Reducing separation formulas to propositional logic

Ofer Strichman Sanjit A. Seshia Randal E. Bryant
April 16, 2003
CMU-CS-02-132

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

A short version of this report titled ‘Deciding Separation Formulas with SAT’ appeared in [23]

Abstract

We show a reduction to propositional logic from a Boolean combination of inequalities of the form \(v_i \geq v_j + c \) and \(v_i > v_j + c \), where \(c \) is a constant and \(v_i, v_j \) are variables of type real or integer. Equalities and uninterpreted functions can be expressed in this logic as well. We discuss the advantages of using this reduction as compared to competing methods, and present experimental results that support our claims.

This research was supported in part by the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL) under contract no. N00014-01-1-0796, and the Gigascale Research Center under contract 98-DT-660. The second author is supported in part by a National Defense Science and Engineering Graduate Fellowship.
Reducing separation formulas to propositional logic
Keywords: Verification, Decision-procedure, separation logic, difference logic, SAT
1 Introduction

Recent advances in SAT solving make it worthwhile to try and reduce hard decision problems, that were so far solved by designated algorithms, to the problem of deciding a propositional formula. Modern SAT solvers can frequently decide formulas with hundreds of thousands of variables in a short amount of time. They are used for solving a variety of problems such as AI planning, Automatic Test Pattern Generation (ATPG)[21], Bounded Model Checking[4], and more. In this paper we show such a reduction to SAT from a theory of separation predicates1, i.e., formulas that contain the standard Boolean connectives, as well as predicates of the form \(v_i \triangleright v_j + c \) where \(\triangleright \in \{>, \geq\} \), \(c \) is a constant, and \(v_i, v_j \) are variables of type real or integer. The other inequality signs as well as equalities can be expressed in this logic. Uninterpreted functions can be handled as well since they can be reduced to Boolean combinations of equalities[1].

Separation predicates are used in verification of timed systems, scheduling problems, and more. Hardware models with ordered data structures have inequalities as well. For example, if the model contains a queue of unbounded length, the test for head \(\leq \) tail introduces inequalities. In fact, most inequalities in verification conditions, Pratt observed [17], are of this form. Furthermore, since theorem provers can decide mixed theories (by invoking an appropriate decision procedure for each logic fragment[20]), restricting our attention to separation predicates does not mean that it is helpful only for pure combinations of these predicates. Rather it means that the new decision procedure can shorten the verification time of any formula that contains a significant number of these predicates.

The reduction to SAT we suggest is based on two steps. First, we encode the separation predicates as new Boolean variables. Second, we add constraints on these variables, based on an analysis of the transitivity of the original predicates. The idea of Boolean encoding of predicates in this context was introduced by Goel et al. [13] for deciding equality logic, although they did not compensate for the lost transitivity by adding constraints. They encode each equality predicate \(i = j \) with a new Boolean variable \(e_{ij} \), and compute the BDD corresponding to the resulting Boolean formula. Then, they search the BDD for a consistent path leading to ‘1’, i.e., an assignment to the \(e_{ij} \) variables that is consistent with the transitivity requirements of equality (e.g., an assignment \(e_{ij} = e_{jk} = 1, e_{ik} = 0 \) is inconsistent because it does not respect the transitivity requirement of the corresponding equality predicates). The original formula is satisfiable if and only if such a path is found. Bryant et al. [6] later suggested to avoid the search phase (which is worst-case exponential) by explicitly adding the transitivity constraints to the formula. The equality predicates can be represented as an undirected graph, where the nodes are the variables, and there is an edge between two nodes \(i \) and \(j \) if and only if there is a predicate \(i = j \) in the formula. Transitivity of equality forbids an assignment in which all edges of a cycle except one are assigned TRUE. Thus, it is sufficient to add such a constraint for each simple cycle in the graph. The current work

1 The term separation predicates is adopted from Pratt[17], who considered ‘separation theory’, a more restricted case in which all the constraints are of the form \(v_i \leq v_j + c \), and conjunction is the only Boolean operator allowed. This logic is also known as ‘difference logic’.
can be seen as a natural extension of [6] to the more general segment of logic, namely a logic of separation predicates.

The rest of the paper is organized as follows. In the next section we briefly survey some existing methods for deciding separation predicates and discuss the principle differences between these methods and SAT. We describe our method in sections 3 to 5: in Section 3 we present our basic graph-based decision procedure. In Section 4 we show how triangulating the graph can reduce the complexity of the procedure in some interesting cases (while making it more complex in others). In Section 5 we extend the procedure to handle integers. We conclude in Section 6 by comparing run-times of the suggested method and the theorem prover ICS[11, 12], when applied to a variety of realistic examples from hardware designs and timed systems.

2 SAT vs. other decision procedures

There are many methods for deciding a formula consisting of a conjunction of separation predicates. For example, a known graph-based decision procedure for this type of formulas (frequently attributed to Bellman, 1957) works as follows: given a conjunction of separation predicates \(\varphi \), it constructs a constraints graph, which is a directed graph \(G(V,E) \) in which the set of nodes is equal to the set of variables in \(\varphi \), and node \(v_i \) has a directed edge with 'weight' \(c \) to node \(v_j \) iff the constraint \(v_i \leq v_j + c \) is in \(\varphi \). It is not hard to see that \(\varphi \) is satisfiable iff there is no cycle in \(G \) with a negative accumulated weight. Thus, deciding \(\varphi \) is reduced to searching the graph for such cycles. Variations of this procedure were described, for example in [17], and are implemented in theorem provers such as Coq[2]. The Bellman-Ford algorithm [8] can find whether there is a negative cycle in such a graph in polynomial time, and is considered as the standard in solving these problems. It is used, for example, when computing Difference Decision Diagrams (DDD) [14]. DDD’s are similar to BDDs, but instead of Boolean variables, their nodes are labeled with separation predicates. In order to compute whether each path in the DDD leads to ‘0’ or ‘1’, the Bellman-Ford procedure is invoked separately for each path.

Most theorem provers can decide the more general problem of linear arithmetic. Linear arithmetic permits predicates of the form \(\sum_{i=1}^{n} a_i x_i \geq a_{n+1} \) (the coefficients \(a_1 \ldots a_{n+1} \) are constants). They usually apply variable elimination methods, most notably the Fourier-Motzkin technique [5], which is used in PVS[16], ICS, IMPS[10] and others. Other approaches include the graph-theoretic analysis due to Shostak [19], the Simplex method[9], the Sup-Inf method[18], and more. All of these methods, however, need to be combined with case-splitting in order to handle disjunctions\(^2\). Normally this is the bottleneck of the decision process, since the number of subproblems that need to be solved is worst case exponential. One may think of case-splitting as a two steps algorithm: first, the formula is converted to Disjunctive Normal Form (DNF); second, each clause is solved separately. Thus, the complexity of this problem is dominated by the size of the generated DNF. For this reason modern theorem provers try to refrain from

\(^2\) Note that even if the formula does not include disjunctions originally, disjunctions are normally added to it by the decision procedure when reducing uninterpreted functions.
explicit case-splitting. They apply ‘lazy’ case-splitting (splitting only when encountering a disjunction) that only in the worst case generates all possible sub-formulas as described above. One exception to the need for case splitting in the presence of disjunctions is DDDs. DDDs do not require explicit case-splitting, in the sense that the DDD data structure allows term sharing. Yet the number of sub-problems that are solved can still be exponential.

Reducing the problem to deciding a propositional formula (SAT) obviously does not avoid the potential exponential blow-up. The various branching algorithms used in SAT solvers can also be seen as case-splitting. But there is a difference between applying case-splitting to formulas and splitting the domain. While the former requires an invocation of a (theory-specific) procedure for deciding each case considered, the second is an instantiation of the formula with a finite number of assignments. Thus, the latter amounts to checking whether all clauses are satisfied under one of these assignments.

This difference, we now argue, is the reason for the major performance gap between CNF - SAT solvers and alternative decision procedures that have the same theoretical complexity. We will demonstrate the implications of this difference by considering three important mechanisms in decision procedures: pruning, learning and guidance. In the discussion that follows, we refer to the techniques applied in the Chaff [15] SAT solver. Most modern SAT solvers work according to similar principles.

- **Pruning.** Instantiation in SAT solvers is done by following a binary decision tree, where each decision corresponds to choosing a variable and assigning it a Boolean value. This method makes it very easy to apply pruning: once it discovers a contradictory partial assignment \(a\), it backtracks, and consequently all assignments that contain \(a\) are pruned. It is not clear whether an equivalent or other pruning techniques can be applied in case-splitting over formulas, other than stopping when a clause is evaluated to true (or false, if we check validity).

- **Learning.** Every time a conflict (an unsatisfied clause) is encountered by Chaff, the partial assignment that led to this conflict is recorded, with the aim of preventing the same partial assignment from being repeated. In other words, all assignments that contain a ‘bad’ sub-assignment that was encountered in the past are pruned. Learning is applied in different ways in other decision procedures as well. For example, PVS records sub-goals it has proven and adds them as an antecedent to yet unproven sub-goals, with the hope it will simplify their proofs. In regard to separation theory, we are not aware of a specific learning mechanism, but it’s not hard to think of one. Our argument in this case is therefore not that learning is harder or impossible in other decision procedures - rather that by reducing problems to SAT, one benefits from the existing learning techniques that were already developed and implemented over the years.

- **Guidance.** By ‘guidance’ we mean prioritizing the internal steps of the decision procedure. For example, consider the formula \(\varphi_1 \lor \varphi_2\), where \(\varphi_1\) is unsatisfiable and hard to solve, and \(\varphi_2\) is satisfiable but easy to solve. If the clauses are solved from left to right, solving the above formula will take longer than solving \(\varphi_2 \lor \varphi_1\). We experimented with several such formulas in both ICS and PVS, and found that changing the order of expressions can have a significant impact on performance, which means that guidance is indeed problematic in the general case.
The success of guidance depends on the ability to efficiently estimate how hard it is to process each sub-formula and/or to what extent it will simplify the rest of the proof. Both of these measures are easy to estimate in CNF-SAT solving, and hard to estimate when processing more general sub-formulas. Guidance in SAT is done when choosing the next variable and Boolean value in each level in the decision tree. There are many heuristics for making this choice. For example: choose the variable and assignment that satisfies the largest number of clauses. Thus, the hardness of what will remain to prove after each decision is estimated by the number of unsatisfied clauses.

Modern theorem provers normally also try to guide the proof. The SVC theorem prover\cite{3}, for example, orders its sub-expressions according to a recursive definition of ‘hardness’: constants are the simplest; ‘add’ expressions are as hard as their most complex child, etc. Evaluating easier expressions first results on average in faster decisions.

Not only that these mechanisms are harder to integrate in the alternative procedures, they become almost impossible to implement in the presence of mixed theories (what can be learned from solving a sub-goal with e.g. bit-vectors that will speed up another sub-goal with linear arithmetic, even if both refer to the same variables?). This is why reducing mixed theories to a common theory like propositional logic makes it easier to enjoy the potential speed-up gained by these techniques. Many decidable theories that are frequently encountered in verification have known efficient reductions to propositional formulas. Therefore a similar reduction from separation predicates broadens the logic that can be decided by solving a single SAT instance.

3 A graph theoretic approach

Let φ be a formula consisting of the standard propositional connectives and predicates of the form $v_i \triangleright v_j + c$ and $v_i \triangleright c$, where c is a constant, and v_i, v_j are variables of type $\mathbb{R} \cup \mathbb{N}$ (we treat integer variables in Section 5). We decide φ in three steps, as described below. A summary of the procedure and an example will be given in Section 3.4.

3.1 Normalizing φ

As a first step, we normalize φ.

1. Rewrite $v_i \triangleright c$ as $v_i \triangleright v_0 + c$.\footnote{\(v_0 \not\in \varphi\) can be thought of as a special variable that always has a coefficient ‘0’ (an idea adopted from \cite{19}).}
2. Rewrite equalities as conjunction of inequalities.
3. Rewrite ‘$<$’ and ‘\leq’ predicates as ‘$>$’ and ‘\geq’; e.g., rewrite $v_i < v_j + c$ as $v_j > v_i - c$.\footnote{\(v_0 \not\in \varphi\) can be thought of as a special variable that always has a coefficient ‘0’ (an idea adopted from \cite{19}).
3.2 Boolean encoding and basic graph construction

After normalizing \(\varphi \), our decision procedure abstracts all predicates by replacing them with new Boolean variables. By doing so, the implicit transitivity constraints of these predicates are lost. We use a graph theoretic approach to represent this ‘lost transitivity’ and, in the next step, to derive a set of constraints that compensate for this loss.

Let \(G_\varphi(V, E) \) be a weighted directed multigraph, where every edge \(e \in E \) is a 4-tuple \((v_i, v_j, c, x)\) defined as follows: \(v_i \) is the source node, \(v_j \) is the target node, \(c \) is the weight, and \(x \in \{>, \geq\} \) is the type of the edge. We will denote by \(s(e) \), \(t(e) \), \(w(e) \) and \(x(e) \) the source, target, weight, and type of an edge \(e \), respectively. We will also define the dual edge of \(e \), denoted \(e^\dagger \), as follows:

1. if \(e = (i, j, c, >) \), then \(e^\dagger = (j, i, -c, \geq) \).
2. if \(e = (i, j, c, \geq) \), then \(e^\dagger = (j, i, -c, >) \).

Informally, \(e^\dagger \) represents the complement constraint of \(e \). Thus, \(e^\dagger = e \).

We encode \(\varphi \) and construct \(G_\varphi \) as follows:

1. **Boolean encoding and basic graph construction**
 (a) Add a node for each variable in \(\varphi \).
 (b) Replace each predicate of the form \(v_i > v_j + c \) with a Boolean variable \(e_{i,j}^\dagger \) and add \((v_i, v_j, c, >) \) to \(E \).
 (c) Replace each predicate of the form \(v_i \geq v_j + c \) with a Boolean variable \(e_{i,j}^\dagger \) and add \((v_i, v_j, c, \geq) \) to \(E \).

2. **Add dual edges**.
 For each edge \(e \in E \), \(E := E \cup e^\dagger \).

We denote the encoded Boolean formula by \(\varphi' \). Since every edge in \(G_\varphi \) is associated with a Boolean variable in \(\varphi' \) (while its dual is associated with the negation of this variable), we will refer to edges and their associated variables interchangeably when the meaning is clear from the context.

3.3 Identifying the transitivity constraints

The transitivity constraints imposed by separation predicates can be inferred from previous work on this logic [17, 19]. Before we state these constraints formally, we demonstrate them on a simple cycle of size 2. Let \(p_1 : v_1 \triangleright v_2 + c_1 \) and \(p_2 : v_2 \triangleright v_1 + c_2 \) be two predicates in \(\varphi \). It is easy to see that if \(c_1 + c_2 > 0 \) then \(p_1 \land p_2 \) is unsatisfiable. Additionally, if \(c_1 + c_2 = 0 \) and at least one of \(\triangleright \) is equal to \(\geq \), then \(p_1 \land \neg p_2 \) is unsatisfiable as well. The constraints on the other direction can be inferred by applying the above constraints to the duals of \(p_1 \) and \(p_2 \); if \(c_1 + c_2 < 0 \), or if \(c_1 + c_2 = 0 \) and at least one of \(\triangleright \) is equal to \(\leq \), then \(\neg p_1 \land \neg p_2 \) is unsatisfiable.

We continue by formalizing and generalizing these constraints.

Definition 1. A directed path of length \(m \) from \(v_i \) to \(v_j \) is a list of edges \(e_1...e_m \) s.t. \(s(e_1) = v_i \), \(t(e_m) = v_j \) and \(\bigwedge_{i=1}^{m-1} t(e_i) = s(e_{i+1}) \). A directed path is called simple if no node is repeated in the path.
We will use capital letters to denote directed paths, and extend the notations \(s(e) \), \(t(e) \) and \(w(e) \) to paths, as follows. Let \(T = e_1 \ldots e_m \) be a directed path. Then \(s(T) = s(e_1) \), \(t(T) = t(e_m) \) and \(w(T) = \sum_{i=1}^{m} w(e_i) \). \(x(T) \) is defined as follows:

\[
x(T) = \begin{cases}
\geq & \text{if } \forall_{i=1}^{m} x(e_i) = \geq' \\
> & \text{if } \forall_{i=1}^{m} x(e_i) = \sim' \\
\sim & \text{otherwise}
\end{cases}
\]

We also extend the notation for dual edges to paths: if \(\tilde{T} \) is a directed path, then \(\tilde{T} \) is the directed path made of the dual edges of \(\tilde{T} \).

Definition 2. A Transitive Sub-Graph (TSG) \(\mathcal{A} = T \cup B \) is a sub-graph comprised of two directed paths \(T \) and \(B \), \(T \neq B \), starting and ending in the same nodes, i.e., \(s(T) = s(B) \) and \(t(T) = t(B) \). \(\mathcal{A} \) is called simple if both \(B \) and \(T \) are simple and the only nodes shared by \(T \) and \(B \) are \(s(T) = s(B) \) and \(\tilde{T} \).

The transitivity requirements of a directed cycle\(^4\) and a TSG \(\mathcal{A} \) are presented in Fig. 1. These requirements can be inferred from previous work on this logic, and will not be formally proved here.

![Fig. 1. Transitivity requirements of cycles (a) and transitive sub-graphs (b)](image)

Both sets of rules have redundancy due to the dual edges. For example, each cycle \(\tilde{C} \) has a dual cycle \(\tilde{C} \) with an opposite direction and \(w(C) = -w(\tilde{C}) \). Applying the four rules to both cycles will yield exactly the same constraints. We can therefore consider cycles in one direction only. Alternatively, we can ignore \(R3 \) and \(R4 \), since the first two rules yield the same result when applied to the dual cycle. Nevertheless we continue with the set of four rules for ease of presentation.

Definition 3. A cycle \(\tilde{C} \) (alternatively, a TSG \(\mathcal{A} \)) is satisfied by assignment \(\alpha \), denoted \(\alpha \models \tilde{C} \), if \(\alpha \) satisfies its corresponding constraints as defined in Fig. 1.

\(^4\) By a ‘directed cycle’ we mean a closed directed path in which each sub-cycle is iterated once. It is obvious that iterations over cycles do not add transitivity constraints.
We will denote by $\alpha(e)$ the Boolean value assigned to e by an assignment α. We will use the notation $\alpha \not\models_i \mathcal{C}$, $1 \leq i \leq 4$, to express the fact that rule \mathcal{R}_i is applied to \mathcal{C} and is not satisfied by α.

Proposition 1. Let $\mathcal{A} = \mathcal{T} \cup \mathcal{B}$ and $\mathcal{C} = \mathcal{T} \cup \mathcal{B}$ be a TSG and a directed cycle in G_φ, respectively. Then $\alpha \models \mathcal{A}$ iff $\alpha \models \mathcal{C}$.

Proof. Each rule has three parts: the condition under which it is applied (the values of $w(M \triangleleft Q \land w(M \triangleright Q)$), the antecedent of the rule (the values of $\{M \triangleleft Q\}$ and $\{M \triangleright Q\}$) and the consequence of the rule (the values of $\alpha(M \triangleleft Q \land \alpha(M \triangleright Q)$). We first investigate the relationships between \mathcal{A} and \mathcal{C} with respect to these three elements:

1. (Applied rule) $x(C) = \lnot \triangleright \iff x(T) = \lnot \triangleright \land x(B) = \lnot \triangleright$. Similarly, $x(C) = \triangleright \iff x(T) = \triangleright \land x(B) = \triangleright$. Thus, for $k = 1 \ldots 3, l_k$ applies to \mathcal{A} iff l_k applies to \mathcal{C}. Consequently, rule \mathcal{R}_k' is applied to \mathcal{A} iff rule \mathcal{R}_k is applied to \mathcal{C}.

2. (Boolean value of the rule’s antecedent) Let \triangleright denote one of the four inequality signs. $\{M \triangleright Q\} \Leftrightarrow \{M \lnot \triangleright Q\}$ and $\{M \triangleright Q\} \Leftrightarrow \{M \lnot \triangleright Q\}$. The equivalence of the antecedent of each rule and its primed version is implied.

3. (Boolean value of the rule’s consequence under α) By definition of dual edges, $\bigvee_{e_j \in \mathcal{B}} e_j = \neg \bigwedge_{e_j \in \mathcal{B}} e_j$ and $\bigwedge_{e_j \in \mathcal{T}} e_j = \neg \bigvee_{e_j \in \mathcal{T}} e_j$. By definition of \mathcal{A} and \mathcal{C}, $\bigwedge_{e_j \in \mathcal{C}} e_j = \bigwedge_{e_j \in \mathcal{T}} e_j \land \bigwedge_{e_j \in \mathcal{B}} e_j$ and $\bigvee_{e_j \in \mathcal{C}} e_j = \bigvee_{e_j \in \mathcal{T}} e_j \lor \bigvee_{e_j \in \mathcal{B}} e_j$. The equivalence of the Boolean value under α of each rule and its primed version is implied.

Given these relationships:

(i) Let \mathcal{R}_k' be a rule that is not satisfied by α in respect to \mathcal{A}, i.e., $\alpha \not\models \mathcal{R}_k' \mathcal{A}$. The corresponding rule \mathcal{R}_k is checked for \mathcal{C} (item 1). The Boolean values of both the antecedent and consequence of \mathcal{R}_k are the same as \mathcal{R}_k'’s (items 2 and 3), and therefore α does not satisfy \mathcal{R}_k as well. Thus, $\alpha \not\models \mathcal{C}$.

(only if) A similar argument to the if case. Swap \mathcal{R}_k with \mathcal{R}_k' and \mathcal{A} with \mathcal{C}. \hfill \square

Example 1. We demonstrate the duality between TSG’s and cycles with a cycle \mathcal{C} where $x(C) = \triangleright$ and $w(\mathcal{C}) > 0$ (Fig. 2(a)). Assume α assigns 1 to all of \mathcal{C} edges, i.e., $\alpha(\mathcal{C}) = 1$. Consequently, $\alpha \not\models \mathcal{C}$.

![Fig. 2. A cycle (a) and a possible dual transitive sub-graph (b). Solid edges represent strict inequality (\triangleright) while dashed edges represent weak inequalities (\triangleright).](image-url)
We construct \mathcal{A} from \mathcal{C} by substituting e.g., e_3 with its dual (Fig. 2(b)). \mathcal{A} is a TSG made of the two directed paths $T = e_4, e_1, e_2$ and $B = e_3$, that satisfy $x(T) = '>$ and $x(B) = '>$ and $w(T) > w(B)$ (because $w(B) = -w(e_3)$). According to Fig. 1(b), we apply $R3'$ and $R4'$. But since $\alpha(e_3) = -\alpha(e_3) = 0$, $R3'$ is not satisfied. Thus, $\alpha \not\models_\varphi A$. □

Proposition 1 implies that it is sufficient to concentrate on either TSG’s or cycles. In the rest of this paper we will concentrate on cycles, since their symmetry makes them easier to handle.

The following proposition will allow us to concentrate only on simple cycles.

Proposition 2. Let \mathcal{C} be a non simple cycle in G_φ, and let α be an assignment to \mathcal{C} edges. If $\alpha \not\models_\varphi \mathcal{C}$ then there exists a sub-graph of \mathcal{C} that forms a simple cycle \mathcal{C}' s.t. $\alpha \not\models_\varphi \mathcal{C}'$.

Proof. Let $c_1 \ldots c_k, k > 1$ be the simple cycles in \mathcal{C} (it is possible that some edges are shared by these cycles). We distinguish between several cases:

1. If $x(\mathcal{C}) = '>$ then for all $1 \leq i \leq k$, $x(c_i) = '>$ and therefore rules $R1$ and $R2$ apply. If $\alpha \not\models_\varphi \mathcal{C}$ then $w(\mathcal{C}) > 0$ and $\alpha(\mathcal{C}) = \alpha(c_1) = \ldots = \alpha(c_k) = 1$. At least one of these cycles, say c_j, has a positive weight, i.e. $w(c_j) > 0$. Since $x(c_j) = '>$ and $\alpha(c_j) = 1$ then $\alpha \not\models_\varphi c_j$. For $R2$, the argument is similar: if $\alpha \not\models_\varphi \mathcal{C}$ then $w(\mathcal{C}) \leq 0$ and $\alpha(\mathcal{C}) = \alpha(c_1) = \ldots = \alpha(c_k) = 0$. There exists a cycle c_j s.t. $w(c_j) \leq 0$, and since $x(c_j) = '<$ and $\alpha(c_j) = 0$ then $\alpha \not\models_\varphi c_j$.

2. Else, if $x(\mathcal{C}) = '<$, the proof is similar to the previous case: swap $R1$ with $R3$ and $R2$ with $R4$ and change the inequalities accordingly: swap ‘>’ with ≥ and ≤ with ‘<’.

3. Else, $x(\mathcal{C}) = '='$. We again split the proof:

 (a) If $\alpha \not\models_\varphi \mathcal{C}$, then $w(\mathcal{C}) \leq 0$ and $\alpha(\mathcal{C}) = \ldots = \alpha(c_k) = 0$. If $w(\mathcal{C}) = w(c_1) = \ldots = w(c_k) = 0$, we need to show that $R2$ is applied to at least one of them. But since $x(\mathcal{C}) = '='$ then for at least one of these cycles, say c_j, $x(c_j) = '<$', and therefore $R2$ is applied to c_j. Thus, $\alpha \not\models_\varphi c_j$. Else, there exists a cycle c_i s.t. $w(c_i) < 0$. Then $\alpha \not\models_\varphi c_i$ or $\alpha \not\models_\varphi c_i$, depending on $x(c_i)$.

 (b) If $\alpha \not\models_\varphi \mathcal{C}$, then $w(\mathcal{C}) = 0$ and $\alpha(\mathcal{C}) = \ldots = \alpha(c_k) = 1$. If $w(\mathcal{C}) = w(c_1) = \ldots = w(c_k) = 0$, we need to show that $R3$ is applied to at least one of them. But since $x(\mathcal{C}) = '<'$ then for at least one of them, say c_j, $x(c_j) = '<$', and therefore $R3$ is applied to c_j. Thus, $\alpha \not\models_\varphi c_j$. Else, there exists a cycle c_i s.t. $w(c_i) > 0$. Thus $\alpha \not\models_\varphi c_i$ or $\alpha \not\models_\varphi c_i$, depending on $x(c_i)$.

We have showed that in all cases if \mathcal{C} is not satisfied by α, then there exists a simple cycle, which is a sub-graph of \mathcal{C}, that is not satisfied by α. □

Thus, our decision procedure adds constraints to φ' for every simple cycle in G_φ according to Fig. 1(a).

3.4 A decision procedure and its complexity

To summarize this section, our decision procedure consists of three stages:
1. Normalizing φ. After this step the formula contains only the ‘$>$’ and ‘\geq’ signs.
2. Deriving φ' from φ by encoding φ’s predicates with new Boolean variables. Each predicate adds an edge and its dual to the inequality graph G_φ, as explained in Section 3.2
3. Adding transitivity constraints for every simple cycle in G_φ according to Fig. 1(a).

We delay the correctness proof (soundness and completeness) to Section 4.2, after we introduce some changes to this basic procedure.

Example 2. Consider the formula

$$\varphi: x > y - 1 \lor \neg (z > y - 2 \land x \geq z)$$

After step 2 we have

$$\varphi': e_{x,y}^{-1,>} \lor \neg (e_{z,y}^{-2,>} \land e_{z,x}^{0,>})$$

(for simplicity we refer to weak inequality predicates by a negation of their duals).

Together with the dual edges, G_φ contains one cycle with weight 1 consisting of the vertices x, y, z, and the dual of this cycle. Considering the former, according to $R3$ we add to φ' the constraint

$$\neg e_{x,y}^{-1,>} \lor \neg e_{z,y}^{-2,>} \lor e_{z,x}^{0,>}$$

The constraint on the dual cycle is equivalent and is therefore not computed. \square

This example demonstrates that the suggested procedure may generate redundant constraints (yet none of them makes the procedure incomplete). There is no reason to consider cycles that their edges are not conjoined in the DNF of φ. In [22] we prove this observation and explain how the above procedure can be combined with conjunctions matrices in order to avoid redundant constraints. The conjunctions matrix of φ is a $|E| \times |E|$ matrix, computable in polynomial time, that state for each pair of predicates in φ whether they would appear in the same clause if the formula was transformed to DNF. This information is sufficient for concluding whether a given cycle ever appears as a whole in a single DNF clause. Only if the answer is yes, we add the associated constraint. We refer the reader to the above reference for more details on this improvement (note that the experiments in Section 6 did not include this optimization).

Complexity. The complexity of enumerating the constraints for all simple cycles is linear in the number of cycles. There may be an exponential number of such cycles. Thus, while the number of variables is fixed, the number of constraints can be exponential (yet bounded by $2^{|E|}$). SAT is exponential in the number of variables and linear in the number of constraints. Therefore the complexity of the SAT checking stage in our procedure is tightly bounded by $O((2^{|E|})^2) = O(2^{|E|})$, which is similar to the complexity of the Bellman-Ford procedure combined with case-splitting. The only argument in favor of our method is that in practice SAT solvers are less sensitive to the number of variables, and are more affected by the connectivity between them. The experiments detailed in Section 6 proves that this observation applies at least to the set of examples...
we tried. The SAT phase was never the bottleneck in our experiments; rather it was the

generation of the formula.

Thus, the more interesting question is whether the cycle enumeration phase is easier

than case splitting, as both are exponential in $|E|$. The answer is that normally there are

significantly more clauses to derive and check than there are cycles to enumerate. There

are two reasons for this: first, the same cycles can be repeated in many clauses; second,
in satisfiable formulas many clauses do not contain a cycle at all.

4 Compact representation of transitivity constraints

Explicit enumeration of cycles will result in 2^n constraints in the case of Fig. 3(a),

regardless of the weights on the edges. In many cases this worst case can be avoided

by adding more edges to the graph. The general idea is to project the information that

is contained in a directed path (i.e., the accumulated weight and type of edges in the

path) to a single edge. If there are two or more paths that bear the same information, the

representation will be more compact. In Section 4.2 we will elaborate on the implication

of this change on the complexity of the procedure.

4.1 From cycles to triangles

The main tool that we will use for deriving the compact representation is chordal

digraphs. Chordal graphs (a.k.a. triangulated graphs) are normally defined in the con-
text of undirected, unweighted graphs. A chordal graph in that context is a graph in which
all cycles of size 4 or more contain an internal chord (an edge between non adjacent
vertices). Chordal graphs were used in [6] to represent transitivity constraints (of equality,
in their case) in a concise way. We will use them for the same purpose.

Yet, there are several aspects in which G_φ is different from the graph considered in the

standard definition: G_φ is a directed multigraph with two types of edges, the edges are

weighted and each one of them has a dual.

Definition 4. Let C be a simple cycle in G_φ. Let v_i and v_j be two non adjacent nodes

in C. We denote the path from v_i to v_j by $T_{i,j}$. A chord e from v_i to v_j is called $T_{i,j}$-

accumulating if it satisfies these two requirements:

1. $w(e) = w(T_{i,j})$
2. $x(e) = \geq$ if $x(T_{i,j}) = \geq$ or if $x(T_{i,j}) = \sim$ and $x(T_{i,j}) = \geq$. Otherwise
 $x(e) = \geq$.

This definition refers to the case of one path between i and j, and can be easily extended

if there is more than one such path. Note that the definition of $x(e)$ relies on $x(T_{j,i})$,

which is based on the edges of the ‘other side’ of the cycle. Since there can be more than

one path $T_{j,i}$, and each one can have different types of edges, making the graph chordal

may require the addition of two edges between i and j, corresponding to the two types

of inequality signs. As will be shown in Section 4.2, our decision procedure refrains

from explicitly checking all the paths $T_{j,i}$. Rather it adds these two edges automatically

when $x(T_{i,j}) = \sim$.

Definition 4 gives rise to the following observation, which we state without proof:
Proposition 3. Let \(e \) be a \(T_{i,j} \)-accumulating chord in a simple cycle \(C \), and let \(C' = (C \cup e) \setminus T_{i,j} \). The following equivalencies hold: \(x(C) = x(C') \) and \(w(C) = w(C') \).

Example 3. In Fig. 3(b), each edge is marked with its identifier \(e_i \) and weight \(c_i \). By Definition 4, \(e \) is a \(T_{i,j} \)-accumulating chord. Let \(C' = (C \cup e) \setminus T_{i,j} = (e, e_3, e_4) \). Then as observed in Proposition 3, \(x(C') = x(C) = ' \sim ' \) and \(w(C') = w(C) = \Sigma_{i=1}^{4} c_i \). \(\square \)

Definition 5. \(G_\varphi \) is called chordal if all simple cycles in \(G_\varphi \) of size greater or equal to 4 contain an accumulating chord.

We leave the question of how to make \(G_\varphi \) chordal to the next section. We first prove the following proposition:

Proposition 4. Let \(C \) be a simple cycle in a chordal graph \(G_\varphi \), and let \(\alpha \) be an assignment to the edges of \(C \). If \(\alpha \not\models C \) then there exists a simple cycle \(C' \) of size 3 in \(G_\varphi \) s.t. \(\alpha \not\models C' \).

Proof. Let \(C \) be a simple cycle in \(G_\varphi \) of size greater than 3. Since \(G_\varphi \) is chordal, it contains an accumulating chord \(e \) from e.g. \(v_i \) to \(v_j \).

We denote the path from \(v_i \) to \(v_j \) by \(T_{i,j} \) and the cycle through \(e \) by \(C_1 \), i.e. \(C_1 = (C \cup e) \setminus T_{i,j} \) (in Fig. 3(b), \(C_1 = (e, e_3, e_4) \)). Recall that \(\alpha \not\models C \) only if \(\alpha(C) \neq \bot \). We now consider two cases:

1. \(\alpha(e) = \alpha(C) \).
 According to Proposition 3, \(x(C) = x(C_1) \) and \(w(C) = w(C_1) \). Thus, the same rules apply to \(C \) and \(C_1 \), and the antecedents of the rules are evaluated the same. Since we assumed that \(\alpha(e) = \alpha(C) \), then the consequence of all rules are also evaluated equally. Thus, \(\alpha \not\models_i C \) iff \(\alpha \not\models_i C_1 \).

2. \(\alpha(e) = 1 - \alpha(C) \).
 Consider the cycle \(C_2 = T_{i,j} \cup \hat{e} \) (in Fig. 3(b), \(C_2 = (e_1, e_2, \hat{e}) \)). By definition of \(e \) and \(\hat{e} \), \(x(C_2) = ' \sim ' \) and \(w(C_2) = 0 \). Thus, both \(\text{R2} \) and \(\text{R3} \) are applied, and the antecedent of both rules is true, which implies that both of their consequences should be true. By definition of dual edges, the following holds: \(\alpha(T_{i,j}) = \alpha(C) = 1 - \alpha(e) = \alpha(\hat{e}) \). Thus, \(\alpha \) assigns \(T_{i,j} \) and \(\hat{e} \) the same Boolean value, and therefore \(\alpha(C_2) \) is either 0 or 1. In the first case \(\alpha \not\models_\varphi C_2 \), and in the second \(\alpha \not\models_\varphi C_1 \).
In both cases we found a cycle that is not satisfied by α and is smaller than C. If either C₁ or C₂ is of size 3 or less, we assign it to C’ and we are done. Otherwise, we apply this proof recursively with either C₁ or C₂. Since both are smaller than C, termination is guaranteed. □

4.2 The enhanced decision procedure and its complexity

Based on the above results, we change the basic decision procedure of Section 3. We add a stage for making the graph chordal, and restrict the constraints addition phase to cycles of size 3 or less:

1. In the graph construction stage of Section 3.2, we add a third step for making the graph chordal:

 3. Make the graph chordal.

 While V ≠ ∅

 (a) Choose an unmarked vertex i ∈ V and mark it.
 (b) For each pair of edges (j, i, c₁, x₁), (i, k, c₂, x₂) ∈ E, where j and k are unmarked vertices and j ≠ k:

 • Add (j, k, c₁ + c₂, x₁) and its dual to E.
 • If x₁ ≠ x₂, add (j, k, c₁ + c₂, x₂) and its dual to E.

2. Rather than enumerating constraints for all simple cycles, as explained in Section 3.3, we only concentrate on cycles of size 2 and 3.

Various heuristics can be used for deciding the order in which vertices are chosen in step 3(a). Our implementation follows a greedy criterion: it removes the vertex that results in the minimum number of added edges.

Proposition 5. The graph Gφ, as constructed in step 3, is chordal.

Proof. Falsely assume that there exists a simple cycle C = (e₁,…,eₘ), m > 3, that does not contain an accumulating chord. Let vᵣ, 0 ≤ r ≤ m, denote the first node in C that was marked in step 3(a).

Let e₁ be an edge from vᵣ₋₁ to vᵣ and e₄₊₁ be an edge from vᵣ to vᵣ₊₁. Using the notation of Definition 4, Tᵣ₋₁₋₁ ±₁ = (e₁, e₄₊₁). We split the discussion to two cases:

1. If x(e₁) = x(e₄₊₁) then x(Tᵣ₋₁₋₁ ±₁) ≠ *andr and according to step 3(b) we add an edge e = (vᵣ₋₁, vᵣ₊₁, w(e₁) + w(e₄₊₁), x(Tᵣ₋₁₋₁ ±₁)) to Gφ. e satisfies both requirements for a Tᵣ₋₁₋₁ ±₁ - accumulating chord: w(e) = w(Tᵣ₋₁₋₁ ±₁) and x(e) = x(Tᵣ₋₁₋₁ ±₁) (since x(Tᵣ₋₁₋₁ ±₁) ≠ *andr the latter is equivalent to the requirement in the definition).

2. Else, we add the two edges e₁ = (vᵣ₋₁, vᵣ₊₁, w(e₁) + w(e₄₊₁), ≥andr) and e₂ = (vᵣ₋₁, vᵣ₊₁, w(e₁) + w(e₄₊₁), ≥andr). Both satisfy the first requirement for a Tᵣ₋₁₋₁ ±₁ - accumulating chord: w(e₁) = w(e₂) = w(Tᵣ₋₁₋₁ ±₁); one of them satisfies the second requirement (depending on the value of x(Tᵣ₊₁₋₁ ±₁)). Thus, one of these edges is a Tᵣ₋₁₋₁ ±₁ - accumulating chord.

If t = 1 or t = m we change the indices accordingly.
Thus, in all cases C contains an accumulating chord, which contradicts our assumption. Thus, G_φ is chordal.

We now have all the necessary components for proving the soundness and the completeness of this procedure:

Proposition 6. φ is satisfiable if and only if φ' is satisfiable.

Proof. (if) Fig. 1(a) states the transitivity constraints that are lost due to the abstraction of the separation predicates. According to Proposition 2, every assignment that violates one of these constraints in the abstracted formula φ', also violates a constraint on a simple cycle in φ. Proposition 5 assures us that G_φ is chordal, and according to Proposition 4, in a chordal graph transitivity of simple cycles is guaranteed by preserving transitivity of cycles whose size is less or equal to three. Since we add the constraints of Fig. 1(a) for every cycle of size less or equal to three, φ' retains the transitivity of φ. Thus, φ is satisfiable if φ' is satisfiable. (only if) Encoding each predicate with a new Boolean variable is conservative. The added constraints are exactly those that are imposed by transitivity of the inequality signs. Thus, φ is satisfiable only if φ' is satisfiable.

Complexity. In the worst case, the process of making the graph chordal can add an exponential number of edges. Consider the following example that demonstrates this worst-case behavior.

Example 4. Consider the graph in Figure 4. It is cyclic on n vertices v_1, v_2, \ldots, v_n. There are n edges going from v_i to v_{i+1} for $1 \leq i \leq n - 1$ and also from v_n to v_1 to close the cycles. Thus, we see that there are n^n simple cycles in this graph, and so the cycle enumeration based technique has exponential complexity.

However, the chordal graph based technique will also demonstrate exponential behavior on this example. The weights on the edges are chosen as follows:

1. For $1 \leq i \leq n - 1$, the weights on edges going from v_i to v_{i+1} are $0, n^{i-1}, 2n^{i-1}, \ldots, (n - 1)n^{i-1}$.
2. The weights on edges going from v_n to v_1 are $0, n^{n-1}, 2n^{n-1}, \ldots, (n - 1)n^{n-1}$.

We can see that no matter where we start adding chords, we will end up adding one chord for every weight between 0 and $n^n - 1$. Thus, we will end up adding n^n chords.

Combining the worst-case possibility of an exponential number of edges with the complexity of SAT, the procedure appears to be double exponential. However, notice that the transitivity constraints generated from the chordal graph are Horn clauses. Therefore, given an assignment to the Boolean encoding of the original formula, the transitivity constraints are implied in linear time. Hence, the SAT solver can be restricted to case-split only on the Boolean variables encoding the original set of predicates, and this results in SAT run-time that is exponential in the number of clauses and linear in the number of transitivity constraints. Therefore, the overall procedure is exponential in the number of original predicates (original edges in the constraint graph).
Also, in many cases, the chordal method can reduce complexity: consider, for example, a graph similar to the one in Fig. 3(a), where all edges are of the same type. If all the top edges have a uniform weight c_1 and all the bottom edges have a different uniform weight c_2, it can be shown that the number of added edges, and hence the number of constraints, is quadratic in n. Alternatively, if all the diamonds are ‘balanced’, i.e., the accumulated weight of the top and bottom paths of each diamond are equal, the number of added edges is linear in n. The second example includes the frequently encountered case in which all weights are equal to 0. Thus, in both cases the size of the formula and the complexity of generating it is smaller than in the explicit enumeration method of Section 3.

5 Integer domains

In our discussion so far we assumed that all variables in the formula are of type real. We now extend our analysis to integer separation predicates, i.e., predicates of the form $v_i \triangleright v_j + c$, where v_i and v_j are declared as integers (predicates involving both types of variables are assumed to be forbidden). We add a preprocessing stage right after φ is normalized:

1. Transform φ to Negation Normal Form (NNF), i.e., negations are allowed only over atomic predicates, and eliminate negations by reversing inequality signs.

There is no need to actually transform the formula. It is sufficient to predict what would be the inequality sign of each predicate if the formula was transformed to this form. This can be done simply by counting the number of negations nesting each predicate.
2. Replace all integer separation predicates of the form \(v_i \triangleright v_j + c\) where \(c\) is not an integer with \(v_i \geq v_j + [c]\).

3. Replace each integer predicate of the form \(v_i > v_j + c\) in \(\varphi\) by the predicate \(v_i \geq v_j + c + 1\).

The procedure now continues as before, assuming all variables are of type \texttt{real}.

Example 5. Consider the unsatisfiable formula \(\varphi : x > y + 1.2 \land \neg(y \leq x - 2)\) where \(x\) and \(y\) are integers. After the preprocessing step \(\varphi : x \geq y + 2 \land y \geq x - 1\). □

We denote by \(\varphi^I\) the normalized combination of integer separation predicates (i.e., after step 1). It is obvious that \(\varphi^I\) is logically equivalent to the original formula \(\varphi\). We denote by \(\varphi^R\) the result of applying steps 2 and 3 to \(\varphi^I\). We now need to prove the following proposition:

Proposition 7. \(\varphi^I\) is satisfiable iff \(\varphi^R\) is satisfiable.

We prove Proposition 7 in two steps, corresponding to the last two steps of the preprocessing stage.

Lemma 1. Let \(v_i \triangleright v_j + c\) be an integer separation predicate in \(\varphi^I\) where \(c\) is non-integer. Derive \(\varphi^I_1\) from \(\varphi\) by replacing this predicate with \(v_i \geq v_j + [c]\). Then for every assignment \(\alpha\), \(\alpha \models \varphi^I \iff \alpha \models \varphi^I_1\).

Proof. Since there are no negations in \(\varphi^I\) and \(\varphi^I_1\), it is sufficient to prove that if a predicate is satisfied in one formula it can be satisfied in the other.

(i) Suppose \(v_i \triangleright v_j + c\) is evaluated to true under \(\alpha\). We can rewrite this as \(v_i - v_j \triangleright c\). The LHS is integral while the RHS is non-integral. Therefore clearly \(v_i - v_j \geq [c]\) is also true under \(\alpha\). Thus \(\alpha \models \varphi^I_1\). (only if) Trivial. □

Applying this proof inductively on the predicates in \(\varphi^I\) proves the correctness of the first step. We denote the formula resulting from the first step as \(\varphi^I_1\).

Lemma 2. Let \(\varphi^I_1\) be a normalized combination of integer separation predicates where all constants are integers, and let \(\varphi^R\) be the result of applying the second step in the preprocessing stage to \(\varphi^I_1\). Then \(\varphi^I_1\) is satisfiable iff \(\varphi^R\) is satisfiable.

Proof. Since there are no negations in both formulas, it is sufficient to prove that all predicates in one formula can be satisfied in the other.

(i) Let \(\alpha\) be an (integer) assignment s.t. \(\alpha \models \varphi^I_1\), and let \(P\) be the set of predicates in \(\varphi^I\) of the form \(v_i > v_j + c\) that are satisfied by \(\alpha\). Since \(v_i\) and \(v_j\) are integers, then clearly \(v_i \geq v_j + c + 1\) is satisfied by \(\alpha\). Thus, \(\alpha \models \varphi^R\).

(only if) Let \(\alpha\) be an assignment s.t. \(\alpha \models \varphi^R\). Let \(v_1^R\ldots v_n^R\) be the real values assigned by \(\alpha\) to \(v_1\ldots v_n\), the variables in \(\varphi^R\). Also, let \(P\) be the set of predicates in \(\varphi^R\) that are satisfied by \(\alpha\). Define \(v_t^I = [v_t^R]\) for \(1 \leq t \leq n\). Note that by definition, \(0 \leq v_t^R - v_t^I < 1\) for all \(1 \leq t \leq n\). We define the assignment \(\alpha^I\) as follows: \(v_t^I = v_t^I\) for \(1 \leq t \leq n\). We now show that \(\alpha^I\) satisfies all the predicates in \(P\). Note that there are no strict inequalities in \(P\). Let \(p_i : v_i \geq v_j + c\) be a predicate in \(P\) that was obtained by substituting out a predicate \(p_i^I : v_i > v_j + c - 1\) in \(\varphi^I_1\). Since \(p_i\) is satisfied by \(\alpha\),
$v_i^R \geq v_j^R + c$. Using the possible range for $v_i^R - v_j^i$, we get $v_i^R = v_i^R = v_i^R + c - 1 \geq v_j^R + c - 1$, which implies that $v_i^R > v_j^R + c - 1$. Now, let $p_2 : v_i \geq v_j + c$ be a predicate in P that occurred in φ'. We see that $v_i^R + 1 \geq v_i^R \geq v_j^R + c \geq v_j^R + c$, which implies that $v_i^R > v_j^R + c - 1$. But since the RHS is integer, then $v_i^R \geq v_j^R + c$. Thus, both types of predicates are satisfied under α^T. We conclude that $\alpha^T \models \varphi'$, hence φ' is satisfiable.

\[
\begin{array}{c}
KF \geq a. Using the possible range for NF_n, we get $KD = NF_n B (a \in NF_n B \in KD)$, which implies that $ND \leq KD$. No \ now, let \mathcal{F} be a predicate in J that occurred in KD. We see that $KD = ND \leq KD$. But since the RHS is integer, then $KD \leq ND$. Thus, both types of predicates are satisfied under α^T. We conclude that $\alpha^T \models \varphi'$, hence φ' is satisfiable.

\section{Experimental results}

To test whether checking the encoded propositional formula φ' is indeed easier than checking the original formula φ, we generated a number of sample formulas and checked them before and after the encoding. We checked the original formulas with the ICS theorem prover, and checked the encoded formula KF with the SAT solver Chaff [15].

First, we generated formulas that have the ‘diamond’ structure of Fig. 3(a), with D conjoined diamonds. Although artificial examples like this one are not necessarily realistic, they are useful for checking the decision procedure under controlled conditions. Each diamond had the following properties: the top and bottom paths have S conjoined edges each; the top and bottom paths are disjointed; the edges in the top path represent strict inequalities, while the edges in the bottom path represent weak inequalities. Thus, there are 2^D simple conjoined cycles, each of size $(D \cdot S + 1)$.

Example 6. The formula below represents the diamond structure that we used in our benchmark for $S = 2$. For better readability, we use the notation of edges rather than the one for their associated Boolean variables. We denote by $t_i^j (b_i^j)$ the j^{th} node in the top (bottom) path of the i^{th} diamond. Also, for simplicity we chose a uniform weight c, which in practice varied as we explain below.

\[
\bigwedge_{i=1}^{D} (t_i^1, c, >) \wedge (t_i^1, v_{i+1}, c, >) \lor (t_i^1, b_i^1, c, \geq) \wedge (b_i^1, v_{i+1}, c, \geq) \wedge (v_{i+1}, v_1, c, >)
\]

By adjusting the weights of each edge, we were able to control the difficulty of the problem: first, we guaranteed that there is only one satisfying assignment to the formula, which makes it more difficult to solve (e.g., in Example 6, if we assign $c = -1$ for all top edges, and $c = (D - 1)$ for all bottom edges, and $c = S \cdot D - 1$ for the last, closing edge, only the path through the top edges is satisfiable); second, the weights on the bottom and top paths are uniform (yet the diamonds are not balanced), which, it can be shown, causes a quadratic growth in the number of added edges and constraints. This, in fact, turned out to be the bottleneck of our procedure. As illustrated in the table, Chaff solved all SAT instances in negligible time, while the procedure for generating the CNF formula (titled ‘CNF’) became less and less efficient. However, in all cases except the last one, the combined run time of our procedure was faster than the three theorem provers we experimented with. In a second batch (not listed in the table), we changed all weights to ‘1’. This, on the one hand, balanced the diamonds (each diamond ‘collapsed’ into a single chord with a weight S) and hence resulted in linear growth. On the other hand, it made the formula unsatisfiable, because all paths have positive
accumulated weight. Generating the formula became easy (less than a second) for all instances, while there was no significant change in the run times of the theorem provers. The table in Fig. 5 includes results for 7 cases. The results clearly demonstrate the easiness of solving the propositional encoding in comparison with the original formula.

<table>
<thead>
<tr>
<th>Topology</th>
<th>Separation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICS</td>
</tr>
<tr>
<td>n</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>250</td>
<td>5</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 5. Results in seconds, when applied to a diamond-shaped graphs with D diamonds, each of size S. ‘*’ denotes run time exceeding 104 sec.

As a more realistic test, we experimented with formulas that are generated in hardware verification problems. To generate these formulas we used the UCLID verification tool [7]. These hardware models include a load-store unit from an industrial microprocessor, an out-of-order execution unit, and a cache coherence protocol. The formulas were generated by symbolically simulating the models for several steps starting from an initial state, and checking a safety property at the end of each step. Fig. 6(a) summarizes these results. Finally, we also solved formulas generated during symbolic model checking of timed systems. These examples are derived from a railroad crossing gate controller that is commonly used in the timed systems literature. Fig. 6(b) shows the results for these formulas.

Acknowledgments We thank S. German for giving us the cache-protocol example, and S. Lahiri for helping with the experiments. The first author also wishes to thank D. Kroening for his guidance through the maze of algorithms that various theorem provers use.

References

<table>
<thead>
<tr>
<th>Model</th>
<th>Steps</th>
<th>ICS</th>
<th>DDD</th>
<th>CNF</th>
<th>SAT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-Store unit</td>
<td>2</td>
<td>8.7</td>
<td>*</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Out-of-order unit</td>
<td>2</td>
<td>*</td>
<td>90</td>
<td>1</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Cache protocol</td>
<td>3</td>
<td>1.8</td>
<td>2</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
</tbody>
</table>

Fig. 6. Results in seconds, when applied to formulas generated by symbolically simulating several hardware designs (a) and symbolic model checking of timed systems(b).