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INTRODUCTION: 

Germline mutations in the tumor suppressor breast cancer genes 1 and 2 (BRCA1 and 

BRCA2) predispose individuals to breast and ovarian cancers.  Although BRCA1 and 

BRCA2 have been implicated to play a role in transcription and/or DNA repair, the 

precise mode of their action is not yet understood.  Using cell lines expressing a stable 

labeled breast cancer 1-associated RING domain protein, Flag-BARD1, we have isolated 

a multiprotein complex termed BRCC containing eight polypeptides including BRCA1, 

BRCA2 and the radiation-associated protein RAD51. The ubiquitin E3 ligase activity of 

BRCC is regulated by BRCC36, a novel component of the complex displaying sequence 

homology with a signalosome subunit.   We show that the transient knock out of 

BRCC36 by small interfering RNA (siRNA) results in increased ionizing radiation 

sensitivity and disruption of DNA damage-induced G2/M cell cycle check point.  These 

findings identify BRCC as a ubiquitin E3 ligase complex that regulates DNA damage 

check point. 

 

BODY: 

Task 1.  Isolate and define the molecular characteristics of the BRCA1-BARD1 complex, 

using affinity purification by BARD1 antibodies.  (months 1-18).  This task has been 

accomplished and was reported on in the progress report (2003). 

Task 2.  Analyze the polypeptide composition of BARD1-BRCA1 complex purified 

from cells carrying mutations in BRCA1 (months 18-30). This task has been 

accomplished and was reported on in the progress report (2004). 
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Task 3.  Molecular cloning of BRCA1-associated polypeptides and isolation of the 

complex from BRCA1 mutant cells (months 24-36). This task was also accomplished and 

was reported on in the progress report (2004). 

Task 4. Analyze the functional activity of BARD1-BRCA1 complex in vivo (18-36).  

Involvement of BRCC36 and BRE in response to ionizing radiation and checkpoint 

control.   

Number of studies has shown that cells carrying inactivating mutations of BRCA1 

display increased sensitivity to ionizing radiation and defective control of G2/M 

checkpoint.  To determine whether loss of BRCC36 and BRE resulted in similar DNA 

repair defects, HeLa cells were treated by siRNAs against BRCA1, BRCC36, Brain and 

reproductive organ expressed protein (BRE) or control siRNA and their responsiveness to 

ionizing radiation was measured (Fig. 1A).  The experiments were performed in 

triplicates comparing the cells treated with siRNAs against BRCC36 or BRE, to those 

treated with siRNAs against BRCA1 and control siRNAs.  BRCA1-, BRCC36- and BRE-

depleted cells displayed a potent increased sensitivity to ionizing radiation at all doses 

examined (Fig. 1A).  

We next asked whether depletion of BRCC36 and BRE would result in disruption 

of the G2/M checkpoint arrest.  Consistent with a defect in G2/M checkpoint, analysis of 

mitotic cells following 2 and 4Gy of ionizing radiation indicated that approximately three 

fold more BRCC36- and BRCA1-depleted cells entered into mitosis (Fig. 1B). Depletion 

of BRE resulted in a more moderate defect in G2/M checkpoint arrest (Fig. 1B).   Taken 

together these results demonstrate that BRCC36 and BRE are not only components of a 

multiprotein complex which modulate the enzymatic activity of BRCA1/BARD1 but also 

participate in a similar pathway of cellular responsiveness to ionizing radiation. 
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Aberrant expression of BRCC36 in sporadic breast cancer.  

Quantitative real-time PCR (qPCR) was performed to evaluate the expression of BRCC36 

mRNA levels in multiple independent normal breast organoids (uncultured breast ducts 

composed of luminal and myoepithelial cells), primary epithelial cell cultures, non-

tumorgenic breast epithelial cell lines, breast cancer cell lines, and human breast tissue 

specimens surgically obtained from patients with primary invasive carcinoma as 

described in the experimental procedure section.  The expression levels of BRCC36 

mRNA were elevated in 58% (11 of 19) of the breast tumors evaluated when compared to 

normal breast organoids (Fig. 2A).  A subset of these tumors (6 of 19) showed very high 

levels of expression relative to both the organoids and primary epithelial cultures (Fig. 

2A).  The difference in BRCC36 mRNA levels in the normal organoids or primary 

epithelial cell cultures may be due to differences in age, parity, or hormonal status of the 

patients from whom the organoids were derived or to the tissue culturing conditions of 

the primary epithelial cells.  To further validate the expression of BRCC36 in breast 

tumors, we performed qPCR analysis on laser captured micro-dissection (LCM)-purified 

normal mammary ductal epithelial cells (NE) and malignant epithelial (ME) cells.  Two 

normal breast tissues and 9 invasive ductal carcinomas were micro-dissected and the 

RNA evaluated by RT-PCR (Fig. 2B).  We found that 100% of these tumors (9 of 9) 

showed elevated levels of BRCC36 mRNA relative to the normal mammary ductal 

epithelium (Fig. 2B).  Seventy-seven percent of these tumors expressed very high levels 

of BRCC36 (>20-fold) as compared to normal epithelial cells. 
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KEY RESEARCH ACCOMPLISHMENTS: 

1-Isolated the BRCA1-BARD1 complex from human cells. 

2-Determine the polypeptide composition by MS/MS sequencing. 

3-Characterized the ubiquitin ligase activity of BRCA1-BARD1 complex. 

4-Cloning of BRCC36 and BRCC45. 

5-Estabilishing stable lines expressing BRCC36 and BRCC45. 

6-Analysis of polypeptide composition of BRCA1 complexes containing the truncated 

forms of BRCA1 or BARD1. 

7-Laser capture microdissection of nine invasive ductal carcinomas yielded malignant 

cells with elevated levels (77% >20-fold) of BRCC36 in 9/9 cases as compared with 

levels in normal ductal cells from two women. 

8-Discovery of the aberrant expression levels of BRCC36 in sporadic breast cancers. 

 

REPORTED OUTCOMES: 

Manuscripts: 

Dong Y. Hakimi M.A., Chen X., Kumaraswamy E., Cooch N.S., Godwin A.K., Shiekhattar 
R. Regulation of BRCC, a Holoenzyme Complex Containing BRCA1 and BRCA2, by a 
Signalosome-like Subunit and its Role in DNA Repair. Molecular Cell 12; 1087-1099 
(2003). 
 
Presentations/Abstracts: 
-Oncogenes and Tumor Suppressors. Gordon Conference, Newport, RI; June 2002. 

Presentation title: Elucidation of BRCA1 function. 
 
Patents and licenses: 
None 
 
Personnel supported: 
Yuanshu Dong, Ph.D.  Postdoctoral fellow (June 2001-Oct 2003). Present: Staff scientist, 

Hershey Medical Center, Penn State University. 
 
Cell lines: 
Established lines expressing BRCC36 and BRCC45 
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Data bases: 
NCBI Nucleotide Sequence 
NCBI Protein 
 
Funding Applied For: 
NCI Grant 7R01CA090758-07 Functional elucidation of BRCA1-containing 

complexes 
 

CONCLUSIONS: Two novel components of BRCC, BRCC36 and BRE were identified 

in this study. Using recombinant subunits produced in insect cells we were able to 

partially reconstitute a four-subunit complex containing BRCA1/BARD1/BRE/BRCC36.  

This complex displayed an increased ubiquitin E3 ligase activity compared to that of 

BRCA1/BARD1 heterodimer.  Therefore, while BRCA1/BARD1 constitute a core-

enzyme complex, BRCC represent a holoenzyme containing additional regulatory 

elements such as BRE and BRCC36.  While BRE does not display sequence homology to 

any known protein, BRCC36 is a protein with close homology to a subunit of the COP9 

signalosome (Jab1) and a subunit of the 19S proteasome (pad1).  This homology consist 

of a recently described domain termed the Jab1/MPN or JAMM domain which is 

predicted to encode a protein with ubiquitin or Nedd 8 deconjugating activity.  Although 

we were unable to show a deconjugating activity for BRCC36 using either ubiquitinated 

BRCA1 or synthetic ubiquitin chains, it may play such a role once the true substrate is 

identified.  Through the use of siRNAs we delineated a role for both BRCC36 and BRE 

in responsiveness to ionizing radiation, and the progression through the G2/M 

checkpoint. Taken together, these results demonstrate a role for BRCC36 and BRE in the 

DNA damage response pathway.   
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Since germline mutations of BRCA1 and BRCA2 genes result in breast cancer, 

we were interested to know whether there were mutations in BRCC36 in breast tumors.  

Although our preliminary analysis of sporadic breast tumors did not yield any mutations 

in the BRCC36 gene (data not shown), we found a profound increase in BRCC36 

expression in breast tumors.  Mirco-dissection analysis of the mammary epithelial ducts 

from these tumors revealed increased BRCC36 expression in every tumor analyzed.  The 

consequences of BRCC36 over expression are not clear.  A possible scenario may 

involve the disruption of the normal function of BRCC by over-expressed BRCC36. 

Furthermore, since germline mutations in BRCA1 and BRCA2 account for only 15-20% 

of breast cancer that clusters in families and 5% of breast cancer overall, BRCC36 and 

other components of BRCC complex may represent long sought after breast cancer 

susceptibility genes. 

 

REFERENCES: 

Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, Shiekhattar R 

(2003) Regulation of BRCC, a Holoenzyme Complex Containing BRCA1 and BRCA2, by 

a Signalosome-like Subunit and its Role in DNA Repair. Molecular Cell 12; 1087-1099. 
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Figure Legends. 

Figure 1. Depletion of BRCC36 and BRE result in increased sensitivity to ionizing 

radiation and defects in G2/M checkpoint arrest.    

 (A) Treatment of HeLa cells with siRNA against BRCC36, BRE or BRCA1 results in 

enhanced sensitivity to ionizing radiation.  

 (B) HeLa cells were treated with siRNA against BRCA1, BRCC36, BRE or control 

siRNA and following treatment with ionizing radiation their cell cycle progression was 

measured by FACS.  

 

Figure 2. Aberrant expression of BRCC36 in breast tumors. 

(A) Real time PCR was used to analyze breast mammary organoids (OG), primary breast 

epithelial cells (BE), and breast tumors (TB).  The expression levels of BRCC36 were 

adjusted for β-actin expression and the ratio for OG1 was set at 1, described in detail in 

Experimental Procedure. 

(B) Quantitative real-time PCR was used to analyze normal mammary ductal epithelial 

cells (NE) and malignant epithelial (ME) cells captured by micro-dissection. 
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Regulation of BRCC, a Holoenzyme Complex
Containing BRCA1 and BRCA2, by a Signalosome-like
Subunit and Its Role in DNA Repair

Verma, 1996; Monteiro et al., 1996). BRCA1 was not only
implicated to function as a coactivator for p53-mediated
transcription (Ouchi et al., 1998; MacLachlan et al., 2002)
but also to associate with RNA polymerase II (RNAPII)
and the chromatin remodeling complex, SWI/SNF (Scully

Yuanshu Dong,1,3 Mohamed-Ali Hakimi,1,3

Xiaowei Chen,2 Easwari Kumaraswamy,1

Neil S. Cooch,1 Andrew K. Godwin,2

and Ramin Shiekhattar1,*
1The Wistar Institute
3601 Spruce Street et al., 1997a; Bochar et al., 2000). Taken together, these

observations led to the hypothesis that BRCA1 mayPhiladelphia, Pennsylvania 19104
2 Department of Medical Oncology function as a transcriptional regulator.

A host of other reports have implicated a role forFox Chase Cancer Center
7701 Burholme Avenue BRCA1 and BRCA2 in DNA repair. BRCA1 was reported

to interact with RAD51, BRCA2, FANCD2, and thePhiladelphia, Pennsylvania 19111
RAD50 protein complex (Garcia-Higuera et al., 2001;
Chen et al., 1998a; Zhong et al., 1999; Scully et al.,
1997b, 1999; Sarkisian et al., 2001). BRCA1 mutant cells

Summary display sensitivity to DNA-damaging agents, and the
BRCA1 protein was reported to control homology-

We have isolated a holoenzyme complex termed directed DNA repair (Moynahan et al., 1999; Zhong et
BRCC containing BRCA1, BRCA2, and RAD51. BRCC al., 2002). Truncation of BRCA1 exon 11 has also been
not only displays increased association with p53 fol- shown to result in defective G2-M cell cycle checkpoint
lowing DNA damage but also ubiquitinates p53 in vitro. and an increased number of centrosomes (Xu et al.,
BRCC36 and BRCC45 are novel components of the 1999). Moreover, a number of laboratories have reported
complex with sequence homology to a subunit of that the BRCA2 protein interacts with RAD51 and plays
the signalosome and proteasome complexes. Recon- a role in cell cycle regulation and homology-directed
stitution of a recombinant four-subunit complex con- repair (Wong et al., 1997; Chen et al., 1998b; Mizuta et
taining BRCA1/BARD1/BRCC45/BRCC36 revealed an al., 1997; Marmorstein et al., 1998, 2001; Yu et al., 2000;
enhanced E3 ligase activity compared to that of Moynahan et al., 2001; Davies et al., 2001). These results
BRCA1/BARD1 heterodimer. In vivo, depletion of were strengthened by a report showing that murine em-
BRCC36 and BRCC45 by the small interfering RNAs bryos with a targeted disruption of BRCA2 displayed
(siRNAs) resulted in increased sensitivity to ionizing sensitivity to ionizing radiation (Sharan et al., 1997). Fur-
radiation and defects in G2/M checkpoint. BRCC36 thermore, mouse embryo fibroblasts (MEFs) with a tar-
shows aberrant expression in sporadic breast tumors. geted disruption of BRCA2 exon 11 displayed increased
These findings identify BRCC as a ubiquitin E3 ligase sensitivity to ultraviolet light and methyl methanesulfo-
complex that enhances cellular survival following nate (MMS) (Patel et al., 1998).
DNA damage. BRCA1 interacts with the BRCA1-associated RING

domain (BARD1) protein to form a heterodimeric com-
plex (Wu et al., 1996, Brzovic et al., 2001). Remarkably,Introduction
BARD1 association with BRCA1 potentiates the newly
discovered ubiquitin E3 ligase activity of the BRCA1Germline mutations in BRCA1 or BRCA2 genes predis-
protein (Hashizume et al., 2001). Detailed analysis of thepose women to early onset, familial breast cancer (Hall
BRCA1 ubiquitin E3 ligase activity has identified theet al., 1990; Narod et al., 1991; Miki et al., 1994; Wooster
RING domain of BRCA1 as the catalytic determinant foret al., 1994, 1995; Tavtigian et al., 1996). Furthermore,
ubiquitination (Lorick et al., 1999, Hashizume et al., 2001,deleterious alleles of BRCA1 and BRCA2 are responsible
Ruffner et al., 2001). Furthermore, a recent report de-for almost all familial ovarian cancer, and deleterious
scribes the ability of BRCA1-BARD1 heterodimer to au-alleles of BRCA2 are also involved in hereditary male
toubiquitinate BRCA1 and BARD1 and transubiquitinatebreast cancer (Wooster et al., 1995; Tavtigian et al.,
the histone H2A(X) (Chen et al., 2002).1996; Easton et al., 1993; Miki et al., 1994).

To gain further insight into the molecular mechanismBoth BRCA1 and BRCA2 encode large proteins with-
of the BARD1-BRCA1 complex, we generated stableout extensive homology to other proteins in the data-
cell lines expressing epitope-tagged BARD1. Usingbase (Miki et al., 1994; Tavtigian et al., 1996). The primary
these cell lines, we have isolated a multiprotein complexsequence of BRCA1 contains two motifs characteristic
containing BRCA1, BRCA2, and RAD51. Here, we de-of transcription factors (Miki et al., 1994). These include
scribe two novel components of the complex, thea RING finger motif and an acidic carboxyl terminus.
BRCC36 and BRCC45 proteins. BRCC36 displays se-Fusion of this carboxyl terminus to the DNA binding
quence homology to a 26S proteasome subunit and adomain of the GAL4 protein endows the chimeric protein
subunit of the COP9 signalosome. These results demon-with transcriptional stimulatory activity (Chapman and
strate the stable association of BRCA1, BARD1, and
BRCA2 in a ubiquitin ligase complex that is regulated
through a direct interaction with novel regulatory sub-*Correspondence: shiekhattar@wistar.upenn.edu

3 These authors contributed equally to this work. units.
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Figure 1. Purification of the BRCC Complex

(A) Analysis of anti-FLAG eluate by SDS-PAGE followed by silver staining and Western blot analysis using antibodies depicted. Asterisks
denote nonspecific polypeptides.
(B) Purification scheme and Western blot analysis of Bio-Sec400 gel filtration column fractions using antibodies to the right of the figure.
(C) Immunoprecipitation followed by Western blot analysis using antibodies denoted in the figure.

Results To establish that BRCC represents a single complex
and is not specific to H1299 cells, we isolated BRCC
from a 293-derived cell line expressing FLAG-BARD1Isolation of BRCC
and fractionated the complex by gel filtration chroma-To isolate BARD1-containing complex(es), we devel-
tography using 500 mM KCl (Figure 1B). As Figure 1Boped H1299- and 293-derived cell lines expressing
indicates, BRCA2, BRCA1, BARD1, and RAD51 coeluteFLAG-tagged BARD1. Figure 1A depicts the purification
as a large mutliprotein complex. Interestingly, a fractionof FLAG-BARD1 using anti-FLAG antibodies from H1299
of BRCA1 and BARD1 elute at a smaller molecular masscells. Nuclear extract from native H1299 cells was used
(peak fraction 16), indicating that a fraction of BRCA1/as the control for anti-FLAG affinity purification. Analysis
BARD1 can be resolved from the larger complex. Finally,of the FLAG-BARD1 eluate by SDS-PAGE and silver
immunoprecipitation experiments using anti-BARD1staining revealed the specific association of BARD1 with
and anti-BRCA1 antibodies demonstrate the associa-polypeptides of 350, 300, 210, 120, 45, 40, and 36 kDa
tion of BRCA1, BRCA2, and BARD1 from nuclear extract(Figure 1A). A combination of mass spectrometric se-
of native 293 cells (Figure 1C). Taken together, thesequencing and Western blot analysis identified the 350,
results demonstrate the stable association of BRCA1,210, and 40 kDa bands as BRCA2, BRCA1, and RAD51,
BRCA2, BARD1, and RAD51 in a multiprotein complex.respectively (Figure 1A). We therefore named this com-

plex BRCC for BRCA1-BRCA2-containing complex.
Analysis of a number of preparations indicated that BRCC Displays a Ubc5-Dependent E3 Ubiquitin
RAD51 is a substoichiometric component of this com- Ligase Activity toward p53
plex (Figure 1A). The 300, 120, 45, and 36 kDa polypep- Previous reports described the BRCA1-BARD1 hetero-

dimer as an E3 ubiquitin ligase (Lorick et al., 1999, Ruff-tides correspond to functionally uncharacterized genes.
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Figure 2. BRCC Is a Ubiquitin E3 Ligase

(A) SDS-PAGE followed by colloidal blue staining of recombinant GST-tagged BRCA1 (1–639, G-BRCA1) and full-length FLAG-BARD1 (F-BARD1)
(150 ng) coexpressed in bacteria and purified through the FLAG epitope.
(B) Ubiquitin ligation assay using either recombinant G-BRCA1/F-BARD1 (10 ng) or BRCC (2.5 ng) as the source of E3. The concentrations
refer to amounts of BRCA1-BARD1 heterodimer for each complex. Different E2s are denoted on the top of the figure.
(C) Ubiquitination of P53 (1x � 6 ng) by G-BRCA1/F-BARD1 (10 ng) using Ubc5c as E2.
(D) Ubiquitination of p53 (60 ng) by either G-BRCA1/F-BARD1 or BRCC (1x � 10 ng). Protein concentrations delineate equal amounts of
BRCA1/BARD1 heterodimer.

ner et al., 2001, Hashizume et al., 2001). We therefore Ubc5c displayed the most activity with either recombi-
nant G-BRCA1/F-BARD1 or the BRCC complex as theasked whether BRCC displays E3 ubiquitin ligase activ-

ity and whether its enzymatic activity is similar to that E3 enzyme (Figure 2B). In Figure 2B, the concentrations
of GST-BRCA1 and BARD1 were higher in the recombi-of recombinant BRCA1-BARD1. E1, E2, and ubiquitin

were produced in bacteria and purified to near homoge- nant enzyme preparations. The two enzymes will be
directly compared by partial reconstitution of BRCC us-neity. Additionally, recombinant G-BRCA1/F-BARD1

was generated by coexpressing GST-tagged BRCA1(1– ing full-length recombinant BRCA1 in Figure 5.
We were next interested to examine the ubiquitin E3639) and FLAG-tagged BARD1 in bacteria as previously

described (Figure 2A; Chen et al., 2002). Both the recom- ligase activity of the BRCC complex toward a substrate
protein. A number of reports have described the physicalbinant G-BRCA1/F-BARD1 and BRCC demonstrated

Ubc5-dependent ubiquitin E3 ligase activity (Figure 2B). and functional association of the BRCA1 and BRCA2
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Figure 3. BRCC Ubiquitination of the C Terminus of p53 and Increased Association with p53 following DNA Damage

(A) Colloidal blue and Western blot analysis of recombinant p53 used as the substrate for ubiquitination assays.
(B) Wild-type or truncated p53 (20 ng) was used for ubiquitination experiments.
(C) Increased association of p53 and RAD51 with BRCC demonstrated by Western blot analysis of BRCC following treatment of cells with
ionizing radiation, hydroxurea, or double thymidine block according to the Experimental Procedures using antibodies to the left of the figure.
BRCC was purified from FLAG-BARD1 containing cells using FLAG-affinity purification.

proteins with the cellular gate keeper p53 (Ouchi et al., The Extreme C Terminus of p53 Is Ubiquitinated
by BRCC1998; Zhang et al., 1998; Marmorstein et al., 1998; Xu

et al., 2001; MacLachlan et al., 2002). We therefore asked To examine the sites of ubiquitination of p53 by BRCC,
we asked whether the last 30 amino acids of p53 whichwhether p53 can serve as an in vitro substrate for ubiqui-

tination by BRCC. We first asked whether recombinant contain the lysine residues targeted by the MDM2 pro-
tein were also the sites for ubiquitination by BRCC (Rod-G-BRCA1/F-BARD1 ubiquitinates p53. As Figure 2C in-

dicates, p53 protein displayed polyubiquitin chain for- riguez et al., 2000; Gu et al., 2001; Nakamura et al.,
2000). Both recombinant full-length p53 (p53 WT) andmation following addition of the recombinant G-BRCA1/

F-BARD1. Interestingly, addition of E1 and E2 proteins p53 protein truncated for the last 30 amino acids (p53D)
were produced in bacteria and purified to homogeneityalso led to a small amount of ubiquitin conjugate forma-

tion (Figure 2C, lanes 1 and 3). However, increasing (Figure 3A). The truncated p53 displayed a slight in-
crease in molecular weight due to additional amino acidsconcentrations of both the recombinant G-BRCA1/F-

BARD1 and BRCC displayed a robust E3 ubiquitin ligase introduced by double tagging. To confirm that the trun-
cated protein indeed lacked the last 30 amino acids,activity on recombinant p53 (Figure 2D, compare lanes

3 and 6 with 1 and 4, respectively). both proteins were subjected to Western blotting using
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anti-p53 antibodies raised against the N or the C termi- the Jab1 subunit of the COP9 complex is reported to
modulate the degradation of p27 protein (Tomoda et al.,nus of p53. Although anti-p53 antibodies raised against

the N terminus of the protein (DO-1) recognized both 1999). BRCC45 protein correspond to the brain- and
reproductive organs-specific gene, BRE (Gu et al., 1998).the wild-type and the truncated protein, the antibodies

against the C terminus (pAb421) only recognized the BRCC45/BRE does not display homology to any other
protein in the human genome.wild-type protein (Figure 3A).

We then used the wild-type or the truncated p53 as To rigorously establish the association of BRCC36,
BRE, and BRCA1/BARD1, we developed a 293-derivedsubstrates for the E3 ubiquitin ligase assays. As Figure

3B indicates, while both recombinant G-BRCA1/F- cell line stably expressing FLAG-BRCC36. Isolation of
FLAG-BRCC36 by FLAG-affinity purification demon-BARD1 and BRCC specifically ubiquitinate the wild-type

p53 protein, neither enzyme preparation could ubiquiti- strated the stable association of BRCC36 with the other
components of BRCC (Figure 4B; also see Figure 1B).nate similar amounts of the p53 protein lacking the last

30 amino acids, indicating that the lysine residues on It is noteworthy that we detected the endogenous
BRCC36 in the FLAG-BRCC36 affinity eluate, indicatingthe extreme C terminus of p53 are the sites of ubiquitina-

tion by the BRCC complex. It is also possible that the the presence of more than one BRCC36 protein per
BRCC.C terminus of p53 constitutes a binding site for BRCC.

Analysis of BRCC following DNA Damage Cancer-Causing Truncation of BRCA1 Abrogates
the Association of BRCC36 and BREand at S Phase

Previous studies indicated that the BRCA1 protein is a We next asked whether the truncation of BRCA1 protein,
which may occur as a result of cancer-causing frameshiftphosphoprotein that is phosphorylated at S phase and

following treatment of cells with DNA damaging agents mutations in exon 11, will result in the loss of BRCC36
or BRE association. To obtain a truncated BRCA1 com-(Scully et al., 1997c). Moreover, BRCA1 displays a nu-

clear dot pattern at the S phase of the cell cycle and plex, we constructed a 293-derived cell line expressing
a truncated (1–509) BRCA1. As a control we also con-that BRCA1 nuclear dots colocalize with those of RAD51

(Scully et al., 1997b). Therefore, we examined the structed cell lines expressing a truncated form of BARD1
(1–398). Both truncated protein complexes were puri-changes in the BRCC polypeptide composition at the S

phase of the cell cycle and following treatment of cells fied, and the resulting polypeptides were analyzed for
protein composition. While truncation of BARD1 did notwith hydroxyurea or ionizing radiation. While there was

no detectable change with the E3 ubiquitin ligase activity affect the association of any of the components of the
complex, BRCA1 truncation completely abrogated theof the complex or the BRCA2 protein, BRCA1 displayed

the previously reported shift in electrophoretic mobility association of BRCC36 and BRE and reduced the asso-
ciation of both BRCA2 and RAD51 with BRCC (Figurerepresenting the phosphorylated form of the protein fol-

lowing all three treatments (Figure 3C). We then asked 4C). In contrast, truncations of either BRCA1 or BARD1
did not affect the association of p53 and BRCC. Thesewhether BRCC displays an increased association with

RAD51 and the p53 protein. Interestingly, analysis of results correlate the loss of function of truncated BRCA1
protein with the loss of several key regulatory compo-BRCC purified using FLAG-BARD1 cell lines following

treatment of cells with DNA-damaging agents or cells nents of BRCC.
To determine whether BRCC36 can directly interactsynchronized at S phase revealed an increased associa-

tion of both RAD51 and p53 with the BRCC complex with BRCA1, six fragments of BRCA1 spanning the open
reading frame were produced in bacteria and were(Figure 3C; also see Figure 1B). These results are not

only the biochemical confirmation of the previous nu- tested for their association with recombinant BRCC36 also
produced in bacteria (Figure 4D). To address whetherclear colocalization experiments but also extend these

cell cycle and DNA damage-induced associations to the BRCC36 association with BRCA1 also extended to other
JAMM domain-containing proteins, the Jab1/CSN5 sub-p53 protein.
unit of signalosome was also produced in recombinant
form and was used in the protein-protein interactionBRCC36 and BRCC45 Are Novel Subunits
assay. Consistent with the above results obtained fromMass spectrometric sequence analysis of the 36 kDa
the truncating mutation of BRCA1, BRCC36 can specifi-band (BRCC36) identified this protein as the polypeptide
cally associate with fragments 3 and 4 located in exonencoded by the c6.1A gene (Figure 1A). The BRCC36/
11 (Figure 4E). This association is specific for BRCC36c6.1A gene is located at the Xq28 locus, a chromosomal
since Jab1/CSN5 did not associate with any fragmentsbreak point in patients with prolymphocytic T cell leuke-
of BRCA1 protein (Figure 4E). Together these data indi-mia (Fisch et al., 1993). BRCC36 displayed sequence
cate a direct interaction of BRCA1 and BRCC36 whichhomology with human Poh1/Pad1 subunit of the 26S
is lost following cancer-causing truncations of BRCA1.proteasome and with the subunit 5 (Jab1) of the COP9

signalosome (Figure 4A). This homology is in the recently
described Jab1/MPN or the JAMM domain (Verma et BRCC36 and BRE Potentiate the E3 Ubiquitin

Ligase Activity of BRCA1/BARD1al., 2002; Cope et al., 2002; Yao and Cohen, 2002; see
Figure 4A). Despite its homology to POH1 and Jab1, To directly address the role of BRE and BRCC36 in

BRCC’s ubiquitin E3 ligase activity, we reconstitutedBRCC36 represents a distinct branch in the evolutionary
tree. Interestingly, the COP9 complex has been shown to the complex using recombinant subunits expressed in

insect cells. We produced either a 2 subunit BRCA1/regulate the activity of the SCF ubiquitin ligase complex
(Lyapina et al., 2001; Yang et al., 2002). Specifically, BARD1 or a 4 subunit BRCA1/BARD1/BRE/BRCC36
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Figure 4. Cancer-Causing Truncations of BRCA1 Abolished the Association of BRCC36 and BRCC

(A) Diagrammatic alignment of human BRCC36 (P46736), human Poh1 (AAC51866), and human Jab1 (NP_006828). The numbers represent
amino acid sequences, and the shaded boxes reflect the homologous domain. The numbers above the shaded boxes represent percent
identity and similarity of each protein to human BRCC36.
(B) Western blot analysis of the FLAG-BRCC36 affinity eluate. Antibodies used are shown to the right of the panel.
(C) Western blot analysis of complexes purified from full-length FLAG-BARD1, truncated FLAG-BARD1 (1–398), and truncated FLAG-BRCA1
(1–509) stable cell lines using antibodies to the right of the panel.
(D) Diagrammatic depiction of the six GST fragments of BRCA1 used for the protein-protein interaction analysis shown in (E).
(E) GST pull-down experiments demonstrating the association of BRCC36 and not the Jab1 subunit of signalosome with fragments 3 and 4
of BRCA1 shown in (D).
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Figure 5. BRCC36 and BRE Play a Role in E3 Ubiquitin Ligase Activity of BRCC

(A) Analysis of reconstituted 2 subunit and 4 subunit complexes by SDS-PAGE followed by silver staining and Western blot analysis using
the antibodies depicted. Asterisks denote nonspecific polypeptides.
(B) In vitro autoubiquitination assays using 2 subunit or 4 subunit complexes with the indicated amounts of E3.
(C) Quantification of (B). The amounts of ubiquitination product in each lane were quantified using ImageQuant 5.1. The highest amount of
ubiquitination product for each experiment was set to 100%. The result is an average of three different experiments � SEM.

complex. Insect cells were infected with viruses con- Involvement of BRCC36 and BRE in Response
to Ionizing Radiation and Checkpoint Controltaining either FLAG-BRCA1 and GST-BARD1 or FLAG-

BRCA1, FLAG-BRCC36, FLAG-BRE, and GST-BARD1. A number of studies have shown that cells carrying
inactivating mutations of BRCA1 display increased sen-Each complex was purified initially through a FLAG-

affinity column followed by GST-affinity purification. The sitivity to ionizing radiation and defective control of G2/
M checkpoint. To determine whether loss of BRCC36two complexes purified to homogeneity (Figure 5A) were

then utilized to assess the role of BRE and BRCC36 in the and BRE resulted in similar DNA repair defects, HeLa
cells were treated by siRNAs against BRCA1, BRCC36,E3 ubiquitin ligase activity of BRCA1/BARD1. Analysis of

the E3 ligase activity of an equal concentration of BRE, or control siRNA, and their responsiveness to ioniz-
ing radiation was measured (Figures 6A and 6B). TheBRCA1/BARD1 for each complex determined by colloi-

dal blue and quantitative Western blot analysis of the experiments were performed in triplicates comparing
the cells treated with siRNAs against BRCC36 or BRE,two complexes revealed an enhancement of ubiquitina-

tion by the 4 subunit complex (Figures 5B and 5C). Simi- to those treated with siRNAs against BRCA1 and control
siRNAs. BRCA1-, BRCC36-, and BRE-depleted cells dis-lar results were obtained when p53 was used as sub-

strate (data not shown). These results indicate that the played a potent increased sensitivity to ionizing radia-
tion at all doses examined (Figures 6C and 6D).two new subunits, BRCC36 and BRE, potentiate the E3

ligase activity of BRCA1/BARD1. We next asked whether depletion of BRCC36 and BRE
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Figure 6. Depletion of BRCC36 and BRE Results in Increased Sensitivity to Ionizing Radiation and Defects in G2/M Checkpoint Arrest

(A and B) Western blot analysis of HeLa nuclear extract 72 hr following transfection of siRNA against BRCC36, BRCA1, BRE, or control siRNAs.
(C and D) Treatment of HeLa cells with siRNA against BRCC36, BRE, or BRCA1 results in enhanced sensitivity to ionizing radiation. Cell
survival was assessed as detailed in the Experimental Procedures.
(E–G) HeLa cells were treated with siRNA against BRCA1, BRCC36, BRE, or control siRNA, and following treatment with ionizing radiation
their cell cycle progression was measured by FACS. Progression through mitosis was measured as detailed in the Experimental Procedures.
(E) represents one such experiment using siRNA against BRCC36 while (F) and (G) represent the quantification of at least three indepen-
dent experiments.

would result in disruption of the G2/M checkpoint arrest. pression levels of BRCC36 mRNA were dramatically in-
creased in about 75% of breast cancer cell lines (3 ofConsistent with a defect in G2/M checkpoint, analysis
4) (Figure 7A). Furthermore, the expression levels ofof mitotic cells following 2 and 4 Gy of ionizing radiation
BRCC36 mRNA were elevated in 58% (11 of 19) of theindicated that approximately 3-fold more BRCC36- and
breast tumors evaluated when compared to normalBRCA1-depleted cells entered into mitosis (Figures 6E
breast organoids (Figure 7B). A subset of these tumorsand 6F). Depletion of BRE resulted in a more moderate
(6 of 19) showed very high levels of expression relativedefect in G2/M checkpoint arrest (Figure 6G). Taken
to both the organoids and primary epithelial culturestogether, these results demonstrate that BRCC36 and
(Figure 7B). The difference in BRCC36 mRNA levels inBRE are not only components of a multiprotein complex
the normal organoids or primary epithelial cell cultureswhich modulate the enzymatic activity of BRCA1/
may be due to differences in age, parity, or hormonalBARD1 but also participate in a similar pathway of cellu-
status of the patients from whom the organoids werelar responsiveness to ionizing radiation.
derived or to the tissue-culturing conditions of the pri-
mary epithelial cells. To further validate the expression

Aberrant Expression of BRCC36 in Sporadic of BRCC36 in breast tumors, we performed qPCR analy-
Breast Cancer sis on laser-captured microdissection (LCM)-purified
Quantitative real-time PCR (qPCR) was performed to normal mammary ductal epithelial cells (NE) and malig-
evaluate the expression of BRCC36 mRNA levels in mul- nant epithelial (ME) cells. Two normal breast tissues and
tiple independent normal breast organoids (uncultured nine invasive ductal carcinomas were microdissected,
breast ducts composed of luminal and myoepithelial and the RNA was evaluated by RT-PCR (Figures 7C and
cells), primary epithelial cell cultures, nontumorgenic 7D). We found that 100% of these tumors (9 of 9) showed
breast epithelial cell lines, breast cancer cell lines, and elevated levels of BRCC36 mRNA relative to the normal
human breast tissue specimens surgically obtained from mammary ductal epithelium (Figure 7D). Seventy-seven
patients with primary invasive carcinoma as described percent of these tumors expressed very high levels of
in the Experimental Procedures section. In comparison BRCC36 (�20-fold) as compared to normal epithelial

cells.with nontumorigenic breast epithelial cell lines, the ex-
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Figure 7. Aberrant Expression of BRCC36 in Breast Tumors

(A) Analysis of breast tumor cell lines (SK-BR-3, T47D, MCF-7, and MDA-MB-468) and breast epithelial cell lines (MCF-12F, MCF-12A, and
MCF-10F) for BRCC36 mRNA expression using real-time PCR.
(B) Real-time PCR was used to analyze breast mammary organoids (OG), primary breast epithelial cells (BE), and breast tumors (TB).
The expression levels of BRCC36 were adjusted for �-actin expression, and the ratio for OG1 was set at 1, described in detail in the
Experimental Procedures.
(C) Depiction of a tumor section before and after laser capture microdissection procedure as described in the Experimental Procedures.
(D) Quantitative real-time PCR was used to analyze normal mammary ductal epithelial cells (NE) and malignant epithelial (ME) cells captured
by microdissection.

Discussion tivity. Although BRCC contains BRCA1, BRCA2, and
BARD1, there are a number of differences in the poly-
peptide composition of BRCC and complexes reportedThe key findings of this work lies in the following. First, it

demonstrates a multiprotein E3 ubiquitin ligase complex by others. Importantly, with the exception of substoichi-
ometric amounts of RAD51, BRCC does not stably asso-containing BRCA1, BARD1, and BRCA2 termed BRCC.

Second, it presents the increased association of RAD51 ciate with any known DNA repair factors. Indeed, frac-
tionation of BRCC by ion-exchange chromatographyand p53 with BRCC following treatment of cells with

DNA-damaging agents. Third, it shows that BRCC ubi- results in the separation of the bulk of RAD51 from the
other components of the complex (data not shown),quitinates p53 in vitro and this ubiqutination maps to the

C-terminal regulatory domain of p53. Fourth, it identifies suggesting a weaker interaction of RAD51 with the core
subunits of BRCC. We therefore favor the contentionBRCC36 and BRE as a bona fide subunit of the BRCC.

Fifth, through reconstitution of the BRCA1/BARD1/ that BRCC may not be playing a direct role in DNA repair,
but through its E3 ubiquitin ligase activity BRCC canBRCC36/BRE complex it demonstrates a role for

BRCC36 and BRE in modulation of BRCA1/BARD1 E3 regulate factors involved in DNA repair.
Both BRCA1 and BRCA2 have also been implicatedubiquitin ligase activity. Sixth, it provides, through the

use of siRNAs, support for a role for BRCC36 and BRE in DNA repair (Chen et al., 1998b; Moynahan et al., 1999,
2001; Scully et al., 1999; Yu et al., 2000; Zhong et al.,in cellular responsiveness to ionizing radiation and G2/M

checkpoint progression. Seventh, it presents evidence 2002). Moreover, both BRCA1 and BRCA2 were shown
to associate with RAD51 (Scully et al., 1997b; Mar-for aberrant expression of BRCC36 in sporadic breast

cancer. morstein et al., 1998; Wong et al., 1997; Chen et al.,
1998b; Mizuta et al., 1997; Davies et al., 2001). Here weBRCC represents a BRCA1/BRCA2/BARD1-con-

taining complex that displays an E3 ubiquitin ligase ac- show the increased association of RAD51with BRCC
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following DNA damage. Through this increased associa- pression are not clear. A possible scenario may involve
the disruption of the normal function of BRCC by overex-tion with RAD51, the BRCC complex may be targeted

to DNA damage sites. Once at sites of DNA damage, pressed BRCC36. Furthermore, since germline muta-
tions in BRCA1 and BRCA2 account for only 15%–20%the complex may modulate DNA repair by ubiquitinating

either chromatin or the components of the DNA repair of breast cancer that clusters in families and 5% of
breast cancer overall (Nathanson et al., 2001), BRCC36machinery. We have also observed an increased associ-

ation of p53 protein and BRCC following DNA damage. and other components of the BRCC complex may repre-
sent long sought after breast cancer susceptibilityMoreover, the C-terminal domain of p53 could be readily

ubiquitinated by BRCC in vitro. However, since the same genes.
domain of p53 is also the target of ubiquitination by

Experimental ProceduresMDM2 protein, further in vivo experiments are required
to demonstrate the biological relevance of p53 ubiquiti-

Affinity Purification of FLAG-BARD1
nation by BRCC. FLAG-BARD1 and a selectable marker for puromycin resistance

were cotransfected into 293 human embryonic kidney cells or H1299
human lung cancer cells. Transfected cells were grown in the pres-Two Novel Components of BRCC, BRCC36,
ence of 5 �g/ml puromycin, and individual colonies were isolatedand BRE Were Identified in This Study
and analyzed for FLAG-BARD1 expression. To purify the BRCCUsing recombinant subunits produced in insect cells, we
complex, nuclear extract from the FLAG-BARD1 cell line was incu-

were able to partially reconstitute a 4 subunit complex bated with anti-FLAG M2 affinity gel (Sigma). After extensive wash-
containing BRCA1/BARD1/BRE/BRCC36. This complex ing with buffer A (20 mM tris-HCl [pH 7.9], 0.5 M KCl, 10% glycerol,
displayed an increased ubiquitin E3 ligase activity com- 1 mM EDTA, 5 mM DTT, 0.5% NP40), the affinity column was eluted

with buffer A containing FLAG peptide (400 �g/ml) according to thepared to that of BRCA1/BARD1 heterodimer. Therefore,
manufacturer’s instructions (Sigma). Other FLAG-containing com-while BRCA1/BARD1 constitute a core enzyme com-
plexes were purified using a procedure similar to that described forplex, BRCC represents a holoenzyme containing addi-
full-length BARD1. Analysis of BRCC on gel filtration was similar to

tional regulatory elements such as BRE and BRCC36. that previously described (Bochar et al., 2000). 293-derived cells
While BRE does not display sequence homology to any were also treated with either 12 Gy of ionizing radiation, hydroxy-
known protein, BRCC36 is a protein with close homology urea, or thymidine as described (Scully et al., 1997c), and BRCC was

isolated as delineated above. Protein identification using LC-MS/MSto a subunit of the COP9 signalosome (Jab1) and a
was performed as detailed in Bochar et al. (2000) and Marmorsteinsubunit of the 19S proteasome (pad1). This homology
et al. (2001).consists of a recently described domain termed the

Jab1/MPN or JAMM domain which is predicted to en- Immunoblot Analysis
code a protein with ubiquitin or Nedd 8 deconjugating Anti-BRCC36 and anti-BRE antibodies were developed to peptides
activity (Verma et al., 2002; Cope et al., 2002; Yao and corresponding to the C-terminal last 20 amino acids of BRCC36

and BRE, respectively. Anti-Rad51 antibodies were obtained fromCohen, 2002). Although we were unable to show a de-
Upstate Biotechnology (NY). Anti-BARD1 antibodies were a gift ofconjugating activity for BRCC36 using either ubiquiti-
Junjie Chen.nated BRCA1 or synthetic ubiquitin chains, it may play

such a role once the true substrate is identified. Through Plasmid, siRNA, and Transfection
the use of siRNAs we delineated a role for both BRCC36 BARD1 and BRE were cloned in pFLAG-CMV2 (Sigma) vector, while
and BRE in responsiveness to ionizing radiation and BRCC36 were cloned in pCMV-5A (Sigma) vector using standard

PCR techniques. Baculoviral transfer vectors for expression ofthe progression through the G2/M checkpoint. Taken
BRCC36 and BRE were constructed by inserting FLAG-taggedtogether, these results demonstrate a role for BRCC36
cDNA sequences encoding BRCC36 and BRE into the pBlueBac4.5/and BRE in the DNA damage response pathway.
V5-His and pFastBacHTb plasmids (Invitrogen), respectively.We show that BRCC36 directly interacts with a frag- The siRNAs were synthesized by Dharmacon, Inc. The sequence

ment encoded by exon 11 of the BRCA1 gene. Isolation of BRCA1 siRNA was AA-CUUAGGUGAAGCAGCAUCU, the BRCC36
of BRCC from cell lines expressing BRCA1 with a trunca- siRNA was AA-GAGGAAGGACCGAGUAGAA, the BRE siRNA was

AA-GGUGCAGUACGUGAUUCAA, and the control siRNA was AA-tion in this region (a C-terminal truncation), which mimics
GUUACUCAGCCAAGAACGA. siRNA transfection was performedthe cancer-causing mutations of BRCA1, resulted in the
with Lipofectamine 2000 (Life Technologies, Inc.) according to theloss of BRCC36 from the BRCC. Interestingly, C-terminal
manufacturer’s instructions. In brief, cells were plated in 10 cm dishtruncations of BARD1 did not have a destabilizing activ- to 40% confluence. For each dish, 1.6 nmole siRNA was mixed with

ity on the components of BRCC. This may indicate that, 20 �l Lipofectamine 2000 in 3 ml Opti-MEM. The mixture was added
while cells may be able to tolerate the truncating muta- to cells and incubated for 6 hr. Twenty-four hours later, a second

transfection was performed in the same way. Cells were treated ortions of BARD1, similar mutations in BRCA1 lead to a
harvested as indicated 72 hr after the initial transfection.disruption of BRCC integrity and a concomitant deregu-

lation of growth stimulatory pathways.
Purification of Recombinant ProteinsSince germline mutations of BRCA1 and BRCA2
and Protein-Protein Interaction

genes result in breast cancer, we were interested to (His)6-E1 and E2 proteins were purified form bacteria as described
know whether there were mutations in BRCC36 in breast by Kamura et al. (1999). Bacterial expressed BRCA1 and BARD1

was purified as described (Chen et al., 2002). For in vitro interactiontumors. Although our preliminary analysis of sporadic
studies, whole-cell extracts from BL21 (GST-BRCA1 fragments 1–6)breast tumors did not yield any mutations in the BRCC36
were prepared. Five micrograms of purified (His)6-FLAG-BRCC36gene (data not shown), we found a profound increase in
protein was incubated with 10 �g of purified GST-BRCA1 fragmentBRCC36 expression in breast tumors. Mircodissection
in binding buffer (20 mM Tris-HCl [pH 7.9], 0.1 M KCl, 10% glycerol,

analysis of the mammary epithelial ducts from these 1 mM EDTA, 2 mM MgCl, 2.5 mM DTT, 0.1% NP40) for 2 hr at 4�C
tumors revealed increased BRCC36 expression in every with inversion. Glutathione-sepharose beads (Pharmacia), pre-

viously equilibrated in binding buffer, were added to the samplestumor analyzed. The consequences of BRCC36 overex-
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and inverted for an additional 2 hr at 4�C. Beads were collected by cultured in DMEM/F12 with reduced Ca2� (0.04 mM final), 20 ng/ml
epidermal growth factor, 100 ng/ml cholera toxin, 0.01 mg/ml insulin,centrifugation at 2000 � g for 30 s, washed several times in binding

buffer containing 500 mM KCl and 0.1% NP-40, and resuspended 500 ng/ml hydrocortisone, and 5% Chelex-treated horse serum.
Surgical Specimensin 2� SDS loading buffer. Proteins were resolved by SDS-PAGE,

and Western blot analysis was performed using anti-FLAG antibod- Nineteen human breast tissue specimens were surgically obtained
from patients with primary invasive carcinoma at Fox Chase Canceries (Sigma).
Center from year 2000 to the present. Grading of histological malig-
nancy of each specimen was assessed according to the systemReconstitution of 2 Subunit and 4 Subunit Complexes
reported previously (Bloom and Richardson, 1957; Elston and Ellis,Recombinant viruses encoding FLAG-BRCC36 and FLAG-BRE-
1991). Lymphonodal metastatic statuses were determined by histo-(His)6 were obtained by transfecting Sf9 cells with the FLAG-
pathological examination in each case according to the pTNM clas-BRCC36/pBlueBac4.5 and FLAG-BRE/pFastBacHTb vectors, re-
sification as proposed by the International Union Against Cancer.spectively, using BAC-N-BLUE linear transfection kit (Invitrogen).
All the samples were snap-frozen in liquid nitrogen and keptSf9 cells were coinfected with FLAG-BRCA1 and GST-BARD1 re-
at 	80�C until used.combinant baculoviruses (kindly provided by Dr. Richard Baer) for
Laser Capture Microdissectionreconstitution of 2 subunit complex, and FLAG-BRCA1, GST-
LCM was preformed as previously described (Cvetkovic et al., 2003).BARD1, FLAG-BRCC36, and FLAG-BRE for 4 subunit complex. Cells
Quantitative Real-Time PCR Analysiswere harvested 72 hr after infection, and the cell pellet was resus-
0.6 microliters of the cDNA mixture was used in a real-time PCRpended in lysis buffer (50 mM HEPES [pH 7.9], 250 mM NaCl, 0.1%
reaction (25 �l total volume) performed with Smart Cycle TD (Ceph-Nonidet P-40, 10 mM 2-mercaptoethanol, 10% glycerol) with prote-
eid, Sunnyvale, CA) following the methods recommended by thease inhibitors (Roche Diagnostics). Cells were broken by sonicating,
manufacturer. Optimal conditions were defined as: Step 1, 95�C forand the cell debris was removed by centrifugation at 30 K for 30
10 min; Step 2, 95�C for 15 s, 60�C for 60 s with Optics; repeated formin at 4�C. The supernatants were incubated with anti-FLAG affinity
50 cycles. The relative mRNA expressions of BRCC36 were adjustedresin (Sigma) for 2 hr at 4�C, washed three times with wash buffer
with ACTB. The primer and probe sets used for real-time PCR were(20 mM Tris-HCl [pH 7.9], 10 mM 2-mercaptoethanol, 10% glycerol,
as follows: BRCC36, forward primer, 5
-AATTTCTCCAGAGprotease inhibitors) containing 750 mM KCl, and eluted with lysis
CAGCTGTCTG-3
; reverse primer, 5
-CATGGCTTGTGTGCGAACAT;buffer containing 500 �g/ml FLAG peptide. The eluates were incu-
Taqman probe, (FAM) 5
-AACTGACAGGCCGCCCCATGAG-3
bated with glutathione-agarose beads (Sigma) for 3 hr at 4�C and
(BHQ1); ACTB, forward primer, 5
-GCCAGGTCATCACCATTGG-3
;washed twice with wash buffer containing 500 mM Kcl and twice
reverse primer, 5
-GCGTACAGGTCTTTGC-GGAT; Taqman probe,with elution buffer (20 mM Tris-HCl [pH 7.9], 50 mM NaCl, 1 mM
(Cal red) 5
-CGGTTCCGCTGCCCTGAGGC-3
 (BHQ2).dithiothreitol, 10% glycerol, protease inhibitors). The beads were

then eluted with elution buffer containing 20 mM glutathione. The
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