Abstract

A new approach to perturbation tolerance was identified—the Meta-Cognitive Loop (MCL)—for responding to contradictions and other anomalies in complex settings. Further investigations with MCL included identifying architectural requirements, and applying MCL to various domains including reinforcement learning, commonsense reasoning, and a task-oriented natural-language interface system. A series of experiments empirically demonstrated the efficacy of MCL in improving the perturbation tolerance of certain machine learning techniques, including Q-learning, SARSA, and Prioritized Sweeping. Formal metrics were given for measuring the complexity, dynamicity, and overall difficulty of test domains, which allow for derivative measures of perturbation tolerance. A semantics was developed for Active Logic—the underlying logic on which MCL's contradiction handling is based—in the propositional case.
ABSTRACT:

A new approach to perturbation tolerance was identified---the Meta-Cognitive Loop (MCL)---for responding to contradictions and other anomalies in complex settings. Further investigations with MCL included identifying architectural requirements, and applying MCL to various domains including reinforcement learning, commonsense reasoning, and a task-oriented natural-language interface system. A series of experiments empirically demonstrated the efficacy of MCL in improving the perturbation tolerance of certain machine learning techniques, including Q-learning, SARSA and Prioritized Sweeping. Formal metrics were given for measuring the complexity, dynamicity and overall difficulty of test domains, which allow for derivative measures of perturbation tolerance. A semantics was developed for Active Logic---the underlying logic on which MCL’s contradiction handling is based---in the propositional case.
OBJECTIVES:

(No change from original proposal) We will develop a rule-based reasoning system with the ability to detect, evaluate, and adjudicate contradictions. A typology of contradiction will be proposed; formal and implemented rules for addressing contradictions will be generated; and a complex testbed application will be implemented. The aim of the proposed research is to produce a reasoning agent which can recognize contradiction, repair it when possible, do this effectively for a wide range of common contradiction types, but continue to effectively reason even when repair efforts fail.

ACCOMPLISHMENTS:

1. Formal specification of a language for expressing the contents of the knowledge base (KB) of the general purpose Active Logic (AL) reasoner---Alma/Carne. We also developed a meta-theory that provides a formal specification of how the knowledge base evolves during reasoning. Different properties that the evolving knowledge base exhibits have been proven formally within the meta-theory.

2. Development of an Active Logic based meta-cognitive architecture---DIRECTOR---for implementing a universal interfacing agent that can connect multiple task-oriented systems to a user. DIRECTOR represents beliefs, desires, intentions, expectations, observations and achievements explicitly in order to reason about an agent's mental attitudes.

3. Development of a theory, ALFA, based on Active Logic, to reason about actions and mental attitudes. ALFA has the ability to reason about and execute concurrent actions, as well as non-concurrent actions requiring concurrent results. ALFA provides a meta-cognitive solution to dealing with the problems of interacting preconditions and opposing effects when concurrent actions are involved. In ALFA, a meta-cognitive process marks desires, intentions and expectations as achievable or not, based on real-time conditions. Achievable
desires become intentions, achievable intentions are acted upon, actions cause expectations and these expectations create further desires. ALFA provides an automatic and adaptive mechanism for intention reconsideration characterized by the following two properties: (i) only achievable intentions result in an actual action being initiated and (ii) an unachievable intention can result in a revised intention. A similar meta-cognitive process drops intentions that have been achieved or have become futile. ALFA essentially deals with two broad categories of contradictions: (i) those that get noted as direct contradictions in the underlying logic and (ii) those that get noted by the meta-cognitive process as not achievable.

4. Further refinement our specification of the perturbation-tolerant reasoning framework we call the Meta-Cognitive Loop (MCL). In our view, systems should have expectations attached to (generated for) every action they take, both locally (at the level of system components), and globally (for actions taken by the system), as well as more general expectations for the sorts of things that should happen when they are operating properly. This should allow for the detection of a wide range of perturbations.

5. A series of experiments comparing the performance of MCL-enhanced reinforcement learners with standard reinforcement learners in a changing world. The MCL-enhanced reinforcement learner, in contrast to the standard one, was able to notice that something was wrong, and take specific steps to overcome the problem. We found that the MCL-enhanced learners were able to recover much more quickly from large changes in the world, thereby maintaining much better overall performance.

6. Formalization of the metrics earlier developed for measuring the complexity of an environment (including such things as its degree of change over time, and degree of difference from place to place), and a demonstration of how these can be used to measure the perturbation-tolerance of an autonomous system.
7. Definition of a semantics for Active Logic (AL) in the propositional case. AL is different from classical logics in that it has special rules defining inference in temporal terms, and allows for controlled reasoning in the presence of contradictions. This requires appropriate modifications of the classical notions of a model, of logical consequence, and of the soundness of inference rules. Inspired by the notion that until an agent notices that a set of beliefs is contradictory, that set seems consistent (and the agent therefore reasons with it as if it were consistent), we introduced an 'apperception function' that represents an agent's limited awareness of (the consequences of) its own beliefs, and serves to modify inconsistent belief sets so as to yield consistent sets. Using these ideas, we introduced a new definition of model and of logical consequence, as well as a new definition of soundness such that, when reasoning with consistent premises, all classically sound rules are sound for active logic. However, not everything that is classically sound remains sound in our sense, for by classical definitions, all rules with contradictory premises are vacuously sound, whereas in active logic not everything follows from a contradiction.

8. Improvements to the natural-language human-computer interface ALFRED, expanding the amount of self-monitoring it is able to perform, thereby increasing its ability to detect and recover from perturbations, including unknown words and violated expectations for event timing (such as user responses or domain actions). We have also enhanced and expanded the number of domains to which ALFRED can connect. These now include: toy trains, email, restaurant database, electronic home control, pool, home theater, furniture, draughts and chess. It can also interact with a universal house domain that includes all the nine domains as sub-components.

9. Design and implementation of a perturbation-tolerant, simulated khepera robot that is able to notice when navigational failures (such as collisions) take place, and record these and their circumstances. It is then able to use this information to assess the failures and
make targeted changes to its neural net, including starting with a different set of weights, or re-training on a specific set of inputs. The agent exhibits better behavior while training, and also learns to navigate effectively more quickly.

With consumer electronics becoming numerous, varied and complex, the idea of a single, shared, general and flexible interfacing agent to interface human users with the multitude of task-oriented systems or devices seems appealing. Such a universal interfacing agent has to understand user instructions and issue commands to control the task-oriented system to which it is connected, in a manner that the given user desires.

Two important issues that such an agent has to deal with are: (i) how to represent and reason about the tasks that a given device can perform and the results that it can produce and (ii) how to represent and reason about when different tasks are to be performed and whether the tasks have been successful. The dissertation explores these issues in detail and provides a solution to deal with them within a contradiction-tolerant and time-sensitive framework called Active logic.

The solution involves explicitly representing the beliefs, desires, intentions, expectations, observations and achievements of the interfacing agent and reasoning based on these attitudes; the dissertation provides a theory (ALFA) that agents can use in order to perform this reasoning. The theory specifies the interactions between beliefs, observations, desires, intentions, expectations and achievements for a universal interfacing agent, while taking into consideration issues associated with concurrent execution of actions as well as perturbation tolerance. The main characteristics of the theory are: representing and reasoning about concurrent actions and results, dealing with interactions of preconditions of actions or results, dynamic reconsideration of intentions and reasoning using
expectations and achievements.

The dissertation also provides an architecture (DIRECTOR) for implementing agents based on the theory. In this architecture, a meta-cognitive process controls the cognitive activities of the agent. The rudimentary results of implementing the architecture to create a natural language based interfacing agent (ALFRED) are also discussed in the dissertation.

This work also discusses how the agent’s underlying Active logic knowledge base evolves during reasoning and provides proofs for properties that the knowledge base exhibits, using a meta-theory that specifies how the knowledge base evolves.

PERSONNEL SUPPORTED

D Perlis (PI)
M Anderson (co-PI)
K Hennacy (Post-doc)
W Chong (GRA)
D Josyula (GRA)

PUBLICATIONS

http://www.agcognition.org/papers/SSC.pdf

http://www.agcognition.org/papers/aaai_metrics_04.pdf

http://www.agcognition.org/papers/ijcarfinal.pdf

Artificial Intelligence (AAAI-04), 2004.

http://www.ling.ed.ac.uk/~jim/BBSNEURO/anderson.html

INTERACTIONS/TRANSITIONS
5. Served as chair (M. Anderson) and on program committee (D. Perlis) of the AAAI 2005 Spring Symposium on Metacognition in Computation.
9. Honda Research Institute, USA: initial stage of application of our work on commonsense reasoning, including inconsistencies, for a robot in an indoor environment. Ken Hennacy and Don Perlis.
Patents:

1. System for the automated detection of metalanguage.
 US60/807,744 (provisional application filed).

Inventions: none

Awards:

1. M. Anderson, recognized as an 'emerging leader under forty' by the
 Renaissance Institute (sponsor of the Renaissance Weekend), 2005.

2. M. Anderson, invited participant, McDonnell Project in Philosophy
 and the Neurosciences workshop for early career researchers, 2005.