Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

Marlan O. Scully and M. Suhail Zubairy

Institute for Quantum Studies
and Department of Physics
Texas A&M University
College Station, TX 77843-4242

Air Force Office of Scientific Research (AFOSR)
AFOSR/NM, Room 713
4015 Wilson Blvd.
Arlington, VA 22203-1954

An enumeration of several research efforts funded by the above award is attached. Key aspects reported on include:
(a) Optically controlled delays for broadband pulses and all-optical beam steering; (b) Sub-wavelength atom localization; (c) Quantum microscopy; (d) Quantum lithography with classical light; (e) Quantum entanglement: Measures and generation schemes

Quantum computing; quantum informatics; quantum optics
Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

AFOSR Grant No.: FA9550-05-1-0433

Final report
July 1, 2005 - May 31, 2006

Principal Investigators:
Marlan O. Scully and M. Suhail Zubairy

Institute for Quantum Studies and
Department of Physics
Texas A&M University
College Station, Texas 77845-4242
I. Technical Status Report

A. Research description

During the funding period (July 1, 2005 - May 31, 2006) we carried out a number of studies in the field of quantum computing and quantum informatics in accordance with the tasks proposed in the project. Following is the summary of our research progress. The details can be found in our enclosed published and submitted papers.

(a) Optically controlled delays for broadband pulses and all-optical beam steering:

The recent progress in the study of ultra-short optical pulse generation creates a fundamentally new realm of laser applications in many areas, including material science, information processing, communication and spectroscopy. The fast developing technology of broadband optical pulse shaping requires systems to provide controllable delays for such pulses. For example, an optical buffer can be characterized by the maximum number of bits \(N \) that can be simultaneously stored in the buffer. In terms of the bit rate \(B \) and the pulse delay \(\tau \), the number \(N \) is given by \(N = B \tau \). The maximum bit rate is however given by \(B = 1/T \) where \(T \) is the pulse width related to the bandwidth of the system. Thus, \(N \) has a simple physical meaning: It is the ratio of the delay time of the buffer and the pulse duration and corresponds to the number of pulses that can be simultaneously processed by the buffer.

We showed that the steep dispersion of an electromagnetically induced transparency (EIT) medium can be used to create large controllable delays for ultra-short pulses by using the system discussed in [1]. In particular we showed that it is possible to produce a microsecond delay for 10 picosecond optical pulses, thus yielding a time-delay-bandwidth product of about \(10^6 \). The best product achieved so far in slow-light experiments is \(3 \). An important feature of our scheme is that the delay is continuously controllable by an optical field. The idea is to synthesize dispersion of the system by using the highly steep dispersion of a three-level atomic system with inhomogeneous broadening. An alternate scheme is discussed in [2].

We also proposed a scheme that provides steering of the direction via all optical control [3]. The system is based on steep dispersion of coherently driven medium in which the electromagnetically induced transparency (EIT) occurs.

(b) Sub-wavelength atom localization:

High-resolution position measurements of the atom with optical techniques are of considerable interest, both from a theoretical, as well as from an experimental, point of view. The interest in the area is largely due to its applications to many areas of optical manipulations of atomic degrees of freedom, such as laser cooling, Bose-Einstein condensation, atom lithography and the measurement of the center of mass wave function.
of moving atoms. It is well known that optical methods provide better spatial resolution in position measurement of the atom.

We proposed a scheme for sub-wavelength localization of an atom conditioned upon the absorption of a weak probe field at a particular frequency [4]. Manipulating atom-field interaction on a certain transition by applying drive fields on nearby coupled transitions leads to interesting effects in the absorption spectrum of the weak probe field. We exploit this fact and employ a four level system with three driving fields and a weak probe field, where one of the drive fields is a standing wave field of a cavity. We show that the position of an atom along this standing wave is determined when probe field absorption is measured. We find that absorption of the weak probe field at a certain frequency leads to sub-wavelength localization of the atom in either of the two half-wavelength regions of the cavity field by appropriate choice of the system parameters.

(c) Quantum microscopy:

Precision measurement of small separations between two atoms or molecules has been of interest since the early days of science. We proposed a scheme which yields spatial information on a system of two identical atoms placed in a standing wave laser field [5,6]. The information is extracted from the collective resonance fluorescence spectrum, relying entirely on far-field imaging techniques. Both the interatomic separation and the positions of the two particles can be measured with fractional-wavelength precision over a wide range of distances from about $\lambda/550$ to $\lambda/2$.

(d) Quantum lithography with classical light:

We showed how to achieve sub-wavelength diffraction and imaging with classical light, previously thought to require quantum fields [7, 8]. By correlating wave vector and frequency in a narrowband, multi-photon detection process that uses Doppleron-type resonances, we show how to achieve arbitrary focal and image plane patterning with classical laser light at sub-multiples of the Rayleigh limit, with high efficiency, visibility, and spatial coherence. A frequency-selective measurement process thus allows one to simulate, semiclassically, the path-number correlations that distinguish a quantum entangled field.

(e) Quantum entanglement: Measures and generation schemes:

We provide a class of inequalities whose violation shows the presence of entanglement in two-mode systems [9, 10]. We consider observables that are quadratic in the mode creation and annihilation operators and find conditions under which a two-mode state is entangled. Further examination allows us to formulate additional conditions for detecting entanglement. We also show how the methods used here can be extended to find entanglement in systems of more than two modes.

We have also examined schemes for the generation of macroscopic fields that are entangled [11, 12]. These schemes may be useful in quantum communication protocols.
B. Papers published/submitted

During the report period, the following papers were published / submitted:

C. List of professional personnel involved

The following personnel participated in the research effort:

1. Marlan O. Scully, Distinguished Professor
2. M. Suhail Zubairy, Professor
3. Ashok Muthukrishnan, Post-Doctoral Fellow
4. Yaping Yang, Visiting Scientist
5. Juntao Chang, Graduate student
6. Qingqing Sun, Graduate student

D. Papers presented at meetings, conferences, seminars

The results were presented at several conferences and lecture series. These include:

1. “Coherence induced entanglement”, (Invited paper) at the SPIE Conference on Quantum Communications and Quantum Imaging III, held at San Diego, July 31-August 4, 2005.

7. Quantum Entanglement: Microscopic and macroscopic”, (Special lecture) at the King Khalid University, Abha, Saudi Arabia (Nov. 27, 2005).

