Academy Press, 1996, and the Animal Welfare Act of 1966, as amended.

Materials

Saline (0.9% NaCl) injection, USP, was purchased from Cutter Labs Inc. (Berkeley, CA). Sarin, obtained from the U.S. Army Edgewood Chemical Biological Center (Aberdeen Proving Ground, MD), was diluted in ice-cold saline prior to injection. Saline or sarin injection volume was 0.5 ml kg⁻¹ subcutaneously (s.c.). PB was purchased from Sigma-Aldrich (St. Louis, MO), and PB solution was prepared twice weekly in tap water and provided as drinking water to experimental groups for a 3 week period.

Experimental Groups

Separate sets of animals were studied 2, 4 and 16 weeks after completion of 3 weeks of PB and/or sarin exposure. Within every set, animals were divided into four treatment groups. The control animals received regular tap water as drinking water and were injected with saline.
(0.5 ml kg⁻¹, s.c.). The PB group received PB in drinking water (80 mg l⁻¹) and was injected with saline. The sarin group received tap water and was injected with sarin (62.5 µg kg⁻¹, s.c., equivalent to 0.5 x LD₅₀). The sarin + PB group received PB in drinking water and was injected with sarin. PB in drinking water was provided continuously to the PB and sarin + PB groups starting on Monday morning at 08:00 h. At 09:00 h that Monday morning, injection of either saline (0.5 ml kg⁻¹, s.c.) or sarin (62.5 µg kg⁻¹, s.c.) was initiated. The injection was given three times (Mondays, Wednesdays and Fridays) per week for 3 weeks. PB in drinking water was terminated and switched to regular tap water at 17:00 h on Friday of the third week.

It has been determined earlier using these regimens that no sign of toxicity was found in rats drinking water containing PB (80 mg l⁻¹) for 3 weeks and that a 0.5 x LD₅₀ sarin was the highest dose that did not cause observable acute toxic effects when given alone or in combination with PB in drinking water for a period of 3 weeks (Scremin et al., 2003; 2005).

The number of animals at 2 weeks post-treatment was control = 6, PB = 7, sarin = 6, sarin + PB = 7; at 4 weeks post-treatment, control = 8, PB = 8, sarin = 8, sarin + PB = 6; at 16 weeks post-treatment, control = 8, PB = 8, sarin = 8, sarin + PB = 6. The number of animals per group was uneven because data were discarded in some animals due to the inconsistent signal: noise ratio of the telemetry ECG recordings that compromised HR measurements.

Implantation of Telemetry Transducers

Animals were anesthetized by exposure to 2.5% halothane in air in a closed plexi-glass chamber with continuous flow of gas from an anesthesia machine. After 2-3 min the animal was transferred to a table provided with a heating pad. A maintenance concentration of halothane (1.5%) was given by mask throughout the surgical procedure. Anesthesia was discontinued after surgical wounds were sutured. The condition of the animal was monitored frequently during the post-surgical period. An analgesic (buprenorphine, 0.05 mg kg⁻¹ s.c. twice daily) was administered during the first 24 h after surgery.

Data Acquisition and Analysis

To analyze circadian variations of HR and LA, as well as HR variability, ECG and LA were recorded every 30 min for an interval of 300 s, for 7 consecutive days, starting 4 days after implantation of telemetry units. Using the Data Sciences software, the time of occurrence of each heartbeat was extracted from the raw ECG and a 300 s time series of consecutive inter-beat intervals (RR intervals) was constructed to allow subsequent time domain and frequency domain measurements.

Heart rate variability was studied by power spectrum analysis of HR fluctuations. To this effect, the time series of the periods between two consecutive R waves of the ECG (RR intervals) was re-sampled at a rate of 10 Hz, and subsequently the frequency spectrum was calculated using a Fast Fourier Transform. Data are presented as cumulative power over the following frequency bands: total (between 0.05 and 5 Hz), low frequency (between 0.26 and 0.75 Hz) and high frequency (between 0.76 and 5 Hz) (Pereira de Souza Neto et al., 2001). The ratio of power in low to high frequency bands was considered an index of sympathovagal balance (Malliani et al., 1991).

The HR and LA were averaged every hour. A database consisting of 7 days of HR and LA hourly averages for every animal was analyzed by performing separate repeated measures ANOVA at each of the three intervals after treatment (2, 4 and 16 weeks), with within factor `day within recording series' (seven levels) and between factor `treatment' (four levels) for every hour of the day. Power spectrum of HR (HRPS) was calculated for the third day of recording at an interval of every 2 h. Statistical analysis consisted of ANOVA with factor `treatment' (four levels) for every 2 h interval. Significance level for F ratios and multiple comparisons among treatment groups was set at 0.05 to establish significance.

Results

The analysis of HR and LA dynamics was conducted for a period of 1 week by averaging telemetry measurements every hour each day with room lights turned on at 07:00 and off at 19:00 h. The results indicated wide fluctuations of both variables between day and night. In general, changes in HR paralleled those in LA in synchrony with regards to the light/darkness cycle. Since
Figure 1. Means of HR (top panel) and LA (bottom panel) as a function of time of day (midnight = 0) measured by telemetry in rats in their home cages for a period of 1 week every hour for 24 h each day. Measurements were performed for 7 days, starting at 2 weeks after treatments were discontinued. Repeated measures ANOVA was performed at every hour with day of the week as the within factor (7 levels) and treatment group as the between factor (4 levels). Significant differences in HR from controls (Fisher LSD multiple comparisons procedure, $P < 0.05$) are indicated for PB (P) at hours 5, 7, 8, 9, 10, and 11; sarin (S) at hours 5, 8, 9, 10, and 11; and sarin + PB (SP) at hours 8 and 9. No significant differences between controls and treatments were found for LA at any hour. Black bars at the bottom of the figure represent the period during which lights were on.

Figure 2. Means of HR (top panel) and LA (bottom panel) as a function of time of day (midnight = 0) measured by telemetry in rats in their home cages for a period of 1 week every hour for 24 h each day. Measurements were performed for 7 days, starting at 4 weeks after treatments were discontinued. Repeated measures ANOVA was performed at every hour with day of the week as the within factor (7 levels) and treatment group as the between factor (4 levels). Significant difference from controls (Fisher LSD multiple comparisons procedure, $P < 0.05$) is indicated for sarin (S) at hour 5. No significant differences between controls and treatments were found for LA at any hour. Black bars at the bottom of the figure represent the period during which lights were on.

Rats are nocturnal animals, LA and HR were maximal during the dark period (Figs 1–3). The changes induced by treatments on the magnitude of these variables were not similar, however.

ANOVA of HR values indicated significant effects for the factors ‘treatment’ and ‘hour of day’ at all intervals after treatment. Maximal levels of HR were observed during the night and minimal levels observed during daylight hours (Figs 1–3, top panels). In animals tested 2 weeks after treatment, HR was lower than in controls at hours 05:00, 07:00, 08:00, 09:00, 10:00 and 11:00 in the PB group, at hours 05:00, 08:00, 09:00, 10:00 and 11:00 in the sarin group, and at hours 08:00 and 09:00 in the sarin + PB group. Four weeks after treatment, only the sarin group was significantly lower than the controls at 05:00 h, while 16 weeks after treatment only the PB group was higher than the controls at 20:00 h.

Since HR correlates under most circumstances with the magnitude of physical activity, in this case estimated by the radiotelemetry signal level that codes for rate of
HEART RATE - 16 WEEKS

- CONTROL
- PB
- SARIN
- SARIN+PB

LOCOMOTOR ACTIVITY - 16 WEEKS

- CONTROL
- PB
- SARIN
- SARIN+PB

Figure 3. Means of HR (top panel) and LA (bottom panel) as a function of time of day (midnight = 0) measured by telemetry in rats in their home cages for a period of 1 week every hour for 24 h each day. Measurements were performed for 7 days, starting at 16 weeks after treatments were discontinued. Repeated measures ANOVA was performed at every hour with day of the week as the within factor (7 levels), and treatment group as the between factor (4 levels). Significant difference from controls (Fisher LSD multiple comparisons procedure, P < 0.05) is indicated for PB (P) at hour 20. No significant differences between controls and treatments were found for LA at any hour. Black bars at the bottom of the figure represent the period during which lights were on.

Discussion

The treatment regimen used in this study was designed to model the exposure of PGW veterans to AChE inhibitors. The dose of PB was equivalent, after adjusting for relative dose between species (Freireich et al., 1966), to that received by soldiers as prophylactic against nerve agents (Keeler et al., 1991). The dose of sarin was designed to be the highest devoid of acute manifestations of toxicity either alone or in combination with PB in drinking water for a 3 week period (Scremin et al., 2003). In our previous use of this model, AChE inhibition in red blood cells was present during treatment, but by 3 weeks post-treatment the inhibition was reduced considerably in magnitude for sarin and sarin+PB groups, while it had recovered to normal levels in the case of PB treatment (Scremin et al., 2003; 2005).

The aim of this study was to look for delayed effects, i.e. beyond the period of low-level exposure to AChE inhibitors. A lack of any acute toxic effects during 3 weeks of sarin and PB administration, either alone or in combination, fulfilled the conditions required to model the potential low-level exposure of PGW veterans. This model was, however, the 'worse case' model for PGW exposure scenario where veterans did not report any symptom of miosis, an initial sign of inhalation exposure.

Alterations in HR dynamics are possible with this treatment regimen because cholinergic mechanisms play a crucial role in the autonomic control of this variable both centrally (Brezenoff and Giuliano, 1982) and peripherally (Higgins et al., 1973). The sinoatrial node, the heart pacemaker, is innervated by parasympathetic and sympathetic post-ganglionic neurons. Only the parasympathetic postganglionic neurons release ACh at their sinoatrial terminals, but both types of neurons are activated by cholinergic synapses from pre-ganglionic
Figure 4. Means of HR cumulative power over the spectrum frequency bands TOTAL (between 0.05 and 5 Hz), LOW (between 0.26 and 0.75 Hz) and HIGH (between 0.76 and 5 Hz), and the ratio of power in low to high frequency bands (LOW/HIGH). HR was calculated from the electrocardiogram recorded every 30 min by radiotelemetry for 7 days. Means of the third day of measurements were averaged for each animal over 2 h intervals, and these values in turn were used to calculate group means. Data shown correspond to animals studied 2 weeks after discontinuation of treatment with PB (top right, number of animals (n) = 7), sarin (bottom left, n = 6) and sarin + PB (bottom right, n = 7). Statistical significance (P < 0.05) of differences from the control group (top left, n = 6) are indicated by an asterisk.
Figure 5. Means of HR cumulative power over the spectrum frequency bands: TOTAL (between 0.05 and 5 Hz), LOW (between 0.26 and 0.75 Hz) and HIGH (between 0.76 and 5 Hz), and the ratio of power in low to high frequency bands (LOW/HIGH). HR was calculated from the electrocardiogram recorded every 30 min by radiotelemetry for 7 days. Means of the third day of measurements were averaged for each animal over 2 h intervals, and these values in turn were used to calculate group means. Data shown correspond to animals studied 4 weeks after discontinuation of treatment with PB (top right, number of animals (n) = 8), sarin (bottom left, n = 8) and sarin + PB (bottom right, n = 6). Statistical significance (P < 0.05) of differences from the control group (top left, n = 8) are indicated by an asterisk.
In the case of HRPS, few effects of drug treatments were detected and they did not follow a systematic pattern. In contrast with the case of HR, no consistent circadian variation in power was detected for any of the frequencies studied, with the single exception of the low to high ratio in control animals at 2 weeks after exposure, in which case a decrease of this ratio during the light hours could be demonstrated.

In conclusion, although marked changes in HR and HRPS have been detected 2 weeks post-exposure to the AChE inhibitors PB and sarin, no consistent changes were observed at longer periods after treatment. Thus, these experiments do not support the hypothesis that repeated administration of low doses of PB and the nerve agent sarin can induce persistent or delayed alterations in autonomic function. However, since this study has been limited to adult male animals, further experimentation including females and younger animals may be warranted to rule out possible sex and age differential effects.

Acknowledgements—We thank Natalie Esock and Harlan Shafer for invaluable technical assistance. This work was supported by a contract from the US Army Medical Research and Materiel Command, DAMD 17-00-200015. The opinions or assertions contained herein are the private views of the authors, and are not to be construed as reflecting the views of the Department of the Army or the Department of Defense.

