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ABSTRACT

A new control law is being developed and implemented for the Vision Based
Target Tracking (VBTT) system onboard a small unmanned aerial vehicle (SUAV). The
new control law allows for coordinated SUAV guidance and vision-based target tracking
of stationary and moving targets in the presence of atmospheric disturbances and
measurements noise. The new control law is tested for its performance and stability in
both the theoretical 6DOF simulation and the Hardware-in-the-Loop (HIL) simulation.
Principal results show that realistic measures of performance of the control law are
continuous and exhibit predictable degradation of performance with increase of target
speed. The results are encouraging and comparable among theoretical predictions, actual
hardware simulation results, and initial flight testing. The control law development,
implementation, and trial processes and procedures are also examined and categorically
documented in this thesis as future reference on the subject development, as well as for

better knowledge retention, continuation and proliferation of the VBTT system.
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l. INTRODUCTION

A. BACKGROUND

The Modern Unmanned Aerial Vehicle is an autonomous surveillance platform
that has garnered prominent and important roles in today’s battlefield. At present, it is
favorably situated to expand and extend its prominences and successes, in advancing its
operational and technological influences for the research and development of the future

network centric warfare concepts.

Central to the realization of a fully unmanned autonomously synchronous
surveillance goal is the culmination and amalgamation of several maturing technologies.
These technologies encompass areas of a low cost, light weight unmanned aerial vehicle,
high speed wireless network communication technology, and real-time simulation
software for rapidly deployed hardware reconfiguration of advanced guidance and control

algorithms.

B. PROBLEM STATEMENT

In the modern day’s battlefield and the future network centric battle-space
environment, building and maintaining a dynamic information and intelligence network
architecture is a crucial and fundamental battlefield task. The integrated information
overlay that is constructed from the collected data will enable military missions and tasks
to jointly utilize and leverage the real-time information and intelligence in order to pursue

illusive enemies and fleeting targets in the most efficient and effective manner.

To aid in the information management process, fully autonomous unmanned
aerial sensor platform and surveillance automation will be indispensable to alleviating the
problem of human constraints. The necessity of controlling multiple airborne platforms
will only complicate this task. A control law algorithm that automatically couples the
dual objectives of maneuvering the unmanned aerial sensor platform and its surveillance
sensor will vastly aid the operator, enabling him to work with more spare cognitive
capacity. Therefore, the operator can better manage a great deal of critical information,
and can timely process key intelligence. The operator is protected from potential



saturation while performing multiple tasks, such as the management of the platform flight
dynamics, airspace de-confliction and safety, and the onboard sensor control.

C. OVERVIEW OF TACTICAL NETWORK TOPOLOGY (TNT)
EXPERIMENT AND ITS UAV SEGMENT

The current research is an integral part of the Tactical Network Topology (TNT)
field experimentation program, a cooperative effort between the Naval Postgraduate
School (NPS), USSOCOM, and its component commands. The program—conducted
quarterly at the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS)
facility located at McMillan air field in Camp Roberts, CA—is a continuation of the
Surveillance and Target Acquisition (STAN) program, and focuses on the exploration of

network-based warfare capabilities and their integration into current real-world situations.

This thesis presents the development and testing of a VBTT system. The system
controls a UAV and a gimbaled camera to keep the operator-selected target in the center
of the video image and provide an estimate of target GPS position. The target can be

stationary or moving.

The VBTT system includes a Senior Telemaster SUAV that was modified to carry
a two-axis gimbaled camera, which acquires video and sends the information to the
automatic target tracking (ATT) computer in real time. During a mission, the operator of
the ATT computer may identify the target of interest. The target appears inside of a
small rectangular polygon and is tracked by engaging the “Track mode”. The position of
the target is identified by Cartesian coordinates in a camera frame. This passive
information is processed by the control algorithm that sends commands to the SUAV and
to the gimbaled camera to keep the target in the center of the video frame.



Figure 1: Modified Telemaster UAV

In order to make the VBTT, three major components were developed and
integrated into one system. The first one includes a vision-based target tracking
capability that uses imagery provided by a gimbaled camera. Development of this
component involved the design of a miniaturized gimbaled camera and a controller, and
integration of the automated motion tracking software by PerceptiVU, Inc.

The second component of the system includes the control law for the SUAV. The
control algorithm was designed to solve two principal tasks. First, it had to navigate the
SUAYV around the target while keeping the target in the camera frame. Second, it had to
reduce the range estimation errors, because the accuracy of the range estimation depends
on the translating motion of the camera. The estimation error is minimized when the

target moves parallel to the camera image plane.

In general, in order to estimate the target position efficiently, the target must
exhibit translational motion in the camera frame tracked from the SUAV. The
differences in the translation motions of the target in the camera frame for frontal and

circular approaches are presented in Figure 2:



UAV

UAV

Camera LOS

Camera LOS

Frontal App Target Circular App Target

Translational —————
— motion of the S

target in the
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Figure 2: Translation Motions of Target in Camera Frame

In a frontal approach situation, where the SUAV flight path and its camera LOS is
pointing forward and towards the target, the translational motion of the target in the
camera frame is minimal at large distances, and consequently a large sampling time
interval must be used in order to provide low dilution of precision (DOP) of the target
position. An alternate strategy is to circle the SUAV around the target with the camera
mid line pointing 90 degrees away from the SUAV forward velocity. This approach,
which is traditionally used in triangulation, ensures maximum translational motion of the
target in the camera frame, and thus the sampling time interval can be significantly
smaller for a continuous position estimate of the target. Although triangulation is not
used in current projects for target motion estimation, the idea of translational motion and

its effect onto position estimation is still valid and is used for control law development.

The control concept is depicted in the Figure 3, below. It illustrates a shape of an
orbit above the center of the target, while the SUAV is autonomously guided to
accomplish the task of target tracking. The VBTT guidance algorithm controls the
ground speed vector V4 of the UAV in such a way as to make it continuously
perpendicular to the Line of sight (LOS) [Refl, Ref 2 and Ref 7]. This control strategy

guarantees a maximum of the translational motion mentioned above.



UAV

Figure 3: Conceptual Depiction of VBTT Guidance Algorithm

The third component consisted of two filters for target position estimation (not

considered in this thesis).

D. THESIS OBJECTIVES

The objective of this thesis is twofold. The first objective is to develop and
implement a new control law algorithm for the VBTT system for SUAV, independent of
target speed. The next logical goal of this projects concerns Hardware-In-The-Loop
(HIL) lab experimentation and following flight test experiments. The documentation of
the research, development, simulation and hardware implementation of the VBTT system
is also examined and presented categorically for the purpose of knowledge retention,

continuation, and proliferation
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Il.  CONTROL LAW DEVELOPMENT

A. COORDINATE SYSTEMS

Multiple coordinate frames are often used to define the motions or behaviors of an
object in complex dynamic systems. This preference and practice stems from the fact
that it is often easier to define the motion of an object in one convenient frame (usually a
coordinate frame that is related directly to the object’s own “natural”” axes system) rather
than any arbitrary reference frame . Hence the translational and rotational kinematics
states; i.e. the positions, velocities, and accelerations of the objects can be fully described
in any frame as long as the transformation relationships between the coordinate frames
are known. The following coordinate systems were used in the development of the
control law in this thesis. (All information on coordinate systems is taken from Ref 2,
Ref 3, Ref 5 and Ref 6.)

1. Navigation Inertia Coordinate Frame (I — Frame)

This local level frame assumed a flat earth model in the vicinity of the reference
navigation point; the X, — Y, axes lie in a plane tangent to the reference point origin on
the earth ellipsoid surface, and the Z, axis lie perpendicular to that ellipsoid surface. It is
assumed that the X, axis points north, the Y, axis east, and the Z, axis down. This is a

north-east-down (NED) coordinate system, also known as Local Tangent Plane (LTP).

2. SUAYV Body Coordinate Frame (B — Frame)

A convenient coordinate system for developing the equations of motion of the
SUAV is a right-hand orthogonal system whose origin centers at the aircraft’s center of
gravity. Conventionally, the x-axis points forward along the longitudinal axis of the
aircraft, the y-axis points outwards towards the right wing, and the z-axis is in the

downward direction.



3. Gimbal Platform Coordinate Frame (G — Frame)

The gimbal coordinate frame is a right-hand orthogonal coordinate system whose
origin is the location of the camera mount. The x-axis of the gimbal frame points
forward along the longitudinal axis of the gimbal platform, the y-axis points outward
toward the right hand side, and the z-axis downward from the gimbal platform.

4. Camera Coordinate Frame (C — Frame)

The camera coordinate frame is a right-hand orthogonal coordinate system whose
origin is located at the focal point of the camera. The x-axis points forward along the
longitudinal axis of the camera, the y-axis points outwards toward the right hand side,

and the z-axis points downward from the origin.

5. Image Plane Coordinate Frame (P — Frame)

The image plane reference frame is the coordinate system used to describe the
location of the target in the image plane. It is a 2-dimensional coordinate system with the
u-axis aligned with the y-axis of the camera coordinate frame, and the v-axis aligned with

the negative z-axis of the camera coordinate frame.

B. EULER ANGLES
Euler angles are the classical means of representing rotations in 3-dimensional

Euclidean space. The triplet of Euler angles (¢,6’,1//) relates two orthogonal coordinate

systems having a common origin. Conventionally, when the Euler angles (¢,9,z//)are

used to describe the orientation of the aircraft body in relation to the inertia frame, these
Euler angles are known as roll, pitch and yaw. (All information on Euler Angles is taken
from Ref 3, Ref 4 and Ref 6.)

C. COORDINATE FRAMES RELATIONSHIPS
A coordinate transformation is a conversion from one coordinate system to
another used to describe the same space. A rotation is a type of transformation from one

system of coordinates to another system of coordinates such that distance between any
8



two points remains invariant under the transformation. A rigid body position in space
can be represented by a [3 x 1] vector, and its orientation to its own current coordinate
frame or a transformed coordinate frame can be uniquely described by a [3 x 3] rotation
matrix at any instant in time. (All information on coordinate frame relationships is taken
from Ref 2 and Ref 3.)

1. Rotation Matrices
The rotation matrices for a single 2 dimensional rotation about each individual

axis are given below!. The angle of rotation is the Euler angle that corresponds to each

individual axis.

[ cos(y) sin(y) 0

R, (v) =|—sin(y) cos(y) 0 (1)
0 0 1
‘cos(0) 0 —sin(@)}

R, (6) - 0o 1 o0 (2)
'sin(@) 0 cos(@)
1 0 0

R (¢) =|0 cos(¢) sin(¢) (3)
0 —sin(g) cos(g)

The complete rotation or transformation of the coordinate system is the sequential
combination of the 2 dimensional rotations about each axis. The sequence, or order of
the rotation, is necessary to properly define the orientation of the body and to preserve the
orthogonality orientation (Right hand system or Left hand system) of the transformed

axes.

2. Coordinates Transformation
The coordinate transformation, or rotation from the inertia frame to the camera
frame, can be obtained via sequential coordinate transformations from one frame to the

other in the correct logical order, as shown below?:

1 Ref 3, pp. 21-22, Equation (2.9), (2.10) and (2.11)
2 Ref 3, p. 23, Equation in Figure 2.5, Transformation Sequence

9



"R=GcRgRIR (4)

where ®R is the coordinate rotation from iniertia frame to body frame
°R is the coordinate rotation from body frame to gimbal frame
SR is the coordinate rotation from gimbal frame to camera frame

a. Inertial Frame to Body Frame Transformation
The coordinate transformation from the inertial frame to the body frame is
simply the product of the three individual rotation matricess.

R =R'%)R,('0)R.('vs) (5)

b. Body Frame to Gimbal Platform Frame Transformation

The coordinate transformation from the body frame to the gimbal platform
frame only involves rotation through two angles because the gimbal platform is a two
axis coordinate system4. The roll axis of the gimbal coordinate is fixed, and thus there is

no roll rotation of the gimbal platform frame; i.e., the gimbal roll angle is zero.

BGR :Ry(Bes)Rz(B'//G) (6)

C. Gimbal Platform Frame to Camera Frame Transformation

The coordinate transformation between the gimbal platform frame and the
camera frame allows for compensation of any misalignment angles that exist between the
mounting of the camera platform with the gimbal platform?; in all likelihood, some or all

of the rotation angles will be zero because the axes will be directly aligned.

R :Rx(G¢C)Ry(G‘90)Rz(G'//c) (7)

3 Ref 3, p 35, Equation (2.35)
4 Ref 3, p 37, Equation (2.36)
5 Ref 2, p 8, Equation (7)
10



d. Camera Frame to Image Plane Frame Transformation
The coordinate transformation between the camera frame and the image
plane frame is not a rotational but a positional transformation. The position of an object

in the image plane frame from a position in the camera frame is given as belows:

M ©

It is of interest to note that, unlike the previous rotational transformations
in the earlier coordinate transformation schemes, which are reversible, the Camera to
Image Plane transformation is irreversible; this is due to the transformation of a three

dimensional coordinate system to a two dimensional coordinate system.

3. Angular Velocities Transformations
a. Body Frame Angular Velocities with Respect to Inertia Frame
The angular velocity vector w, in the body fixed coordinates system of the

SUAV, has components [p, g, r] in the X, y and z direction, respectively. The resulting

relationships with the Euler angle rates [¢B Oy, z/'/B]are stated as follows?:

0 0 A
"y, :RX(I¢B)Ry(IeB)Rz(Il//B) 0 +RX(I¢B)Ry(IHB) 93 +RX(I¢B) 0
Ve 0 0
o [ps| |V, +6,+8 ¢y —yrs sin 6,
"0y =| 0, |=| U5 |=| ¥, +06,+4, |=| v c0s 'Gysin g + 0, cos g, (9)

Iy w,+0,+¢, | |y,cos'd,sin'g, —6,cos's,
Expressing [(/531 Os. W'B]in terms of [pg, gs, rs] below, we observe the

singular problem in equation (10) when ', = +90°.

6 Ref 2, p 8, Equation (8)
7 Ref 3, pp 26, Equation (2.20) and (2.21)
11



m[% sin( 'y ) + 1, cos( I¢B):|

Os | = 05 0S( g5 ) — 1y sin (' ) (10)
P pB+tan('98)[quin('¢B)+rB cos('qﬁs)]

b. Gimbal Frame Angular Velocities with Respect to Inertia Frame
The angular velocities of the gimbal frame with respect to the inertia
frame are shown below. Equation (10) relates the angular velocity expressed in the
gimbal platform frame while equation (11) describes the transformation of the same

angular rate in the inertia frame8.

Pe Pe 0 0
wg 2| G |= Ry(leG)Rz(ll//G) Os +Ry(leG)Rz(ll//G) 0 +Ry(I0G) ‘96
rG r-B y./G O
Ps 0 0
Swg =3R| G |[+5R| O |+R ('6;)| 6, (11)
rB ‘//G 0
Ps
'0g = gR%0g = ¢R| Gg (12)
rG
C. Gimbal Frame Angular Velocities with Respect to Inertia Frame

If the camera frame is perfectly aligned with the gimbal platform frame,
then there will be no rotation between the two frames. Therefore, the angular rates

between the two frames will be the same. The relationships are expressed as below?®:

8 Ref 2, p 9, Equation (9)
9 Ref 2, p 10, Equation (10) and (11)
12



Ca)u =§RG0)GI ;§R=
W) = "W =| (g (13)
‘o = o (14)

D. KINEMATICS EQUATIONS OF THE SUAV-TARGET MOTION

The simplified two-dimensional (2D) kinematics model is presented in Figure 4;
it is assumed that an autopilot can easily hold altitude, therefore converting the task to
2D. The figure depicts the relationships between the kinematics angles used to

characterize relative motion of SUAV-Target.

13
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Figure 4: Kinematics of the SUAV—Target Motion
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From the kinematics above, we derive the SUAV-target kinematics’ equations, as

shown below:
Vv -V, —(w —
g Yacosy Lcos(y, —(v 77))+://
Yo
: :Vgcosn—vtcos(z//t—(;//—77))_[/]_%
o
D =V, sing+V,sin(y, - (v -7)) (15)

The navigation angle error 7 is the angle subscribed between the SUAV’s ground

velocity vector and the perpendicular to LOS vector. The navigation angle error rate
approaches zero when the SUAV establishes a circular orbit about a target at the desired

range.

The camera LOS angle error is the angle between the camera middle line and the
LOS vector. The camera LOS angle rate approaches zero when the camera LOS angle is
pointing either 90° left or right of the SUAV’s ground velocity vector (when the SUAYV is

in a circular orbit around a target at the desired range).

E. CONTROL LAW DESIGN
A suitable form of the control laws for implementation on the SUAV AP
Controller and Gimbal Platform controller is shown as follows:

. \Z
Y =—cosn—kpn
Py
v, =kn+Kk,e (16)
n = navigation angle error 7 =UAV turn ratein inertia frame
£ =camera LOS angle error v, = Camera turn rate in UAV body frame
Vv, =SUAV ground speed o =desired range

k k,  =gainconstant

The chosen form of control law will allow for dynamic adjustment of the required
turn rate of the SUAV (y); this acts in accordance to the magnitude of the ground
velocity vector of the SUAV to converge of its desired range. If the SUAV begins by

15



tracking a stationary target inside the desired range, it will spiral outwards to the desired
range; if the SUAV begins by tracking the target outside the desired range, it will spiral
inwards to the desired range. When the SUAV is established at its desired range in a
circular orbit, the turn rate of the SUAV will approach the required turning “bias”, which
will keep the SUAV in circular orbit around the target at the desired range. The gimbal
turn rate of the gimbaled camera will also approach zero when the SUAV has established

the +/- 90° camera LOS angle in the circular orbit at the desired range.

The nonlinear control law in Equation (16) includes an interesting feature. As it

is shown below in (17), the control law is able to drive the range to target p to the

desired value p, . This is done for the unknown p. The control intuition suggests that

Vv
this can be achieved by driving the SUAV’s yaw rate to the desired value — .
Py

By substituting control law (16) into the kinematics equation (15) and performing
some algebraic manipulations, we discover the following feedback system:

n=-V,p, cosn—kn+V,cos(n-y)p

&=V, p,cosn—k,e -V, cos(n—-y)p

p. =PV, sinn =V, sin(n —y)p*

where ,oe:i—i :—ip:pe; l:,5 (17)
P

It becomes apparent from equation (17) that, by driving the navigation angle error
(n) and camera LOS angle error (&) to zero, the range error p, is indirectly driven to

zero. Therefore, although range to target is not measured directly, the proposed control

law allows us to control it.

F. EIGENVALUE STABILITY ANALYSIS OF THE FEEDBACK SYSTEM
For purposes of stability analysis, it is convenient to rescale 7 by introducing a

new state variable7 = l, substituting in equation (17), and rearranging:

Py

16



n | | —Vyp.cosnp, —kipy +V, cos(npy —w)p
X=|p, |=|  P°V,sinfp, -V, cos(fp, —v)p* (18)
€ V, 0. COS 1Py —Ky& =V, cos(p, —y)p

where x=[7 p, g]T

Using Eigenvalue analysis, the stability of the system (18) is next addressed. If

we first suppose that the target is stationary, thenV, =0. Consequently,

ﬁ _Vgpe cos ﬁpd - klﬁpd
xi=|p |=|  PVysinde, | (19)
& V,p, cosnp, —k,e

and the origin x =(0 0 0) s clearly the equilibrium of (19). Linearization of (19) around

the origin yields an LTI system

-k, V,/p, 0

E=IVylpy 0 0 |¢ (20)
0 V. -k,

We may then also assume that the SUAV velocity V, is constant,
and V, €[V, .V, |V, =V, >0. Then the eigenvalues of the state matrix in (20)

have negative real parts for anyk, >0, k, >0. Therefore, the nonlinear system (19) is

locally asymptotically stable for anyk;, >0, k, >0.
On the other hand, if the target is moving andV, = 0, the equilibrium of (18) is at

the relative heading v = % This in fact corresponds to the circular motion of the SUAV

around the target. In this case, linearization of (18) around the equilibrium results in an

LTI system

17



&=|(Ve-V)lps 0 04 (21)

The target velocity V, is assumed constant, and V, E[Vtmm ,Vtmax], vV, 2V, >0.
The eigenvalues of the LTI system (21) will have negative real parts ifV, >V,

k,>V,/p, andk, >0. As a result, if these conditions hold, the nonlinear system (17) is

locally asymptotically stable. The Eigenvalue analysis plot for Vi = 20m/s is shown as
follows (Fig.5):

MA): p,=100m, V =20m/s

Figure 5: Eigenvalue Analysis Plot

The plot demonstrates that the eigenvalues of the state matrix in (21) are always negative,
except the area where Vq is less than V.. The Eigenvalues analysis suggests that the

feedback system is locally asymptotically stable.

18



The plots of the state trajectories of system (17), in response to a number of initial

conditions, are included as follows (Fig. 6):

008
004
002"

002 e
0047

006
015

005 005 T

Figure 6: Steady State Trajectories

The plot on the left illustrates the impact of increasing the gainsk;, k,.for a fixed
V,on the trajectories of feedback system (17). Conversely, the plot on the right
demonstrates the influence of increasing V, for fixed k; andk,. The figures demonstrate

that the trajectories of feedback system (17) converge to a ball, the size of which is

proportional to V, and inversely proportional to k; andk, . (Ref 7)

The Eigenvalue stability analysis for the feedback system is coded as MATLAB

Symbolic Toolbox script file; the details can be found in appendix A.
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I11. CONTROL LAW IMPLEMENTATION

A MODIFICATIONS OF SIMULINK MODEL FOR IMPLEMENTATION
OF NEW CONTROL LAW

The initial control law (Ref 1) of the VBTT system has the following form:

% =sign(Bias— k)
Wh =k,& (22)

Two observations are worthy of mention here. First, the turning bias in the initial
control law (See equation (22)) is a fixed value, and thus does not vary with the SUAV
ground speed or the desired range. Second, the camera LOS turn rate is independent of
the SUAV turn rate.

The fixed bias value applied to turn the SUAV in equation (22) can be any
arbitrary value. As a consequence, it is slow in converging to any other desired range
commanded, except to the desired range that corresponds to the arbitrary turning bias
value. In addition, because the camera LOS turns independently of the SUAV turn rate,
the resulting control of the camera LOS is poor, and necessitates a large k, value to keep
the camera LOS closely aligned to the SUAV-target LOS.

Using the newly designed control law in equation (16), equation (22) adjusts to

the following form:

V
v =-Scosy—ky
Py
Vi =k +kye (23)

The turning bias in equation (22) is replaced with the dynamically adjusted
quantity in equation (23), which varies with the UAV ground speed and the desired
range. The control law in equation (23) improves upon equation (22) in that the

dynamically adjusted quantity replicates the “old fixed bias” term in equation (22) and
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automatically adjusts turn rate command to the target motion. In addition, the camera
LOS turn rate is coupled and compensated with the SUAV turn rate, which makes the

camera control more efficient.

The control system architecture that implements control law (23) is presented in
Figure 7. It consists of an autopilot and a gimbal driven by the control inputs v andy, .
Onboard cameras provide real-time imagery to the image tracking software. In turn, the
software computes the tracking error &, while onboard GPS and inertial systems provide

solution for the navigation error 7. (Ref 7)

v —— 7 - ~ q(’ 7 ‘ )
; f‘ (:‘anpute -—]F \'B 4’[ NPS :\llfopﬂot } LT‘%\' ‘
t’ — - l — —_—
- > 7€ ——=* Contro . ] T -
L \ ?ﬂt ) g | v, '{ Gimbal ‘—P{ CCD Camera J
—_—
Target position in the ‘ Ima ge |‘ Analog video
camera fraine ‘ Trackine |"

Figure 7: Control System Architecture

The VB Control block pictured in Figure 7 is the actual implementation of the

control law (23).

The control law for the Gimbaled camera yaw command v, in equation (20) is

implemented in SIMULINK between the “Gimbaled Camera model” and “CurGuid

Controller” blocks (shown in Figure 8).
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UAV flight

Auto Pilot / dynamics
6DOF UAV
- Model
Wy =k +kye
PID
l Camera pan
k26‘ l/)h [tilt error
+ -
N Gimbaled camera
k.77 > model
UAV flight Camera pan
[Target Dynamics Jilt angles
UAV CurGuid |
Controller model <
UAYV commanded ¥ < Desired range
yaw rate

Figure 8: VBTT SIMULINK Model Schematic

The control law for the SUAV yaw rate command i in equation (20) is

implemented in the “CurGuid Controller” block (shown in Figure 9).
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7
Trigger

\ 4 Radius

, Tl Radius, m (6)
VIR
* _cmd, deg/s
VIR*cos(Eta) | Speed 3
: K
Sign(V/RcosEta -kl1*Eta) VIR Vinert, m/s
V/Rcos(Eta) cosEta)
Trigger (—
«—C)
@= cmd x
< Prop Gain_|_| asin Vi dot LOS [Vh Ve 0]
kl*Etal
a Eta
e ¢ X Eulers 1—

r_cmd Euler angles, rad

Gimbal angles 1—

Turn Direction

Error angles 4—

— Tum Direction / Eta

k1*Eta

Figure 9: SIMULINK CurGuid Controller Block

B. SIMULATION RESULTS
The performance of the newly developed control law is tested against both a

stationary target and a moving target under different target motion scenarios. From these,
the sensitivity analysis results of the new control law are derived for feedback control

parameters k; and the relative velocity ratio of the target and SUAV, \%

9

Since the parameter k, affects only the gimbal control law (see second equation in
(23)), it is not examined for the cross coupled sensitivity between the SUAV yaw
command and the camera LOS yaw command. The camera controller is independent of
SUAV guidance. By appropriate choice of ks, the camera controller loop can be chosen
to be much faster than the SUAV guidance loop.

Two measures of performance (MOP-1 and MOP-2) are devised to assess the
quality of the newly developed control law (23). The physical meanings and technical

definitions of the MOPs are as follows:

MOP-1 is devised to measure the convergence speed to the desired range; this
speed is affected by range and convergence time. Convergence time is defined as the

time required for the SUAV to converge to its first zero crossing of p.. The radial

24
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distance that is covered by the SUAV during the convergence period is defined as the
range capture. Therefore, MOP-1 is a ratio of the range capture over the convergence
time. A higher MOP-1 value is desirable, as it represents a faster range capture

capability.

MOP-2 is devised to measure the range holding capability of the SAUV after it
has captured the desired range. The maximum range deviation from the desired range
after its first closest approach is utilized to measure the SUAV range holding capability at
the desired range. MOP-2 is defined as the ratio of maximum deviation from the desired
range to the commanded range, expressed in percent. A lower MOP-2 value is desirable,
as it represents a better range holding capability of the SUAV.

1. Sensitivity Analysis of the Control Law to Variations of K;

The sensitivity analysis of the control law to variations of parameter k; is
examined in a scenario in which the desired range is 500m. The initial conditions are: (1)
SUAV velocity = 28m/s, (2) Target velocity = 0 m/s, (3) Initial position of SUAV is at
[0, -1000, 300], (4) Initial position of target is at [0, 0, 0] (The initial horizontal ground
range from UAYV to target is 1000m), and (5) k, = 0.25.
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Case 1: K;=0.1

SUAV target VBTT control law tracking performance

Plot of UAV and Target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

Plot of UAV Pan Tilt Angles and errors
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Case 2: K1=0.2

SUAV target VBTT control law tracking performance

Plot of UAV and Target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors
Plot of UAV Pan Tilt Angles and errors
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Case 3: K1=0.3

SUAV target VBTT control law tracking performance

Plot of UAV and Target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

Plot of UAV Pan Tilt Angles and errors
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Case 4: Ki=0.4

SUAV target VBTT control law tracking performance

Plot of UAV and Target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

Plot of UAV Pan Tilt Angles and errors
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The contributors of MOP-1(k;) for the four test cases are tabulated below:

Ky Range Time to first MOP-1(ky), convergence
Captured (m) closest approach speed (m/sec)
(sec)
0.1 500 180 2.778
0.2 500 220 2.273
0.3 500 230 2.174
04 500 225 2.222
Table 1: MOP-1(k3)

The MOP-1(k;) of the SUAV is plotted as follows:

Plot of convergence speed against k1

3.000

2.500

2.000

1.500

1.000

convergence speed (m/sec)

0.500

0.000
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

kl

Figure 14: MOP-1(k3)
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The contributors of MOP-2(k;) for the four test cases are tabulated below:

Ki Maximum range MOP-2(K;), Percentage deviation from desired
deviation error (m) range (%)
0.1 40 8.0
0.2 35 7.0
0.3 50 10.0
0.4 100 20.0
Table 2: MOP-2(k3)

The MOP-2(k;) of the SUAV is plotted as follows:

Percentage range deviation error (%)
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Figure 15:
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The following observations can be made from the MOP plots and test plots above:

@ From MOP-1(k;) analysis, it can be observed that the convergence speed
of the SUAV decreases and levels off to a plateau with increasing k;. The highest
value is 2.778 (m/sec) when kj is 0.1, and the lowest value is 2.174 (m/sec) when
ki is 0.3.

(b) From MOP-2(k;) analysis, it is observable that the percentage range
deviation error of the SUAV is at its minimum at 7.0% when k; is 0.2; the
maximum range deviation error is 20.0% when k; is 0.4. When k; is 0.2, the
range holding performance of the SUAV decreases rapidly with increasing k;

values after the minimum value.

(©) From the test plots (Fig. 10 — 14) above, it can be observed that an
increase in k; “stiffens” the convergence approach path of the SUAV toward the
desired range. The “stiffening” effect occurs as the control law increases

emphasis in driving the navigation angle error, nto zero, while converging

towards the desired range.

2. Sensitivity Analysis of the Control Law to Variations of Vt/Vg

The sensitivity analysis of the control law to variations of parameter Vt/Vg is
examined in a scenario in which the desired range is 300m. The initial conditions are (1)
SUAV velocity = 28m/s, (2) Initial position of SUAV is at [0, -1000, 300], (3) Initial
position of target is at [0, 0, 0], (The initial horizontal ground range from UAV to target
is 1000m), (4) K1= 0.2, and (5) k, = 0.25.

The previously defined MOPs will be utilized to assess the performance

sensitivity of the newly developed control law to parameter V/V variations.
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Plot of UAV and Target track

SUAV target VBTT control law tracking performance

Case 1: Vt/Vg = 5/28
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

Plot of UAV Pan Tilt Angles and errors
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Plot of Navigation angle error (deg) vs time (sec)
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Figure 16:



Case 2: Vt/\VVg = 10/28

SUAV target VBTT control law tracking performance

Plot of UAV and Target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

Plot of UAV Pan Tilt Angles and errors
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Plot of Navigation angle error (deg) vs time (sec)
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Figure 17:  Sensitivity Analysis for Vt/VVg = 10/28 at Desired Range 300m
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Plot of UAV and Target track
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Sensitivity Analysis for Vt/Vg

Figure 18:



The contributors of MOP-1(Vt/Vg) for the 3 test cases are tabulated below:

Vt/Vg Range Time to first MOP-1(k1), convergence
Captured (m) closest approach speed (m/sec)
(sec)
5/28 700 80 8.750
10/28 700 90 7.778
15/28 700 100 7.000
Table 3: MOP-1(Vt/Vg)

The MOP-1(Vt/VQ) of the SUAV is plotted as follows:
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The contributors of MOP-2(Vt/VVg) for the three test cases are tabulated below:

Vt/Vg Maximumrange | MOP-2(Ky), Percentage deviation from

deviation error (m) desired range (%)

5/28 100 33.3
10/28 220 73.3
15/28 400 133.3

Table 4: MOP-2(Vt/Vg)

The MOP-2(Vt/VVg) of the SUAV is plotted as follows:

Plot of Percentage Range Deviation Error vs Vt/Vg

140.0

120.0

100.0

80.0

60.0

40.0

Percentage range deviation error (%

20.0

0.0
0.00 0.10 0.20 0.30 0.40 0.50 0.60
Vt/iVg

Figure 20:  MOP-2(Vt/Vg)
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The following observations can be made from the MOP plots above:

@ From MOP-1(Vt/\VVg) analysis, it can be observed that the convergence
speed of the SUAV decreases with increasing Vt/Vg. The highest value is 8.75 (m/sec)
when Vt/Vg is 5/28, and the lowest value is 7.00 (m/sec) when Vt/\Vg is 15/28.

(b) From MOP-2(Vt/\Vg) analysis, it is apparent that the percentage range
deviation error of the SUAV increases with increasing Vt/VVg; the maximum range
deviation error is 133.3% when Vt/VVg is 15/28, and the minimum is 33.3% when Vt/\Vg
is 5/28. The range holding performance of the new control law decreases rapidly with

increasing Vt/Vg.

(c)  From the test plots (Fig. 16 — 18) above, it is observable that the SUAV’s
range holding at the desired range decreases as the target velocity increases. This is
intuitive, as the ability of the SUAV to turn depends on the velocity of the SUAV relative
to the target. As the target velocity increases, the magnitude of the relative velocity
decreases, thus diminishing the SUAV’s ability for relative turn. This is evidenced by the
decreasing number of circular approaches the SUAV can make against a target with a

higher velocity.

(d) The ability of the SUAV to track through changes in target motion
direction also demonstrates the robustness of the control algorithm in its adaptation to
changes in target dynamics.

C. SIMULATION CONCLUSIONS
The SIMULINK results verify that the newly developed control law for the VBTT
system operates in accordance to the theoretical predictions and has the following

characteristics:

@) Increases in k; effect a “stiffening” of the SUAV’s approach path towards
its desired range. The convergence speed of the SUAV decreases and levels off to a
plateau with increasing k;. The range holding performance of the SUAV, however,

decreases with increasing k; after a minimum value.
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(b) Both the speed of convergence and range holding performance of the
SUAV degrade with increasing Vt/\Vg.

D. HARDWARE IN THE LOOP SIMULATION

The next logical goal is to perform Hardware-In-The-Loop (HIL) lab testing of
the newly developed control law for the purpose of better knowledge retention,
continuation and proliferation of the VBTT system, and as part of the thesis secondary
objectives. The processes and procedures involved in HIL setup and testing of the newly
developed control law are examined and documented categorically. The HIL setup

schematic is pictured in Figure 21:
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Figure 21: Hardware in the Loop Setup Schematic
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1. Piccolo Autopilot Setup and Familiarization

Piccolo is a complete, integrated avionics system developed by Cloud Cap
technology for small unmanned aircraft. The Piccolo control system consists of four
main parts: an avionics control system that is mounted onboard the SUAV, a Ground
Station, a computer for operator interface and mission monitoring, and a pilot manual

control interface via a modified Futaba radio controller.

The Piccolo system employs two separate control loops; the faster inner loop
controls the aircraft dynamics within the aircraft itself, while the slower outer loop
controls the path that the aircraft is expected to follow via a wireless communication link
between the piccolo autopilot controller and the ground control station. The inner control
loop will be utilizing the control law developed earlier in this thesis to direct the flight
control of the SUAV. Typical Piccolo HIL equipment and the system setup are shown as
follows (Fig. 22). (All the information pertaining to Piccolo AP and Ground Station is
taken from Ref 2, Ref 6 and Ref 8.)

Figure 22:  Ground Station setup and the SIM PC and avionics side of HIL
Simulation

a. Piccolo Autopilot Controller Familiarization
The CPU of Piccolo AP is the MPC555 microcontroller, a new breed of
automotive controller based on the PowerPC architecture, and capable of delivering 40

MHz PowerPC operation, including the hardware floating point.
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Integrated within the avionic controller unit are three ADXRS300 gyros
and two two-axis ADXL210e accelerometers. The Motorola M12 GPS provides Piccolo
with its basic groundspeed and position. Included with the Piccolo interface are a dual
ported mpxv50045 4kPa dynamic pressure sensor, an absolute ported mpx4115a
barometric pressure sensor, and a board temperature sensor. A sophisticated data link,
built on the MHX 910/2400 radio modem from Microhard Systems Inc, provides up to
40Kbaud of throughput and is used for command and control, autopilot telemetry,
payload data transfer functions, and differential GPS corrections. The frontal panel
included the filtered 44-pin vehicle interface connector, GPS and UHF antenna SMA
connectors, and the Pitot and Static pressure port nipples. The Piccolo block diagram and
front panel schematic is shown below (Fig. 23):

7 Uesar defined TPUs znsm
Servo, Senial, L0, Timing

marrssn-|

5V =

soval MPC555 |

40MHz Embedded Power
ava3]  PC with 448K Flash, 26K [ Do
SRAM and a host of

BDM
s integrated peripherals :ﬂ Lmln 2
Monltor] ST——

:sna\—IsmePs

Interface Connectors

sewm ompuu

‘Optional Daughter Beard

Dual AR
Inhn' acs |

Figure 23:  Piccolo Block Diagram and Front Panel

In the HIL setup and simulation environment, the Piccolo AP is connected
to computer#2, which is running Simulator software. The inter-link between computer#2
and the Piccolo AP controller functions via a USB-CAN data exchange cable. The
Simulator allows for testing of the aircraft control laws and mission functionality without
jeopardizing the hardware in flight test. Piccolo’s HIL simulator is based upon the

external CAN interface; servo control information is sent and external sensor data
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received over the CAN bus. Since the simulator communicates with the avionics in real
time, it must itself run as a real time application; no other applications should be run on
the PC (Computer #2) that runs the simulator.

After the Simulator program is launched, the aircraft model must be
initialized. This is accomplished under the FILE menu options. A default “cub aircraft”
model file is provided by the software, and its flight characteristics resemble that of the
actual Tele-Master SUAV used for the flight test. Next, the start state of the Simulator is
also initialized. A default file containing the geodetic data around the Camp Robert
airfield test site is available in the system for quick initialization. The “Reset”, “Apply
slew”, and “clear slew” radio buttons apply the typed customized parameters to the
Simulator program. The Simulator program is started and stopped using the *“Start” and
“Stop” radio buttons. Turbulence parameters can be entered into the program to simulate
weather and wind conditions. The Simulator program interface layout is shown in the

figure below (Fig. 24):
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Figure 24:  Simulator Program Interface
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b. Piccolo Ground Control Station Familiarization

Piccolo’s ground control station is based upon the same hardware that
makes up the avionics package. The Ground Station manages the communication link to
one or more avionics systems, interfaces to the pilot in the loop console, and provides a
command and control stream to the operator interface PC. The station connects to the
operator interface PC through a standard nine-pin serial cable. The Ground Station GPS
Antenna is connected to the rear panel SMB connector, and the UHF antenna is hooked
up to the BNC connector. A six-pin circular DIN pilot console cable connects the pilot in
the loop command to the Ground Station through a modified Futaba radio controller. The
Ground Station exchanges data with the Piccolo avionics via a built-in 900 MHz or 2.4
GHz ISM band radio wireless link, which is made from the MHX-910/2400 frequency
hopping radio developed by Microhard Systems Inc. The Piccolo Ground Station is
shown as follows (Fig. 25):

Main Power Supply

|PWR ON LED

2

Froram ot _JSGrs oenne | s

Backup Battery Charger LED

7 T T
\Operator Interface | |UHF Antenna Input | |Pilot Console
|Serial G - |Cable Input

[Input for backup battery supply
|12-volts nominal

Figure 25:  Piccolo Ground Station, Showing Front and Back Panels

The operator interface (Ol) is a software system that runs on a Windows
PC and provides a command and control interface for Piccolo operators. The operator
interface communicates to the Ground Station over a RS-232 serial link (default to
COML1). Installation of the OI is through a windows installer file, “Operator
Interface.msi”, which is downloadable from the Cloud Cap Technology site. The Ol is
installed in computer#1.
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The Ol provides two station screens for operator interface with the Ground
Station. The Ground Station screen provides a Window Menu and Unit Menu so that the
user may manage the avionic window display layout and units of telemetry that appear on
the screen. Advanced options under the Window Menu display a more comprehensive
version of the avionics window for operator interface. The Avionics Window displays
telemetry data received from Piccolo avionics. A screenshot of the Piccolo Ol is

displayed in Figure 26:
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Figure 26:  Screenshot of Piccolo Operator Interface

Essential telemetry information is displayed in tabulated pages selectable
by the user. The tabulated pages are (1) Telemetry, (2) Commands, (3) Map, (4)
Preflight, (5) Limits, (6) Sensors, (7) Surfaces, (8) Gains, (9) Payload, and (10)
Parameters. Some essential pages compulsory in HIL setup will be briefly addressed as

follows:

Telemetry page—The telemetry page displays data from all the sensors
within the system. Sensor information chosen for display includes GPS data, Air Data,

Sonic altimeter, MHX radio settings, System Version, Diagnostic, Wind, Attitude, Gyro,
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RPM, and Compass. The “request fast” and “request slow” buttons alter the rate at which
the telemetry data is sent. “Default slow mode” sends data once per second; “fast mode”

sends data 20 times a second, or according to the limitations of available bandwidth.

AP commands—The autopilot commands page displays the current
autopilot command status, and allows the user to change IAS, Altitude, turn rate, flaps,
and waypoint tracker via an interactive input interface. Other commands, such as
autopilot mode, stick mode, engine control, and flight actions, are selectable through on-

screen radio buttons.

MAP—The map page displays the current location of the vehicle, and
provides an interface for creating flight plans. The map is built on ESRI’s MapObjects,
and thus is capable of displaying geo-referenced raster files, as well as vector shape files.
Customized maps in tif format can be added to the display using the “Add image layer”

or “Add vector layer” commands.

AP limits—The limits page is used to view and alter the autopilot and
mission limits. Autopilot limits include min/max of airspeed, altitude, bank angle,
aileron, elevator, rudder, throttle, and flap, and can be input via an interactive interface.
A “request and send limit radio” button is used to poll for and alter the current limits in

the Piccolo avionics.10

Sensors—The sensors page gives the current sensor readings and
calibration information for each sensor. The page is normally only used during the setup
process. An important step in the HIL setup is to check and align the Euler angle axis of
Piccolo avionics with the Platform Euler angle axis, out of 24 different possible axes

orientations.

10 Detailed procedures on setting of AP limits may be found at the Cloud Cap Technology web site:
(http://www.cloudcaptech.com/download/Piccolo/Version%201.3.2/Docs/Piccolo% )-p. 41, 4.4.3.1)
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AP Gains and Trims—The gains page is used to view and alter the
autopilot gains and trims. There are gains for eight loops. Before the Piccolo AP can be
profitably utilized for HIL simulation and control, the gains of the AP aircraft model
must be tuned correctly. 11

C. Flight Gear Visualization Environment Familiarization

During HIL simulation, it is important to be able to visualize the effects of
the control law on the flight performance and stability of the aircraft. An open source
application, Flight Gear, is provided for the visualization of aircraft attitude through a
UDP/IP network protocol. In order to get Flight Gear to accept the state packet, the user
must start with the correct command line switches. The batch file “runflightgear.bat” is
provided for this. The Flight Gear application is installed on computer#3, equipped with
a video card designed for OpenGL hardware acceleration. The flight visualization is
activated from Piccolo Simulator Flight Gear output interface selection (Computer #2) by
specifying the IP address/Name of computer#3. A screen shot display of the Flight Gear

visualization is shown in the following figure (Fig. 27):

N =10l x|

:FlightGear

File View Location Autopilot Weather E

Figure 27:  Screen Shot Display of Flight Gear Visualization

11 Detailed procedures on tuning of AP gains and trims are found at the Cloud Cap Technology web
site: (http://www.cloudcaptech.com/download/Piccolo/Version%201.3.2/Docs/Piccolo% (pp. 41 — 43,
4.4.3.2/4.4.3.3)
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2. PC104 Setup and Familiarization

The PC/104 computer (Fig. 28) is a stack of small 3.5" square cards connected by
an ISA communication bus. It is a popular standardized form-factor for small computing
modules typically used in industrial control systems or vehicles. The PC/104 bus
includes CPUs, video controllers, net-work interfaces, sound 1/0O, data acquisition boards,
serial RS-232, and specialized interfaces. The PC/104 stack downloads the XPC Target
model from the Host PC via a TCP/IP network. (All the Information pertaining to PC104
is extracted from Ref 9 and 10)

Figure 28: PC104

Before the PC/104 can accept the compiled XPC Target model from
MATLAB/RealTimeWorkshop in the HIL simulation, it must be properly setup. A
detailed step by step instruction/reference on the basic set up of the PC/104 and its
peripherals is available at Ref 9 and 10. Once the PC104 is correctly configured, it is
connected via the UDP, TCP/IP network to accept compiled the XPC Target model from
the SIMULINK RTW application on computer #1. The inter-link between PC104 and
Piccolo AP controller connects through a RS232-CAN bus cable for data exchange. For
further data analysis and real-time graph plotting, the XPC Target model outputs can be
similarly extracted via UDP/IP at near real-time to another SIMULINK Data Extraction
Model.
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3. HIL Network Communication, Data Exchange/ Collection and
Familiarization

a. Router Network Communication Protocol

The HIL network communication setup uses two forms of network
communication protocol; they are TCP/IP and UDP/IP. TCP/IP uploads the XPC Target
model from Host PC to PC104. UDP/IP downloads the XPC Target model outputs from
PC104 to Flight Gear’s computer for visualization of the aircraft attitude and
performance, as well as extraction of relevant XPC Target data to another SIMULINK
Data Extraction program running on Host PC (Computer #1). The XPC Target data is
downloaded for the purpose of post-simulation data analysis and real-time graph plotting.

TCP/IP provides reliability of data delivery and accuracy between the
sending and receiving party, but at the expense of an incurring time delay when network
traffic is heavy. UDP/IP, however, is connectionless and unreliable; the sending party
will send out information whenever it can, and the receiver will receive information
whenever it is able to do so. Information sent when the receiver is unavailable will
simply be lost. For real-time applications, since only the most recent information is of
relevance, UDP/IP is widely employed as the choice network communication protocol.
The types of network communication protocols between the HIL computers and PC104
are depicted in Figure 26.

b. Setting Communication to Piccolo AP in HIL

The control architecture of modern autopilots is usually based on data
fusion from numerous heterogeneous sensors and various control channels. As a result,
an entire control system can be represented as a complex multi-rate process in full duplex
mode. Therefore, one of the principal requirements to the onboard sensors consists in
providing measurements of the process with an update-rate capable of representing the
physical phenomenon. In turn, the actuator subsystem is also required to deliver control

actions in order to affect the dynamics of the system.

Serial Interface (SI) communication technology is widely employed in
modern control data interfacing for the purpose of establishing the link between the
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ground control unit and the airborne vehicle. Mathwork’s xPC target provides an RS232
library that supports a variety of serial instruments. These drivers support synchronous,
asynchronous, and binary (asynchronous) communication modes. The latest xPC target
release supports RS232/422/485 protocols and a number of serial communication boards,
including Quatech and Diamond’s products; however, the technology does not extend the
reading capability of new serial data formats, such as proprietary communication protocol

in Piccolo AP.

Mathwork’s library directly supports an application of a binary
asynchronous communication that relieves the user of the obligation to develop an actual
RS232 hardware driver. The application conveniently allows the user to focus on the
implementation of data interfacing rather than hardware programming. Since the
majority of Sl formatting is proprietary, the most efficient way to implement the SI
capability consists in writing Level-2 S-functions. The technique used in this thesis
provides the operational separation of principal functions among the pre-built library
blocks and the user-developed S-functions. Standard serial communication blocks
deliver raw binary data to the model using the optimized Mathworks’ routines, and the S-
functions perform format specific processing that is not readily available in Mathwork’s
library. See (Fig. 29) below for depiction of this concept. (Ref 11)

Simulink Simulink
RS-232 Blockset User Developed RS-232 Blockset

Asynchronous | | FE;VZCI):;&:? > Data GNC ) E:gggg: Asynchronous
Read | |. (S-Function) Scaling Algorithms (S-Function) | |. Write

RS-232 | RS-232
Setup | Setup

|

|

|

L — — L ——
N Ou

Figure 29:  Separation of Interface Functions

A customized SIMULINK RTW communication program has been
developed for the data exchange between the XPC Target model and Piccolo avionics.

The model is shown below in Figure 30.
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Control | XxPC Target
Diagnostics " VBTT
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Figure 30:  SIMULINK RTW Communication Interface

Using the customized SIMULINK RTW communication interface
program, relevant telemetry, control, diagnostics, and AP-states information can be
readily extracted from Piccolo avionics output for the XPC Target model guidance
control computation. Subsequently, the computed control commands from the XPC
Target model can be translated into Piccolo communication protocol format for control of

Piccolo avionics.

The SIMULINK RTW communication interface program is comprised of
MATLAB standard RS232 serial binary communication blocks and customized
programmed Level-2 S—functions. The SIMULINK RTW communication interface
program applies colored coded blocks and paths to represent the WRITE (GREEN) and
READ (RED) blocks and paths between the XPC Target and Piccolo avionics. To ensure
that the SIMULINK RTW communication block is communicating to the correct Piccolo

avionics unit, the user must properly input the Piccolo avionics unit ID into the program.

Reading from Piccolo AP

The READ block of the SIMULINK RTW communication interface has,
built into the system, five customized S-function blocks named “pplus_readstream.c”,
“pplus_autopil.c”, “pplus_diag.c”, “pplus_control.c”, and “pplus_telemetry.c”. The input
parameters for S-function “pplus_readstream.c” are the Piccolo Autopilot ID (APID) and
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the buffer size (BUF). The output from the S-function comprised of “data” and “header
type” is parsed through a decoder sub-block. The other four S-functions nested within
the decoder sub-block are utilized to decode the proprietary Piccolo communication
protocol in order to separate out the Piccolo’ telemetry, control, diagnostics, and AP
states information. The READ block of the RTW communication interface program is
depicted in the figure (Figure31) below:
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PPlus  — cul
Protocol |5 Diagnostics

—» AP States

RS232 block
Terminator A4
Length Done —»El function
RS232 Receive Telemetry —>
comM1 Telemetry
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RS232 Control |—p»
Binary Receive Control
Diagnostics —>
Diagn
P|Header Ty pe
Autopilot [—p»
APStates

Reciever Decoderl

— —

if(ut ==21)

elseif(ul == 22)

P
elseif (u1==27)
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It
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elsel (]
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Data AP Com

v

Y

oh EISE"{@)M ) > Z
|—| Diag
Y
elsel ()
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v Control

i}
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Figure 31: READ Block Of SIMULINK RTW Communication Interface
Program
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Writing to Piccolo AP

The WRITE block of the SIMULINK RTW communication interface
program converts and codes the xPC VBTT guidance control message into proprietary
Piccolo communication protocol before sending it through a standard MATLAB RS232

serial binary communication block.

A MATLAB sub-block converts the xPC Target guidance commands into
“AP payload data stream”. The input to the sub-block is the AP control loop number,
control type, and control command values. The output from the sub-block is eight bytes

of “AP loop message”, also known as the “Payload” for the Piccolo AP.

An AP Stream Wrapper block codes the “AP loop message” or “Payload”
into a proprietary Piccolo communication binary data stream. The proprietary Piccolo
communication binary data stream is coded in a 2 layers communication protocol format.
An outer layer discerns the type of data stream for “header” and “checksum” purposes,
and an inner layer differentiates the type of command payload “packet” information.
Three customized S-functions, namely “toplevelcrc.c”, *“enc-apilot_loop_fix.c”, and
“enc_top_level26.c”, are nested within the WRITE block to perform the checksum and
proprietary coding functions. The coded binary data stream is subsequently transmitted
through a MATLAB standard RS232 serial communication block to Piccolo AP. A
typical WRITE block of the RTW communication interface program is depicted in Figure
32, below:
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A summary of the S-functions and their functions are tabulated as follows:

Where Name of S-Functions functions
READ Block pplus_readstream.c Extract messages from the
Piccolo RAW data, mark output
with a header
READ Block pplus_autopil.c Parse Piccolo AP states
READ Block pplus_diag.c Parse Piccolo diagnostic
READ Block pplus_control.c Parse Piccolo Control
READ Block pplus_telemetry.c Parse Piccolo Telemetry
WRITE Block enc_top_level26.c Outer Level Wrapper
WRITE Block Toplevelcrc.c Header / Checksum
WRITE Block enc-apilot_loop_fix.c Inner Level Wrapper
Table 5: Summary of S-Functions

An “INIT-GUI” M-script file initializes all the Piccolo AP state variable
names and values used in the SIMULINK RTW communication interface program. The
“INIT-GUI” M-script file is placed under the “Model Properties / Model callbacks” block

for initialization.

A separate UDP communication SIMULINK program, utilizing the “Pack,
UDP-Send-Binary” in SIMULINK library, is used to output the XPC Target output data
stream (from PC104) to another SIMULINK Data Extraction program running on
Computer #1. The SIMULINK Data Extraction program utilizes the “UDP-Receive-
Binary, UnPack” UDP communication block to receive the data stream. This
arrangement alleviates the computational constraints of PC104 in displaying the real-time
data stream. The extracted XPC Target data is utilized for post simulation data analysis
and real-time graph plotting utility for visualization of the simulation progress (On

Computer #1).
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4. MATLAB Real-Time Workshop/ xPC Target Setup and
Familiarization

XPC Target is a real-time operating system based on the SIMULINK
RealTimeWorkshop (RTW) environment. Programs are created through simple drag-
and-drop procedures, and require very little "coding”. SIMULINK models are compiled
on a Host PC into C code programs that run on a Target PC. The system’s "real-time"
capabilities allow code to be executed at very regular intervals, which is optimal for

control.

In order to create an xPC target model for HIL simulation on PC104, one must
modify the model developed earlier for simulation in the SIMULINK environment. The
AP controller block and the 6-DOF aircraft model block are replaced with the actual
Piccolo AP controller hardware under a simulated flight control environment provided by
the Simulator software. The Simulator software provides the sensor input necessary for
the Piccolo AP controller to properly compute the appropriate simulated flight parameters

of the aircraft.

a. XPC Target Model Schematic
The modified SIMULINK model schematic for xPC Target model
compilation is depicted below in Figure 33:
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Figure 33:  XPC Target Model Schematic
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b. Code Building and Loading of XPC Target Model to PC104

In the next step of the configuration process, the user compiles the
modified SIMULINK model on the Host PC (Computer #1) and downloads the compiled
XPC Target Model to PC104. Before this can be accomplished, the “Configuration
Parameter — Real-Time Workshop” window in SIMULINK must be configured
appropriately so that SIMULINK may utilize the appropriate C language compiler. As
XPC Target is a real-time system, the time step in the “Solver” option must be set to a

fixed step instead of a variable step option.

Input via an xPC Target Explorer window, accomplished by typing
“xpcexplr” in the MATLAB command window, allows the user to set up the
communication path used to send the compiled C code file to the Target PC (PC104).
The network IP address, TCP/IP gateway address, TCP/IP target driver, and port number
of PC104 must be properly configured for the Host PC to communicate with the Target
PC. The appropriate TCP/IP target driver is 182559 and port number is 22222 for the
PC104 in use. The procedures are qualitatively depicted in the following figure (Fig. 34):
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Figure 34:  XPC Configuration Parameters and XPCEXPLR Window

Once all the configuration parameters are properly setup, generation of the
XPC Target model is activated via a short cut key, “Ctrl-B”. This initiates the automatic
compilation process of the SIMULINK model into the C code program, and the compiled

program will be automatically downloaded to PC104 via TCP/IP. It can then be triggered
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to run externally using the SIMULINK External mode on the Host PC, or through xPC
commands in the MATLAB command window or the M-script file.

E. HIL SIMULATION RESULTS
Utilizing the compiled XPC Target model and Piccolo avionics hardware, the new
control law is tested in the HIL environment against the stationary and moving target test

cases used in the earlier simulation.

One distinctive difference between software and HIL simulations is the presence
of very noticeable levels of noise in the HIL simulation results. As there are more
uncontrollable parameters and variables in the HIL simulation environment, there will be
discrepancy between theoretical and actual HIL results. As such, results obtained
through HIL should be interpreted in light of this unfortunate aspect. In an extremely
noisy HIL environment, erroneous results might need to be filtered or selectively rejected

for possible interpretation of results or analysis work.

1. Sensitivity Analysis of the Control Law to Variations of K;

The sensitivity analysis of the control law to variations of parameter k; is
examined in a scenario in which the desired range is 500m. The initial conditions are (1)
SUAV velocity = 28m/s, (2) Target velocity = 0 m/s, (3) Initial position of SUAV at
[100, -900, 300], (4) Initial position of target at [0, O, 0] (The initial horizontal ground
range from UAV to target is 900m), and (5) k, = 0.25.

The same MOPs defined previously will be utilized to assess the performance
sensitivity of the newly developed control law to parameter k; variations.
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Case 1: K;=0.1

SUAV target VBTT control law tracking performance

plot of UAV and target track

UAV track
Target track

|

|

|

|

|

|

1
o
S
S
-

(w) X ‘yuoN

1000 1500

500

-1000 -500

-1500

East, Y (m)

Range convergence performance of the SUAV to the desired range of 500m

plot of UAV target range tracking performance

\\\\\\ el it Tt i
I ! I I I I I
e o I I I I I
AR ) N | N S SR
E 0
T =2~ N Y
| T o | | | | I
e o 9 | | | | |
o O O
228 I I I I I
48 8 @ |--—F-————F——F -+
[ | | | |
I I I I I I
I I I I I I
| | | | | L
17| \\\,\\\\\,\\Aﬂ\\,\\\\\\,\\\ [
I I I I I T
I I I I I I I
I I I I I I ,w
[ [ % T PR
I I I I I I I
I I I I I I I
I I I I I I
| | | | M | | |
[ [ [ A VA
| | | | | | [
I I I I I I /\u
I I I I I I
[ [ [ RO 10l T R o
| | | | I I |
I I I I I I
I I I I I I I
I I I I | | |
[ [ [l i Il s e 72|
I I I I I I I
I I I I I I I
I I I I I I I
[ [ R T Y Y R o
e | | LWHW&,\
| \LHW\ |
o I I
7 I I
T T T
— I — I I I
I I I I I
| I Wr I I I
L | | | | |
o o o o o o o
o o o o o (=)
o [e°] © < N N
=1 h
(w) abuey

time (sec)

67



Pan / Tilt angles convergence performance and gimbal / camera angle errors

plot of Gimbal angle/error (deg) vs time (sec)
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Sensitivity Analysis for K;= 0.1 at Desired Range 500m (HIL)

Figure 35:
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Case 2: K1=0.2

SUAV target VBTT control law tracking performance

plot of UAV and target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

plot of Gimbal angle/error (deg) vs time (sec)
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Sensitivity Analysis for K;= 0.2 at Desired Range 500m (HIL)

Figure 36:

70



Case 3: K1=0.3

SUAV target VBTT control law tracking performance

plot of UAV and target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors
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Pan error
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Sensitivity Analysis for K;= 0.3 at Desired Range 500m (HIL)

Figure 37:
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Case 4: Ki=0.4

SUAV target VBTT control law tracking performance

plot of UAV and target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors
plot of Gimbal angle/error (deg) vs time (sec)
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The contributors of MOP-1 (ki)-HIL for the four test cases are tabulated below:

Ky Range Time to first MOP-1(k,)-HIL, Convergence
Captured (m) closest approach Speed (m/sec)
(sec)
0.1 400 105 3.810
0.2 400 105 3.810
0.3 400 80 5.000
0.4 350 200 1.750
Table 6: MOP-1(ky)-HIL

The MOP-1(k;)-HIL of the UAV is plotted as follows:
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Figure 39:

MOP-1(k)-HIL
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The contributors of MOP-2 (k;)-HIL for the four test cases are tabulated below:

Ky Maximum range MOP-2(k;)-HIL, Percentage deviation from
deviation error (m) desired range (%)
0.1 100 20.0
0.2 100 20.0
0.3 50 10.0
0.4 210 42.0
Table 7: MOP-2(ky)-HIL

The MOP-2(k;)-HIL of the UAV is plotted as follows:
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Figure 40:  MOP-2(kj)-HIL
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The following observations can be made from the MOP plots and test plots above:

@ From MOP-1(k;)-HIL analysis, it can be observed that the convergence
speed of the SUAV reaches a maximum value of 5.00 (m/sec) when k; is 0.3, and the

lowest value of 1.750 (m/sec) when k; is 0.4.

(b) From MOP-2(k;)-HIL analysis, it is observable that the percentage range
deviation error of the SUAV is at the minimum at 10.0% when k; is 0.3; the maximum
range deviation error is 42.0% when k; is 0.4. The range holding performance of the
SUAV decreases rapidly with increasing ki values after the minimum value when kj is
0.3.

(©) The MOP (ki)-HIL results differ with noticeable variations from
SIMULINK results. However, the general SUAV convergent flight path towards the
target resembles that of the SIMULINK results. The differences in the results obtained
are expected, as the SUAV model and its flight characteristic in HIL are different from
the SIMULINK SUAV model; moreover, the presence of hardware noises in HIL

simulation also contributes to the variations.

2. Sensitivity Analysis of the Control Law to Variations of Vt/Vg

The sensitivity analysis of the control law to variations of parameter Vt/Vg is
examined in a scenario in which the desired range is 300m. The initial conditions are (1)
SUAV velocity = 28m/s, (2) Initial position of SUAV is at [100, -900, 300], (3) Initial
position of target is at [0, 0, 0] (The initial horizontal ground range from UAV to target is
900m), (4) ky = 0.1, and (5) k.= 0.25.

The same MOPs defined previously will be utilized to assess the performance

sensitivity of the newly developed control law to parameter k; variations.
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Case 1:

Vt/Vg = 5/28

SUAV target VBTT control law tracking performance
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Pan / Tilt angles convergence performance and gimbal / camera angle errors

plot of Gimbal angle/error (deg) vs time (sec)
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Case 2: Vt/\VVg = 10/28

SUAV target VBTT control law tracking performance

plot of UAV and target track
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Pan / Tilt angles convergence performance and gimbal / camera angle errors
plot of Gimbal angle/error (deg) vs time (sec)
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Case 3: Vt/\VVg = 15/28

SUAV target VBTT control law tracking performance
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Pan / Tilt angles convergence performance and gimbal / camera angle errors
plot of Gimbal angle/error (deg) vs time (sec)
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The contributors for MOP-1 (Vt/Vg)-HIL for the three test cases are tabulated

below:

Vt/Vg Range Time to first MOP-1(Vt/Vg)-HIL,
Captured (m) closest approach Convergence Speed (m/sec)
(sec)
5/28 600 60 10.00
10/28 600 100 6.00
15/28 600 130 4.62
Table 8: MOP-1(Vt/Vg)-HIL

The MOP-1(Vt/Vg)-HIL of the UAV is plotted as follows:

Plot of Convergence Speed Vt/Vg
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Figure 44:  MOP-1(Vt/Vg)-HIL
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The contributors for MOP-2 (Vt/\VVg)-HIL for the three test cases are tabulated below:

Vt/Vg Maximum range MOP-2(Vt/Vg)-HIL, Percentage
deviation error (m) deviation from desired range (%)
5/28 100 33.3
10/28 180 60.0
15/28 280 93.3
Table 9: MOP-2(Vt/Vg)-HIL

The MOP-2(Vt/VVg)-HIL of the UAV is plotted as follows:

Plot of Percentage Range Deviation Error vs Vt/Vg
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The following observations can be made from the MOP plots and test plots above:

@) From MOP-1(Vt/Vg) analysis, it can be observed that the convergence
speed of the SUAV decreases with increasing Vt/\VVg. The highest value is 10.00 (m/sec)
when Vt/Vq is 5/28, and the lowest value is 4.62 (m/sec) when Vt/\Vg is 15/28.

(b) From MOP-2(Vt/VVg) analysis, it is observable that the percentage range
deviation error of the UAV increases with increasing Vt/Vg; the maximum range
deviation error is 93.3% when Vt/Vg is 15/28, and the minimum is 33.3% when Vt/Vg is
5/28. The range holding performance of the new control law decreases rapidly with

increasing Vt/Vg.

(c)  The HIL simulation results are similar in trend and flight performance to
their corresponding SIMULINK results.

F. HIL SIMULATION CONCLUSIONS

Although the results obtained in HIL are, in general, noisier than those of the
software simulation, the HIL simulation results still exhibit similar performance. The
differences in the HIL and SIMULINK results are ascribable to the inherent differences
between the UAV models employed in each respective simulation. And, as stated
previously, the additional hardware noises present in the HIL simulation may also be

contributors to the variations in results.

Putting the slight differences and variations in the HIL and SIMULINK results
aside, the HIL results obtained are similar in flight performance trend and pattern to that
of the SIMULINK results. Thus the HIL results have, in essence, validated the

performance and stability of the newly developed control law in the VBTT hardware.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

In comparison with the initial control law, which uses the turn bias of the UAV as
a fixed quantity and does not vary with the UAV speed and desired range, the newly
developed control law takes into account the UAV flight dynamics and automatically
computes a dynamic turn bias commensurate with the desired range. Moreover, the
camera LOS turn rate is also coupled with the UAV turn rate, thus resulting in a more
efficient control of the camera. The newly developed control law is therefore more

robust and efficient than the initial control law.

The results obtained from utilization of the newly developed control law in both
the software simulation and the HIL simulation are encouraging and comparable to
theoretical predictions. The newly developed control law is validated for the
performance and stability in both the software simulation and actual hardware

implementation. It lends itself readily to further flight test trials.

B. RECOMMENDATIONS

The gimbaled camera hardware should be included in the HIL simulation to test
the complete robustness of the newly developed control law. The next logical goal will
be to extend the simulation test to include flight trials of the new control law onboard the
SUAV. At the moment of this thesis completion, preparations are underway for these

tests.

During the initial convergence phase to the desired range and the final range
holding at the commanded range, the VBTT control law exhibits significant oscillatory
behaviors in the navigation and pan angle errors. Further improvement to the VBTT
control law can be made by incorporating integral parts and/or gain scheduling
techniques to the control law. These additions will allow research and examination into
the possibility of damping the oscillatory behaviors in the navigation and pan angle errors
for better control of the SUAV.
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APPENDIX A

MATLAB Script file for Eigenvalue stability analysis of the feedback system. (Ref 7)

%% Symbolic Math Toolbox script used to plot the stability analysis results
% Reduced system. UAV and gimbal controls are uncoupled

% last update on 11/14/06

clear all

clc

syms X n e r v vt dist ri DV psi real

syms k1l k2 a b ¢c d f g positive

syms npr real

syms kml Cr real % boundary conditions coefficients; determine size of
Omega_c

%% Introduce normalization for the state n
% npr=n/d

x=[npr r]

%% Mapping of variables

% eta

% epsiln

% rho_e - =1/rho-1/rho_d
Vg - UAV ground speed
% k1 - coefficient

% k2 - coefficient

% d = rho_d - desired radius
% a,b,c,f,g = constants

% dist - disturbance

% ri=1/rho

<= ®3>

%% Nonlinear State equations including Target speed as a disturbance
%
Dnpr= ( -v*r*cos(npr*d)-kl*npr*d+vt*cos(npr*d-psi)*(r+1/d) )/d
Dr= (r+1/d)"2*v*sin(npr*d)-vt*cos(npr*d-psi)*(r+1/d)"2 %
De= v*r*cos(npr*d)-k2*e-vt*cos(npr*d-psi)*(r+1/d)
%% Linearized state matrix
A = [diffOnpr, "npr-) diff(Onpr,"r°) diff(Onpr, e");
diff(Or, " npr*) diff(Or,"r") diff(Or,"e");
diff(De, "npr*) diff(De,"r") diff(De,"e")]
% obviously the equilibrium is at the origin
%% First iteration vt=0
%
%% Get Ao at the equilibrium for fixed target
AO = subs(A,{npr,e,r,vt},{0,0,0,0})
% get eigenvalues of the linearized state matrix at the origin
eig(A0)
%% Analysis shows that eigenvalues are negative for all k1,k2>0
%% Second iteration vt!=0
%
%% Get Ao at the equilibrium for fixed target
Al = subs(A,{npr,e,r,psi},{0,0,0,pi/2})
% get eigenvalues of the linearized state matrix at the origin
eig(Al)
%% Analysis shows that eigenvalues are negative for all k1,k2>0
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