Relevant Topics:

- C2 Experimentation
- C2 Decision Making and Cognitive Analysis
- C2 Assessment Tools & Metrics

COLLABORATIVE CRITICAL THINKING

Authors:

Jared Freeman, Ph.D
Aptima, Inc.
1030 15th Street N.W., Suite 400
Washington, DC 20005
Tel. 202-842-1548 x316
Fax: 202-842-2630
freeman@aptima.com

Kathleen P. Hess, Ph.D
Aptima, Inc.
12 Gill Street, Suite 1400
Woburn, MA 01801
Tel: 781-496-2419
Fax: 781-935-4385
khess@aptima.com
Collaborative Critical Thinking

Aptima Inc, 1030 15th Street NW Suite 400, Washington, DC, 20005

Approved for public release; distribution unlimited

The original document contains color images.

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Abstract
Command and Control (C2) organizations must operate decisively and synchronously, and do so in highly uncertain and dynamic settings. Individuals succeed in these settings in part by thinking critically about their assessments and plans. We argue that individual team members collaborate in their application of critical thinking in a process called “collaborative critical thinking.” We are developing this concept of Collaborative Critical Thinking (CCT) within C2 teams from three research threads concerning 1) individual critical thinking, 2) team process and architecture, and 3) human performance in information age warfare. This paper describes our CCT framework and the tools and training we are developing to improve CCT among team members.

Introduction
A fundamental goal of the military is to ensure that Command and Control (C2) organizations operate decisively and synchronously in highly uncertain and dynamic settings. Individuals succeed in these settings by thinking critically; that is by critiquing their understanding of the situation at hand, refining their knowledge, and adapting their decision making and planning to the problems at hand. This project purports that individual team members collaborate in their application of critical thinking in a process called “collaborative critical thinking.”

There is, to our knowledge, no theoretical framework to help warfighters learn, measure, and manage collaborative critical thinking (CCT). However, aspects of this topic are addressed by recent programs of research concerning critical thinking, team processes and architecture, human performance in information warfare.

A theory about how individual warfighters make decisions under uncertainty has been validated through research concerning critical thinking. This recognition-metacognition framework (Cohen, Freeman, et al., 1996, 1997, 1998) speculates that expert warfighters monitor for opportunities to critique their assessments and plans, identify sources of uncertainty (i.e., gaps, untested assumptions, and conflicting interpretations), and reduce or shift that uncertainty by doing such things as gathering information, testing assumptions, and forming contingency plans before taking action.

Research conducted under ONR’s A2C2 program and other Air Force Research Laboratories human engineering projects concerning team process and architecture have produced a rich body of measures concerning the processes by which teams coordinate their activities. This team coordination may occur either explicitly, that is, through explicit communication, or implicitly, through reliance on shared information, shared interpretations of information patterns, and standardized responses to those patterns.

Recent theory and fieldwork studying individual and collaborative cognition in command and control and other information-intensive organizations has provided insights into human performance in information warfare by studying the processes by which team members may interpret data to develop information, build understanding that informs decisions, and collaborate to ensure that information and knowledge are shared in support of synchronized action to shape events. Alberts, Garstka, Hayes, and Signori (2001) have developed a framework that clearly defines these (italicized) constructs as primitives of performance in information age warfare.
In a research and development project for the Office of Naval Research, we are weaving these threads together to create a theory, validated measures, tools and training that will help us to understand and support team critical thinking.

This paper addresses the theory development as well as initial ideas about the tools that will be developed based on this theory.

Collaboration Framework

Collaboration is the process of shared creation (Rawlings, 2000). During collaboration, people with complementary skills interact to create a shared understanding of the situation that is more complete than would have been achieved with any individual alone. The framework in Figure 1 was created in an attempt to better understand the entire collaborative process.

As this framework suggests, collaboration is not always needed; in fact, when all the important information resides in one person and time is short, the collaborative process is less optimal than a quick, autocratic decision (Vroom & Jago, 1988). If expertise is distributed among multiple people, and resources and responsibilities are divided between people as well, collaboration is needed. These “factors generating the need to collaborate” affect not only the importance of collaboration, but also the goals of collaboration, which will vary with the responsibilities allocated to collaborating parties.

![Collaboration Framework Diagram](image)

Figure 1. Collaboration Framework

A team’s ability to achieve its collaboration goals depends on a number of factors such as available technology, team members’ collaboration skills, and team composition factors.

Technology. The distribution of teams in time and/or space requires the use of technology to enable the information sharing necessary for effective collaboration. Such “technology” currently ranges from telephones and email to video-conferencing. New technologies are being developed that claim to assist team collaboration and information sharing even more.
Process/Skill Factors. Although really effective teams can make collaboration look easy, collaboration is not innate. Effective collaboration requires specific skills such as negotiation and active listening.

Team Composition Factors. Collaboration is strongly affected by the composition of the team. For example, teams composed of members with homogenous backgrounds find early collaboration to be much easier than heterogeneous teams; however, heterogeneous teams eventually make decisions that are of a higher quality than those of homogenous teams.

These “factors affecting the ability to collaborate” directly affect the quality of the collaboration products (e.g., the assessments and plans) as well as the effects (Measures of Effectiveness, or MOEs) of team performance.

Collaborative critical thinking can be thought of as one factor that affects the team’s ability to collaborate (see navy boxes in Figure 1). The next section of this paper describes this in more detail.

Collaborative Critical Thinking

Cohen developed a framework for understanding critical thinking that he and colleagues validated in studies of individuals and teams, largely in air combat (Cohen, Freeman, and Thompson, 1998) and commercial air settings (Freeman, Cohen, and Thompson, 1998). This model posits that critical thinking monitors, tests, and refines recognitional decision making (the phenomenon described in the literature on “naturalistic decision making” (Klein, 1993)). This framework specifies several cognitive functions that constitute critical thinking; monitoring, critiquing, and actions. Monitoring tests for the need and opportunity to critique assessments and plans. When the decision maker senses uncertainty and the stakes are high, there is a need to engage in critical thinking; when time is available to do so, there is an opportunity. Critiquing ferrets out specific sources of uncertainty, such as gaps in knowledge, untested assumptions, and the existence of conflicting interpretations of events. Actions such as gathering information and formulating contingency plans manage – and may even reduce – uncertainty and attendant risks.

Individuals engage in critical thinking within team settings. This is well established (Freeman, Cohen, and Thompson, 1998). We hypothesize that analogs of these critical thinking functions exist at the team level, as well. That is, high functioning teams encourage productive, timely, critical dialogue between team members. As markers of collaborative critical thinking, we look for the following behaviors:

Team leaders and members use disagreement within the group as an indicator that conflicting interpretations should be resolved, that the relevancy and accuracy of assumptions and paradigms should be tested, and that uniquely held information should be shared. Disagreements are pointers to uncertainty in the assessments and plans the team generates. Proficient teams use disagreement as an indicator when they monitor the need to engage in collaborative critical thought.

Team leaders and members prioritize activities to ensure that time and efforts are invested in addressing the most critical sources of uncertainty and risk. Thus, they monitor the opportunities to engage in collaborative critical thinking, and attempt to control them.

Team leaders and members engage in dialogues to identify the sources of uncertainty that might weaken their assessments and plans, and they devise ways to reduce that uncertainty (e.g., by
gathering information) or compensate for it (e.g., by developing contingency plans). In this way, proficient teams critique their work.

Proficient teams act in coordination to gather and disseminate information as they manage uncertainty.

To document these hypotheses, we are conducting empirical research with Michael Coover and his colleagues at the University of Central Florida. To support CCT – particularly the functions above – we are developing tools and training. Both are designed to help distributed team members critique their assessments and plans. Both employ questions designed to support monitoring, so that teams can spot opportunities to engage in collaborative critical thinking (and avoid needless debates).

CCT Tool

The tool being developed will help teams monitor for opportunities to engage in CCT, support CCT when it occurs, and thus improve the products of team collaboration.

The tool being developed has two major users: the team members and a person acting as facilitator. The team members are asked questions at crucial points during the collaboration process that give insight into the current state of CCT (Figure 2 shows a prototype). Answers are made anonymously, to encourage candor – a precious but scarce commodity in some settings. Each question consists of a rated item and an optional comment. The system analyzes the rated items and distributes descriptive analyses plus comments to the facilitator, who then decides whether action should be taken (Figure 3). Alternatively, they may be distributed to the team to foster awareness of the team’s state.

Figure 2. Screenshot of initial team member interface
What questions might this system present to users that would support collaborative critical thinking? Consider a decision, made during planning of an air campaign, whether to gather battle damage assessments using special forces on the ground (a tactic that produces highly accurate reports at high risk to warfighters) or by other means, such as Predator UAVs (an approach that can produce less accurate reports in some weather conditions but does not expose human warfighters to threats). While the team researches the targets and enemy defenses, and discusses these options, the team leader polls the members, asking, “Are you confident in the plan to use ground observers?” Respondents answer this question by selecting a rating on a Likert scale anchored on one end by “No” and the other by “Yes.” Low variance in responses to this question (whether the ratings are high, low, or at the mean) suggest that there is little uncertainty to be resolved on this question. High variance indicates, of course, that there are differences within the team that may, if discussed, expose potential problems in the use of ground observers, relative to other solutions.

We can also employ a second order question in this circumstance. “Is there consensus within the team concerning the use of ground observers?” Ratings gathered from team leaders in response to this question give insight into their awareness of the team state when considered in light of team member responses to the question above. Leaders’ awareness of team state is accurate when estimates of consensus are low and team member confidence varies widely, or when leaders’ estimates of consensus are high and confidence exhibits little variance. Team leaders may waste the time and tax the patience of team members in unneeded discussions or research when they estimate that consensus is low though variance in confidence is low. Conversely,
leaders may fail to identify and address critical problems when they estimate that consensus is high when confidence varies widely.

In time-critical missions, it may be useful to encourage sensitivity to the time available for decision making (and, thus, for collaborative critical thinking) and to elicit estimates of available decision time from team members with different perspectives on the problem or different levels of expertise. Uniformly high estimates of available time indicate that there may be opportunities to critique assessments and plans. High variance among estimates indicate either that some team members have time constraints not understood by their team members, or that some team individuals misperceive the time course of the mission. These are not rare or trivial failures. To avoid them, experts in anti-air warfare, for example, maintain an awareness of the available decision time so that they can use it well when the stakes are high, and even buy time when possible (Cohen, Freeman, and Thompson, 1998). This sensitivity to decision time varies with expertise. An experimental test of decision making by airline pilots (Freeman, Cohen, and Thompson, 1998) revealed that there is marked difference in the sensitivity to time (but not accuracy of time estimates) as a function of experience. Pilots with more than 20 hears experience used all of the available decision time (rarely much less or much more) to gather information and make a decision whether to divert to an alternate airport; pilots with less experienced were more likely to make hasty decisions when time was available, and tardy decisions when it was not. Evidence such as this suggests that teams may benefit from tools or training that help them to monitor the available decision time and use it well.

To complement questions such as these, which support monitoring, we are designing questions that help teams to ferret out problems, identify actions to resolve problems or compensate for them, coordinate those actions, and apply what they learn to improve their assessments and plans. The system will help leaders to develop these questions by presenting question templates that leaders specify to the problem at hand.

To guarantee that the users get the optimal benefit from the CCT tool, training is being developed that will help the users leverage these tools. An effective training program, such as the successful Team Adaptation and Coordination Training (TACT) Program (Entin and Serfaty, 1999), includes four components: lecture, demonstration, practice, and feedback. We plan to build on our aviation experience with cockpit resource management (i.e., narrative-based realistic operational scenarios) to create stories that illustrate critical elements necessary in CCT. We will incorporate these stories into a training program that will build the necessary CCT skills and facilitate the tool integration. The validation planned for this intervention should show that teams with both CCT training and the CCT tool achieve a better shared situation awareness, produce more robust plans, and execute missions with greater synchrony and success than teams that do not receive these CCT interventions.

References

Collaborative Critical Thinking

8th International Command and Control Research and Technology Symposium
June 17 – 19, 2003
National Defense University
Washington, DC

Jared Freeman, Ph.D., Kathleen P. Hess, Ph.D.,
Gabriel Spitz, Sc.D., Michael J. Garrity,
Gavan Lintern, Ph.D. : Aptima, Inc.

Michael D. Coover, Ph.D., Thomas G. Gordon, Ph.D.,
Jason Read, Dawn Riddle, Tim Willis, Thomas S.
King V.: University of South Florida
Overview

- A Collaborative Critical Thinking framework for
 - understanding
 - measuring
 - training and
 - supporting
- Technology
- Experimentation
Collaborative Critical Thinking Framework
Information age warfare
- Teams are distributed, ad hoc, multi-disciplinary, mission-critical
- Teams require coordination & collaboration
 - Manage forces & information
 - Achieve effects
- Supporting coordination & collaboration requires measurement

Coordination & collaboration processes can be measured

Collaboration often involves critical thinking. For individuals, CT
- Is found in transcripts of planning
- Can be trained
- Improves mission performance in Air Defense scenarios

Alberts, Garstka, Hayes, and Signori (2001)

Letsky et al. (2003)

Macmillan, et al., 2001

Miller, Price, Entin, & Rubineau, 2001

Moon, et al., 2000

Cohen, Freeman, and Thompson, 1998

Cohen and Freeman, 1997
Overview: Collaboration

- Collaboration
 - Consists of functions (or processes) ...
 - That effect C2 ...
 - Which produces mission effects

- What are collaboration functions, particularly Collaborative Critical Thinking?
Collaboration involves*

1. Process knowledge
2. Domain knowledge
3. Team knowledge
4. Negotiating solutions
5. Testing & revising solutions

*(Letsky et al., 2002)
Framework 2: Collaborative Critical Thinking

- Collaborative critical thinking* engages multiple team members in
 - Monitoring for uncertainty
 - Detecting opportunities to handle it
 - Specifying problems
 - Solving problems & gathering info
- CCT can be applied to
 - Assessments
 - Plans
 - The team process & structure

Framework 3: Dispositions Support Critical Thinking

- Critical thinking skills may be driven (in part) by dispositions*
 - systematic inquisition to find truth
- Measures
 - Observational
 - Standardized instruments
 - Self report

* Facione, 1998
Collaborative Critical Thinking

- Define, Measure, Train and Support Collaborative Critical Thinking
- Measure its effects on C2 & Mission outcomes
CCT Decision Support
Concept for a CCT Support Tool

- The setting
 - A geographically distributed team in a long working session
 - The team leader wants to monitor CCT activity
 - Team members need reminders to engage in CCT

- Two components
 - Respondents’ tool –
 - Elicits data concerning team member monitoring, assessments, critiques, actions
 - Cues team members to monitor, assess, critique, act
 - Leader’s tool
 - Helps leader or aid plan, poll for, and analyze collaborative critical thinking activity
Workspaces in a Distributed Team
A Pop-Up Probe
Opportunity to Rate and Comment
Rating Results + Advice

Current Status
- Participation:
 - [] [] [] [] [] [] []

Opinion:
- [] This is where the question will go

Comments:
- 1) Text of the first comment

Overall Status

Opinion Data
- Current time: 00:30
- Data view: Participants by Attributes

Advice:
Some team members believe the plan is flawed. Time is available to critique the plan. Use it.
A Summary of Comments
Leader’s Configuration Interfaces

- Configure (clockwise)
 - Work session
 - Probes & schedule
 - Participants
CCT Probes
Criteria for CCT Probes

- Probes consist of
 - **CCT template**: “Are you confident in the plan...”
 - **Mission-specific content**: “to use ground observers to assess battle damage?”
- **Probes measure** CCT with quick ratings re:
 - Monitoring, Assessing, Critiquing, Action
- **Probes elicit** CCT
 - Comments
- Team CCT states → **diagnosis & action**
Team: “Are you confident in the plan to use ground observers to assess battle damage?” (0=No 10=Yes)
- Low variance = Consensus. Don’t invest time in critiquing this plan unless the situation changes.
- High variance = Little agreement, high uncertainty. If time is available to critique the plan, focus here.

Analysis & Advice
- High confidence, strong consensus
 - Advice: Do not invest time in critiques on this issue unless the situation changes significantly.
- Low confidence, strong consensus
 - Advice: Critique this issue if time allows.
- Weak consensus
 - Advice: Poll team members with low and high confidence to identify misperceptions or problems
Assessing Available Time

“How much time is available before the team must commit to a decision concerning use of ground observers for BDA?”

- Low estimates, low variance
 - No time to critique plans. Don’t do so.

- High variance
 - Advice: Some team members have time constraints not understood by their team members. Have team members discuss their time constraints.
 - Advice: Some team individuals misperceive the time course of the mission. Talk with the team members with the tightest time constraints to understand if their constraints are realistic. Correct this.
Experiment
Objective:
- Determine the relative importance of cognitive and dispositional factors in CCT.
- Determine the impact on C2 and mission outcomes of
 - Training cognitive factors and
 - Sensitizing dispositional factors

Method:
- Each of 3 team members receive
 - Training in several cognitive aspects,
 - Sensitization to several dispositional aspects
 - Both, or
 - Neither
- Teams execute 2 TDGs
You are the commanding officer of Company G, Battalion Landing Team 2/2, the small boat company of the 26th Marine Expeditionary Unit (Special Operations Capable).

Your company is currently embarked aboard the USS Austin, and it is part of a combined U.S.-Baklavarian amphibious task force responding to an escalation of arms smuggling in the Adriatic Sea.

Arms smugglers continue to use the small, uninhabited islands along the central Baklavarian coast as transshipment points for weapons to insurgent groups operating in the southern Astorian Sea.

Etc...

*Marine Corps Gazette
Analyses

- Measures
 - Counts of skills observed in dialogues
 - Self-reported use of skills
 - Correctness of solutions

- Analyses
 - Evaluate impact of training & sensitization on outcomes
 - Estimate unique contributions of cognitive and dispositional factors using hierarchical regression
Collaborative Critical Thinking

- **Objective**
 - Define
 - Measure
 - Train and
 - Support

- **Collaborative Critical Thinking for teams**
 - Multi-expert
 - Distributed
 - Ad hoc
 - High stakes
Example of Collaborative Critical Thinking

Mike: JFACC Rear (CONUS Junior Analyst) calls Gavan to discuss the current situation. They are using NetMeeting to share information.

Gavan: JFACC Forward Analyst in charge of mission planning
The Situation: A long-range mission is in progress to attack pre-targeted areas in Ichtar and West Ichtar and is scheduled to commence at 0800. One of the specific targets which impacts the entire mission is a fortified SAM site. Electronic Intelligence has reported that the site has remained stationary for over a year. In addition, Imagery out of Langley reports the absence of any support vehicles necessary to facilitate relocation. Four hours before the attack begins, Communications Intelligence out of NSA reports that the fortified SAM site is indeed on the move.

A group of JFACC analysts is required to make sense of all this information. The location of the SAM site influences both allocation of friendly resources and the protection of friendly forces. One of them is concerned that the location of the SAM has become uncertain.

Mike monitors for uncertainty concerning the situation and plan.
Theory Development:
Example of Collaborative Critical Thinking

- Mike: Gavan we need to redirect our friendlies to account for SAM A34’s relocation.
- Gavan: If there’s a new threat, yes we do. Which SAMs, briefly?

Mike & Gavan assess the importance of resolving this uncertainty
Theory Development: Example of Collaborative Critical Thinking

- Mike: Blue arrow, due north of the river Ichtar.
Theory Development:
Example of Collaborative Critical Thinking

- Gavan: Ok. I thought this SAM was fortified, stationary?
Theory Development: Example of Collaborative Critical Thinking

- Mike: Negative. COMINT has just reported that the SAM is moving. Here is a copy of that report.
UUUUFM: NSA/CSSTO: JFACCSUBJ: POSSIBLE SAM MOVEMENT(U)
THE SA-6 LOCATED AT 32U345098 IS POSSIBLY PREPARING TO
MOVE LOCATIONS. VOICE COMMUNICATIONS BETWEEN
OPERATORS INDICATE THAT PREPARATIONS NECESSARY FOR
THE MOVEMENT MAY HAVE BEGUN AS EARLY AT 0030Z.
Theory Development: Example of Collaborative Critical Thinking

- Gavan: I see it. Didn’t ELINT and IMINT report no movement and no support.
Theory Development:
Example of Collaborative Critical Thinking

- Mike: Roger.
- Gavan: That doesn’t make sense. Doesn’t COMINT get their information from the other two?

Gavan identifies a source of uncertainty.
Mike: That’s my understanding, but I will confirm that.

Gavan: So, we should check back to make certain these reports are correct. Why don’t you check back with IMINT and I’ll check back with ELINT to verify this information. We still have a bit of time. Ask them how conclusive their information is. How did they decide this SAM would not move? Gavan produces a plan to refine their confidence in the information.
Mike: Shouldn’t we decide on a time to abort the mission or at least to make a final call?

Gavan: Yes. Probably the safest thing to do would be to cancel the mission if we aren’t certain. That way, no friendlies will be compromised due to a lost SAM. Let’s huddle no later than 0500 and make a final call no later than 0600.

Gavan & Mike will produce a contingency plan.
Mike: But wouldn’t we miss the opportunity to hit these other sites? Do we know why we are hitting these sites today?

Mike monitors for sources of uncertainty and risk, and prompts Gavan to help identify them.