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Abstract

Many emerging application domains require database systems to support edficiess over highly mul-
tidimensional datasets. The current state-of-the-art technique to indexing high dimensional data is to first
reduce the dimensionality of the data using Principal Component Analysis and then indexing the reduced-
dimensionality space using a multidimensional index structure. The above technique, referred to as global
dimensionality reduction (GDR), works well when the data set is globally correlated, i.e. most of the variation
in the data can be captured by a few dimensions. In practice, datasets are often not globally correlated. In such
cases, reducing the data dimensionality using GDR causes significant loss of distance information resulting in
a large number of false positives and hence a high query cost. Even when a global correlation does not exist,
there may exist subsets of data that are locally correlated. In this paper, we propose a technique called Local
Dimensionality Reduction (LDR) that tries to find local correlations in the data and performs dimensionality
reduction on the locally correlated clusters of data individually. We develop an index structure that exploits
the correlated clusters to efficiently support point, range and k-nearest neighbor queries over high dimensional
datasets. Our experiments on synthetic as well as real-life datasets show that our technique (1) reduces the
dimensionality of the data with significantly lower loss in distance information compared to GDR and (2)
significantly outperforms the GDR, original space indexing and linear scan techniques in terms of the query
cost for both synthetic and real-life datasets.

1 Introduction

With an increasing number of new database applications dealing with highly multidimensional datasets, tech-
niques to support efficient query processing over such data sets has emerged as an important research area.
These applications include multimedia content-based retrieval, exploratory data analysis/data mining, scientific
databases, medical applications and time-series matching. For example, in multimedia retrieval, the objects (e.g.,
images) are represented by their features (e.g., color histograms, texture vectors and shape descriptors) which
define high dimensional feature spaces (HDFS) [17, 37]. In data mining applications, objects are represented
by several numeric attributes which again define a HDFS over which the data mining task (e.g., clustering,
classification) is performed [3, 33]. HDFSs are also becoming increasingly common in scientific (e.g., SDSS’s
astronomy database [41]) and medical databases [30]. To provide efficient access over HDFSs, many indexing
technigues have been proposed in the literature. One class of techniques compnigesdafhensional index
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Figure 1. Global and Local Dimensionality Reduction Techniques (a) &@DR 2-d to 1-d) on globally corre-
lated data (b) GDR (from 2-d to 1-d) on globally non-correlated (but locally correlated) data (¢) LDR (from 2-d
to 1-d) on the same data as in (b)

trees[5, 44, 28, 11, 31, 7]. Although these index structures work well in low to medium dimensionaitgsp
(upto 20-30 dimensions), a simple sequential scan usually performs better at higher dimensionalities [6, 43].

To scale to higher dimensionalities, a commonly used approadimiensionality reductiof20]. This tech-
nigue has been proposed for both multimedia retrieval [17, 36, 27, 42] and data mining ([18, 4, 21]) applications.
The idea is to first reduce the dimensionality of the data and then index the reduced space using a multidimen-
sional index structure [17]. Most of the information in the dataset is condensed to a few dimensions (the first
few principal components (PCs)) by using principal component analysis (PCA). The PCs can be arbitrarily ori-
ented with respect to the original axes (see Appendix A for details on PCA). The remaining dimensions (i.e. the
later components) are eliminated and the index is built on the reduced space. To answer queries, the query is
first mapped to the reduced space and then executed on the index structure. Since the distance in the reduced-
dimensional space lower bounds the distance in the original space, the query processing algorithm can guarantee
no false dismissals [17, 16]. The answer set returned can have false positives (i.e. false admissions) which are
eliminated before it is returned to the user. We refer to this techniqgéasl dimensionality reductio(GDR)
i.e. dimensionality reduction over tlemtire dataset taken together.

GDR works well when the datasetgfobally correlated.e. most of the variation in the data can be captured
by a few orthonormal dimensions (the first few PCs). Such a case is illustrated in Figure 1(a) where a single
dimension (the first PC) captures the variation of data in the 2-d space. In such cases, it is possible to eliminate
most of the dimensions (the later PCs) with little or no loss of distance information. However, in practice, the
dataset may not be globally correlated (see Figure 1(b)). In such cases, reducing the data dimensionality using
GDR will cause a significant loss of distance information. Loss in distance information is manifested by a large
number of false positives and is measured by precision [27] (cf. Section 5). More the loss, larger the number
of false positives, lower the precision. False positives increase the cost of the query by (1) causing the query
to make unnecessary accesses to nodes of the index structure and (2) adding to the post-processing cost of the
guery, that of checking the objects returned by the index and eliminating the false positives. The cost increases
with the increase in the number of false positives. Note that false positives do not affect the quality the answers
as they are not returned to the user.

Even when a global correlation does not exist, there may exist subsets of data thaabtyecorrelated(e.g.,
the data in Figure 1(b) is not globally correlated but is locally correlated as shown in Figure 1(c)). Obviously, the
correlation structure (the PCs) differ from one subset to another as otherwise they would be globally correlated.
We refer to these subsets @srrelated cluster®r simplyclusters 1 In such cases, GDR would not be able to

!Note that correlated clusters (formally defined in Section 3) differ from the usual definition of clusters i.e. a set of spatially close
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obtain a single reduced space of desired dimensionality for the entire dataset without significant loss of query

accuracy. If we perform dimensiolityt reduction oneach clusteindividually(assuming we can find the clusters)

rather than on the entire dataset, we can obtain a set of different reduced spaces of desired diite(asona

shownin Figure 1(c)) which together cover the entire dafalset achieves it with minimal loss of query precision

and hence significantly lower query cost. We refer to this approach as local dimensionality reduction (LDR).
Contributions: In this paper, we propose LDR as an approach to high dimensional indexing. Our contribu-

tions can be summarized as follows:

e We develop an algorithm to discover correlated clusters in the dataset. Like any clustering problem, the
problem, in general, is NP-Hard [32]. Hence, our algorithm is heuristic-based. Our algorithm performs
dimensionality reduction aach cluster individually to obtain the reduced space (referred to as subspace)
for each cluster. The data items that do not belong to any cluster are outputtatiexs.olihe algorithm
allows the user to control the amount of information loss incurred by dimensionality reduction and hence
the query precision/cost.

e We present a technique to index the subspaces individually. We present query processing algorithms for
point, range and k-nearest neighbor (k-NN) queries that execute on the index structure. Unlike many
previous techniques [27, 42], our algorithms guarantee correctness of the result i.e. returns exactly the
same answers as if the query executed on the original space. In other words, the answer set returned to the
user has no false positives or false negatives.

e We perform extensive experiments on synthetic as well as real-life datasets to evaluate the effectiveness
of LDR as an indexing technique and compare it with other techniques, namely, GDR, index structure
on the original HDFS (referred to as the original space indexing (OSI) technique) and linear scan. Our
experiments show that (1) LDR can reduce dimensionality with significantly lower loss in query precision
as compared to GDR technique. For the same reduced dimensionality, LDR outperforms GDR by almost an
order of magnitude in terms of precision. and (2) LDR performs significantly better than other techniques,
namely GDR, original space indexing and sequential scan, in terms of query cost for both synthetic and
real-life datasets.

Roadmap: The rest of the paper is organized as follows. In Section 2, we provide an overview of related
work. In Section 3, we present the algorithm to discover the correlated clusters in the data. Section 4 discusses
technigues to index the subspaces and support similarity queries on top of the index structure. In Section 5, we
present the performance results. Section 6 offers the final concluding remarks.

2 Related Work

In this section, we discuss the related work on high dimensional index structures, global dimensionality reduction
and clustering algorithms.

High Dimensional Index Structures Recent research on high dimensional indexing has lead to the develop-
ment of several index structures including X-tree[5], SS-tree [44], SR-tree [28], M-tree [11], TV-tree [31] and
Hybrid-tree [7]. These index structures use novel data/space partitioning strategies and scale better to high dimen-
sionalities compared to spatial index structures (e.g., R-tree, grid file). They are extensively used for similarity
search in multimedia retrieval [17, 10], data mining [14, 3] and decision support [40, 13] applications. Although

points. To avoid confusion, we refer to the latteisastial clustersn this paper.
2The set of reduced spaces may not necessarily cover the entire dataset as there nitgrée \dle account for otliers in our
algorithm.



these index structures can scale to medium dimensionalities (upto 20-30 dimensions), above a certain dimension-
ality (referred to as the critical dimensionality), they are outperformed by a simple sequential scan through the
database [43, 6]. The reason is that the data space becomes sparse at high dimensionalities causing the bounding
regions to become large. The query ends up overlapping with most nodes of the tree resulting in a large number
of disk accesses and hence a high query cost. The linear scan performs better in such cases since sequential /0
is significantly cheaper compared to random I/O. Obviously, the critical dimensionality depends on the dataset
and the index structure used.

Global Dimensionality Reduction GDR techniques has been studied extensively in statistical pattern recog-
nition and multivariate data analysis. The principal component analysis (PCA) or Karhunen-Loeve (K-L) trans-
form is the optimal way of mapping points infadimensional space to points in a d-dimensional spéce )

[12, 20]. The mapping is optimal in the sense it minimizes the mean square error (MSE), where the error is
the distance between eaéhd point and itsd-d image. Subsequently, thied space is indexed using a mul-
tidimensional index structure and queries are answered using the reduced dimensional index (see [17, 27] for
details).

Clustering Clustering algorithms have been studied recently in the data mining domain (e.g., BIRCH, CLARANS,
DBSCAN and CURE algorithms) [45, 35, 24, 14, 29]. The algorithms most related to this paper are those that dis-
cover patterns in low dimensional subspaces [1, 2]. In [1], Agarwal et. al. present an algorithm, called CLIQUE,
to discover“dense” regions in all subspaces of the original data space. The algorithm works from lower to higher
dimensionality subsgres: it starts by discovering 1-d dense units and iteratively discovers all dense units in
each k-d subspace by building from the dense units in (k-1)-d subspaces. In [2], Aggarwal et. al. present an
algorithm, called PROCLUS, that clusters the data based on their correlation i.e. partitions the data into disjoint
groups of correlated points. The authors use the hill climbing technique, popular in spatial cluster analysis, to
determine the projected clusters. Neither CLIQUE, nor PROCLUS can be used as an LDR technique since they
cannot discover clusters when the principal components are arbitrarily oriented. They can discover only those
clusters that are correlated along one or more of the original dimensions. The above techniques are meant for
discovering interesting patterns in the data; since correlation along arbitrarily oriented components is usually not
that interesting to the user, they do not attempt to discover such correlation. On the contrary, the goal of LDR is
efficient indexing; it must be able to discover such correlation in order to minimize the loss of information and
make indexing efficient. Also, since the motivation of their work is pattern discovery and not indexing, they do
not address the indexing and query processing issues which we have addressed in this paper. To the best of our
knowledge, this is the first paper that proposes to exploit the local correlations in data for the purpose of indexing.

3 ldentifying Correlated Clusters

In this section, we formally define the notion of correlated clusters and present an algorithm to discover such
clusters in the data.

3.1 Definitions
In developing the algorithm to identify the correlated clusters, we will need the following definitions.

Definition 1 (Cluster and Subspace)Given a setd of N points in aD-dimensional feature space, we define a
clusterS as a setds (As C .A) of locally correlated points. Each clustgiis defined byS = (b5, ds, Cs, As)
where:



Symbols Definitions

N Number of objects in the database

M Maximum number of clusters desired

K Actual number of clusters found{( < M)

D Dimensionality of the original feature space
Si Theith cluster

Ci Centroid ofS;

n; Size ofS; (humber of objects)

A; Set of points inS;

®; The principal components ¢f

<I>§j) The jth principal component of;

d; Subspace dimensionality 6f

€ Neighborhood range

M ax Recon Dist Maximum Reconstruction distance
FracOutliers Permissible fraction of outliers

MinSize Minimum Size of a cluster

MaxDim Maximum subspace dimensionality of a cluster
0 Set of outliers

Table 1: Summary of symbols and definitions

e &g are the principal components of the clustbif,) denoting theth principal component.

e dg is the reduced dimensionality i.e. the number of dimensions retained. Obviously, the retained dimen-
sions correspond to the firgt principal component@f;), 1 < ¢ < dg while the eliminated dimensions
correspond to the nex{D — ds) components. Hence we use the terms (principal) components and dimen-
sions interchangeably in the context of the transformed space.

o (s = [Oédﬁl) - -ch>] is the centroid, that stores, for each eliminated dimendigrids + 1) <
¢ < D, a single constant which is “representative” of the position of every point in the cluster along this
unrepresented dimension (as we are not storing their unique positions along these dimensions).

e Ag is the set of points in the cluster

The reduced dimensionality space defined@ﬁ), 1 < i < dg is called thesubspacef S. dg is called the
subspace dimensionality 6f

Definition 2 (Reconstruction Vector) Given a clustef = (®g, ds, C's, As), we define theeconstruction vec-
tor ReconVect(Q, S) of a point() from S as follows:

ReconVect(Q,S) = EZD:(ds-H)(Q o q)g) _ Cg))q)g) (1)

whereX: denotes vector addition amdienotes scalar product (i.Q.e q)f;) is the projection of) on q)f;) as shown
in Figure 2).(Q o <I>f§) - Cg)) is the (scalar) distance ¢f from the centroid along each eliminated dimension
andReconVector(Q, S) is the vector of these distances.

Definition 3 (Reconstruction Distance) Given a clusterS = (®g,ds,Cs, As), we now define theecon-
struction distancgscalar) ReconDist(Q, S, D) of a point@ from S. D is the distance function used to
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Figure 2: Centroid and Reconstruction Distance.

define the similarity between points in the HDFS. [letbe anL, metric i.e. D(P, P') = || P - P'||, =
=4 (|P[i] — P'[i]])P]"/". We defineReconDist(Q, S, D) ? as follows:
. . 1
ReconDist(Q, S, D) = ReconDist(Q, S, L,) = || ReconVect(Q,S) ||, = [Eg(ds-l—l)qQ o @g) — Cg”)p] &
2)
]

For any pointQ mapped to thels-dimensional subspace of, ReconVect(Q,S) represents the error in
the representation i.e. the vector difference between the éxatiinensional representation ¢f and its ap-
proximate representation in thkg-dimensional subspace 6f Higher the error, more the amount of distance
information lost. When averaged over all pointsSinwe get the average information lossSnwhich is called
the reconstruction error df.

Definition 4 (Reconstruction Error) The reconstruction erra?(.S) of clustersS is defined as the mean square
magnitude ofReconVect(Q, S) whereQ) € Ag:
2

£2(8) = B{(|| ReconVect(Q. 5) |1,)"} = B2y ELCY - Qe 0Y) ) 3)

whereF'(X') denotes expected value of X.

3.2 Constraints on Correlated Clusters

Our objective in defining clusters is to identify low dimensional subspaces, one for each cluster, that can be
indexed separately. We desire each subspace to have as low dimétysampossible without losing too much
distance information. In order to achieve the desired goal, each cluster must satisfy the following constraints:

1. Reconstruction Distance Bound:In order to restrict the maximum representation error of any point in
the low dimensional subspace, we enforce the reconstruction distance of any’paintls to satisfy
the following condition: Recon Dist(P,S) < MaxReconDist where M ax ReconDist is a parameter
specified by the user. This condition restricts the amount of information lost véttth cluster and hence
guarantees a high precision which in turn implies lower query cost.

3Assuming tha® is a fixedl,, metric, we usually omit thé® in Recon Dist(Q, S, D) for simplicity of notation.
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2. Dimensionality Bound: For efficient indexing, we want the subspace dimensionality to be as low as
possible while still maintaining high query precision. A cluster must not retain any more dimensions that
necessary. In other words, it must retain the minimum number of dimensions required to accommodate
the points in the dataset. Note than a clusteran accommodate a poiftonly if ReconDist(P,S) <
Max ReconDist. To ensure that the subspace dimensiondlitys below the critical dimensionality of
the multidimensional index structure (i.e. the dimensionality above which a sequential scan is better), we
enforce the following conditionis < Max Dim whereM ax Dim is specified by the user.

3. Choice of Centroid: For each clustef, we use PCA to determine the subspace ibe; is the set of
eigenvectors of the covariance matrix4§ sorted based on their eigenvalues. [20] shows that for a given
choice of reduced dimensionalitl, the reconstruction errar (S) is minimized by choosing the firsts
components amon@ s and choosing’'s to be the mean value of the points (i.e. the centr0|d) projected
on the ellmlnated dimensions. To minimize the information loss, we chdtége_ E{P e <I> } =
E{P} e <I> (see Figure 2).

4. Size Bound: Finally, we desire each cluster to have a minimum catdinénumber of points) :ng >
MinSize whereMinSize is user-specified. The clusters that are too small are considered to be outliers.

The goal of the LDR algorithm described below is to discover th&sets, Ss, ..., Sk of K clusters (where
K < M, M being the maximum number of clusters desired) that exists in the data and that satisfy the above
constraints. The remaining points, that do not belong to any of the clusters, are placed itighset®.

3.3 The Clustering Algorithm

Since the LDR algorithm needs to perfototal correlation analysis (i.e. PCA on subsets of points in the dataset
rather than the whole dataset), we need to first identify the right subsets to perform the analysis on. This poses a
cyclic problem: how do we identify the right subsets without doing the correlation analysis and how do we do the
analysis without knowing the subsets. We break the cycle by ggiatial clusterss an initial guess of the right
subsets. Then we perform PCA on each spatial cluster individually. Finally, we ‘recluster’ the points based on
the correlation information (i.e. principal components) to obtain the correlated clusters. The clustering algorithm
is shown in Table 2. It takes a set of pointsand a set of clustetS as input. When it is invoked for the first
time, A is the entire dataset and each clustet iis marked ‘empty’. At the end, each identified cluster is marked
‘complete’ indicating a completely constructed cluster (no further change); the remaining clusters remain marked
‘empty’. The points that do not belong to any of the clusters are placed to ther@etO. The details of each

step is described below:

e Construct Spatial ClusterqSteps FC1 and FC2): The algorithm starts by constructingpatial clusters
where M is the maximum number of clusters desired. We use a simple single-pass partitioning-based
spatial clustering algorithm to determine the spatial clusters [29, 35]. We first choose & set af of
well-scatteregpoints as the centroids such that points that belong to the same spatial cluster are not chosen
to serve as centroids to different clusters. Such & detcalled apiercing set [2]. We achieve this by
ensuring that each poirit € C in the set is sufficiently far from any already chosen pdite C i.e.

Dist(P, P') > threshold for a user-defined threshold. This technique, proposed by Gonzalez [22], is
guaranteed to return a piercing if no outliers are present. To avoid scanning though the whole database

4For subsequent invocations of FindClusters procedure during the iterative algorithm (Step 2 in Table 3), there may exist already
completed clusters (does not exist during the initial invocation). Héhgrust also be sufficiently far from all complete clusters formed
so fari.e.ReconDist(P,S) > threshold for each complete cluster S.

7



Clustering Algorithm

Input Set of Points4, Set of clusterss (each cluster is either empty or complete)

Output Some empty clusters are completed, the remaining points form the set of oftliers
FindClusters(A4, S, O)

FC1: For each empty cluster, select adam pointP € A such thatP is sufficiently far from all completeq
and valid clusters. If found, make the centroid”; and marks; valid.

FC2: For each poinP € A, addP to the closest valid clustes; (i.e. i = argmin(Distance(P, C;))) if P
lies in thee-neighborhood of’; i.e. Distance(P, C;) < e.

FC3: For each valid clustet;, compute the principal componerits using PCA. Remove all points from; .
FC4: For each poinP € A, find the valid clusteis; that, among all the valid clusters requires the min-
imum subspace dimensionalifyD(P) to satisfy ReconDist(P, S;) < MaxReconDist (break ties

arbitrarily). If LD(P) < MaxDim, incrementV;[j] for j = 0 to (LD(P) — 1) andn;,.

FC5: For each valid cluste5;, compute the subspace dimensionality as: d; = {j|F;[J]
FracOutliers andF;[j — 1] > FracOutliers} whereF;[j] = V;L—LZ]

IA

FC6: For each point? € .4, add P to the first valid clusterS; such thatReconDist(P,S;) <
MazxReconDist. If no suchsS; exists, add P t@.

FC7: If a valid clusters; violates the size constraint i.e(|.4;] < MinSize), mark it empty. Re-
move each point” € A; from S; and add it to the first succeeding clustéy that satisfies
ReconDist(P,S;) < MaxReconDist ortoQ if there is no such cluster. Mark the other valid clusters
complete. For each complete clustgr map each poinP € A4; to the subspace and store it along wjth
ReconDist(P,S, D).

Table 2: Clustering Algorithm

to choose the centroids, we first construct a random sample of the dataset and choose the centroids from
the sample [2, 19, 24]. We choose the sample to be large enough (using Chernoff bounds [34]) such that
the probability of missing clusters due to sampling is low i.e. there is at least one poir¢dicncluster

present in the sample with a high probability [24]. Once the centroids are chosen, weegiupoint

P e Awiththe closest centroi@'.,s.s: If Distance(P,Cu,sest) < € and update the centroid to reflect the

mean position of its group. Wistance( P, Ceosest) > €, We ignoreP. The restriction of the neighborhood

range tar makes the correlation analy$ixalized Smaller the value of, the more localized the analysis.

At the same timegs has to be large enough so that we get a sufficiently large number of points in the cluster
which is necessary for the correlation analysis to be robust.

Compute PCqStep FC3): Once we have the spatial clusters, we perform PCA on each spatial €Juster
individually to obtain the principal componerrb%i)7 i = [1, D] (see Appendix A for details on PCA). We

do not eliminate any components yet. We compute the mean vdjwd the points inS; so that we can
computeRecon Dist( P, S;) in Steps FC4 and FC5 for any choice of subspace dimensioralifinally,

we remove the points from the spatial clusters so that they can be reclustered as described in Step FC6.

Determine Subspace Dimensionalitfteps FC4 and FC5): For each clusterwe must retain no more
dimensions than necessary to accommodate the points in the dataset (excepiettsd.diw determine the

8
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number of dimensiong; to be retained for each clust&y, we first determine, for each poift € A, the
best cluster, if one exists, for placidg) Let LD (P, S;) denote the the least dimensionality needed for the
clusters; to represent’ with ReconDist(P,S;) < Maxz ReconDist. Formally,

LD(P,S;)={d | ReconDist(P,S;) < MaxReconDistif d; > d 4)
and ReconDist(P,S;) > Maxz ReconDist otherwise (5)

In other words, the firstL D(P, S;) PCs are just enough to satisfy the above constraint. Note that such
aLD(P,S;) always exists for a non-negativl ax ReconDist. Let LD(P) = min { LD(P,5;)|5;

is a valid cluster}. If LD(P) < MaxzDim, there exists a cluster that can accommodatevithout
violating the dimensionality bound. LétD (P, S;) = LD(P) (if there are multiple such clustess, break
ties arbitrarily). We say; is the “best” cluster for placing since.S; is the cluster that, among all the
valid clusters, needs to retain the minimum number of dimensions to accomm@datevould satisfy
the ReconDist(P,S;) < MaxReconDist bound if the subspace dimensionality of S; is such that
LD(P,S;) < d; < MazDim and would violate it if0 < d; < LD(P,S;). For each clustet;, we
maintain this information as a count arr&y{;], j = [0, M ax Dim] whereV;[;] is the number of points
that, among the points chosen to be placesl;jiwould violate theRecon Dist(P, S;) < Max ReconDist
constraint if the subspace dimensionatityis j: so in this case (for poin®), we must incremerit;[j] for

j =0to (LD(P,S;) — 1) and the total count; of points chosen to be placed #. (V;[j] andn; is
initialized to 0 before FC4 begins). On the other hand, i#(P) > Max Dim, there exists no cluster in
which P can be placed without violating the dimensibityebound; so we do nothing.

At the end of the pass over the dataset, for each clustene have computetf;[;], j = [0, Max Dim]
andn;. We use this to computg;[j], j = [0, Max Dim] whereF;[j] is the fraction of points that, among
those chosen to be placed$n (during FC4), would violate th&econ Dist(P, S;) < MaxReconDist
constraint if the subspace dimensionalityis j i.e. F;[j] = Vn—[]] An example ofF; from one of the
experiments conducted on the real life dataset (cf. Section 5.3) is shown in Figure 3. We &himolse

as low as possible without too many points violating the reconstruction distance bound i.e. not more than
FracOutliers fraction of points inS; where F'racOutliers is specified by the user. In other words,

is the minimum number of dimensions that must be retained so that the fraction of points that violate the
ReconDist(P,S;) < MaxReconDist constraint is no more thatracOutliers i.e. d; = {j|F;[j] <

FracOutliers andF;[j — 1] > FracOutliers}. In Figure 3,d; is 21 for F'rracOutliers = 0.1, 16 for
9



FracOutliers = 0.2 and 14 forF'racOutliers = 0.3. We now have all the subspaces formed. In the
next step, we assign the points to the clusters.

Recluster Point{Step FC6): In the reclustering step, we reassign each poiat.A to a clusterS that

coversP i.e. ReconDist(P,S) < MaxzReconDist. If there exists no such clusteF, is added to the

outlier setO. If there exists just one cluster that covétsP is assigned to that cluster. Now we consider

the interesting case of multiple clusters coveriigin this case, there is a possibility that some of these
clusters are actually parts of the same correlated cluster but has been split due to the initial spatial clustering.
This is illustrated in Figure 4. Since points in a correlated cluster can be spatially distargeficmother

(e.g., form an elongated cluster in Figure 4) and spatial clustering only clusters spatially close points, it may
end up putting correlated points in different spatial clusters, thus breaking up a single correlated cluster
into two or more clusters. Although such ‘splitting’ does not affect the indexing cost of our technique for
range queries and k-NN queries, it increases the cost of point search and deletion as multiple clusters may
need to searched in contrast to just one when there is no ‘splitting’. (cf. Section 4.2.1). Hence, we must
detect these ‘broken’ clusters and merge them back together. We achieve this by maintaining the clusters
in some fixed order (e.g., order in which they were created). For eachpainP, we check each cluster
sequentially in that order and assign it to the first cluster that cdvet§two (or more) clusters are part

of the same correlated cluster, most points will be covered by all of them bualwidlysbe assigned to

only one them, whichever appears first in the order. This effectively merges the clusters into one since only
the first one will remain while the others will end up being almost empty and will be discarded due to the
violation of size bound in FC7. Note that the&-acOutliers bound in Step FC5 still holds i.e. besides

the points for whichL D(P) > MaaxzDim, no more thatF'racOutliers fraction of points can become
outliers.

Map Points(Step FC7): In the final step of the algorithm, we eliminate clusters that violate the size con-
straint. We remove each point from these clusters and add it to the first succeeding validubter
satisfies thekReconDist(P, S;) < MaxReconDist bound or toQ otherwise. For the remaining clusters

S;, we map each poinP < A; to the subspace by projectirg to <I>§j), 1 < j < d; and refer it as the
(d;-d) imagelmage(P, S;) of P:

Image(P,S;)[j]=Fe @Ej) for1 <j<d; (6)

We refer toP as the D-d) originalOriginal (Image(P, S;), S;) of its imagel mage(P, S;). We store the
image of each point along with the reconstruction distaReen Dist( P, S;).

Since FindClusters chooses the initial centroids from a random sample, there is a risk of missing out some
clusters. One way to reduce this risk is to choose a large number of initial centroids but at the cost of slowing
down the clustering algorithm. We reduce the risk of missing clusters by trying to discover more clusters, if
there exists, among the points returned as outliers by the initial invocation of FindClusters. We iterate the above
process as long as new clusters are still being discovered as shown below:

Iterative Clustering

(1) FindClustersd, S, @); /[* initial invocation */

(2) Let®’ be an empty set. Invoke FindClustefs(S, O'). Make ' the new outlier set i.e
O « O'. If new clusters found, go to (2). Else return.

Table 3: Iterative Clustering Algorithm
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The above iterative clustering algorithm is somewhat similar to the hill climbing technique, commonly used
in spatial clustering algorithms (especially in partitioning-based clustering algorithms like k-means, k-medoids
and CLARANS [29, 35]). In this technique, the “bad quality” clusters (the ones that violate the size bound) are
discarded (Step FC7) and is replaced, if possible, by bettdityjohusters. However, unlike the hill climbing
approach where all the points are reassigned to the clusters, we do not reassign the points already assigned to
the ‘complete’ clusters. Alternatively, we can follow the hill climbing approach but it is computationally more
expensive and requires more scans of the database [35].

Cost Analysis: We conclude this section with a analysis of the cost of the clustering algorithm. Let us first
analyze the cost of the first invocation of the FindClusters procedure (whisrthe whole dataset). The centroid
selection step (FC1) has a small cost since we are using a random sampleapid| < |.A|. Step FC2 requires
one pass through the datastand has a time complexity 6f( N K D). Step FC3 has a complexity 6f(n; D?)
for each clustes; and hence an overall complexity Of N D?) (sinceX;n; < N). This step also has a memory
requirement ofD(n; D) for each cluster and hence a maximum@fmaz;(n;)D) which is smaller than the
memory requirement aP (/N D) of GDR. This is an advantage of LDR over GDR: while the latter requires the
whole dataset to fit in memory, the former requires only the points in the cluster to fit in memory. In either case,
if the memory is too small, we can perform SVD on a sample rather than the whole data [27]. Step FC4 requires
another pass through the database and has a time comple&ly\ab? K') (assumingV/ ez Dim is a constant).

Step FC5 is a simple step with a complexity@fK D). Step FC6 requires a final pass through the database and

has a time complexity ab (N D?K). Also, the first invocation of FindClusters accounts for most of the cost of

the algorithm since the later invocations have much smaller sets as input and hence much smaller cost. Thus, the
algorithm requires three passes through the dataset (FC2,FC4 and FC6) and a time complExity)sfy ).

4 Indexing Correlated Clusters

Having developed the technique to find the correlated clusters, we now shift our attention to how to use them for
indexing. Our objective is to develop a data structure that exploits the correlated clusters to efficiently support
range and k-NN queries over HDFSs. The developed data structure must also be able to handle insertions and
deletions.

4.1 Data Structure

The data structure, referred to as the global index structure (GlI) (i.e. index on entire dataset), consists of separate
multidimensional indices foeach cluster, connected to a single root node. The global index structure is shown
in Figure 5. We explain the various components in details below:
e The Root Nodé? of Gl contains the following information for each clustgr. (1) a pointer to the root
nodeR; (i.e. the address of disk block containify) of the cluster indexX; (the multidimensional index
on 5;), (2) the principal component; (3) the subspace dimensionalityand (4) the centroid’;. It also
contains an access pointerto the outlier cluste©. If there is an index or® (discussed later}) points
to the root node of that index; otherwise, it points to the start of the set of blocks on which the outlier
set resides on diskk may occupy one or more disk blocks depending on the number of clustarsd
original dimensionalityD.
e The Cluster IndicesWe maintain a multidimensional index for each clusters; in which we store the
reduced dimensional representation of the points;inHowever, instead of building the inddx on the
d;-d subspace of; defined by(bgj), 1 < j < d;, we build/; on the(d; + 1)-d space, the first; dimensions
of which are defined bﬁ)z(.j), 1 < j < d; as above while théd; 4+ 1)th dimension is defined by the
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Figure 5: The global index structure

reconstruction distancBecon Dist( P, S;, D). Including reconstruction distance as a dimension helps to
improve query precision (as explained later). We redefine the invagel mage( P, S;) of a pointP € A;

as a(d; + 1)-d point (rather than d;-d point), incorporating the reconstruction distance ag #he- 1)th
dimension:

Newlmage(P,5;)[j] = Image(P,S;)[jl=PFe @Ej) for1 <j <d; @)
= ReconDist(P,S;,D)forj=d;+1 (8)

The(d; + 1)-d cluster index; is constructed by inserting th€; 4 1)-d images (i.e N ewlmage(P, S;))
of each pointP € A4; into the multidimensional index structure using the insertion algorithm of the index
structure. Any disk-based multidimensional index structure (e.g., R-tree [25], X-tree [5], M-tree [11],
Hybrid Tree [7]) can be used for this purpose. We used the hybrid tree in our experiments since it is a
space partitioning index structure (i.e. has “dimensionality-independent” fanout), is more scalable to high
dimensionalities in terms of query cost and can support arbitrary distance metrics [7, 38, 9].

e The Ouitlier Index:For the outlier setD, we may or may not build an index depending on whether the
original dimensionalityD is below or above the critical dimensionality. In this paper, we assume ittt
above the critical dimensionality of the index structure and hence choose not to index the outlier set (i.e.
use sequential scan for it).

Like other database index trees (e.g., B-tree, R-tree), the global index (GI) shown in Figure 5 is disk-based.
But it may not be perfectly height balanced i.e. all paths fil®ro leaf may not be of exactly equal length. The
reason is that the sizes and the dimensionalities may differ from one cluster to another causing the cluster indices
to have different heights. We found that Ghiknostheight balanced (i.e. the difference in the lengtharoftwo
paths fromR to leaf is never more than 1 or 2) due to the size bound on the clusters (see Appendix D for details).
Also, its height cannot exceed the height of the original space index by more than 1 (see Appendix D for details).

To guarantee the correctness of our query algorithms (i.e. to ensure no false dismissals), we need to show that
the cluster index distancéswer boundghe actual distances in the originald space [17, 16]. In other words,
for any twoD-d pointsP and@, D(Newlmage(P,S;), NewlImage(Q,S;)) must always lower boun® (P, Q).

Lemma 1 (Lower Bounding Lemma) D(Newlmage (P, S;), NewImage(Q), S;)) always lower bound® (P, Q).
(Proof in Appendix B).

Note that instead of incorporating reconstruction distance agdthe 1)th dimension, we could have simply
constructed Gl with each cluster indéxdefined on the corresponditigd subspac@y), 1 <5 <d;. Since
the lower bounding lemma holds for thk-d subspaces (as shown in [17]), the query processing algorithms
described below would have been correct. The reason wédyse 1)-d subspace is that the distances in the
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(d; 4+ 1)-d subspace upper bounds the distances id Hiesubspace and hence provides a tighter lower bound to
distances in the original D-d space:

D(Newlmage(P,S;), Newlmage(Q, S;)) =
[D(Image(P,5), Image(@, 5))" + |(ReconDist(P, 8;, D) ~ ReconDist(Q, S, D))I']"”
= D(Newlmage(P,S;), NewImage(Q,S;)) > D(Image(P,S;), Image(Q,S;)) (9)

Furthermore, the difference between the two D€N ewImage (P, S;), NewImage(Q, S;)) andD(Image(P, S;),
I'mage(Q, S;))) is usually significant when computing the distance of the query from a point in the cluster: Say,

P is a point inS; and@ is the query point. Due to the reconstruction distance bodadon Dist(P, S;, D)

is alwaysa small number<{ Maz ReconDist). On the other handReconDist((), S;, D) can have any arbi-

trary value and is usually much larger thBacon Dist( P, S;, D)), thus making the difference quite significant.

This makes the distance computations in ftie+ 1)-d more optimistic than that in thé-d index and hence a

better estimate of the distances in the original D-d space. For example, for a range query, the ramiga cond
(D(Newlmage(P,S;), NewlImage(Q,S;)) < p)is more optimistic (i.e. satisfies fewer objects) than the range
condition @ (Image(P, S;), Image(Q,S;)) < p), leading to fewer false positives. The same is true for k-NN
gueries. Fewer false positives imply lower query cost. At the same time, adding a new dimension also increases
the cost of the query. Our experiments show that decrease in the query cost from fewer false positives offsets the
increase of the cost of the adding a dimension, reducing the overall cost of the query significantly (cf. Section 5,
Figure 12).

4.2 Query Processing over the Global Index

In this section, we discuss how to execute similarity queries efficiently using the index structure described above
(cf. Figure 5). We describe the query processing algorithm for point, range and k-NN queries. For correctness,
the query processing algorithm must guarantee that it always returns exactly the same answer as the query on the
original space [17, 16]. Often dimensionality reduction techniques do not satisfy the correctness criteria [27, 42].
We show that all our query processing algorithms satisfy the above criteria.

4.2.1 Point Search

To find an objec, we first find the cluster that contaids It is the first clusterS (in the order mentioned

in Step FC6) for which the reconstruction distance bound is satisfied. If such a chusiests, we compute
Newlmage(O, S) and find it in the corresponding index by invoking the point search algorithm of the index
structure. The point search returns the object if it exists in the cluster, otherwise it returns null. If no such cluster
S exists,0 must be, if at all, in0. So we sequentially search throughand return it if it exists irO.

4.2.2 Range Queries

Arange queng@ = (@, p, D) retrieves all object® in the database that satisfies the range condigp, O) <

p. The algorithm proceeds as follows (see Appendix C for pseudocode). For each glustermap the query

anchorQ to its (d; + 1)-d image(; (using the principal componernds and subspace dimensionalitystored in

the root nodeRk of GI) and execute a range query (with the same rangm the corresponding cluster indéx

by invoking the procedure RangeSearchOnClusterindex on the rootiyaufe/;. RangeSearchOnClusterindex

is the standard R-tree-style recursive range search procedure that starts from the root node and explores the tree
in a depth-first fashion. It examines the current nddé& 7 is a non-leaf node, it recursively searches each child
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node N of 7' that satisfies the conditioh/ IN DIST(Q, N,D) < p (where MINDIST(Q, N,D) denotes

the minimum distance of thel; + 1)-d image of query point to thgl; + 1)-d bounding rectangle oV based

on distance functiorD [26, 39)); if T is a leaf node, it retrieves each data itéhstored inT (which is the
Newlmage of the original D-d object) that satisfies the range condit®(), O) < p in the(d; + 1)-d space,
accesses the fulD-dimensional tuple on disk to determine whether it is a false positive and adds it to the result
set if it is not a false positive (i.e. it also satisfies the range condiigp, O) < p in the original D-d space).

After all the cluster indices are searched, we add all the qualifying points from among the outliers to the result
by performing a sequential scan ¢h Since the distance in the index space lower bounds the distance in the
original space (cf. Lemma 1), the above algorithm cannot have any false dismissals. The algorithm cannot have
any false positives either as they are filtered out before adding to the result set. The above algorithm thus returns
exactly the same answer as the query on the original space.

In the above discussion, we assumed that we store the reduced representation of the points (i.e. the ‘NewIm-
age’s) in the leaf pages of the cluster indices. Another option was to store the ofigthpbint in the leaf pages
(although the index is built on the reduced space). With the former option, the index will have much fewer leaf
nodes than the latter due to the smaller representation. On the other hand, in the latter case, the false positives
can be eliminated at the leaf page level while the former would require an additional page access into the relation
(where the full tuple is stored) to eliminate false positives. Since the index is usually a secondary index, we
assume that for each match, we need to access the full tuple anyway (to retrievetibaealdudtributes). In that
case, the extra cost of the former option is that of additional page accessad/fihie false positives (see Section
5.1 for the details on the cost computations). Our experiments show that our technique usually operates in a high
precision zonex 90%) i.e. has very few false positives. The experiments also show that the smaller size of the
indices in the former approach saves enough query cost to compensate the few extra I/Os due to false positives.
Hence we store just th¥ ew I'mages in the leaf pages of the index structure.

4.2.3 k Nearest Neighbor Queries

A k-NN query @ = (Q, k, D) retrieves a seR of k objects such that for any two objeets € R,O’ ¢ R,
D(Q,0) < D(Q,0"). The algorithm for k-NN queries is shown in Table 4. Like the basic k-NN algorithm
[26, 39], the algorithm uses a priority quegecue to navigate the nodes/objects in the database in increasing
order of their distances frofy. Note that we use a single queue to navigate the entire global index i.e. we
explore the nodes/objects of all the cluster indices in an intermixed fashion and do not require separate queues
to navigate the different clusters. Each entryireue is either a node or an object and stores 3 fields: the id
of the node/object’ it corresponds to, the clustérit belongs to and its distane&st from the query anchor
@. The items (i.e. nodes/objects) are prioritized basedieni.e. the smallest item appears at the top of the
gueue (min-priority queue). For nodes, the distance is defined byv D1.ST while for objects, it is the the
point-to-point distance [26, 39]. Initially, faach cluster, we map the query anchpto its (d; + 1)-d image
@; using the information stored in the root noeof GI (Line 2). Then, for each cluster indéy, we compute
the distancel/ IN DIST(Q;, R;, D) of @); from the root nod&?; of I; and pushR; into queue along with the
distance and the id of the clust&y to which it belongs (Line 3). We also fill the setmp with the k closest
neighbors of) among the outliers by sequentially scanning throGofiine 4).

After these initialization steps, we start navigating the index by popping the item from the topof at
each step (Line 11). If the popped item is an object, we compute the distance of the original D-d object (by
accessing the full tuple on disk) fror) and append it tdgemp (Lines 12-14). If it a node, we compute the
distance of each of its children to the appropriate query infadggs (wheretop.S denotes the cluster whichp
belongs to) and push them into the queue (Lines 15-20). Note that the image for each cluster is computed just
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k-NNSearch(Query @ = Q, k, D))

1 for (i=1;i < K; i++)

2 @s, + Newlmage(QS;);

3 queue.push@;, R;, MIN DIST(Q;, R, D));

4 Add totemp thek closest neighbors @ among® (using linear scan
5 while (not queue.ISEmpty())

6 top=queue.Top();

7 for each object O imemp such thaD.dist < top.dist
8 temp < temp — O;

9 result = result U O,;

10 retrieved++;

11 if (retrieved = K)return result;

12 queue.Pop();

13 if top.T'is an object

14 top.dist = D(Q, Original(top.T, top.S));

15 temp =temp Utop. T

16 else iftop.T"is a leaf node

17 for each objecO in top. T

18 queue.push(top.S, OP(Q:op.s, 0));

19 else/* top.T is an index node */

20 for each childV of top.T'

21 queue.push(top.SN, MIN DIST(Qtop.5, N, D));

Table 4: k-NN Query.

once (in Step 2) and is reused here. We move an objémm temp to result only when we are sure that it is
among thek nearest neighbors @f i.e. there exists no obje@’ ¢ result such thal(0O’, Q) < D(0,Q) and
|result| < k. The second condition is ensured by the exit condition in Line 11. The conditidist < top.dist

in Line 7 ensures that there existsmoexploredbjectO’ such thatD (0’ Q) < D(O, Q). The proof is simple:
O.dist < top.dist impliesO.dist < D(NewlImage(O',S), NewImage((,S)) for any unexplored object
O’ in a clusterS (by the property of min-priority queue) which in turn impliggO, Q) < D(O’, Q) (since
D(NewlImage(O',5), Newlmage(Q,5)) lower boundP(0O’, Q), see Lemma 1). By inserting the objects in
temp (i.e. already explored items) intesult in increasing order of their distances in the original D-d space (by
keepingtemp sorted), we also ensure there existsemploredobjectO’ such thatD(O’, Q) < D(O, Q). This
shows that the algorithm returns the correct answer i.e. the exact set of objects as the query in the original D-d
space. It is also easy to show that the algorithm is 1/0O optimal.

Lemma 2 (Optimality of k-NN algorithm) The k-NN algorithm is optimal i.e. it does not explore any object
outside the range dith nearest neighbor. (Proof in Appendix C).
4.3 Modifications

We assume that the data is static in order to build the index. However, we must support subsequent inser-
tions/deletions of the objects to/from the index efficiently. To insert an objeete find the first clustef (in
the order mentioned earlier) for which the reconstruction distance bound is satisfigddo@.Dist(O, 5, D) <
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ReconError. If such a cluster exists, we computew/mage(O, S) and insert it into the corresponding index
using the insertion algorithm of the index structure. Otherwise, we appeond’.

The deletion algorithm is also simple. To delete an objectve first findO by invoking the point search
algorithm (cf. Section 4.2.1). If it is found in a cluster, we delete it using the deletion algorithm of the index
structure; else if it is found id?, we delete it from0; else, we return not found.

If the database is dynamic (i.e. frequent insertions and deletions), the principal components need to be updated
from time to time. One option is to repeat the entire clustering algorithm and construct the index structure from
scratch. This can be done more efficiently using techniques proposed by Ravi Kanth et. al. [27]. The idea is to
use aggregate data, obtained from the cluster indices, to recompute the principal components for each cluster and
then incorporate the new components back into the cluster indices. [27] shows that this technique improves the
recomputation time significantly without degrading the quality of the index structure. We can use their approach
to handle dynamic databases. On the other hand, if the database is more or less static (i.e. insertions and deletions
are rare) as is often the case [17, 15], such recomputations are not necessary.

5 Experiments

In this section, we present the results of an extensive empirical study we have conducted to (1) evaluate the
effectiveness of LDR as a high dimensional indexing technique and (2) compare it with other techniques, namely,
GDR, original space indexing (OSI) and linear scan. We conducted our experiments on both synthetic and real-
life datasets. The major findings of our study can be summarized as follows:

e High Precision: LDR provides up to an order of magnitude improvement in precision over the GDR
technique at the same reduced dimensionality. This indicates that LDR can achieve the same reduction as
GDR with significantly lower loss of distance information.

e Low Query Cost: LDR consistently outperforms other indexing techniques, namely GDR, original space
indexing and sequential scan, in terms of query cost (combined I/O and CPU costs) for both synthetic and
real-life datasets.

Thus, our experimental results validate the thesis of this paper that LDR is an effective indexing technique for
high dimensional datasets. All experiments reported in this section were conducted on a Sun Ultra Enterprise
450 machine with 1 GB of physical memory and several GB of secondary storage, running Solaris 2.5.

5.1 Experimental Methodology

We conduct the following two sets of experiments to evaluate the LDR technique and compare it with other
indexing techniques.

Precision Experiments Due to dimensionality reduction, both GDR and LDR, cause loss of distance informa-
tion (e.g., in Figure 15 in Appendix A, the distance between D and E is lost due to elimination of the second
principal component). More the number of dimensions eliminated, more the amount of information lost. We
measure this loss hyrecisiondefined asPrecision = M where R, cqyced aNd R,y;ginq1 are the sets of
answers returned by the range query on the reduced dimensional space and the original HDFS respectively [27].
For k-NN queries R, inq1 IS the set of actual answers whil&,..4,..q is the set of objects we need to explore
before being sure that we seen all thactual answers. Note that the $8% . jycca — Roriginat) represent the false

positives; soPrecision = L We repeat that since our algorithms guarantee that the user always

false_positives| *
14 1opseopositives]
original

gets back the correct s&,,;,:,q; Of answers (as if the query executed in the original HDFS), precisionruutes
measure the quality of the answers returned to the user but just the information loss incurred by the DR technique
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and hence the query cost. For a DR technique, if we fix the reduced dimensionality, the higher the precision, the
lower the cost of the query, the more efficient the technique. We compare the GDR and LDR techniques based
on precision at fixed reduced dimensionalities.

Cost Experiments We conducted experiments to measure the query cost (I/O and CPU costs) for each of the
following four indexing techniques. We describe how we compute the I/O and CPU costs of the techniques
below.

¢ Linear Scan:In this technique, we perform a simple linear scan on the original high dimensional dataset.

The I/O cost in terms of sequential disk accesseixsizeoffloat) sizeof(id)) - Gincesizeof(id) <

PageSize
(D * sizeof(float)), we will ignore thesizeof(id) henceforth. Assuming sequential I/O is 10 times
faster than random 1/O, the cost in terms of the random accessé& jjfa(felg?;lw). The CPU costis the

cost of computing the distance of the query from each pointin the database.

¢ Original Space Indexing (OSI)n this technique, we build the index on the original HDFS itself using a
multidimensional index structure. We use the hybrid tree as the index structure. The I/O cost (in terms of
random disk accesses) of the query is the number of nodes of the index structure accessed. The CPU cost
is the CPU time (excluding I/0O wait) required to navigate the index and return the answers.

¢ GDR:In this technique, we peform PCA on the original dataset, retain the first few principal components
(depending on the desired reduced dimensionality) and index the reduced dimensional space using the
hybrid tree index structure. In this case, the I/0O cost has 2 components: index page accesses (discussed in
OSI) and accessing the full tuples in the relation for false positive elimination (post processing cost). The
post processing cost can be one I/O per false positives in the worst case. However, as observed in [23],
this assumption is overly pessimistic (and is confirmed by our experiments). We, therefore, assume the
postprocessing I/0 cost to BaT=/2scposttives The total I/O cost (in number of random disk accesses)
isindex_page_access_cost + n“m‘falsg‘p(mmes. The CPU cost is the sum of the index CPU cost and the
post processing CPU cost i.e. cost of computing the distance of the query from each of the false positives.

e LDR: In this technique, we index each cluster using the hybrid treldidimensional index structure and
used a linear scan for the outlier set. For LDR, the 1/O cost of a query has 3 components: index page
accesses for each cluster index, linear scan on thieeoset andaccessing the full tuples in the relation
(post processing cost). The total index page access cost is the total number of nodes accessed of all the

cluster indices combined. The number of sequential disk accesses fotlikesman is'o|*DI§;Z;§§j;(efl°“t)

rovzer/L7all=D) | The postprocessing I/O cost

(as discussed above). The total /0 cost (in number of random disk accesses) is
srepflal=D) 4 numfalseopositives - Similarly, the CPU cost is the sum
of the index CPU cost, outlier scan CPU cost (i.e. cost of computing the distance of the quegafiom
of the outliers) and the post processing cost (i.e. cost of computing the distance of the quesadioof
the false positives).
We chose the hybrid tree as the index structure for our experiments since it is a space partitioning index
structure (“dimensionality-independent” fanout) and has been shown to scale to high dimensionalities [7, 38, 9].

5 We use a page size of 4KB for all our experiments.

The cost of outlier scan in terms of rand@mocesses &2

num _false_positives

is

. O
ndex_page_access_cost + Sl

>The performance gap between our technique and the other techniques was even greater with SR-tree [28] as the index structure due
to higher dimensionality curse [7]. We do not report those results here but cantih the full version of the paper [8].
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5.2 Experimental Results - Synthetic Data Sets

Synthetic Data Sets and Queries In order to generate the synthetic data, we use a method similar to that
discussed in [45] but appropriately modified so that we can generate the different clusters in subspaces of dif-
ferent orientations and dimensionalities. The synthetic dataset generator is described in Appendix F. The input
parameters to the data generator and their default values are shown in Table 6 (Appendix F).

We generated 100 range queries by selecting their query anchors randomly from the dataset and choosing a
range value such that the average query selectivity is about 2%. We tested with only range queries since the
k-NN algorithm, being optimal, is identical to the range query with the range equal to the distancektti the
nearest neighbor from the query (Lemma 3). We figaistance (Euclidean) as the distance metric. All our
measurements are averaged over the 100 queries.

Precision Experiments In our first set of experiments, we carry out a sensitivity analysis of the GDR and
LDR techniques to parameters like skew in the size of the clustgrs)( number of clustersi{) and degree of
correlation §). In each experiment, we vary the parameter of interest while the remaining parameters are fixed
at their default values. We fix the reduced dimensionality of the GDR technique to 15. We fix the average sub-
space dimensionality of the clusters (i, %%) also to 15 by choosingracOutliers andMax Recon Dist
appropriately fracOutliers = 0.1 and M ax ReconDist = 0.5). Figure 6 compares the precision of the LDR
technique with that of GDR for various value af... LDR achieves about 3 times higher precision compared

to GDR i.e. the latter has more than three times the number of false positives as the former. The precision of
neither technique changes significantly with the skew. Figure 7 compares the precision of the two techniques for
various values of. As expected, for one cluster, the two techniques are identicat.iAsreases, the precision

of GDR deteriorates while that of LDR is independent of the number of clustersk Eor 0, LDR is almost

an order of magnitude better compared to GDR in terms of precision. Figure 8 compares the two techniques for
various values op. As the degree of correlation decreases (i.e. the valyemdreases), the precision of both
techniques drop but LDR outperforms GDR for all valpeg-igure 9 shows the variation of the precision with

the reduced dimensionality. For the GDR technique, we vary the reduced dimensionality from 15 to 60. For the
LDR technique, we vary the'racOwutliers from 0.2 t0 0.01 (0.2, 0.15, 0.1, 0.05, 0.02, 0.01) causing the average
subspace dimensionality to vary from 7 to 42 (7, 10, 12, 14, 23 andM2)(@:m was 64). The precision of

both techniques increase with the increase in reduced dimensionality. Once again, LDR consistently outperforms
GDR at all dimensionalities. The above experiments show that LDR is a more effective dimensionality reduction
technique as it can achieve the same reduction as GDR with significantly lower loss of information (i.e. high
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precision) and hence significantly lower cost as confirmed in the cost experiments described next.

Cost Experiments We compare the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of query
cost for the synthetic dataset. Figure 10 compares the 1/0O cost of the 4 techniques. Both the LDR and GDR
technigues have U-shaped cost curves: when the reduced dimensionality is too low, there is a high degree of
information loss leading to a large number of false positives and hence a high post-processing cost; when it is
too high, the index page access cost becomes too high due to diméitgicun@e. The optimum points lies
somewhere in the middle: it is at dimensionality 14 (about 250 randomedissses) for LDR and at 40 (about

1200 random disk accesses) for GDR. The I/O cost of OSI and Linear Scan is obviously independent of the
reduced dimensionality. LDR significantly outperforms all the other 3 techniques in terms of 1/O cost. The only
technique that comes close to LDR in terms of 1/0O cost is the linear scan (but LDR is 2.5 times better as the
latter performs 6274 sequential accesse®27 random accesses). However, linear scan loses out mainly due to
its high CPU cost shown in Figure 11. While LDR, GDR and OSI techniques have similar CPU cost (at their
respective optimum points), the CPU cost linear scan is almost two orders of magnitude higher that the rest. LDR
has slightly higher CPU cost compared to GDR and OSI since it uses linear scan for the outlier set: however, the
savings in the I/0O cost over GDR and OSI (by a factor of 5-6) far offsets the slightly higher CPU cost.

5.3 Experimental Results - Real-Life Data Sets

Description of Dataset Our real-life data set (COLHIST dataset [7]) comprise8 gf3 color histograms (64-d

data) extracted from about 70,000 color images obtained from the Corel Database (http://corel.digitalriver.com/)
and is available online at the UCI KDD Archive web site (http://kdd.ics.uci.edu/databases/CorelFeatures). We
generated 100 range queries by selecting their query anchors randomly from the dataset and choosing a range
value such that the average query selectivity is about 0.5%. All our measurements are averaged over the 100
queries.

Cost Experiments First, we evaluate the impact of addiftycon Dist as an additional dimension of each
cluster in the LDR technique. Figure 12 shows that the additional dimension reduces the cost of the query
significantly. We performed the above experiment on the synthetic dataset as well and observed a similar result.
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6 Figure 13 compares the 4 techniques, namely LDR, GDR, OSI and Linear Scan, in terms of /O cost. LDR
outperforms all other techniques significantly. Again, the only technique that come close to LDR in I/O cost (i.e.
number of random disk accesses) is the linear scan. However, again, linear scan turns out to significantly worse
compared to LDR in terms of the overall cost due to its high CPU cost as shown in Figure 14.

6 Conclusion

With numerous emerging applications requiring efficient access to high dimensional datasets, there is a need
for scalable techniques to indexing high dimensional data. In this paper, we proposed local dimensionality re-
duction (LDR) as an approach to indexing high dimensional spaces. We developed an algorithm to discover
the locally correlated clusters in the dataset and perform dimensionality reducteathbrof them individually.

We presented an index structure that exploits the correlated clusters to efficiently support similarity queries over
high dimensional datasets. We have shown that our query processing algorithms are correct and optimal. We
conducted an extensive experimental study with synthetic as well as real-life datasets to evaluate the effective-
ness of our technique and compare it to GDR, original space indexing and linear scan techniques. Our results
demonstrate that our technique (1) reduces the dimensionality of the data with significantly lower loss in distance
information compared to GDR, outperforming GDR by almost an order of magnitude in terms of query precision
(for the same reduced dimensionality) and (2) significantly outperforms all the other 3 techniques (hamely, GDR,
original space indexing and linear scan) in terms of the query cost for both synthetic and real-life datasets.
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The material in this appendix can be read at the discretion of the reviewer and has been included only
for the purpose of completeness.

A Principal Component Analysis

PCA examines the variance structure in the data and determines the directions along which the data exhibits
high variance. The first principal component accounts for as much of the Nidyiabthe data as possible, and

each succeeding component accounts for as much of the remaininglitgréepossible. Figure 15 shows a set

of points and the two principal components. Since the first few principal components account for most of the
variation in the data, the rest can be eliminated without significant loss of information. For example, in Figure
15, the second principal component can be eliminated, thus reducing the dimensionality from 2 to 1. The 1-d
images of the 2-d points are obtained by projecting them on the first principal component (shown by squares in
Figure 15). The reduced dimensional points are then indexed using an index structure.

Second Principal Component
A e . :
(eliminated dimension)

First Principal Component
i.e. direction of maximum
variance (retained dimension)

® Pointin 2-d space
m Point in 1-d space (after dim. reduction)

Figure 15: Global Dimensional Reduction (PCA or K-L Transform technique) where D=2, d=1.

We now describe how the principal components are computed algebraically.lhesthe NV x D data matrix
whose each row corresponds to a point in the original D-dimensional space. The first principal component
is the eigenvector corresponding to the largest eigenvalue of the variance-covariance matrth@fsecond
component correspond to the eigenvector with the second largest eigenvalue and so on. The mapping (to reduced
dimensionality) corresponds to the well known Singular Value Decomposition (SVD) of data madrid can
be done irD (N D?) time.

B Lower Bounding Lemma

Lemma 3 (Lower Bounding Lemma) D(Newlmage (P, S;), NewImage(Q), S;)) always lower bound® (P, Q).

Proof: Let P, denotel mage(P, S;) andQ; denotel mage(Q, S;). Let P’ = Ele(Pocbgj)) andQ’ = ile(Qo
q>§j))_ Then,D(F’, Q") = D(P, Q) sinced; is orthonormal. Now,

P' = P, + ReconVect(P,S;) + E?:diHCi(j)q)gj) (10)
)

Q' = Q; + ReconVect(Q,S;) + EJD:diHC»])(I)

K3

7) (11)
The vector distanc®ist(P', Q') between P’ and Q' is

Dist(P',Q") = Dist(P;,Q;) + (ReconVect(P, S;) — ReconVect(Q, S;)) (12)

= D(P',Q') = [D(P, Q)" +|| ReconVeel(P, S) ||, — ReconVeel(Q, 5,)"1"" (13)



SinceL, functions obey triangle inequality,

|| ReconVect(P,S;) — ReconVect(Q, S;) ||, > |(ReconDist(P, S;, D) — ReconDist(Q, S;, D))|  (14)
= D(P,Q") > [D(P;, Q)" + |(ReconDist(P, S;, D) — ReconDist(Q,S;, D))|p]1/p (15)

Now,

D(NewlImage(P,S;), NewImage(Q,S;)) = [D(P;, Q)" + |(ReconDist(P, S;, D) — ReconDist((Q), S;, D))|p]1/p

(16)

SinceD (P, Q") = D(P, Q) and from Equations 15 and 16,
D(Q, P) > D(NewImage(P, S;), NewImage(Q, S;)) (17)
|

C Range Query Algorithm

RangeSearch(QueryQ = (Q, p, D))

for (i=1;i < K; i++)
Qi < Newlmage(Q5;);
Q; «— (Qi,p, D),
RangeSearchOnClusterindexQ; , R;, S;, result);
for eachO € O
if D(Q,0) < presult « result UO,

O, WN B

RangeSearchOnClusterindex(QueryQ, Node T, Cluster S, Set result)

if (T is a non-leaf node)
foreach childv of T’
if MINDIST(Q, N,D) < p RangeSearchOnClusterindexQ, N, .S, result);
else/* T is a leaf node */
for each objecO inT’
it D(Q,0) < p
if D(Original(Q, S), Original(0,S)) < p result < result U O;

~NOoO o~ WN P

Table 5: Range Query.

D Optimality of k nearest neighbor algorithm

Lemma 4 (Optimality of k-NN algorithm) The k-NN algorithm is optimal.

Proof: Let o = mazoec 4D (R, O) whereA is the set of final answers (the k nearest neighbors). The algorithm
is optimal if it does not explore any indexed objézt(in any cluster) (13-15) such th&(NewlImage(O, 5),



Newlmage(Q,S)) > «. Letus assume that it does explore such an olsjedt/henO is explored|result| < k
because otherwise the algorithm would have terminated before reaching this point. We will show thét ishen
explored,|result| is at leastt and hence prove the lemma (by contradiction). Batke A has been explored
beforeO sinceD(Newlmage(O',S), Newlmage(Q,5)) < a < D(Newlmage(O,S), NewlImage(Q,S))

(by property of min-priority queue). Nowop.dist = D(Newlmage(O,S) , Newlmage(Q,S)) whenO is
explored i.e.top.dist > «. Since eacl)’ € A satisfies the conditio®?(Q), O) < «, it satisfies the condition
D(Q,0) < top.dist and is hence added tesult (Line 7). So|result| is at least:. [

E Analysis of the height and balance of the global index structure

Let h 7 denote the the height of GI. Lét,;, denote the height of the original space index i.e. index on the entire
dataset in thé)-d original space. We assume that thdtidimensional index structure used as the original space
index is same as the one used to index the clusters (e.g., hybrid tree in both cases)sFhken,+ A,,;,. Since
I; is built on a subset of points of the entire set (kg.< N) and fewer dimensions (i.&; < D), its height,
cannot be greatér,,;,. Sincehgr = 1+ max;hy, andhy, < hey, forall ¢, hgr < 1+ horig. The bound is a
conservative one as tlte;; is usually smaller than,,;, due to the reduced size of the index.

We now show that Gl is almost height-balanced. There are two factors that affect the height of a cluster
index 7;: the number of points; and the subspace dimensionality Lower the value of:;, lower the height.
Also, lower the value ofl;, lower the height. Lef,.: be the shortest index. Notgy,; > MinSize. Let
Csnort @and Fyp+ denote the average number of entries in a leaf and index nofig.of respectively Then, as
explained in [23], the minimum possible height/of,,,+ is (1+ {lOgFShort({%-‘)-‘) Similarly, the maximum
possible height of tallest indeb,; is (1 + HOQFMH({%—‘)—‘) sincen:,; < N. For space partitioning index
structures (which is preferred for high dimensional indexing due to its “dimensionality-independent” fanout),
Fopore ~ Fray (sQY,F) [7]. Cnort andCl,y; depend on the respective subspace dimensionalitie%fﬁ%M

dshort '
The maximum differencg,,... in the lengths oinytwo paths fromR to leaf isl,, 4, ~ logp(recshort ) |
Nxdygy

MinSizexCliqpy
lnaw ~ lOgF(W). Usually, the subspace dimensionalities are closed,g; ~ dgp.-:. FOr space-

partitioning indexesk is typically around 50-100 [7]. Under the above assumptibps, < 1if MinSize > %
andl,,.. < 2if MinSize < 5. In other words, with a proper size bourig,, is usually 1 or at most 2,
implying that Gl is almost height balanced.

F Synthetic Data Generation

In order to generate the synthetic data, we use a method similar to that discussed in [45] but appropriately
modified so that we can generate the different clusters in subspaces of different orientations and dititierssiona
The input parameters to the data generator is shown in Table 6. The generator géngteiess with a total of
n.(1—o) points distributed among them using a Zipfian distribution with value. The subspace dimensionality

of each cluster also follows a Zipfian distribution with valyg,, , the average subspace dimensionality being
Each cluster is generated as follows. For a cluster withisjizand subspace dimensionality(computed using

the Zipfian distributions described above), we randomly ch@dpsimensions among th® dimensions as the
subspace dimensions and generateoints in thatd;-d plane. Along each of the remainiri@ — d;) non-
subspace dimensions, we assign a randomly chosen coordinate to-ajlgbimts in the cluster. Lef; be the
randomly chosen coordinate along tjte non-subspace dimension. In the subspace, the points are spatially
clustered into several regionsrggions on average) with each region having a randomly chosen centroid and an
extent ofr from the centroid along each of tdedimensions. After all the pointsin the cluster are generated, each



Parameter, Description Default Value
n Total number of points 100000
D Original Dimensionality 64
k Number of clusters 5
d Average subspace dimensionality 10

Zdim Skew in subspace dimensionality across clusters 0.5

Zsize Skew in size across clusters 0.5
¢ Number of spatial clusters per cluster 10
r Extent of a spatial cluster from centroid along each subspace dimepsion 0.5
p Maximum displacement of points along eautn-subspace dimension 0.1
0 Fraction outliers 0.05

Table 6: Input parameters to Synthetic Data Generator

point is displaced by a distance of at mpsh either direction along each non-subspace dimension i.e. the point

is randomly placed somewhere betwe¢n— p) and( f; +p) along thejth non-subspace dimension. The amount

of displacement (i.e. value ¢f) determines the degree of correlation (sinde fixed). Lower the value, more

the correlation. To make the subspaces arbitrarily oriented, we generate a random orthonormal rotation matrix
(generated using MATLAB) and rotate the cluster by multiplying the data matrix with the rotation matrix. After

all the clusters are generated, we randomly gené¥atgoints (with random values along dll dimensions) as

the outliers. The default values of the various parameters is shown in Table 6.

G Sensitivity to M ax ReconDist parameter
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Figure 16: Sensitivity of 1/0 cost of Figure 17:Sensitivity of CPU cost of
LDR technique to MaxReconDist. LDR technigue to MaxReconDist.

Figures 16 and 17 shows the sensitivity of the LDR technique td/flae Recon Dist parameter in terms of
I/O and CPU costs respectively. The I/O cost improves with decreadéainRecon Dist due to decrease in
the information loss (i.e. fewer false positives) and hence decrease in post processing cost. However, with the
decrease iM az Recon Dist, the number of outliers increase as fewer points satisfy the reconstruction distance
bound which causes the CPU cost to increase (the cost of scanning the outlier set) as shown in the Figure 17. The
choice ofM ax Recon Dist must consider the combined I/O and CPU cost; for exanmidles Recon Dist = 0.08
represents a good choice for this real-life dataset.



