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Preface 
 
Military sensor systems require real-time processing of data which can only be achieved 
using a dedicated, custom IC design.  Unfortunately, the design of complex, mixed signal 
ASICs can be cost prohibitive and the extended design times do not allow for iterative 
development or changing operational requirements. The SOCRE program demonstrates a 
platform for determining mission capability of complex ICs for use in processing real-
time sensor input. 
 
1 Introduction 
 
The goal of the SOCRE seedling program was to develop a simulation engine for real 
time emulation of large, complex mixed signal IC designs. Leveraging a compute 
capability at or near teraop/sec performance levels, it allows real-time evaluations of 
architectures and algorithms in silicon and would allow real-time verification of the 
system performance. An automated flow was developed to generate a silicon 
implementation, using the same design description used by the emulation environment.  
With the ability to emulate chip performance at full-rate and in-system, higher 
performance, lower power design options can be explored.  This lead to the development 
of a high-level Algorithm to Architecture selection flow leveraging the early 
power/area/speed estimates.  
 
 
2 Methods, Assumptions, and Procedures 
 
The Berkeley Emulation Engine (BEE) is a real-time hardware emulation engine which 
has a complete software environment for programming and debugging. The purpose of 
BEE is to provide a rapid prototyping method to facilitate and accelerate chip design. 
With BEE, complex algorithms can be automatically synthesized and tested on real 
hardware with external  mixed signal components for a full-scale real-time functionality 
check and block-level timing verification. With the integrated automatic Simulink-to-
Implementation design flow, the user can easily implement their design in both BEE 
system and silicon, with cycle-to-cycle and bit-true equivalence. 
 
The BEE2 architecture was developed, using Xilinx Virtex2 Pro FPGA. 
 
Specification of Demonstration Designs 
A key element of the SOCRE research project was to identify a demonstration system 
with high system performance requirements, which would benefit from the proposed real-
time emulation environment.  To this end, a radio-astronomy application to correlate 
between a large number of antennas was identified, which utilizes a high-performance 
Cross-bar-based Multiple Antenna Correlator (XMAC).  In addition, a smaller design 
performing real-time edge detection on real-time video data was selected as a tutorial 
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example suitable for live demonstrations of the emulation environment and the SOC 
flow. 

XMAC Multiple Antenna Correlator 
The XMAC design driver is a high-performance DSP subsystem for processing the high 
volumes of data from large arrays of radio antennas.  By using several smaller antennas, 
astronomers are able to create a large virtual antenna, or survey activity in the sky in 
multiple directions simultaneously.  This design has many characteristics common to 
military sensor applications using techniques such as correlation or beam steering.  
The correlator is implemented by analyzing the spectrum of each antenna in real-time, 
with an FFT processor dedicated to each antenna.  A crossbar then collects the 
coefficients from each frequency bin into streams of packets, where each stream is 
dedicated to a specific frequency bin.  Each stream of coefficients is fed to a dedicated 
XMAC block, one for each frequency bin.  The XMAC then receives a packet of several 
time samples from the selected frequency bin from Antenna 1, followed by samples from 
Antenna 2, and so on.  Overall, the number of XMAC processors equals the number of 
frequency bins of interest, k. 
 

 
Figure 1: Multiple antenna correlator architecture: One FFT per antenna, One XMAC per 
frequency bin, and a Crossbar to separate the coefficients. 

The XMAC architecture consists of a regular array of complex dual-polarity complex 
MAC units, as shown in Figure 2.  The first CMAC calculates the autocorrelation of 
coefficients from a given antenna, the second CMAC correlates between adjacent 
antennas, and so on.  By delaying the stream of packets by one packet length between 
each stage, consecutively more separated antenna data packets are processed, and 
ultimately correlations between all pairs of antennas are calculated.  The number of 
CMAC units grows with the number of antennas, N.  For a given output bandwidth, the 
total memory capacity needed to implement the delay lines increases as N2, where both 
the size of the memories and number of memories increase as N. 
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The XMAC implemented was designed to support up to 256 antennas, using 128 delay 
lines and 129 dual-polarity CMAC blocks.  The delay lines were implemented using 
compiled memory, each with 16Kbits organized as 64 bits by 256 rows. For the SOC 
implementation, the CMAC was implemented using RTL mapped to standard cells. 
 

 
Figure 2: The architecture of the XMAC subsystem, showing the regular slices containing the 
delay lines and dual polarity complex MAC blocks. 

The highly regular nature of the XMAC subsystem lends itself to a hierarchical design 
approach, and as a design driver, exercises bottom-up hierarchical design approaches to 
several phases of the design process, including design entry, automated retargeting to 
SOC HDL, foundry-specific logic syntheses, and place and route CAD tools. 

Interactive Demonstration Design: Video Edge Detection 
In addition to the complex XMAC design, a smaller image processing subsystem was 
developed as a tutorial to demonstrate the block-diagram based design flow.  The design 
for a Sobel edge detection algorithm was described in Simulink, using Xilinx System 
Generator library components. 
 
The edge detection emulation system takes advantage of a video test bench environment 
developed for the BEE2, shown in Figure 3, providing a source of real-time video data 
from a Gigabit Ethernet port to feed the filter design under test.  The results from the 
filter can be viewed on an LCD video monitor via an HDMI video connector on the 
BEE2.  In addition to processing the data in real time on the BEE2, the user can login to 
Linux running on the control processor, and remotely control simulation parameters, 
allowing the designer to interactively observe the results.  
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Figure 3: Video Edge Detection demonstration, showing the BEE2 console and 
filtered video on two LCD displays, with two examples of edge detection results, 
based on interactive user configuration from the console. 
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3 Results and Discussion 
 
Migration and Enhancement of the existing BEE Design Flow 

BEE2 Platform Development and Testing 
As the SOCRE project began in Fall 2005, the initial versions of the BEE2 platform were 
assembled and tested, and applications including the BEE design flow and related support 
were ported to the BEE2.  Testing suites for the BEE2 emulation platform were 
developed to verify the hardware integrity and performance.  Early porting of 
applications to the BEE2 emulation platform included LDPC decoders, A/V and radio 
applications 

Port BEE flow to Emulation Platforms, SOC Technologies 
One of the key tasks of the SOCRE program was to port the BEE design flow to the 
BEE2 FPGA platform.  To make the most of this effort, the design flow was made 
extensible, and rather than being limited to a single platform like the original BEE ISE 
design flow, the new version can select between one of several target FPGA platforms.  
Similarly, the Insecta flow for mapping the design to an SOC has been extended to be 
more portable, and includes the ability to map a design to 90nm and 130nm process 
technologies.  The flow can be customized for each target technology, with the goal of 
using the foundry-provided design flows where possible. 
 
The original BEE flow focused on mapping data path architectures to both the BEE 
platform and SOC layout.  The BEE2 platform, however, offered new capabilities 
including the ability to connect to high-speed I/O devices, and a total of 10 embedded 
PowerPC™ processors.  To make the most of these resources, the BEE_XPS 
environment was developed, providing abstractions for the new capabilities.  Figure 4 
shows a Simulink design containing A/D devices and microprocessor I/O ports combined 
with a datapath architecture. 

Mixed signal design flow extensions 
The BEE2 processor itself does not have direct analog I/O, but is able to interface with 
external interface boards including the Infiniband Break-Out Board (IBOB).  This board 
is programmed in the same fashion as the BEE2, but a different target design is selected.  
The IBOB can be connected to both A/D and D/A interfaces, including a 1.2 GS/s front-
end board, allowing the designer to interface to radios for real-world communication 
algorithm and architecture testing. 
 
The ability to interface with analog devices in the emulation environment suggests that 
the SOC design flow could be augmented to support the mapping to analog IP 
subsystems, for mixed signal SOC designs.  This is similar to the problem of including 
foundry-compiled IP such as SRAM memory circuits into the design flow.  To this end, 
Insecta was augmented so that custom IP could be added to the flow, and both the 
XMAC and edge detection design driver circuits exercise this capability. 
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Custom IP is integrated into the Simulink to Silicon flow by creating a VHDL wrapper 
for the custom IP that conforms to Simulink I/O conventions.  For the test designs, a 
single-port memory block is needed, which is mapped to the FPGA platforms by using a 
Xilinx-provided SPRAM (Single-Port RAM) block. 
 
To map the same design to an SOC, the SPRAM can be replaced by a “Black Box” built 
by referencing the VHDL wrapper file.  By making the ports and behavior of the wrapper 
match the ports and behavior of the SPRAM, the designer need only substitute one part 
for another before generating the net list. 

Microprocessor Integration into the Design Flow 
In addition to supporting datapath and mixed signal designs, microprocessor support was 
added to the BEE2 design flow, to take advantage of the PowerPC and other processors 
supported within the FPGA environment.  Leveraging the Xilinx Platform Studio (XPS) 
technology to describe microprocessor-based platforms in the emulation environment, a 
library of Simulink blocks was developed to provide abstractions for I/O, control 
registers and shared memory interfaces, some of which are shown in Figure 4.  This 
approach allows the designer to develop high-performance datapath designs without 
considering the details of the software platform implementation.  In many cases, the 
datapath can be simulated early on without the complete processor implementation. 
Once the design has been described within Simulink, the designer runs the BEE design 
flow within Matlab using the bee_xps interface.  At this point, the designer selects the 
target platform, such as the BEE2 or IBOB processor, and the CPU. The design flow then 
maps the register and memory abstractions into platform-specific implementations, and 
ultimately produces FPGA configuration files, optionally uploading the complete 
subsystem to the selected platform for real-time emulation. 
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Figure 4: Microprocessor, mixed signal, and I/O abstractions in the BEE2 Simulink libraries, 
showing an A/D interface, microprocessor dual-port memories and registers, and debugging 
probes. 

 
To take advantage of the registers and memory on the uploaded design, the user can login 
to Linux running on the control FPGA on the BEE2, and connect to the processor 
generated above using a simple command shell.  This allows registers and memory to be 
read from and written to interactively, or the designer can run a custom C-based 
application to exercise the system under development.  The BEE2 platform allows up to 
four designers to connect remotely, and manipulate designs on the four user-FPGAs on 
the BEE2. 
 
Insecta Simulink to Silicon flow 

Once an architecture has been described in Simulink, and successfully mapped to the 
BEE2 or similar platform, the same design can be mapped to a selected SOC technology 
using the Insecta Simulink to Silicon design flow, using the GUI shown in Figure 5.  
Early in the design process, Insecta can be run to generate estimates for power, area and 
speed, with minimal user intervention.  Once the architecture has been selected, the 
Insecta flow can automate many of the final place and route steps to generate GDSII 
layout. 
 
The Insecta design flow is configurable so that design flow steps can be modified or 
added for a given choice of technology.  A key goal of the interface is to provide a 
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turnkey interface into design flows provided by each target foundry, building the design 
workspace and configuration files needed by the commercial design flow for the given 
design described in Simulink.  This workspace can then be used as a starting point for 
further customization of the foundry provided design flow. 
 
Recent improvements include the ability to integrate foundry-provided IP blocks, such as 
high-density static memory, which is used in both of the design drivers described 
previously.  This is critical for many memory intensive designs, offering at least a 15x 
improvement in area over flip-flop-based designs in 90nm CMOS, as formerly supported 
by the Insecta flow. 

 
Figure 5: The Insecta main user interface showing user-selectable design steps, and in 
intermediate summary of power and area estimates from first synthesis. 

 
The Insecta was pre-released to Rice University, where a test decoder design was 
successfully defined.  Library support was enhanced through this collaboration to include 
the addition of new functions such as a barrel shifter into the flow, and to add a new 
foundry back-end. 
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4 Demonstration Designs Mapped to BEE2 and Silicon 
 
XMAC Multiple Antenna Correlator 
The XMAC subsystem of the multiple-antenna correlator described earlier was fully 
developed on the BEE2 platform, both to validate the algorithm and architecture, and to 
provide a complete solution for a 16 antenna array.  The SOC mapping began early on, 
before the architecture was finalized, to provide power, area and performance estimates 
to guide the planning of a 256 antenna solution. 
 
Once the initial simulations were running, the same Simulink block diagram was used to 
drive the SOC flow, with the exception of one library component for implementing the 
large delay elements used in the datapath.  A key difference between the FPGA fabric 
and the SOC target was the availability and behavior of the high-density static memory 
blocks.  On the FPGA fabric, 4Kbit block memory primitives called BRAMs are 
available, with several configuration options, including single port and dual port data 
access.  In this case, a delay line is implemented by merely applying the output of a 
counter to the address lines of the BRAM, and accessing the memory with read-before-
write behavior. 
 
For the SOC solution, a single-port memory is used, to provide higher layout density on 
silicon.  The memory was generated by the silicon foundry using a memory compiler, 
generating memory that does not support simultaneous read and write.  The 
implementation of the delay line was completely different from the FPGA solution, 
interleaving read and write operations.  Once the library component for the delay line was 
implemented, the block could be substituted for the BRAM-based equivalent. 
To verify the equivalence of the two delay line implementations, both were instantiated in 
a test design side-by-side to confirm that they have the same behavior.  These blocks 
could then be interchanged depending on whether the design was being targeted to an 
FPGA or an SOC.  A future task could include the automation of this substitution to 
create a truly target-independent Simulink design. 
 
In parallel with the development of the design flow extensions for targeting an SOC, the 
correlator design for a 16 antenna solution was fully assembled, using a BEE2 processor 
board, four IBOB boards, and eight A/D 1.2 GHz dual channel front-end boards, shown 
in Figure 6.  The IBOB boards connect to the BEE2 using Infiniband connectors, one per 
board, and two A/D boards plug into each of the IBOB edge connectors. 
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Figure 6: The 16 antenna correlator based on the BEE2 with 4 IBOB boards and 8 A/D cards, 
deployed in the U. C. Berkeley Undergraduate Radio Astronomy Lab. 

 
Top-Down vs Bottom-Up Design  

The XMAC prototype for 16 antennas was run through synthesis, place and route to 
produce GDSII layout in 90nm CMOS, running the design flow in a top-down fashion, 
with minimal designer interaction  This approach is recommended, allowing the system 
designer to explore architectural tradeoffs without manual design partitioning. 
 
The top-down tool flow, however, can fail during one or more design step for large 
designs.  When the top-down design flow was tried on a 256 antenna version of the 
XMAC, the CAD tools and compute resources were inadequate, and the tools failed to 
map the design, running out of memory after 48 hours.  In particular, the commercial 
HDL generation flow currently in use is intended to target state-of-the-art FPGAs, and is 
not designed for mapping larger designs to SOCs.  To avoid this limitation, either a new 
netlisting approach must be developed, or a hierarchical bottom-up design style must be 
used to limit the complexity of subsystems that are run through the tool flow. 
 
To accommodate the larger XMAC design, a bottom-up design entry and synthesis style 
was applied within the BEE and Insecta flow. Initially, a small 4-antenna version of the 
XMAC was compiled top-down in System Generator, and synthesized to target libraries 
using Insecta.  The resulting design contained fully compiled and synthesized subsystems 
for key elements of the XMAC, including the SRAM based delay line (sram_delay) and 
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the Dual Pole Complex MAC (dual_pol_cmac).  These blocks were then inserted as pre-
compiled VHDL subsystems, or black boxes, into a larger Simulink design, with many 
references to the same pre-synthesized sram_delay and dual_pol_cmac blocks. The 
resulting complete system was then compiled to VHDL in less than 30 minutes, after 
which a similar top-down synthesis approach was used to complete the mapping of the 
256-antenna design to foundry library and memory primitives.  The complete design was 
then run through Place and Route steps which took several hours to generate the GDSII 
layout shown in Figure 7. 
 

 
Figure 7: The initial GDSII layout of the XMAC subsystem for the 256 antenna 
correlator design, showing a detail of the IP memory and logic.  The design is 3.7mm x 
3.7mm. 

Mapping the Video Edge Detection Design to Silicon 

The video edge-detection demonstration architecture described earlier was run through 
the Insecta flow after successful mapping to the BEE2 platform.  This design was small 
enough to run top-down through the flow, and demonstrated the newly added ability to 
include founder IP for memory into the design.  As part of a demonstration at the 
DARPA PACE Workshop in April 2006 at U. C. Berkeley, this complete flow was 
interactively run through the Insecta SOC flow, running net list translation, Synthesis, 
Place and Route steps to produce and preview GDSII in less than 25 minutes. 
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5 Conclusions 
 
The SOCRE research project successfully demonstrated that a single design description 
can be automatically mapped both to FPGA targets such as the BEE2 emulation platform, 
and to SOC libraries, with little or no redesign effort.  The ability to retarget a design to 
foundry-optimized IP allows designs to be more area/speed/power efficient, in one case 
demonstrating a 15x area improvement for a memory-intensive design by leveraging 
SRAM library components.  By using this approach, the designer can rapidly generate 
power/area/speed estimates to help guide with the architecture selection process for a 
given algorithm to SOC flow (Insecta).  At the DARPA PACE Workshop hosted at the 
BWRC, this flow was interactively demonstrated, targeting both the BEE2 and a 
commercial silicon flow. 
 
6 Recommendations 
 
Several students at the BWRC have used the BEE and Insecta flow to design complex 
systems, and this approach was demonstrated as an effective way to explore design 
tradeoffs.  This lead to the partitioning of high-level system design into two phases:  
Algorithm to Architecture selection, and Architecture to Silicon mapping.  Insecta is used 
for both collecting estimates to guide the architecture selection process, and also 
generating layout for inclusion in an SOC or to generate more accurate estimates.  Future 
work is suggested to automate the architecture selection process, including floating point 
to fix-point conversion, and energy optimization. 
 
For large designs, the BEE2 and Insecta flows can help speed up design by emulating 
complex systems with cycle and bit accuracy at or near real time.  There are several 
opportunities, however, for improving the performance of the tools as design complexity 
continues to grow.  To enable top-down design mapping for larger designs, new netlisting 
software would need to be developed and tested with the current libraries.  Alternatively, 
tools can be developed to automate the faster, but more complex bottom-up use of design 
flows.. 
 
Early experiments to incorporate IP and microprocessors into the design flow show 
promising areas of continued research.  Analog IP has been integrated into the emulation 
design flow, and similar techniques to those used for including SRAM components into 
an SOC should apply to generating mixed signal designs with analog subsystems.  
Similarly, the same approach described earlier to include microprocessors into an FPGA 
emulation can be applied to including embedded microprocessors into an SOC. 
 
A key observation at the DARPA PACE Workshop in April 2006, and from many 
research efforts collaborating with the BWRC, is that many groups would like to use the 
BEE2 or a similar platform for a variety of applications.  A clear opportunity is presented 
to DARPA to help increase the availability of the BEE2 platforms to the research 
community. 
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