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ABSTRACT 

This thesis considers the problem of protecting an electrical power grid against a 

potential attack on its physical infrastructure.  We develop a mathematical model, called 

“Defense of Known Interdictions” (DKI), that identifies the optimal set of components to 

defend in an electrical power grid given limited defensive resources.  For a small test 

network, we show that defending fewer than 10% of the buses reduces the possible 

disruption from an attack by over 20%.  Previous research has developed optimization 

models, called I-DCOPF, to find optimal or near optimal interdiction plans for electrical 

power grids.  DKI solution time is determined by I-DCOPF solution time.  We develop a 

model, called the Network Dual Relaxation (NDR), to replace I-DCOPF and reduce 

solution times.  NDR approximates electrical power grid behavior as a minimum cost 

network flow and uses this approximation to quickly estimate a lower bound for the exact 

interdiction model.  We test NDR on a portion of the North American power grid with a 

computational limit of 6000 seconds. Results with ten buses defended show that NDR 

finds solutions that are, on average, 40% better than those of the exact I-DCOPF model 

with a significant reduction in computational time. 
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EXECUTIVE SUMMARY 

This thesis considers the problem of protecting an electrical power grid against a 

potential attack on its physical infrastructure. 

The size and complexity of the U.S. electrical power grid increase the potential of 

a large scale blackout such as the one that struck portions of the Northeastern United 

States and parts of Ontario, Canada on 14 August 2003.  This blackout had an estimated 

economic cost of up to $10 billion, left some customers without power for four days, and 

highlights the vulnerability of the U.S. electrical power grid.  A well-planned, deliberate 

attack against the power grid could have a far greater impact, both in terms of disruption 

of services and economic cost.  Identifying how to optimally allocate limited resources to 

protect the power grid is the key to making it more resilient to such attacks. 

We develop mathematical models and algorithms to identify sets of components 

which, if protected, would minimize the damage from a potential, coordinated attack on 

one or more unprotected components.  We integrate this model into the optimization 

module of the Vulnerability of Electrical Grids Analyzer (VEGA) decision-support 

system developed by researchers at the Naval Postgraduate School. 

A trilevel defender-attacker-defender (DAD) problem represents a two-person 

game between a defender who attempts to minimize potential damage to a system by 

protecting key components with limited defensive resources, and an attacker who seeks 

to inflict maximum damage by destroying vulnerable components with limited offensive 

resources.  With fixed defenses, the DAD model becomes a bilevel attacker-defender 

model (AD) that optimizes interdiction decisions assuming that the system will be 

operated optimally after interdiction.   

This thesis develops a model called “Defense of Known Interdictions” (DKI), and 

an associated “DKI algorithm” to solve the DAD problem for electrical power grids.  

Previous research has developed an optimization model, “I-DCOPF,” to solve, at least 

approximately, the AD model for this problem.  The DKI algorithm identifies a set of 

electrical components to protect (defend) by exchanging information with the I-DCOPF 



 xvi

model:  For each specification of a protection plan, I-DCOPF generates a sequence of 

possible attacks (including the optimal one).  For these attacks, the DKI model suggests a 

defensive plan.  The I-DCOPF – DKI interaction continues with instances of protection 

and attack plans until it can be demonstrated that the incumbent defensive plan cannot be 

improved.  

We integrate the DKI algorithm into VEGA and test it using the IEEE Three Area 

1996 Reliability Test System (RTS 3-Area) network, consisting of 73 buses and 120 

lines.  For this test network, we show that defending fewer than 10% of the buses reduces 

the possible disruption from an attack by over 20%.  The DKI algorithm effectively 

solves the DAD problem for electrical power grids; however, solving I-DCOPF requires 

the majority of the computational time in the algorithm, over 99% of the time for all 

scenarios tested.  This motivates the next part of the thesis. 

We explore one method to avoid the long solution times associated with I-

DCOPF.  Currently, I-DCOPF is solved using a decomposition-based algorithm in which 

a coordinating (master) problem and an operating (sub-) problem yield upper and lower 

bounds, respectively, on the optimal solution to I-DCOPF.  By relaxing the electrical 

impedance constraints in the operating problem, we can approximate power-grid 

behavior as a minimum cost network flow.  Using this approximation, we develop a 

model called Network Dual Relaxation (NDR) that quickly generates a solution that is 

often very close to the optimal solution to the original I-DCOPF.  We integrate this model 

into VEGA and carry out tests on the RTS 3-Area network.  For all cases considered, 

NDR exactly predicts the optimal interdiction in less than 5% of the time required by the 

exact I-DCOPF model.  We also test NDR on a portion of the North American power 

grid consisting of 5,000+ buses and 6000+ lines.  With ten buses defended, and with a 

6000 second time limit, NDR finds solutions that are, on average, 40% better than those 

of the exact I-DCOPF model with a significant reduction in computational time. 
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I. INTRODUCTION 

Electrical power is a vital asset to the United States.  This thesis considers the 

problem of protecting an electrical power grid from a potential attack on its physical 

infrastructure.  Such an attack against an electrical generation and transmission grid in the 

U.S. could have severe consequences.  Our objective is to develop and implement 

mathematical models and algorithms that optimally allocate limited defensive resources.  

In particular, these models identify sets of components which, if protected and thereby 

made invulnerable, would minimize the damage from a coordinated attack on a group of 

unprotected components.  In order to accomplish this task, we extend previous research 

that seeks to identify critical components, from both an attacker’s and defender’s 

perspective. 

A. VULNERABILITY OF THE U.S. ELECTRICAL POWER GRID 

Electricity powers everyday life, and modern society depends on reliable 

generation, transmission, and distribution of electrical power.  The National Strategy for 

the Physical Protection of Critical Infrastructures and Key Assets [U.S. Department of 

Homeland Security 2003] emphasizes that, “were a widespread or long-term disruption of 

the power grid to occur, many of the activities critical to our economy and national 

defense…would be impossible.” 

Disruptions in electrical power service can come from various sources.  On 14 

August 2003, a combination of weather, equipment failure, and operator error resulted in 

a massive blackout over large portions of the Northeastern United States and parts of 

Ontario, Canada.  Some locations did not have power restored for four days.  The 

estimated cost of the blackout was between $4 and $10 billion to the U.S. and $2 billion 

to Canada [U.S.-Canada Power System Outage Task Force 2004].  Although human error 

contributed significantly to its final extent, the blackout began inconspicuously when 

high voltage transmission lines contacted overgrown trees.  This incident highlights the 

vulnerability of the electrical power grid and the economic consequence of disruptions of 

service. 
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Electrical power providers continuously monitor their transmission grids to limit 

the likelihood of large-scale blackouts.  In electrical power engineering, system security 

standards such as “N−1” and “N−2” entail operating the transmission grid so that the loss 

of one or two components, respectively, does not cause a cascading blackout [Wood and 

Wollenberg 1996].  These standards ignore malicious attacks that could cause the failure 

of more than two components, and they also ignore the loss of a multi-component 

systems, such as substations, which may have several buses and transformers in a single 

geographic location. 

With the increased threat of terrorist activity, electric companies must face the 

possibility of deliberate, intelligent attacks against the transmission grid.  In the National 

Transmission Grid Study, the U.S. Department of Energy [2002] states that “new 

technologies and operating practices are now needed to protect the transmission system 

against deliberate, coordinated attacks.”  Accordingly, the North American Electric 

Reliability Corporation (NERC), the organization tasked with improving the reliability 

and security of the power system, has established a Critical Infrastructure Protection 

Committee to assess the cyber and physical security of the electric transmission grid. 

The immense size of the U.S. electrical transmission grid makes physical 

protection of all its components impossible.  Certain components of the transmission grid 

such as generation plants and control centers are staffed continuously and have multiple 

layers of physical security.  Other critical components, such as substations, are routinely 

unattended, and therefore more vulnerable to attack.  Many substations are considered 

critical assets, meaning their loss “would have a significant impact on the ability to serve 

large quantities of customers for an extended period of time” [NERC 2004].  Proper 

identification of the sets of most critical components is a necessary step to ensure that 

limited resources are optimally allocated to enhance the reliability and security of the 

U.S. power grid. 

B. SYSTEM INTERDICTION AND DEFENSE 

In a “system-defense model,” a “defender” seeks to limit the amount of damage 

an aggressor can inflict by attacking the defended system.  The defender uses limited 
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defensive resources to protect certain system components, making them less vulnerable to 

attack.  In order to properly identify the crucial components to defend, the defender must 

understand how a potential aggressor would attack or “interdict” the system.  System 

interdiction refers to the attacker’s role.  The “attacker” seeks to inflict maximum damage 

by destroying system components using limited offensive resources. 

The system-defense problem can be viewed as a three-stage, two-person game 

between the defender and attacker.  First, the defender hardens or protects certain system 

components.  Next, the attacker, knowing which components are protected and which are 

not, interdicts (attacks and destroys) unprotected components in order to inflict maximum 

damage.  Finally, the defender operates the undamaged portion of the system in the most 

efficient manner.  In an electrical grid, this will typically mean minimizing the post-

attack “disruption,” i.e., unmet demand for electricity.  (Disruption can also include 

increased costs for meeting any or all demand.)  As described, the defender has two roles: 

to physically protect the system, and to operate the system efficiently.  Although these 

roles are often filled by distinct entities, they share a common goal and can be viewed as 

a single player in this two-person game. 

Mathematical models can be used to solve this system-defense game.  Brown, 

Carlyle, Salmeron, and Wood [2006] propose a trilevel defender-attacker-defender 

(DAD) model to find optimal sets of components to defend, given worst-case interdiction 

and optimal, post-interdiction, system operation.  With fixed defenses, the DAD model 

becomes a bilevel attacker-defender (AD) model that optimizes system interdiction given 

optimal, post-interdiction, system operation. 

The basic model for the AD and DAD problems has the defender fill the role of 

system operator.  Here, the defender seeks to minimize “cost” by efficient operation of 

the system.  The defender’s problem (D) can be expressed as: 

( )D min
y Y

cy
∈

 

where c is a vector of component operating costs and y is the activity level for each 

component. All operating constraints are represented by y Y∈ .  “Activity level” will 
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represent current flow, or generation, or level of unmet demand in our electric-power 

problem, Costs will include costs of generation as well as penalties for unmet demand. 

The attacker seeks to inflict maximum damage by interdicting components in the 

system.  This damage can be viewed as additional costs that the defender must incur by 

operating the interdicted system.  The bilevel attacker-defender (AD) problem is: 

( )
( )

AD max min
y Y xx X

cy
∈∈

 

where x is a binary vector that defines which system components are interdicted, 

x X∈ represents the set of constraints on the attacker’s resources (and the fact that x must 

be binary), and ( )Y x  represents feasible operating conditions for the defender after 

attack x.  AD assumes that the attacker has perfect information regarding the system, 

including how the defender will operate the system after any given attack.  This is a 

reasonable, conservative assumption for the defender. 

The final step is to protect key components in the system, making them 

invulnerable to attack.  (Defenses that imbue only partial invulnerability can also be 

modeled with this paradigm.)  This level of defense creates the following trilevel 

defender-attacker-defender model: 

( )
( ) ( )

DAD min max min ,
w W y Y xx X w

cy
∈ ∈∈

 

where w is a binary vector indicating which components are defended (protected), 

w W∈ is the set of constraints imposed on the defender, and ( )X w  is the set of feasible 

attacks after defense. 

1. Interdicting Electrical Power Grids 

The bilevel AD model can be used to find optimal attacks on electrical power 

grids.  Salmeron et al. [2003, 2004-I, 2004-II, 2005, 2007], Alvarez [2004], Carnal 

[2005], and Schneider [2005] have applied these techniques to study power-grid 

interdiction, where the aggressor attacks components in the grid to maximize disruption.  

Disruption may be expressed as “total load shed” which is total unsatisfied demand for 

electricity expressed in terms of either power or energy, or as a cost with a dollar value 
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per unit of load shed.  The latter case is desirable if the cost of load shed varies among 

buses and/or customer sectors.  For example, shedding power from a hospital could be 

deemed more costly than from a residential area.  (Actually, “total disruption cost” will 

also include increased generation costs resulting from interdiction, but these will 

normally be much smaller than the penalty costs for unmet demand and can be ignored 

for the most part.) 

a. DCOPF 

The basic operating model (the “D” model in “AD”) is known as the 

Direct Current Optimal Power Flow model (DCOPF).  This model minimizes the total 

cost of operating an electrical power grid by proper selection of power generation levels.  

Total cost is defined as the cost of generating electricity plus a penalty cost for load shed.  

Power generation levels determine the amount of load shed and the phase angle at each 

bus, which determines the amount of power each line carries. 

Appendix A.1 provides the formulation for DCOPF.  That formulation 

includes DC lines which are omitted from the following discussion for brevity.  The 

objective function, Equation A.1 is shown below: 

, , ,
min

Gen Line

Gen
g g ic ic

P P S g i c

h P f S
θ

+∑ ∑∑  

The first term represents the cost of generating power; the second represents the cost of 

load shed. 

Equation A.3 is the balance-of-flow constraint: 

( ) ( )
( )Gen Line Line

g l l ic ic
g cl o l i l d l i

P P P d S i
= =

− + = − ∀∑ ∑ ∑ ∑  

This states that for each bus i, the amount of power generated at the bus plus the net 

power inflow at the bus equals satisfied demand less unsatisfied demand (total demand 

minus load shed). 

The electrical impedance constraint, Equation A.2, is shown below: 
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( ) ( )( )Line
l l o l d lP B lθ θ= − ∀  

This equation relates the power on a line to that line’s impedance through its susceptance, 

lB , and the change in phase angle, θ , across the line. 

Our DCOPF model is a simplified, linear representation of the true 

behavior of an electrical power grid.  DCOPF only models active power flow, neglecting 

reactive power and transmission losses.  Also, DCOPF assumes that changes in voltage 

magnitudes have minimal effect on real power, and can be neglected.  (Full power flow 

models exist that account for reactive power flow, transmission losses, and voltages 

drops; however, these models are nonlinear and are much more difficult to solve.)  

Despite the approximations, DCOPF is expected to yield sufficiently accurate solutions 

for AD and DAD problems for our electric-power applications: Wood and Wollenberg 

[1996] state that “DC power flow is useful for rapid calculations of real power flows, and 

…is very useful in security analysis studies.”  Overbye, Cheng, and Sun [2004] and 

Purchala, Meeus, Van Dommelen, and Belmans [2005] conclude that DCOPF is an 

adequate tool for modeling real power flow, noting that the largest deviations from full 

power flow models occur on lightly loaded lines.  But, lightly loaded lines will probably 

have only small effects in the AD and DAD problems for electric power.  Alvarez [2004] 

compares DCOPF and a full AC power flow model on an electric grid before and after 

interdiction, also concluding that DCOPF yields an acceptable approximation. 

Note:  Hereafter, except where specified, “D,” “AD” and “DAD” all refer 

to the electric-power versions of these generic models. 

b. I-DCOPF 

Salmeron et al. [2004-I] develop an interdiction model known as I-

DCOPF.  This model solves the AD problem with DCOPF used as the model for system 

operation.  Appendix A.2 contains the formulation for I-DCOPF.  Various techniques 

have been suggested for solving I-DCOPF including heuristics, conversion to a mixed-

integer program (MIP), and decomposition methods. 
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I-DCOPF is a max-min problem and cannot be solved using standard 

mathematical-programming techniques.  Salmeron et al. [2004-II] present a method for 

converting I-DCOPF into a standard maximizing MIP, by first linearizing and then taking 

the dual of the DCOPF problem with additional interdiction variables.  Although this 

formulation can solve I-DCOPF on small test grids, the MIP formulation is intractable for 

realistically sized networks. 

Brown et al. [2006] and Salmeron and Wood [2007] present a Benders 

decomposition-based algorithm for solving I-DCOPF.  The Benders subproblem is the 

DCOPF model that is first solved for the non-interdicted network.  The master problem 

then finds an upper bound on the interdiction problem by optimistically estimating the 

amount of disruption the attacker can inflict based on the DCOPF solution.  The master 

problem (MP) can be stated as: 

(MP) 
,

max
z

z
δ

  

                s.t. ( ) ( ), for 1,..., ,pz f g p p Pδ δ≤ + =  

where p is the iteration number; pδ is the interdiction plan for the p-th subproblem (δ  

replaces x in this AD model to avoid confusion with the electrical engineering use of “x” 

which typically represents reactance); ( )pf δ  is the minimum total system operating cost 

(generation plus penalty costs) given interdiction plan pδ ; and ( ),g p δ  is an upper 

bound on the amount of additional damage that can be inflicted if interdiction plan δ  

occurs after pδ .  In particular, ( ), 0pg p δ = , so the p-th constraint (“Benders cut”) 

evaluates ( )pf δ  exactly if pδ δ= .  Otherwise, the p-th cut overestimates disruption and 

therefore MP yields an upper bound on the optimal interdiction plan.  The master 

problem also includes interdiction resource constraints, δ ∈∆ , and solution-elimination 

constraints (not listed) which ensure that previously explored interdiction plans are not 

repeated. 

Solving MP produces an interdiction plan, pδ , and an upper bound on the 

optimal cost, pz .  The DCOPF subproblem is then re-solved with the given set of 
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interdicted components, and another cut is added to MP before solving it again.  This 

process is repeated until the lower bound (from the most disruptive interdiction plan 

evaluate through the subproblem) and the upper bound (from the master problem) 

converge. 

C. THESIS OBJECTIVES 

The purpose of this thesis is to develop a new mathematical model to solve the 

DAD problem for electrical power grids and integrate this model into the Vulnerability of 

Electrical Grids Analyzer (VEGA) optimization module.  VEGA is a decision-support 

system [Salmeron et al. 2005; Wood and Salmeron, 2006; Salmeron and Wood, 2007] 

that implements AD algorithms for electrical power grids.  It also implements the 

prototype DAD algorithm described by Brown et al. [2006].   

We also explore a method to reduce the solution time for the I-DCOPF model.  

Successful solution of the DAD problem depends on rapid solution of AD.  We evaluate 

how the solution to AD can be expedited by relaxing the impedance constraints in I-

DCOPF.  This enhancement is integrated into VEGA as an added functionality. 

D. THESIS OUTLINE 

Chapter II introduces a model and solution algorithm entitled “Defense of Known 

Interdictions” (DKI) that solves the DAD problem for electrical power grids.  Chapter III 

develops and tests a model called “Network Dual Relaxation” (NDR) that improves I-

DCOPF solution time.  Chapter IV presents conclusions and recommendations. 
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II. DEFENSE OF KNOWN INTERDICTIONS 

A. INTRODUCTION TO DKI 

The generic DAD model defines a type of a two-person game.  Israeli [1999] 

develops a nested algorithm for solving DAD when the inner “D” represents a standard 

shortest-path problem on a network.  In this algorithm, the defender proposes a set of 

defended components (network arcs) and the attacker solves the corresponding AD 

problem to find an interdiction set that maximizes disruption (increase in shortest-path 

length) to the defended system.  The defender then responds to block the attacker’s 

interdiction plan, if possible, but he is not allowed to repeat any previous defense plan.  

The algorithm identifies an optimal defense plan when the restricted lower bound from 

the defense master problem exceeds the value of the best interdiction plan found. 

This section develops a new model, called “Defense of Known Interdictions” 

(DKI), and uses that in a new iterative algorithm, denoted ADKI, to find optimal 

defensive sets for the electric-power DAD.  At each iteration of the algorithm, the 

attacker proposes an interdiction plan consisting of a set of interdicted components.  The 

resulting cost (implicitly, disruption) is evaluated by the basic operating (D) model.  In 

order to “prevent” a given interdiction plan, the defender must protect at least one 

component from the corresponding interdiction set.  DKI uses this fact to find an optimal 

defensive set based on all of the interdiction plans proposed so far. 

If all of the possible interdiction plans (and their disruption levels) can be 

explicitly enumerated, then finding the best defense is relatively easy.  At least one 

component from the most damaging (costly) interdiction plan must be defended, and then 

one from the second most damaging interdiction plan, and so on.  This is repeated until 

the defensive resource is depleted.  This principle is demonstrated in the following 

example. 
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Figure 1 shows a simple, six-bus electrical grid.  Bus and line parameters are 

included in Tables 1 and 2, respectively.  Assuming the attacker will interdict exactly two 

buses, fifteen possible interdiction plans exist.  These are enumerated in Table 3. 

 
 

Figure 1.   Six-bus electrical grid to demonstrate ADKI.  Buses are labeled B01-B06. 
 
 
 

Bus 
Name 

Demand id   
(MW) 

Shedding 
Cost if  

($/MWh) 

Generation 
Capacity Gen

gP
(MW) 

Generation 
Cost gh  

($/MWh) 
B01 10 100 25 1.0 
B02 25 100 60 1.0 
B03 15 100 0 0.0 
B04 10 100 15 1.0 
B05 15 100 0 0.0 
B06 15 100 0 0.0 

 

Table 1.   Bus data for the six-bus grid in Figure 1.  See usage of parameters in the DCOPF 
model in Appendix A. 
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Line l  
Name 

Origin 
Bus ( )o l  

Destination 
Bus ( )d l  

Capacity Line
lP  

(MW) 
Resistance lr   

(per unit) 
Reactance lx  

(per unit) 
L12 B01 B02 60 0.003 0.014 
L16 B01 B06 25 0.033 0.127 
L23 B02 B03 30 0.050 0.192 
L34 B03 B04 30 0.023 0.088 
L45 B04 B05 30 0.014 0.061 
L56 B05 B06 25 0.010 0.074 

 

Table 2.   Line data for the six-bus grid in Figure 1.  See usage of parameters in the DCOPF 
model in Appendix A. 

 

 

Interdiction 
Set 

Shed 
(MW) 

Cost 
($) 

Interdiction 
Set 

Shed 
(MW) 

Cost 
($) 

{B01, B02} 75 7515 {B03, B06} 40 4050 
{B02, B04} 65 6525 {B04, B06} 40 4050 
{B02, B06} 65 6525 {B03, B04} 30 3060 
{B01, B03} 50 5040 {B03, B05} 30 3060 
{B01, B04} 50 5040 {B05, B06} 30 3060 
{B02, B03} 50 5040 {B01, B06} 25 2565 
{B02, B05} 50 5040 {B04, B05} 25 2565 
{B01, B05} 40 4050    

 

Table 3.   All possible interdiction plans for the six-bus grid in Figure 1 assuming the 
attacker interdicts exactly two buses.  Resulting disruption in terms of load shed 
and total cost is included.  Duration of the study is one hour.  That is, costs are 
evaluated only over the first hour after interdiction. 

 

Inspection of Table 3 shows that the defender must defend either B01 or B02 (or 

both) to prevent the most severe attack.  However, B02 is the more intuitive choice 

because it also prevents the second and third most severe attacks.  With B02 defended, 

the optimal interdiction set is either {B01, B03} or {B01, B04} with a resulting total cost 

of $5040.  Defending B01 instead of B02 results in two possible interdiction sets with 

$6525 of total cost, {B02, B04} and {B02, B06}.  Similarly, it is apparent that the best 

two-bus defense is B01 and B02 with a resulting total cost of $4050, and the best three-

bus defense is B01, B02, and B06 with a $3060 total cost. 



 12

Scaparra and Church [2006] utilize this concept of interrupting an interdiction 

plan by defending at least one component to defend a service-supply network.  Their 

network contains p facilities and a set of costumers, with each costumer serviced from the 

nearest facility.  The purpose of defending the network is to: 

 
Identify the set of q facilities to secure or “fortify”, so that after interdiction, the 
remaining system operates as efficiently as possible. 

 
Likewise, they define the interdiction problem as: 
 

Of the p existing locations of supply, find the subset of r facilities, which when 
removed, yields the highest level of weighted distance. 

 
The algorithm they develop is based on the following observation: 
 

Let I be the set of r interdictions in the optimal solution to the lower-level 
(interdiction) problem without fortification.  Then the optimal set of q 
fortifications must include at least one of the r facilities in I. 

 

Scaparra and Church apply this observation recursively using an enumerative, 

tree-search algorithm to solve for the optimal defense.  This algorithm finds the optimal 

interdiction plan for the undefended network (r interdicted components), which becomes 

the root node.  One branch is defined for each interdicted component, and that component 

is defended.  Next, the optimal interdiction is evaluated for each of the r defended 

networks, and again r branches are defined for each node.  This continues until all 

possible defenses are considered (q defended components results in a tree depth of q+1). 

Figure 2 illustrates this concept for the six-bus grid assuming two defended and 

two interdicted components (q = r = 2).  Interdiction sets are represented with brackets, 

such as {B01, B02}, and defensive sets use parentheses, such as (B01).  The notation 

( )B02, B01  shows that bus B02 is defended and B01 is not.  The optimal defense, 

optimal attack on the defended network, and resulting total cost correspond to the node 

with the lowest total cost (defend (B01, B02), attack {B03, B06}, total cost $4050).  
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{ }B01, B02
$7515

{ }B02, B04
$6525

{ }B01, B03
$5040

{ }B03, B06
$4050

{ }B02, B06
$6525

{ }B01, B04
$5040

( )B04, B02 ( )B03

( )B02, B01( )B01

( )B02

 
 

Figure 2.   Enumeration tree to solve the six-bus example of Figure 1 assuming two defended 
and two interdicted components.  Each node shows the optimal interdiction and 
resulting disruption in terms of total cost. 

 

B. THE DKI MODEL 

The DKI model uses the same concept of protecting at least one component 

among those in any incumbent interdiction plan in order to disrupt such an attack.  

However, instead of considering only one worst-case attack at a time (see Figure 2), we 

simultaneously examine multiple interdiction plans including (but not limited to) the 

incumbent optimal to determine the recommended defensive plan.  In Section I.1.b we 

described the decomposition-based algorithm to solve I-DCOPF (AD), showing that the 

process generates Benders cuts that correspond to feasible interdiction plans, in addition 

to the optimal one.  DKI explicitly uses all known interdiction plans to provide a tentative 

defensive plan. 
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In the following formulation, we express disruption through total operating cost, 

without loss of generality.  (Disruption is simply interdicted operating cost less the 

nominal operating cost, which is a constant.)  The DKI model finds an optimal defense 

against a set of known interdiction plans, which will be form a subset of all possible plans 

in practical applications.  The DKI model formulation follows: 

 

Indices and Index Sets: 

 Subset of all possible interdiction plansp P∈  

 Components that may be interdictedc C∈  

Parameters and [units] if applicable: 

Minimum operating cost given interdiction plan  [$]pDamage p
Cost to defend component  [$]iDC i  

 Total defensive resource [$]DR  

 , 1 if component  is interdicted by plan ,  

0 otherwise
c p c pδ

 

Decision Variables: 

 Objective valuez  

 1 if component  is defended, 0 otherwiseiw c  

 

Formulation: 

(DKI) 
,

min
z w

z  

s.t. ,1p c p c
c

z Damage w p Pδ⎛ ⎞≥ − ∀ ∈⎜ ⎟
⎝ ⎠

∑   (2.1) 

  c c
c

DC w DR≤∑       (2.2) 

  { }0,1cw c C∈ ∀ ∈  

  0z ≥  
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The objective function, z, represents the amount of damage caused by the most 

severe interdiction plan that cannot be defended against.  If at least one component from 

every interdiction plan p P∈  is defended ( , 1c pδ =  and 1cw =  for at least one c  in every 

p ), then constraints (2.1) imply pz α≥  where 0pα ≤  for all p P∈ , and the non-

negativity of z  implies the optimal objective value is 0z = .  If none of the components 

from a given interdiction plan p are defended, constraint (2.1) implies pz Damage≥ .  

Constraint (2.2) is the defensive-resource constraint. 

The DKI ( )P  model produces an optimal defensive plan against the known 

interdiction plans p P∈ .  The optimal objective value gives the value of the worst 

interdiction that cannot be defended with the given resources.  This is a lower bound on 

the optimal objective value to DAD because P is only a subset of all possible interdiction 

plans.  DKI can be applied in an iterative algorithm (ADKI) to solve DAD.  Constraints 

of the form pw w≠  for all p P∈  are added to prevent previous defensive plans from 

recurring.  Since pw  is binary, these elimination constraints are easy to implement. 

DKI solves quickly.  Since only the components for which interdiction plans have 

been generated are considered, this mixed-integer problem is smaller than that of the 

master problem in the I-DCOPF model, which, by construction, is very dense.  The size 

of the problem can be reduced further by only including proposed interdictions with cost 

above a given threshold.  For example, only proposed interdictions with damage greater 

than the incumbent lower bound on the DAD model need be considered. 

Figure 3 shows a flowchart of the ADKI process.  The first step is to initialize the 

lower bound (LB) to zero, empty the set of interdiction plans P, and solve I-DCOPF for 

the undefended network.  The result is the worst-case attack on the network, and this 

becomes the initial upper bound.  The next step is to solve DKI ( )P .  This yields a 

recommended defense plan for the given set of interdiction plans and the cost of the most 

severe attack that cannot be defended, which becomes the updated lower bound.  The 

defender cannot lower his cost below this bound without additional resources.  With the 

recommended defense plan from DKI ( )P , the next step is to find the optimal attack 
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against the defended network.  If the resulting cost improves the upper bound, the bound 

is adjusted and that defense plan becomes the incumbent solution.  The upper bound 

represents the maximum damage that the attacker can cause without using additional 

resources.  The upper and lower bound are now compared to each other for convergence, 

providing a termination criterion.  The DKI algorithm is solved to find a new defensive 

plan, enforcing the constraint pw w≠  for all p P∈ , and the above steps are repeated.  

This algorithm eventually produces an optimal defensive plan, a corresponding optimal 

attack on the defended network, and the resulting costs. 
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Figure 3.   Flowchart of DKI algorithm to solve DAD problem.  Optimal defensive plan is 
w*. 
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C. COMPUTATIONAL RESULTS 

We have implemented the DKI algorithm using the Xpress-MP 2006 

mathematical programming system on a 3.72 GHz desktop computer with 3GB of RAM.  

The master problem for the I-DCOPF is exported and solved using CPLEX 10.0.  The 

master problem given by DKI, and the I-DCOPF subproblem, are solved by the Xpress-

Optimizer. 

The test network is the IEEE Three Area 1996 Reliability Test System (RTS 3-

Area) [IEEE 1999].  This test set consists of 73 buses, 99 generators, 120 lines, and 6 

substations.  Substations are not explicitly identified in the RTS test data, but are defined 

as a set of buses interconnected by transformers.  This definition allows the attacker to 

simultaneously attack all the components of a substation.  Interdiction-resource and 

system-restoration data follow that of Salmeron et al. [2004-I].  One unit of resource is 

required to interdict an overhead line, two units for a transformer, and three units for a 

bus or a substation.  Long-term disruption analysis assumes the following repair times: 72 

hours for overhead lines, 360 hours for bus, and 768 hours for a transformer or 

substation.  The cost of load shed is assumed to be $1,000/MWh for all customers.  Each 

type of component requires the same amount of resource to defend.  This may not be 

realistic as the cost of defending an overhead power line may be significantly different 

than the cost of defending a substation.  However, the assumption of equal costs suffices 

to demonstrate the methodology. 

Table 4 shows how ADKI solves DAD.  These results cover the following 

conditions: RTS 3-Area, only buses are interdicted; nine units of interdiction resource 

(interdict three buses); and six units of defensive resources (protect six buses).  This is a 

short-duration study, evaluating only one hour of operation after an attack.  For short-

duration cases, the objective of the attacker is to maximize power disruption; component 

restoration and load duration curves are ignored.  For each iteration, the table shows the 

set of defended components from DKI ( )P , the resulting set of interdicted buses from I-

DCOPF, the cost of disruption, and the lower and upper bounds on the DAD solution.  

For these conditions, defending fewer than 10% of the buses (six out of seventy-three) 
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reduces the cost of the worst-case interdiction by over 20% ($14.23 510×  to $11.05 510× ).  

In this example, the optimal defense is found at the final iteration.  However, that is not 

always the case.  It is possible that the algorithm identifies the optimal solution but the 

upper bound requires extra iterations to converge to the value of that optimal solution.  

Figure 4 shows a plot of the upper and lower bound for this problem as a function of 

solution time. 

 

Iteration Defended Components Interdiction Set 
Cost 

5($ 10 )×
LB 

5($ 10 )×  
UB 

5($ 10 )×
1 Undefended {315, 316, 323} 14.34 8.22 14.37 
2 {113, 215, 223, 315, 316, 318} {313, 321, 323} 11.73 9.98 11.73 
3 {115, 123, 213, 218, 315, 323} {215, 216, 223} 12.69 10.18 11.73 
4 {118, 123, 216, 218, 318, 323} {313, 315, 316} 12.01 10.64 11.73 
5 {113, 115, 215, 223, 315, 323} {118, 218, 318} 11.57 10.70 11.57 
6 {113, 215, 218, 223, 315, 323} {115, 118, 318} 11.30 10.74 11.30 
7 {113, 118, 223, 315, 318, 323} {115, 215, 218} 11.05 10.95 11.05 

 

Table 4.   Iterations of ADKI to solve DAD for the RTS 3-Area Case.  Only buses are 
interdicted.  Three components are attacked and six are defended.  Duration of 
study is one hour. 
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Figure 4.   Upper and lower bounds on DAD versus time using ADKI. 
 

In addition to identifying critical components, decision-makers should know the 

benefit gained by defense.  Figure 5 shows the drop in total cost as the number of 

protected components increases.  These results are for the RTS 3-Area case assuming 

only buses and substations can be attacked, with interdiction resources of nine, six, and 

three units.  When two components are interdicted, defense of one, two or three 

components lowers disruption significantly.  The value of defense tapers off then, so that 

defending six components is not much better than defending three.  The curve for three 

interdicted components does not exhibit this behavior: defending added components 

steadily lowers the amount of disruption.  This type of information is necessary to 

perform cost-benefit analysis when planning to defend a system. 
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Figure 5.   Total operating cost achieved for various amounts of interdiction and defensive 
resources. 

 

ADKI successfully solves DAD for small networks such as the RTS 3-Area grid.  

The ultimate goal is to solve DAD for realistically sized networks.  However, solving 

DAD using the ADKI requires efficient solution of the AD subproblem, i.e., I-DCOPF, 

and our computational experience shows that solving this problem for a large, defended 

network is extremely difficult. 

In fact, the vast majority of time required to solve DAD is spent solving the AD.  

Figure 6 shows a histogram of the fraction of DKI solution time to total DAD solution 

time.  This data is from the RTS 3-Area with various combinations of attack and defense 

resource levels.  In all cases, the amount of time to solve the DKI model is a very small 

fraction of the total solution time, always less than 1%.  Scaparra and Church [2006] 

make a similar observation stating that solving their interdiction model is “the most 

computationally expensive operation of the procedure.”  Thus, the primary obstacle to 

solving DAD for large networks is I-DCOPF solution time.  The next chapter explores a 

method to reduce this time. 
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Figure 6.   Histogram of the time required to solve the DKI model as a fraction of total DAD 
algorithm time.  This figure implies that the vast majority of the time spent 
solving DAD by ADKI is spent in solving the AD subproblem. 
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III. NETWORK DUAL RELAXATION 

As noted in the previous chapter, the vast majority of computational time required 

to solve DAD is dedicated to solving AD, i.e., I-DCOPF.  Consequently, significant 

reductions in DAD computational time can be achieved by reducing I-DCOPF solution 

times.  I-DCOPF is solved using a decomposition-based algorithm [Salmeron and Wood 

2007] in which a subproblem and master problem are solved iteratively until the lower 

and upper bounds converge to the optimal value.  Improving either the upper bound or 

lower bound can potentially improve total solution time for I-DCOPF. 

With the exception of the admittance constraint, the DCOPF model that is 

embedded within I-DCOPF is an example of a minimum cost network flow problem, 

which can be solved as a MIP or, even more efficiently, by decomposition.  Furthermore, 

the admittance constraint is non-linear in the interdiction model, requiring extra 

constraints to linearize in I-DCOPF.  Removing the admittance constraint leads to a 

relaxation on DCOPF and the resulting solution would yield a lower bound on the actual 

DCOPF cost.  However, our interest is not actually in the disruption provided by the 

relaxed model, but in the solution to I-DCOPF assuming the interdiction set from the 

relaxation.  Therefore, the attack plan from the relaxed model can be assessed with 

DCOPF to obtain a more accurate bound on I-DCOPF.  If such a model can find an 

acceptable lower bound quickly, overall solution time for the decomposition algorithm 

that solves I-DCOPF should improve. 

A. MAXIMIZING MINIMUM COST IN A NETWORK 

Israeli and Wood [2002] develop a model, Maximizing the Shortest Path (MXSP), 

to solve the AD problem for a shortest path network.  MXSP assumes a directed network 

and interdicts arcs.  If an arc is interdicted, a penalty is added to that arc length.  The 

penalty is made sufficiently high so that no interdicted arc is on the shortest path.  MXSP 

is a max-min problem.  This is converted into a standard maximizing MIP by temporarily 

fixing the set of interdicted components, taking the dual of the inner (i.e., shortest path) 
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problem with the given interdiction set, and releasing the interdiction set.  The resulting 

MIP can be solved by standard techniques. 

Although MXSP is defined for a shortest path problem, the method developed by 

Israeli and Wood can be applied to a more general minimum cost network flow problem.  

The formulation for Maximizing the Minimum Cost Flow (MXMC) follows: 

Indices and Index Sets: 

 , Set of nodesi j N∈  

 ( ), Arcs directed from  to i j A i j∈  

Parameters and [units] if applicable: 

 ( )[ ], Flow cost for arc , $ / unit flowi jc i j  

 ( )[ ], Additional damage cost to arc , $ / unit flowi jd i j  

 ( )[ ]Net flow >0 at supply, < 0 at demand, = 0 transshipment flowib  

 ( )[ ], Upper bound on flow for arc , flowi ju i j  

 ( )[ ], Resource required to interdict arc , $i jr i j  

 [ ]0 Total interdiction resource $r  

Variables: 

 ( ), 1 if arc ,  is interdicted; 0 otherwisei j i jδ  

 ( ), Flow on arc ,i jy i j  
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Formulation: 

(MXMC) ( )
( )

, , , ,
,

max min i j i j i j i jy Y i j A
c d y

δ
δ

∈∈∆ ∈

+∑  

           s.t. 
( )( )

, , ,
, ,

[ ]i j j i i j i
i j A j i A

y y b i N π
∈ ∈

− = ∀ ∈∑ ∑  

    ( ), , ,, [ ]i j i j i jy u i j A α≤ ∀ ∈ −  

    ( ), ,0 , [ ]i j i jy i j A α≥ ∀ ∈ −  

   { }
( )

, , 0
,

where 0,1 i j i j
i j A

r rδ δ
∈

⎧ ⎫⎪ ⎪∆ = ∈ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑  

 

The dual variables for each constraint are shown in square brackets.  Taking the dual of 

the inner minimum cost yields the following MIP: 

 

(MXMC-D) 
( )

, ,, , ,
max i i i j i jx i N i j A

b u
α π

π α
∈ ∈

−∑ ∑  

( ), , , ,s.t. ,i j i j i j i j i jd c i j Aπ π α δ− − − ≤ ∀ ∈  

   ( ), 0 ,i j i j Aα ≥ ∀ ∈  

   δ ∈∆  

 

B. RELAXED MODEL FORMULATION 

The solution to MXMC identifies an optimal set of arcs in a directed network to 

interdict in order to maximize cost.  MXMC can be used to interdict an electrical power 

grid with lines equivalent to arcs and buses equivalent to nodes in a directed network.  

However, I-DCOPF can model interdiction of lines, buses, substations, and generators.  

In order to use the MXMC model to predict interdiction sets for an electrical power grid, 

the grid must be converted to an equivalent directed network.  We refer to the resulting 

formulation as the Network Dual Relaxation (NDR) model: NDR converts an electrical 

power grid into a directed network, relaxes the impedance constraint, and implements the 
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corresponding interdiction model.  That is, NDR is the same as MXMC-D applied to 

electrical power grids.  The steps for converting an electrical power grid into an 

equivalent directed network are: 

• Define “infinite capacity” as the sum of all load demand by all customers. 

• Electrical buses are represented by two nodes, inlet and outlet, connected by 

an arc with zero cost and infinite capacity.  Interdicting this internal arc is 

equivalent to interdicting the bus.  All arcs entering the bus enter at the inlet 

node and all arcs leaving the bus leave from the outlet node. 

• Electrical power lines are represented by two anti-parallel arcs.  An electrical 

power line is equivalent to an undirected arc joining two buses.  To create a 

directed network, one arc must originate at the outlet node of each connected 

bus and terminate at the inlet node of the other.  These arcs have zero cost and 

capacity equal to the maximum power for the line. 

• Define four new nodes: Source, Demand, Generation, and Shed.  All flow 

originates at the Source node, passes through either the Generation or the 

Shed node, and terminates at the Demand node.  The Generation node is the 

entry point into the electrical network.  Flow through the Shed node represents 

unmet demand (i.e. load shedding). 

• Create a zero-cost, infinite-capacity arc between the Source and Generation 

nodes and between Source and Shed nodes. 

• Create an arc for each generator from the Generation node to the inlet node of 

the corresponding bus.  Arc capacity is set to the capacity of the generator and 

cost is the cost of generation. 

• Create an arc with infinite capacity and cost equal to the cost of load shed 

from the Shed node to the Demand node. 

• Create an arc for each customer demand from the outlet node of each bus to 

the Demand node.  The capacity equals demand at that bus, and the cost is 

zero. 

This process is demonstrated in the following example.  Figure 7 shows a simple 

three-bus electrical grid and Figure 8 is the directed-network equivalent.  Tables 5, 6, and 
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7 show the equivalent components, costs, and capacities for the DCOPF model using the 

electrical grid and the NDR model using the network equivalent. 

The penalty factor added to each interdicted arc ( ,i jd  in MXMC) is constant for 

all arcs in the NDR model.  We set this equal to the cost of load shed and redefine it as 

Shedd .  Since all generation costs are non-zero, this value for the penalty factor properly 

models an interdicted arc.  (Excessively large penalty factors can slow NDR solution time 

significantly.) 

The interdiction sets for NDR and I-DCOPF are equivalent in this example.  For 

example, interdicting arc ( )in outB1 ,B1  in Figure 8 is equivalent to interdicting bus B1 in 

Figure 7.  Interdicting a line requires one interdiction variable for both of the associated 

arcs in the NDR directed network.  The following two equations demonstrate the NDR 

formulation to interdict line L12: 

 
out in out inB1 B2 B1 ,B2 L12 0Sheddπ π α δ− − − ≤  

  
out in out inB2 B1 B2 ,B1 L12 0Sheddπ π α δ− − − ≤  

To interdict substations, we use one interdiction variable in the equations for all 

associated buses. 

As formulated above, NDR only allows for one consumer sector.  Additional 

consumer sectors can be modeled by adding a unique Demand node for each.  Also, NDR 

does not model multi-period cases with varying loads.  We approximate multi-period 

cases by solving NDR for a single aggregate period. 

We do not consider component restoration time in the current NDR formulation.  

When solving I-DCOPF, the interdiction set for a short-duration study may differ 

significantly from that of a long duration study [Salmeron and Wood 2007].  Interdiction 

sets in long duration studies generally consist of components with long restoration times.  

NDR identifies the set of components to interdict that maximizes short-term disruption  

This limitation in NDR can be overcome by only considering components with long 

restoration times (such as buses or substations).  The result is analogous to a long-
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duration I-DCOPF study.  Implementing multi-period cases and component restoration 

into NDR is conceptually easy, and can be accomplished in future research. 

NDR produces a feasible interdiction plan, and solving the DCOPF model with 

that plan implemented evaluates the plan’s cost and provides a valid lower bound on *z , 

the optimal objective to I-DCOPF.  Our computational experience shows that this bound 

is very good, and often tight: an optimal interdiction plan from NDR is often the optimal 

solution to I-DCOPF.  This makes the effort to solve NDR worthwhile. 

 

 

B1

B3

B2

D1

G2

D3

G1 L12

L23

 
Figure 7.   Three bus electrical grid for illustrating NDR formulation. 
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Figure 8.   Network approximation for electrical grid shown in Figure 7.  Unlabeled arcs 

have zero cost and infinite capacity. 
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DCOPF Model Network Equivalent 

Component 

type 
Component 

Component 

type 
Component 

Bus { }B1  Node { }in outB1 , B1  

Bus { }B2  Node { }in outB2 , B2  

Bus { }B3  Node { }in outB3 , B3  

Line { }L12  Arc ( ) ( ){ }out in out inB1 , B2 , B2 , B1  

Line { }L23  Arc ( ) ( ){ }out in out inB2 , B3 , B3 , B2  

Generator { }G1  Arc ( ){ }inGen,B1  

Generator { }G2  Arc ( ){ }inGen,B2  

Consumer { }D1  Arc ( ){ }outB1 ,Dem  

Consumer { }D3  Arc ( ){ }outB3 ,Dem  

Interdiction δ ∈∆  Interdiction δ ∈∆  

NA No equivalent component Node { }Sup, Dem, Gen, Shed  

NA No equivalent component Arc ( ) ( ){ }Sup,Shed , Shed,Dem  

 

Table 5.   Equivalent components for three bus sample grid in DCOPF model and the 
network equivalent model. 

 

DCOPF Model Network Equivalent 

Item Cost Component Cost 

G1 1Gh  ( )inGen,B1  1GC  

G2 2Gh  ( )inGen,B2  2GC  

Shed f  ( )Shed,Dem ShedC  

 

Table 6.   Equivalent cost data for three bus DCOPF and network equivalent. 
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DCOPF Model Network Equivalent 

Item 
Capacity 

or Demand 
Component Capacity 

G1 1
Gen
GP  ( )inGen,B1  1GU  

G2 2
Gen
GP  ( )inGen,B2  2GU  

L12 12
Line
LP  ( ) ( )out in out inB1 , B2 , B2 , B1  12LU  

L23 23
Line
LP  ( ) ( )out in out inB2 , B3 , B3 , B2  23LU  

D1 1Dd  ( )outB1 ,Dem  1B dU  

D3 3Dd  ( )outB3 ,Dem  3B dU  

 

Table 7.   Equivalent capacity and demand data for three bus DCOPF and network 
equivalent. 

 

C. COMPUTATIONAL EXPERIENCE 

As with ADKI, we have implemented NDR using the Xpress-MP 2006 

optimization system on a 3.72 GHz desktop computer with 3GB of RAM.  The NDR 

MIP is exported and solved using CPLEX 10.0. 

In the following discussion, *z  represents the true optimal disruption, ( )Iz δ  is the 

disruption for the incumbent best interdiction plan (and a lower bound on *z ) obtained by 

solving I-DCOPF using the decomposition method presented in Salmeron and Wood 

[2007], and Iz  is the best upper bound on *z  from the same method.  With sufficient 

computational time, ( )Iz δ  and Iz  converge to *z .  The disruption resulting from the 

optimal interdiction plan recommended by NDR is denoted *( )NDRz δ .  We calculate 

optimality gaps for NDR using Iz .  We report all disruption in terms of total cost. 

We first test NDR on the RTS 3-Area network.  We assume that only buses are 

interdicted.  Table 8 shows: *( )NDRz δ  and the time required to reach that solution ( NDRt ); 
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( )Iz δ  and the time required to reach that solution ( It ).  Also shown is the incumbent 

objective value ( )Iz δ  and the deviation from *z  at NDRt .  In the case of three interdicted 

buses, NDR exactly predicts *z  after 0.36 seconds.  I-DCOPF requires 7.7 seconds to 

find the corresponding optimal solution.  In all cases tested, NDR identifies an optimal 

interdiction plan, although this need not be not true in general.  This example 

demonstrates that NDR has the potential to produce a quality lower bound for *z  in a 

fraction of the time required by I-DCOPF. 

 

NDR I-DCOPF 
Number of 
Interdicted 

Buses 
NDRt  

(sec) 

*( )NDRz δ  
5($ 10 )×  

Deviation 
from *z  

( ) atI NDRz tδ
5($ 10 )×  

Deviation 
of ( )Iz δ  

from 
* at NDRz t  

It  
(sec) 

( )Iz δ  
5($ 10 )×

2 0.66 8.13 0% 1.45 459% 14.2 8.13
3 0.36 14.34 0% 6.81 111% 7.7 14.34
4 0.61 19.94 0% 11.77 69% 45.6 19.94
5 0.56 23.49 0% 18.29 28% 119.2 23.49

 

Table 8.   Solution times and resulting objective values for NDR and I-DCOPF.  Test case is 
RTS 3 Area, only buses are interdicted.  It  is the time for I-DCOPF to find the 
optimal interdiction, convergence requires additional time. 

 

Next we test NDR on a portion of the North American power grid.  The region 

considered consists of 5,000+ buses, 6000+ lines (including 1000+ transformers), and 

500+ substations.  Total system load is close to 70,000 MW, and there are 90,000+ MW 

of available generation distributed in 500+ generating units.  For the purpose of this 

paper, we refer to this region as the Large Sample Grid (LSG). 

We approximate a three-step load-duration curve at each bus consisting of a peak 

period covering 20% of the time, a normal period covering 50% of the time during which 

demand is 75% of peak, and a “valley period” covering 30% of the time during which 

demand is 45% of peak.  We also make the cost of load shed dependent on the period, 

with values 1,000, 800 and 500 $/MWh, respectively.  Since NDR does not model 
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multiple periods, we approximate the solution using the peak demand period.  The 

duration of this study is 360 hours which is sufficient time to restore all interdicted 

components. 

For this test, we again assume that only buses are interdicted.  Each scenario runs 

for 100 minutes (6000 seconds) or until a gap of ε = 1% is reached, whichever occurs 

first. 

Table 9 displays results for this test.  In the case with three interdicted buses, I-

DCOPF outperforms NDR both in speed and quality of solution ( *( ) ( )I NDRz zδ δ> ).  In all 

other cases, NDR predicts interdictions at least as good as those found by I-DCOPF, 

always with significant time savings.  I-DCOPF only converges within the allotted 100 

minutes in the case with two interdicted buses.  The best upper bound on optimal cost 

( Iz ) is shown for the cases in which I-DCOPF did not converge.  Comparing the solution 

of NDR to the best bound from I-DCOPF shows how close NDR is to the true optimal 

solution.  In the case of four interdicted buses, both the NDR and I-DCOPF objective 

values are within approximately 15% of the true optimal value.  A similar calculation 

shows that the NDR objective value is within approximately 20% of the true objective 

value for the case with seven interdicted buses, while the I-DCOPF objective value is 

only within 58%. 
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NDR I-DCOPF Number 
Interdicted 

Buses 
NDRt  

(sec) 

*( )NDRz δ  
8($ 10 )×  

( ) atI NDRz tδ
8($ 10 )×  

It  
(sec) 

( )Iz δ  
8($ 10 )×  

Iz  
8($ 10 )×  

2 49 3.23 2.16 485 3.23 - 
3 58 2.81 2.94 3610 3.65 3.91 
4 25 3.96 1.85 5757 3.39 4.82 
5 20 5.09 2.19 3504 5.09 5.87 
6 18 5.67 2.40 187 5.46 6.92 
7 17 6.70 3.41 3191 5.09 8.05 

 

Table 9.   Results for NDR and I-DCOPF applied to the Large Sample Grid. The It  column 
gives the time for I-DCOPF to find the incumbent interdiction plan. Maximum 
allowed time is 6000 seconds.  The best bound on cost ( Iz ) is shown for the cases 
when I-DCOPF does not find the optimal interdiction in the allotted time.  
Duration of study is 360 hours. 

 

NDR has great potential when studying interdictions against defended networks.  

Solving I-DCOPF for a realistically sized, defended power grid is extremely difficult and 

is the principal obstacle to solving DAD.  To illustrate this, we repeat the above 

experiment on LSG but with ten buses defended.  Again we assume that only buses are 

interdicted and we limit each scenario to 100 minutes of computation time. 

Table 10 displays the results of this experiment.  For all of the cases considered, 

NDR outperforms I-DCOPF in terms of solution speed and solution cost.  I-DCOPF does 

not converge within the allowed time for any of the cases. 

Table 11 shows the optimality gap for *( )NDRz δ  and ( )Iz δ  for both the undefended 

and defended network (based on the data in Tables 9 and 10, respectively).  The 

optimality gap is based on Iz , the best upper bound on *z found by I-DCOPF in the 

allotted time.  The optimality gap for I-DCOPF on the defended network is significantly 

larger than that for the undefended network, demonstrating that, for these scenarios, the 

defended network is more difficult to solve.  Although the values for NDR show a 

general upward trend between undefended and defended, the effect is not as pronounced 

as for I-DCOPF. 
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NDR I-DCOPF Number of 
Interdicted 

Buses 
NDRt  

(sec) 

*( )NDRz δ  
8($ 10 )×  

( ) atI NDRz tδ
8($ 10 )×  

It  
(sec) 

( )Iz δ  
8($ 10 )×  

Iz  
8($ 10 )×  

2 178 2.50 1.84 4673 2.42 2.68
3 269 3.00 2.16 3944 2.16 3.46
4 302 3.50 2.17 115 2.17 4.35
5 284 4.00 2.33 4670 2.74 5.25
6 71 4.14 2.33 158 2.83 6.14
7 48 5.30 2.67 140 3.25 7.10

 

Table 10.   Result of NDR and I-DCOPF for the Large Sample Grid with ten buses defended. 
NDR outperforms I-DCOPF in terms of speed and quality of solution in all cases.  
I-DCOPF reached the maximum allowed time of 6000 seconds in all cases.  The 
duration of this study is 360 hours. 

 
 
 

Optimality Gap for 
Undefended Network 

Optimality Gap with Ten 
Buses Defended 

Number of 
Interdicted 

Buses NDR I-DCOPF NDR I-DCOPF 

2 0% 0% 7% 11% 
3 39% 7% 15% 60% 
4 22% 42% 24% 101% 
5 15% 15% 31% 92% 
6 22% 27% 48% 117% 
7 20% 58% 34% 118% 

 

Table 11.   Optimality gap for NDR and I-DCOPF for undefended and ten-bus defense.  
Optimality gap is based on Iz ,the best upper bound on z* found in the allowed 
6000 seconds and the lower bounds *( )NDRz δ  and ( )Iz δ from the NDR and I-
DCOPF, respectively. 

 

The DKI algorithm for DAD can be implemented with NDR solving the AD 

subproblem.  The danger with this is that NDR may under-predict the disruption of a 

given interdiction plan, thus over-predicting the value of that defense.  However, the 

rapid solution times of NDR make it a useful adjunct for studying DAD, and we solve 

DAD here, approximately, for the LSG Area using this technique.  We only consider 
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substations, with sufficient resources to interdict five and defend ten.  We allow fifty 

iterations of the NDR-DKI interaction, and choose the best three defenses for further 

analysis using I-DCOPF (the fifty iterations required approximately 5.5 hours of 

computational time).  Figure 9 shows the total cost, *( )NDRz δ , at each iteration, and Table 

12 shows the complete results, including *( )NDRz δ , peak power shed, and total energy 

shed, for the top three defensive plans as well as for the undefended case.  We evaluate 

the top three defensive plans using I-DCOPF with a maximum computation time of eight 

hours.  Table 13 shows the results: ( )Iz δ  and Iz  (the lower and upper bound on *z , 

respectively), and optimality gap.  For example, with Defensive Plan 1, *z  is bounded on 

the interval [5.48, 8.53] 8($ 10 )× , which is an improvement over the undefended case.  

Figure 10 plots the upper and lower bound on *z  for Defensive Plan 1 using I-DCOPF, 

demonstrating the slow rate of convergence of the upper bound. 

Total Cost vs Iteration Using NDR and DKI to Solve DAD 
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Figure 9.   Iterations to solve DAD for the Large Sample Grid Area using NDR and DKI.  
Five substations are interdicted and ten defended.  The optimal defense is found at 
iteration 2.  Defensive plans considered at iteration 1 and 44 are the second and 
third best respectively.  Iteration 0 is the undefended case. 
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Defensive 
Plan 

Iteration 
Number 

*( )NDRz δ  
8($ 10 )×  

Peak 
Power 
Shed 
(MW) 

Total 
Energy 
Shed 

(GWh) 
1 2 5.48 4009.8 402.9 
2 1 5.81 2851.0 478.1 
3 44 6.32 3911.6 529.1 

N/A 0 9.97 5679.4 959.0 
 

Table 12.   Complete results for top three defensive plans and undefended case from Figure 
9.  The iteration number corresponds to the iterations of Figure 9. 

 

 

 

 

Defensive 
Plan 

( )Iz δ  
8($ 10 )×  

Iz  
8($ 10 )×  

Optimality 
Gap 

1 5.48 8.53 56% 
2 5.81 8.82 52% 
3 7.12 9.76 37% 

 

Table 13.   Results of I-DCOPF for LSG Area using the best three defensive plans from 
Figure 9.  Maximum algorithm time is 8 hours.  ( )Iz δ  and Iz  are lower and upper 
bounds, respectively, on the true optimal solution. 
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Upper and Lower Bounds from I-DCOPF
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Figure 10.   Upper and Lower Bound on *z  from I-DCOPF for Defensive Plan 1, showing the 
slow rate of convergence of the Upper Bound 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This thesis has developed mathematical models to identify optimal sets of 

components in an electrical power grid, the defense of which would minimize the 

disruption caused by an adversary’s attack.  The ultimate goal of this research is to apply 

these models to actual systems in an effort to enhance the resilience of the U.S. electrical 

power grid. 

In a trilevel defender-attacker-defender (DAD) model, a defender attempts to 

minimize potential damage to a system by protecting key components with limited 

(defensive) resources, while an attacker seeks to inflict maximum damage by destroying 

vulnerable components using limited (offensive) resources.  With fixed defenses, the 

DAD problem becomes a bilevel attacker-defender (AD) problem that optimizes system 

interdiction given optimal, post-interdiction, system operation.  Previous research has 

developed optimization models, called I-DCOPF, to solve (or approximate the solution 

of) the AD problem for electrical power grids. 

We develop the “Defense of Known Interdictions” model (DKI) that is part of a 

decomposition algorithm that can solve the defensive DAD problem for realistically-

sized electrical networks, provided that I-DCOPF can be solved efficiently. 

Unfortunately, a lack of efficiency in this regard proves to be a major obstacle.  Our 

computational experience indicates that solving the I-DCOPF model for a large network 

is extremely difficult, and this difficulty greatly increases when a select group of grid 

components are defended. 

We explore one method to reduce the solution time for I-DCOPF.  Currently, I-

DCOPF is solved using a decomposition-based algorithm in which a coordinating 

(master) problem and an operating (sub-) problem yield upper and lower bounds, 

respectively, on the optimal solution.  By relaxing the electrical impedance constraints in 

the operating problem, we approximate electrical power grid behavior as a minimum cost 

network flow.  Using this approximation, we develop a model called Network Dual 

Relaxation (NDR) that quickly generates a solution that may be close to the optimal 
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solution of the original I-DCOPF, and could be solved even faster by decomposition (not 

implemented in this work).  For the scenarios tested, NDR produces high-quality lower 

bounds; currently, however, the only way to guarantee such quality is by solving the 

exact I-DCOPF problem. 

We recommend that future research implement load-duration curves and 

component restoration into NDR.  This would allow NDR to better approximate I-

DCOPF solutions for both long and short-term problems. 

We also recommend that future research examine methods to improve the upper 

bound for I-DCOPF.  A model that quickly predicts the upper bound for I-DCOPF, 

coupled with NDR, could greatly reduce I-DCOPF solution times and help solve 

realistically-sized DAD problems, and help with the final goal of enhancing the security 

of the U.S. electrical power grid. 
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APPENDIX A. DCOPF MODEL 

A.1  DC OPTIMAL POWER FLOW MODEL 

From Salmeron, Wood, and Baldick [2005] 

Single-Period Case 

Sets: 

i I∈   set of buses 

0i I∈   subset of reference buses ( 0| |I =number of islands in the system) 

g G∈   set of generating units 

ig G∈   subset of generating units connected to bus i  

l L∈   set of AC transmission lines (and transformers modeled as AC lines) 

DCl L∈   set of DC transmission lines 

Bus
il L∈  subset of AC and DC lines connected to bus i  

Par
ll L∈  subset of lines in parallel with line l  

c C∈   set of consumer sectors 

s S∈   set of substations 

si I∈   subset of buses at substation s  

Sub
sl L∈  subset of AC and DC lines connected to substation s  (including 

transformers, which are represented by lines) 

Parameters (units, if applicable): 

( ),  ( )o l d l  origin and destination buses, respectively of AC or DC line l  (more than 

one line with the same ( )o l , ( ) d l may exist) 

( )i g   bus for generator g , i.e., ( )i gg G∈  
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( )s i   substation s S∈  associated with bus si I∈  

icd   load of consumer sector c at bus i  (MW) 

Line
lP   transmission capacity for AC or DC line l  (MW) 

Gen
gP   maximum output from generator g  (MW) 

,  l lr x  resistance and reactance of AC line l , respectively (p.u.).  (We assume 

l lx r>> ) 

lB   series susceptance for AC line l , calculated as 2 2/( )l l l lB x r x= +  (p.u.) 

, ,l l lR P E  resistance (Ω), set point (MW) and scheduled voltage (kV) for DC line 

l , respectively 

lµ  transmission coefficient (= 1 − loss coefficient) on DC line l , calculated 

as 2 2 2 21 / 1 /( ) 1 /l I R P P R E P PR Eµ = − = − = −  (p.u.) 

gh   generation cost for unit g  ($/MWh) 

icf   load-shedding cost for customer sector c  at bus i  ($/MWh) 

Decision variables (units): 

Gen
gP   generation from unit g  (MW) 

Line
lP   power flow on AC line l  (MW) 

,l lU V  power flow from the “from” to the “to” bus or vice versa, respectively, 

for DC line l  (MW).  Remark: DC lines are modeled as follows: If 

0lU ≥  MW are sent from the “from” bus, then (1 )l lUµ− MW are 

received at the “to” bus.  Similarly, we use 0lV ≥  to model flow from 

the “to” bus to the “from” bus. 

i cS  load shed (unmet) for customer sector c at bus i  (MW) 
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iθ   phase angle at bus i  (radians) 

Formulation: 

(DCOPF): 
, , , , , | 0
min ($ / MWh)

Gen Line

ic

Gen
g g ic ic

P P S U V g i c d
h P f S

θ >

+∑ ∑ ∑                 (A.1) 

s.t. 

( ) ( )( )Line
l l o l d lP B l Lθ θ= − ∀ ∈              (A.2) 

| |
( ) ( )

| 0| |
( ) ( )

( ) ( ) ( )
DC DC

ic

Gen Line Line
g l l

g l L l L
o l i d l i

l l l l l l i c i c
c dl L l L

o l i d l i

P P P

U V U V d S i Iµ µ

∈ ∈
= =

>∈ ∈
= =

− + +

− + + − = − ∀ ∈

∑ ∑ ∑

∑ ∑ ∑
          (A.3) 

Line Line Line DC
l l lP P P l L L− ≤ ≤ ∀ ∈ ∪               (A.4) 

,Gen Gen Gen
g g g iP P P i g G≤ ≤ ∀ ∀ ∈       (A.5) 

0 , | 0i c ic icS d i c d≤ ≤ ∀ >               (A.6) 
00i i Iθ = ∀ ∈               (A.7) 

 
Remark: If all DC loss coefficients and all generating costs are non-zero, an optimal solution 

to the above model should not contain any crossed-flows (i.e., 0, 0l lU V> >  simultaneously) 

on the DC lines.  However, if any of those hypotheses fails, multiple optimal solutions may 

occur, some of which may involve crossed-flows on the same DC line.  To ensure the output is 

displayed correctly, the following post-processing of the solution can be made: 

Power across DC line l = , DC
l l l lU V l Lµ µ− ∀ ∈ . 

 
Multi-Period Case 

 
Our DCOPF model must be extended to consider periods (or blocks of hours) for  

two reasons: 

(1) Demand variation.  DCOPF must accommodate changes when we consider a staircase 

function to represent our load-duration curve (LDC),  

 
(2) Repair times.  As the system is restored after interdiction, the grid topology undergoes 

changes that must also be incorporated into the DCOPF model. 
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Each combination of an LDC’s period-subperiod pair and a restoration stage involves a new 

DCOPF computation.  In what follows, we generically call each of these triplets a “Time Period,” 

or simply a “Period” (which must not be confused with the period-subperiod structure for the 

LDC). 

According to the above, we must extend our notation for the single-period DCOPF in order to 

capture changes in our data (load and shedding cost) and our decision variables (all of them) for 

each of these periods. 

We need substantially new notation for the problem with time periods. 

 
New sets and parameters: 

t T∈ ,  set of periods 

tD ,  duration of period t (hours) 
Extended parameters and variables:  Same definition as in single-period DCOPF, but now for 

every period t: 

 

ti cd , ticf , Gen
tgP , Line

tlP , ,tl tlU V , ti cS , tiθ  
 

Model changes: 

(DCOPF): 
, , , , , | 0
min ($)

Gen Line

tic

Gen
t g tg tic tic

P P S U V t g i c d
D h P f S

θ >

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑   

Notice that the new objective factors in the duration of each level of disruption, given by 

different amounts of load shedding, ticS ,and their costs, ticf , which are period-dependent. 

Likewise, assuming a given interdiction plan, the new constraints for each period must reflect 

those in (A.2)-(A.7), replicated for every period t, but ensuring that only the non-interdicted or 

repaired components are included in the model.  However, in order to establish such formulation 

formally, we must first introduce new notation, which in turn will allow us to formulate the 

interdiction model. 
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A.2  INTERDICTION MODEL 

 
New sets and parameters: 

*G G⊆ , * DCL L L⊆ ∪ , *I I⊆ , *S S⊆ , subsets of interdictable generators, lines, 

buses, and substations, respectively.  These are “directly interdictable components.” 
* * * *L G B Sξ = ∪ ∪ ∪ , set of all (directly) interdictable elements. 

**G G⊆ , ** DCL L L⊆ ∪ , **I I⊆ , **S S⊆ , subsets of directly or indirectly 

interdictable generators, lines, buses, and substations, respectively. 

,

1,  if component  remains unrepaired in time period  after being attacked

0,  if component  is repaired before time period  after being attacked
t e

e t

e t
β

⎧
= ⎨
⎩

, for 

t T∈ , e ξ∈ .  Remark: Line
,t lβ , Bus

,t iβ , Gen
,t gβ , and Sub

,t sβ  denote ,t eβ  when e=l is line, or 

e=i is a bus, or e=g is a generator, or e=s is a substation, respectively. 

 
** DC
tL L L⊂ ∪ , subset of lines that might remain interdicted (directly or indirectly) in 

period t.  Constructed as follows: 
**

Line
t,l

Bus
t,i

Sub
t,s

Line
t,ll

 if either:

                1,  or 

1 for some | ,  or

    1 for some | , or

 1 for some |

t

Bus
i

Sub
s

Par
l

l L

i l L

s l L

ll ll L

β

β

β

β

∈

=

= ∈

= ∈

= ∈

 

**
tG G⊂ , subset of generators that might remain interdicted (directly or indirectly) in 

period t. 
 

**
tI I⊂ , subset of buses that might remain interdicted (directly or indirectly) in period t. 
**
tS S⊂ , subset of substations that might remain interdicted (directly) in period t. 
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*

**

,

*

**

,

*

*

1 if 
 

0 otherwise

1 if 
     

0 otherwise

1 if 
 

0 otherwise

1 if 
    

0 otherwise

1 if 
0 otherwise

1 if 
               

0 otherwise

L
l

L t
t l

G
g

G t
t g

I
i

S
s

l L

l L

g G

g G

i I

s S

λ

λ

λ

λ

λ

λ

⎧ ∈
= ⎨
⎩
⎧ ∈

= ⎨
⎩
⎧ ∈

= ⎨
⎩
⎧ ∈

= ⎨
⎩
⎧ ∈
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⎩
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⎩

 

0
0 1 if 

               
0 otherwisei

i I
λ

⎧ ∈
= ⎨
⎩

 

 
Gen
gM , Line

lM , Bus
iM , Sub

sM : resource required to interdict generator g, line l, bus i, and 

substation s, respectively. 

M , total interdiction resource available to terrorists. 

 
New decision variables: 

 
Gen
gδ , Line

lδ , Bus
iδ , Sub

sδ , binary variables that take the value 1 if generator g, line l, bus i or 

substation s, respectively, are interdicted, and are 0 otherwise. 
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Interdiction Model 

Here, we introduce the model that will be referred to as the (linearized) interdiction model,  

I-DCOPF.  This formulation linearizes the admittance equation in presence of interdiction.  For 

example, if a line can be interdicted by attacking the line or the buses that it connects, the 

admittance equation would be 

( ) ( ) ( ) ( )( )(1 )(1 )(1 )l l o l d l l o l d lP B θ θ δ δ δ= − − − − , 

where the (1-δ) terms force the power across the line to be zero if the line is interdicted, without 

imposing any further restriction on the phase angles at each connecting bus.  To linearize the 

right-hand side of the above equality, we consider the two following linear constraints: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
l l o l d l l l o l d l

l l o l d l l l o l d l

P B M

P B M

θ θ δ δ δ

θ θ δ δ δ

− − ≤ + +⎧⎪
⎨ − − ≥ − + +⎪⎩

, 

where lM  can be taken as ( ), ( )l l l o l d lM P Bθ= + , and ,i kθ  is an upper bound on the absolute 

value of the maximum phase angle difference between adjacent buses i,k (e.g., , 1i kθ =  radian). 

The I-DCOOPF model formulation is: 

(I-DCOPF): 
, ,

, , , , ,
( , , , , , ) | 0

( ).max min
Gen Line

t i c
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g t g t i c t i c
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D t h P f S

δ θ ∈ >

⎧ ⎫⎪ ⎪+⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑  
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All δ-variables are binary {0,1}. 
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