GENERALIZED RICCATI EQUATIONS FOR TWO-POINT
BOUNDARY-VALUE DESCRIPTOR SYSTEMS

by

Ramine Nikoukhah
Alan S. Willsky
Bernard C. Levy

The research described in this paper was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-82-0258 and in part by the National Science Foundation under Grant ECS-8700903.
1. REPORT DATE
AUG 1987

2. REPORT TYPE

3. DATES COVERED
00-08-1987 to 00-08-1987

4. TITLE AND SUBTITLE
Generalized Riccati Equations for Two-Point Boundary-Value Descriptor Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology, Laboratory for Information and Decision Systems, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
3

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
I. Introduction

In this paper we present results related to the smoothing problem and related generalized Riccati equations for the two-point boundary value descriptor system (TPBVDS)

\[\begin{align*}
E_x(k+1) &= A_x(k) + B_u(k) \\
V_f x(0) + V_f x(N) &= v \\
y(k) &= C_x(k)
\end{align*} \]

(1) (2) (3)

where \(E, A, V_f \) and \(V_f \) are possibly singular nxn matrices, and \(B \) and \(C \) are nmx and pxn matrices respectively.

II. System Theory for TPBVDSs

In [1-2] we develop a basic theory for (1)-(3).

Many of the aspects of this theory have a similar flavor to that in [4-5], although the possible singularity of \(E \) and \(A \) create some significant differences. As discussed in [1,2], when (1)-(2) is well-posed, we can assume that it is in standard form, i.e., for some constants \(\alpha \) and \(\beta \)

\[AE^\alpha PA^\beta = I \]

and

\[V_f E^\gamma A^\delta = I \]

(4) (5)

As in [4-5], \(x(k) \) can be decomposed into an outward process \(z_o(k) \) and an inward process \(z_i(k) \). The outward process \(z_o(k) \) is defined as

\[z_o(k,l) = E^{-l}x(l) - A^{-l}x(k), \quad k \leq l \]

(6)

By eliminating \(x's \) in (6), we find that \(z_o(k,l) \) is only a function of the inputs inside the interval \([k,l]\). Also note that \(z_o \) does not depend in any way on the boundary matrices \(V_f \) and \(V_f \). The expression for the inward process \(z_i \) is in general very complex, although in the so-called stationary case there is a simple expression for \(z_i \) [1].

The system (1)-(2) is strongly reachable on \([k,l]\) if the map \(z_i(k,l) \rightarrow (y(m): m \in [k,l]) \) is one to one. System (1)-(3) is called strongly reachable if it is reachable on some \([k,l]\).

Theorem 1:

The following statements are equivalent
a) System (1)-(3) is strongly reachable.

b) The strong reachability matrix

\[\begin{bmatrix}
C^{n-1} & C^{n-2} & \cdots & C^0
\end{bmatrix}
\]

has full rank.

c) The matrix \([sE-tA] \) has full rank for all \((s,t) \in \mathbb{R} \times \mathbb{R} \).

d) For all matrices \(V_f \) and \(V_f \) in standard form, the state \(x(1) \) where \(i(0) \) can be uniquely determined if \(V_f \) is observable on the interval \([k,l]\).

Theorem 2:

The following statements are equivalent
a) System (1)-(3) is strongly observable.

b) The strong observability matrix

\[\begin{bmatrix}
C^{n-1} & C^{n-2} & \cdots & C^0
\end{bmatrix}
\]

has full rank.

c) The matrix \([sE-tA] \) has full rank for all \((s,t) \in \mathbb{R} \times \mathbb{R} \).

d) For all matrices \(V_f \) and \(V_f \) in standard form, the state \(x(1) \) where \(i(0) \) can be uniquely determined if \(V_f \) is observable on the interval \([k,l]\).

III. The Optimal Smoother

Consider the system (1)-(2) together with the noise-corrupted observations

\[y(k) = C_x(k) + r(k), \quad k = 1, \ldots, N-1 \]

(9)

\[y_b = V_f x(0) + V_f x(N) + r_b \]

(10)

Here \(r(k), r_b, u(k), \) and \(v \) are mutually independent, \(r_b \) is a zero mean, Gaussian random vector with covariance \(P_b \), and \(r(k) \) is a zero mean white Gaussian noise process with covariance \(R \).

It can be shown [3] that the smoothed estimate

\[\hat{x}(k) \]

satisfies the following TPBVDS

\[\begin{bmatrix}
\hat{x}(k+1) \\
\hat{\lambda}(k+1)
\end{bmatrix} = \begin{bmatrix}
\hat{x}(k) \\
\hat{\lambda}(k)
\end{bmatrix} + \begin{bmatrix}
0 & C^{-1}y(k)
\end{bmatrix}, \quad k = 1, \ldots, N-1 \]

(11)

\[\begin{bmatrix}
\hat{\lambda}(1) \\
\hat{\lambda}(N)
\end{bmatrix} + \begin{bmatrix}
\hat{\lambda}(1) \\
\hat{\lambda}(N)
\end{bmatrix} = A_y^b \]

(12)

where

\[t = \begin{bmatrix}
E & -BQ
\end{bmatrix}, \quad d = \begin{bmatrix}
0 & A^t C^{-1} & -E
\end{bmatrix} \]

(13)

and where \(\hat{\lambda}, \hat{\lambda} \) and \(A_y^b \) are complicated matrices.

To compute the estimate we can use any of the recursive algorithms developed in [1-2]. One of these is the so-called two-filter solution in which the TPBVDS dynamics are decoupled into forward and backward recursions, followed by a correction to account for the boundary conditions. A necessary, but not sufficient, condition for stability of a TPBVDS is that it is forward-backward stable, i.e., a decoupling transformation can be found so that the forward and backward recursions are both stable.
In the case of the optimal smoother, it is shown in [3] that if the following generalized Riccati equations
\[\theta = A'(E\theta^{-1}E' + BQB')^{-1}A + C'R^{-1}C \] (14)
\[\psi = A(E\psi^{-1}E + C'R^{-1}C')^{-1}A' + BQB' \] (15)
have positive definite solutions \(\psi \) and \(\theta \) then there exist invertible matrices \(M \) and \(N \) such that
\[MN^{-1} = \begin{bmatrix} I & 0 \\ S^{-1}E & 0 \end{bmatrix} \] (16)
\[MN^{-1} = \begin{bmatrix} \psi & 0 \\ 0 & 1 \end{bmatrix} \] (17)
Moreover, the eigenvalues of \(AT^{-1}E'\psi^{-1} \) and \(A'S^{-1}E\theta^{-1} \) are inside or on the unit circle. Equation (3.5) is called the descriptor Hamiltonian equation and the above decomposition is the descriptor Hamiltonian diagonalization. Of course, we would like \(AT^{-1}E'\psi^{-1} \) and \(A'S^{-1}E\theta^{-1} \) to be strictly stable. This occurs only when the descriptor Hamiltonian has no eigenmodes on the unit circle i.e. it is forward-backward stable.

Theorem 3:
If the system is forward-backward detectable and stabilizable (i.e. the modes on the unit circle are strongly reachable and strongly observable) then the corresponding smoother is forward-backward stable.

IV. Generalized Riccati Equations
In this section we study the generalized algebraic Riccati equation.
\[\psi = A(E\psi^{-1}E + C'R^{-1}C')^{-1}A' + BQB'. \] (18)

Theorem 4:
If \((E,A,B)\) and \((C,E,A)\) are strongly reachable and observable respectively then (18) has a unique positive definite solution.

The approach used to prove this theorem is similar to that in [6] for the standard Riccati equation. Details will be presented in a future paper. Existence proceeds as follows. From Theorem 3 and the fact that eigenmodes of the smoother occur in reciprocal pairs, we know that we can write
\[\begin{bmatrix} E & -BQB' \\ 0 & A' \end{bmatrix}^{-1} = \begin{bmatrix} A & 0 \\ -C'R^{-1}C & -E' \end{bmatrix} \] (19)
The proof then proceeds by first showing that \(F \) is invertible, then that \(E'GF^{-1} + C'R^{-1}C > 0 \) and finally that
\[\psi = (A(E'GF^{-1} + C'R^{-1}C)^{-1}A' + BQB'); \] (20)
satisfies (18).
To prove uniqueness, let \(\psi_1 \) and \(\psi_2 \) be two positive definite solutions of (18), let \(\psi = \psi_1 - \psi_2 \), and
\[T_i = E\psi_i^{-1}E + C'R^{-1}C \] for i=1,2. (21)
Some algebra then yields
\[\psi = AT^{-1}E\psi_1^{-1}A_1 + \psi_2^{-1}ET^{-1}A' \] (22)
But \(AT^{-1}E\psi_1^{-1} \) and \(\psi_2^{-1}ET^{-1}A' \) are strictly stable (see [3]); thus \(\psi = 0 \).

References