Crosslinkable Bicontinuous Cubic Assemblies via Mixtures of Gemini Amphiphiles and Butyl Rubber

Xiaoyun Lu¹, Brian J. Elliott*², and Douglas L. Gin*¹

¹ Dept. of Chemistry & Biochemistry, and Dept. of Chemical & Biochemical Engineering, University of Colorado, Boulder, CO 80309
² TDA Research Inc., 12345 W. 52nd Ave., Wheat Ridge, CO 80033
Crosslinkable Bicontinuous Cubic Assemblies via Mixtures of Gemini Amphiphiles and Butyl Rubber

Abstract

The original document contains color images.
Introduction

Uses of Butyl Rubber (BR) as barrier material fabric

Advantages:

• Low permeability toward organic solvents, and reactive chemicals
• Excellent chemical resistance
• Low cost

Disadvantages:

• Lack of permeability of air and water vapor
 → Development of fatigue and heat stress in wearer
Overview of Lyotropic Liquid Crystals (LLCs)

- LLCs are amphiphilic molecules that can self-assemble into nanoporous structures.
- Multiple phases: hexagonal (H_i), lamellar (L), bicontinuous cubic (Q), inverted hexagonal (H_{II}), etc.
- Robust nanoscopic architectural material can be obtained upon crosslinking.
- Application: nanoscale reaction, separation, transportation, etc.
Approach: LLCs and BR Composites

Covalent bonding of surfactants

= BR Precursor

Polymerizable group

Head group

= Polymerizable surfactant

Self assemble

uv

Polymerized surfactant

heat

Vulcanized rubber

BR (Cross-linked)

pore
Prior Work in H‖ Phase of LLC-1 / BR System

- LLC-1 retains H‖ phase even with BR content as high as 75 wt %.
- Retention of H‖ structure upon photo-initiated radical polymerization.
- Water vapor permeable and chemical agent simulant CEES impermeable.

Done by Dr. Jizhu Jin
Problems in LLC-1/BR Composites

- Requires pore alignment and continuity through material for maximum transportation.
- The acrylate ester tail is not hydrolytically stable.

![Diagram showing water vapor channels and their conditions.](image)
New objective: Bicontinuous Cubic Phases

- Image of polarized light microscopy (PLM): Black (Pseudo isotropic)
- X-Ray diffraction (XRD): D-spacing proceeds in the ratio:
 \[1 : 1/2^{1/2} : 1/3^{1/2} : 1/4^{1/2} : 1/5^{1/2} : 1/6^{1/2} : 1/7^{1/2} : 1/8^{1/2} \ldots \]

Advantage:

3-dimensional network of pores: eliminate the alignment problem

Prior Work on Bicontinuous Cubic Phase LLC Monomers

Disadvantage:

- Brittle after cross-linking in pure form

> Difficult to make barrier material

Research Objectives

- Characterize composition and temperature ranges of LLC BR mixtures and specifically identify the bicontinuous cubic phase region

- Produce films of “breathable” cubic phase LLC- BR composites

- Characterize and optimize the polymerization of the surfactants and the vulcanization of the BR.

- Test the films for permeation of water vapor and rejection of chemical agent stimulants.
Blending and copolymerizing of Gemini Monomers with BR

Blending Procedure

- LLCs and H₂O were mixed in a glass vial and centrifuged three times (3800 RPM, 15 min.).

- Add the LLC mixture obtained in the above step with BR precursor solution (10 wt. % in hexane) and then mix/centrifuge three times (3800 RPM, 15 min.).

- Equilibrate above mixture for at least 16 hours at room temperature for testing.
Characterization of Cubic Phase

- **Proof-of-concept** for blending LLC with BR precursor with retention of cubic structure.
Preliminary Phase Diagram of LLC - BR Composites

Q: Cubic; H: Hexagonal; L: Lamellar; M: Mixture; Other regions are unidentified.

- Cubic phase can be made at high temperature.
Polymerization of the Cubic phase LLC-BR composites

- Retention of cubic phase upon radical polymerization
- The polymerized material is flexible.
- Degree of polymerization is to be done by IR.
Processing to Make Membranes

- Solvent casting – no retention of cubic phase after solvent evaporation

- New method: **Pressing**

 - The LLC-BR precursor gel is put between two Mylar sheets and pressed by hydraulic press at room temperature
 - Heat up to 75±10°C to form the desired cubic phase
 - Cross-link to lock the structure

- LLC-BR cubic phase can be formed as supported film for barrier application.

XRD of above thin film

- 30.0Å (1/6½)
- 25.3Å (1/8½)
- 18.8Å (1/16½)

69.5% LLC-2 27.0% H₂O 3.5% BR
Summary and Future Work

Summary

• Bicontinuous cubic phase was made by blending and copolymerizing LLC surfactants and commercial BR.

• The material can be precessed and applied as thin films for barrier materials.

Future Work

• Explore better methods to make supported thin film

• Test mechanical properties of breathable cubic LLC-BR composites

• Test the permeation of Water vapor and chemical agent simulants with TDA Research
• Professor Doug Gin

• Dr. Jizhu Jin - Gin group

• Dr. Brian J. Elliott - TDA Research, Inc.

• ARO Funding(grant #:DAAD19-02-C-0018)