A multi-Josephson junction qubit

S.P. Yukon*

Air Force Research Laboratory, Electromagnetics Technology Division, Hanscom, AFB MA 01731, USA

Abstract

We have designed a persistent supercurrent multi-Josephson junction (JJ) qubit whose circuit is based on a flattened JJ triangular prism. The Schrödinger equation for the 1D constrained system is equivalent to the Whittaker Hill equation, for which exact solutions have been found [1]. Symmetric or antisymmetric coupling of the qubit to an external magnetic field, will excite only the corresponding symmetric or antisymmetric terms in the Hamiltonian. This specificity allows coupling to a system bus comprised of an LC resonant loop. We indicate how separate buses might be coupled into a larger branching network. Published by Elsevier Science B.V.

Keywords: Josephson junction; Qubit; Triangular qubit gate; Control Z gate

1. Introduction

The qubit circuit is based on a discretized and flattened version of the triangular long Josephson junction (JJ) prism discussed in Refs. [2–4] and is shown in Fig. 1. The long JJ prism was shown to support various pairings of permanently bound \(\Phi_0/3 \) kinks (antikinks), that interpolate between the two distinct vacuum states of the system at \(x = \pm \infty \) (i.e. in the two JJ end triangles of the prism). In a given JJ end triangle, the two vacuum states correspond to plus or minus circulating currents \(J = J_C \sin(\pm \pi/3) \) around the triangle. Translated to the flattened prism of Fig. 1, this implies imposing an external flux of \(\Phi_{q,i} = \Phi_0/3 \), where the flux quantum \(\Phi_0 = h/2e \). The two vacuum states of the system correspond to a clockwise circulating current in the left (right) triangle and no circulating current in the right (left) triangle. In a suitably modified system, these two states can be taken as the two basis states for a qubit, and can be shown to correspond to the two lowest states \(\langle 0 \rangle \pm \langle 1 \rangle \sqrt{2} \) of the Hamiltonian in Eq. (1).

As the qubit just described is close to the one that has been investigated by Mooij and coworkers [5,6], we can apply the results of their investigation on coupling to the environment, coupling to SQUID detectors, and the low inductance limit [7] to the system proposed here. The main difference between the current proposed system and that of Mooij and coworkers is the spatial mapping of the qubit states (which in turn can engender different coupling terms), and the proposed coupling to a Cirac Zoller type bus [8].

2. Qubit characteristics

The Hamiltonian for the four cell qubit of Fig. 1 is given by

\[H = \ldots \]
We have designed a persistent supercurrent multi-Josephson junction (JJ) qubit whose circuit is based on a flattened JJ triangular prism. The Schroedinger equation for the 1D constrained system is equivalent to the Whittaker Hill equation, for which exact solutions have been found [1]. Symmetric or antisymmetric coupling of the qubit to an external magnetic field, will excite only the corresponding symmetric or antisymmetric terms in the Hamiltonian. This specificity allows coupling to a system bus comprised of an LC resonant loop. We indicate how separate buses might be coupled into a larger branching network.
We assume the dynamical variable to be in its possible qubit circuit. A three cell variant, with one central cell (corresponding to the opposite prism face with twice the external flux), is also a possible qubit circuit.

\[
H = 2C \left(\frac{\dot{\chi} \Phi_0}{2\pi}^2 + \left(\frac{\partial \Phi_0}{2\pi} \right)^2 \right) \\
- 2E_I \left\{ 2 \cos(\theta) \cos(\phi_r/2) \cos(\phi_q/2) \right. \\
\times (\cos(\chi + \phi_r/2 - 2 \sin(\theta) \sin(\phi_r/2)) \\
\left. \times \sin(\phi_r/2) \sin(\chi + \phi_r/2) + \cos(2\chi) \\
\times \cos(\phi_r + \phi_q) \right\},
\]

(1)

where we have defined \(\theta = \theta_1 - \phi_r/2 \) and \(\chi = \psi_1 + (\phi_q - \phi_a)/2 \) with \(\phi_{q,r} = (\phi_{q1} \pm \phi_{q2})/2 \) and \(\phi_{q1,2} = 2\pi \phi_{q1,2}/\Phi_0 \), along with the diagonalizing plus or minus combinations; \(\psi_1 = (\xi_1 - \xi_2)/2, \psi_2 = (\xi_1 - \xi_2)/2, \theta_1 = (\xi_1 + \xi_2)/2, \theta_2 = (\xi_1 + \xi_2)/2 \), as well as \(\phi_{x,y} = (\phi_{x1} + \phi_{x2})/2 \) and the zero inductance limit constraint equations \(\{ \xi_1 - \xi_2 - \xi_3 = \phi_{q1}, \xi_1 - \xi_2 - \xi_3 = \phi_{q2}, \xi_1 + \xi_2 = \phi_{q1}, \xi_1 + \xi_2 = \phi_{q2} \} \), where \(\phi_{q1,2} = 2\pi \phi_{q1,2}/\Phi_0 \) and \(E_I = I_C \Phi_0/2\pi \).

The junction capacitance \(C \) and critical current \(I_C \) have been taken to be equal for all junctions. We require that \(\phi_q = 0 \), otherwise mixing of even and odd \(\chi \) matrix elements can occur upon varying \(\phi_a \). As a zeroth order Hartree approximation we assume the dynamical variable to be in its ground state, and make the replacement \(\cos(\theta) = \langle 0 | \cos(\theta) | 0 \rangle \equiv \eta \) for the \(\chi \) equation of motion, which may then be solved exactly [1]. An harmonic expansion of the \(\theta \) potential around \(\theta = 0 \) is then made with \(\cos(\chi) \rightarrow (\langle 0 | \cos(\chi) | 0 \rangle + \langle 1 | \cos(\chi) | 1 \rangle)/2 \) to simplify the current calculation. Within this approximation, the Hamiltonian for the variable \(\chi \), may be written as

\[
H = M \dot{\chi}^2/2 - 2E_I \left\{ 2 \cos(\theta) \cos(\phi_r/2) \right. \\
\times (\cos(\chi + \phi_r/2) + \cos(2\chi) \cos(\phi_r)) \}
\]

(2)

where \(M = 6(2C)(\Phi_0/2\pi)^2 \). Replacing \(p_\chi = M \dot{\chi} \), the momentum conjugate to \(\chi \), with \(-i\hbar \partial/\partial \chi \) then yields the Hamiltonian operator (in units of \(2E_I \)),

\[
H/(2E_I) = -\partial^2/\partial \chi^2/2M - \{ 2\eta \cos(\phi_r/2) \}
\times (\cos(\chi + \phi_r/2) + \cos(2\chi) \cos(\phi_r)),
\]

(3)

where we have written \(M = (2E_I)M = 3(2E_I)/(4(E_C/2)) \), with \(E_C = e^2/2C \).

To model the inclusion of rf forcing and couplings to other qubits, we expand the potential in a power series around \(\phi^0_r = 0, \phi^0_r \neq 0, \) and \(\phi^0_q \neq 0 \), keeping \(\delta \phi \) terms up to second order. The \(\phi^0_r \) and \(\delta \phi \) magnetic fields can be supplied by small loops or by control lines: \(\phi^0_r \) by a vertical line bisecting the qubit, \(\phi^0_r \) by a horizontal bisecting line, and \(\phi^0_q \) and \(\delta \phi \) by the dashed line in Fig. 1, which is designed to maintain \(\phi^0_{q1,2} = 0 \) and \(\delta \phi_{q1,2} = 0 \). In the Hilbert subspace spanned by the qubit states \(|0\rangle \) and \(|1\rangle \), single qubit rotation operators that are first order in the \(\delta \phi \), are given in terms of the Pauli spin matrices \(\sigma_x \) and \(\sigma_z \) by:

\[
Z_x = -\eta \sin(\phi^0_r) (\langle 0 | \cos(2\chi) | 0 \rangle \\
- \langle 1 | \cos(2\chi) | 1 \rangle) (\delta \phi_x + \delta \phi_y) \sigma_x,
\]

(4a)

\[
X_x = -\eta \cos(\phi^0_r/2) (\langle 0 | \sin(\chi) | 1 \rangle \delta \phi_x \sigma_x.
\]

(4b)

The second-order interaction terms, needed for two qubit gates, are given by

\[
X_B = -\eta \sin(\phi^0_r/2) \langle 0 | \sin(\chi) | 1 \rangle (\delta \phi_x \delta \phi_y/2) \sigma_x,
\]

(5a)

\[
X_B' = -\eta \sin(\phi^0_r/2) \langle 1 | \sin(\chi) | 2 \rangle (\delta \phi_x \delta \phi_y/2) \sigma_y
\]

(5b)

where \(\sigma'_x = (|2\rangle |1\rangle + |1\rangle |2\rangle) \). Terms proportional to \(\delta \phi_z^2 \) will contribute to a small shift in the frequency \(\omega(10^{\text{-3}} \omega_{0LC}) \) of the bus oscillator defined below.

3. The control Z gate

To couple the qubits, we use an LC resonant oscillator as a system bus, based on the trapped
ion bus scheme of Cirac and Zoller [8,9] (another scheme based on an LC bus using a direct interaction has been described in Ref. [10]). The bus is coupled to each qubit with a gradiometer type coupling shown in Fig. 3, that nulls $\delta \phi_x$ or $\delta \phi_y$ single qubit excitations, and any uniform external perturbation into the bus. The operators for flux and charge in the LC oscillator can be written in terms of creation and annihilation operators $\{a^+, a\}$ as [11].

$$\Phi = \sqrt{\hbar \omega_0/2(a + a^*)}, \quad Q = i\sqrt{\hbar/2\omega_0}(a - a^*)$$

(6)

If there are N qubits coupled to the bus, and a fraction f_g of Φ is available for coupling to the qubits, the amount of flux coupled to each qubit $f_g \Phi/N$ will yield a Jaynes Cummings type [12] interaction terms (5a) and (5b), with $\delta \phi_x = 2\pi f_g (h\omega_0/2)^{1/2}(a + a^*)/(N\Phi_0)$. The bus frequency ω_{LC} is chosen so that neither resonant pulse frequency $\omega_a = \omega_0 - \omega_{LC}$ or $\omega_b = \omega_2 - \omega_{LC}$, where $h\omega_{ij}$ is the energy needed for a transition from level j to i, is close to a qubit or bus transition. Solving the Schrödinger eigenvalue equation (3), assuming $\phi_a^0 = 0, \phi_b^0 = \phi_t^0, r = -\cos(\phi_t^0)/\cos(\phi_b^0/2) = 0.77$, and $(2E_3)/h = 200$ GHz yields $\omega_0/2\pi = 1.553$ GHz, $\omega_2/2\pi = 15.09$ GHz, and one possible choice of $\omega_{LC}/2\pi = 11.5$ GHz. If the area of the bus coupled to each qubit cell is taken to be $A = 1 \mu^2$, the bus inductance for $f_g \approx 1$ can be approximated by $L \approx 2\pi 1.25 \mu_0 \sqrt{A} = N\pi \mu$ H. The amplitude of the bus oscillator is then $\Phi_B \approx 1.67 \times 10^{-3}\Phi_0/\sqrt{N}$. For $r = 0.77$, the product $\sin(\phi_b^0)|1\rangle \sin(\phi_t^0)|2\rangle/2 = 0.13$. Assuming $\delta \phi_a = 2\pi (0.02\Phi_0)/\Phi_0$, and $f_g = 1$, yields a total X_B^a amplitude of $1.7 \times 10^{-4}/\sqrt{N}$ and a Rabi frequency of $\nu_R = 34.3$ MHz/$N^{1/2}$ for the slowest (X_B^a) transition.

4. Sources of decoherence

We defer a detailed discussion of decoherence, but mention that in addition to sources discussed in Refs. [5,6], the bus presents a new source. It can act as a linear array of $2N$ small $1 \mu^2$ loop antennas with an RF current amplitude of $i_{RF} \approx \Phi_B/L \approx 1.1 \times 10^{-7}$ A for $N = 100$, yielding a decoherence time from radiation losses of ~ 50 s.

For a substrate refractive index of $n \approx 3$, the maximum size of a bus path is $\sim \lambda_s/10 \sim 870$ μ, where $\lambda_s = \lambda/n$. A $\lambda_s/20$ square branching structure with 100 qubits would allow the qubits to be ~ 48 μ apart. While the large RF $\delta \phi_x$ excitation needed for two qubit gates should not enter the bus due to geometric cancellation, its mutual inductance effect on a neighboring (48 μ away) qubit is to excite a Z_i gate with a Rabi frequency of ~ 500 Hz. Reducing N to 50 and orienting alternate qubits to be mutually perpendicular could improve this by a factor of $\sim 10^{-2}$.

5. Rabi resonant pulse sequence for two qubit gates

The complete sequence of Rabi resonant pulses for a CZ gate, following the presentation in Ref. [9], is shown in Fig. 2. The notation $X_{B,m}^a(\omega_a)$ signifies an X_B^a gate pulse of π frequency ω_a (defined above) acting concomitantly on the bus and the mth qubit. The sequence of X_B^a and X_B^b gates in Fig. 2 has been successfully modeled using the subset of 24 basis states $|m, n; j_{bas}\rangle$ with $m = \{0, 1, 2\}, n = \{0, 1, 2, 3\}, j_{bas} = \{0, 1\}$ and the system parameters discussed above.

As the number of qubits on a given bus is limited, we consider connecting a group of buses in an open branching network. This may be accomplished, as shown in Fig. 3, by distinguishing the qubit that connects two buses, and assigning it the sole task of transferring the excitation from the first bus to the second and vice versa. To carry out a CZ gate connecting the mth qubit on bus #1 with the nth qubit on bus #2, the first two gates of Fig. 2 are carried out as indicated. The next gate $X_{B,s}^a(\omega_{01} - \omega_{LC1})$ transfers the excitation on bus #1 to the $|1\rangle$ state of the transfer qubit. A second $X_{B,s}^b$ transfers the excitation from the $|1\rangle$ state of the transfer qubit to bus #2 with excitation frequency $\omega_{01} - \omega_{LC2}$. The third gate in Fig. 2 is carried out but with bus #2 excitations and the nth qubit on bus #2. The final step transfers the bus #2 excitation back to the original bus by reversing the two original $X_{B,s}^a$ gates. The sign change from the round trip due to the transfer qubit is $(-i)^4 = 1$. Since it has been proved [9] that the combination of one qubit gates and the CZ gate is sufficient for
producing an arbitrary unitary transform, we have demonstrated that the coupled bus system gates are sufficient for a branched network quantum computer.

Acknowledgements

The author appreciates helpful conversations with Alexey Ustinov, Jeffrey Yepez, Farrukh Abdumalikov, Lilli Caputo, and John Derov. This work was carried out with support from Air Force Office of Scientific Research AFOSR.

References