

AFRL-IF-RS-TR-2006-224
Final Technical Report
July 2006

MATTER: MODULAR ADAPTIVE TECHNOLOGY
TARGETING EFFICIENT REASONING

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. S822

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-224 has been reviewed and is approved for publication

APPROVED: /s/

CHRISTOPHER FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES A. COLLINS
 Deputy Chief, Advanced Computing Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 06
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Dec 04 – Nov 05
5a. CONTRACT NUMBER

FA8750-05-C-0011

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
MATTER: MODULAR ADAPTIVE TECHNOLOGY TARGETING
EFFICIENT REASONING

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
T568

5e. TASK NUMBER
00

6. AUTHOR(S)
Tomas Uribe, Charles Lieber

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SRI International
333 Ravenswood Avenue
Menlo Park California 94025-3493

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505 11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-224

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA#06-484

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this effort was to investigate novel computer architectures to support machine learning, based on reconfigurable hardware and
nanowire growth. The scope of this effort was to bring revolutionary architectural ideas together with application drivers that embody cognitive
processing dimensions such as machine learning, large knowledge bases, information security and integrity, real-world reasoning, sensor integration
and realtime embedded systems. Conventional processing architectures are ill-suited to processing the large, sparse, graph data structures necessary
to efficiently represent cognitive information and computations. Today’s silicon hardware can support a large number of parallel operations and high
bandwidth and low latency from small, distributed memories. However, traditional von Neumann architectures employ a single-memory, single-
instruction stream model that prevents them from fully exploiting the hardware capabilities. This mismatch presents an opportunity to design new
hardware architectures that will provide substantially better performance on graph-intensive information processing tasks, which can perform parallel
operations over large data structures. To support these tasks while exploiting the silicon, the MATTER architecture described in this report distributes
the data structure over a large number of small, fast memories, and associates active logic with each fragment so that it can perform the necessary
operations on its local data. In addition this report describes the exploration into nanowire technology, focusing on the growth of new connections. This
is a unique capability of nanowire implementations, which could provide a mechanism for adaptation over time.
15. SUBJECT TERMS
machine learning, reconfigurable hardware, nanowires

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Christopher Flynn

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

65 19b. TELEPONE NUMBER (Include area code)

Table of Contents

1 Introduction 1
1.1 Overview of the MATTER Graph Machine . 1

1.1.1 Optimization Prospects . 2
1.1.2 Graph Model . 3
1.1.3 Folding onto Memory . 3
1.1.4 Graph Node Implementation Microarchitectures 3
1.1.5 Interconnect Microarchitecture . 4
1.1.6 Graph Usage Patterns . 4
1.1.7 Results: Speeding Up Cognitive Applications . 5

1.2 Nanowires and MATTER . 5
1.2.1 Adaptive Growth . 6

2 A System Architecture for Sparse-Graph Algorithms 7
2.1 Comparison Notes . 7
2.2 Introduction . 8
2.3 Raw Memory Performance . 9
2.4 Idea . 10
2.5 Graph Applications . 11
2.6 GraphStep System Architecture . 12

2.6.1 System Architecture Description . 12
2.6.2 Relation to Other Concurrent System Architectures 13
2.6.3 Possible Realizations . 15

2.7 Example: ConceptNet . 16
2.7.1 Knowledge Base . 16
2.7.2 Spreading Activation . 16
2.7.3 Sequential Implementation . 17
2.7.4 FPGA Implementation . 19
2.7.5 Discussion . 19

2.8 Variations and Future Work . 21
2.9 Related Work . 22
2.10 Conclusions . 22

3 The Dishoom Reconfigurable Compute Platform 23

i

4 Nanowire Chemistry: Dielectrophoretic assembly, reconfiguration, and disassembly of nanowire
interconnects 25

5 Activities and Additional Material 31
5.1 Activities .31
5.2 Software development. .31

Bibliography 32

A MATTER Graph Machine Design Space for Marker Passing 39
A.1 Basic Marker Passing Algorithm . 39
A.2 Key Operations . 39
A.3 Parameters . 40
A.4 Basic Relationships . 40
A.5 Simple, Optimal Size Calculation . 41
A.6 Sequential Optimization and Optimized Sequential Performance Model 43

A.6.1 Sequential Parameters . 43
A.6.2 Sequential Model . 44

A.7 Low Diameter Graphs and Pointer Jumping . 44
A.7.1 Low Diameter Graphs . 44
A.7.2 Pointer Jumping . 45
A.7.3 FPGAs and Dishoom Board (2D) . 45
A.7.4 FPGAs and Dishoom Board (3D) . 47
A.7.5 Dishoom Bandwidth . 49

B MATTER Graph Machine Operation Assessment for ConceptNet 51
B.1 Node Decomposition . 51

B.1.1 Graph Node Statistics . 52
B.1.2 Graph Object Memory Requirements . 52
B.1.3 Fanout . 52

B.2 Edge Weighting . 53
B.3 Sequential Performance Model and Data . 53

B.3.1 Pragmatic Suggestion for Measurement . 54
B.4 Parallel Execution Model . 54
B.5 Parallel Performance Model . 55
B.6 FPGA PE Design Starting Point . 56

ii

List of Figures

2.1 Portion of Concurrent System Architecture Taxonomy Placing GraphStep. 14
2.2 Basic Computation for Spreading Activation Calculation. 17
2.3 BFT Network with 128 PEs in 8 FPGAs. .20

3.1 Tiled MATTER Dishoom Board. .24
3.2 MATTER Dishoom Board .24

4.1 Dielectrophoretically assembled single-nanowire interconnects. 27
4.2 Reconfiguration of a single nanowire bundle. 28
4.3 Parallel reconfiguration of nanowires. .29
4.4 Disassembly of nanowire interconnects. .30

iii

List of Tables

1.1 Sources of Speedup in the MATTER Graph Machine. 2

2.1 Raw Memory Bandwidth Available from FPGAs and Processors. 9
2.2 Comparison of Query Execution Times on Small ConceptNet Database. 18
2.3 Comparison of Query Execution Times on Default ConceptNet Database. 18
2.4 Breakdown of Logic in ConceptNet Leaf FPGA with 32 PEs (XC2V6000). 20
2.5 Multichip BFT Composition .21

iv

Executive Summary

Conventional processing architectures are ill-suited to processing the large, sparse, graph data structures nec-

essary to efficiently represent cognitive information and computations. Today’s silicon hardware can support

a large number of parallel operations and high bandwidth and low latency from small, distributed memories.

However, traditional von Neumann architectures employ a single-memory, single-instruction stream model

that prevents them from fully exploiting the hardware capabilities. This mismatch presents an opportunity

to design new hardware architectures that will provide substantially better performance on graph-intensive

information processing tasks, which can perform parallel operations over large data structures.

To support these tasks while exploiting the silicon, the MATTER architecture distributes the data struc-

ture over a large number of small, fast memories, and associates active logic with each fragment so that it

can perform the necessary operations on its local data. The small memories are connected by an efficient,

high-bandwidth network, so that we can quickly bring together separate pieces of the data structure needed

to perform calculations.

FPGAs provide hardware technology that can be used to instantiate the MATTER architecture today.

While small graphs can be directly implemented spatially in FPGAs, the size of graphs that can be realized

with a modest number of FPGAs is extremely limited. Consequently, we introduce a new concurrent system

architecture for sparse graph-processing algorithms. The system architecture provides a high-level way to

capture a large range of graph-processing tasks abstracted from the detailed hardware implementation. We

can efficiently map tasks in this system architecture to collections of FPGAs with embedded memories,

allowing performance to scale with the number of FPGAs used to solve the problem.

As a sample graph-based cognitive application, we consider the ConceptNet Knowledge Base. On

typical queries, the MATTER implementation yields an order of magnitude speedup per FPGA compared to

a state-of-the-art Pentium processor—provided that we have a sufficient number of FPGAs to fit the task.

Future technology will help us better realize the large capacity that MATTER requires. Nanowire tech-

nology, in particular, has the potential of shrinking large-capacity MATTER systems down to a single chip

(perhaps with an even larger memory ratio). Thus, part of this project explored the basic science of nanowire

technology, focusing on the growth of new connections. This is a unique capability of nanowire implementa-

tions, which can provide a mechanism for adaptation over time. While full deployment of in-field nanowire

growth or assembly still requires much research and development, the MATTER architecture provides a

concrete application driver for this new capability as it makes the transition from science to technology.

v

Chapter 1

Introduction

This document is the final report for the MATTER project. MATTER (Modular Adaptive Technology Tar-

geting Efficient Reasoning) is a collaborative effort between SRI International, Caltech, MIT, and Harvard

University, with the goal of designing next-generation hardware to support cognitive applications.

Outline: Chapter1 presents an overview of the MATTER graph machine. Chapter2 describes, in more de-

tail, a system architecture based on the MATTER ideas. Chapter3 briefly describes the Dishoom FPGA plat-

form, a prototype hardware implementation of the MATTER architecture. Chapter4 presents the project’s

results in nanowire chemistry, including nanowire growth and reconfiguration. Chapter5 summarizes the

activities under the contract.

AppendixesA andB present detailed analysis and performance estimates for our target cognitive appli-

cation, ConceptNet.

1.1 Overview of the MATTER Graph Machine

Conventional processing architectures, such as commodity desktop (e.g. Pentium 4), server (e.g. Itanium),

and supercomputer (e.g.Cray) processors, are ill-suited to processing the large, sparse, graph data structures

necessary to efficiently represent cognitive information and computations, such as semantic and Bayesian

nets, knowledge bases, and graph search.

Today’s silicon hardware capabilities can support a large number of parallel operations and high band-

width and low latency from small, distributed memories. However, traditional von Neumann architectures

employ a single-memory, single-instruction stream model that prevents them from fully exploiting the hard-

ware capabilities. Most of the processing area goes to supporting the single-memory, single-instruction

abstraction rather than supporting the actual computation. Memory bandwidth is artificially bottlenecked

through the single-memory abstraction, preventing the efficient use of the memory that the hardware can

provide. Even within the memory bandwidth that traditional architectures do provide, they can approach

peak bandwidth only when the data structures are regular (large, contiguous blocks of memory as used in

1

Conventional MATTER
Specialized Datapath(cycles) 1000 1–10
Small Local Memories(cycles) 100 1
Lightweight, Low-Latency Network (cycles) 103–105 10
Parallel Operations per Chip 1 100

Table 1.1: Sources of Speedup in the MATTER Graph Machine

arrays of primitive data types).

This mismatch between the capabilities of the silicon and the conventional architectural model presents

an opportunity to design new hardware architectures that will provide substantially better performance on

graph-intensive information processing tasks, which can perform parallel operations over large data struc-

tures. To support these tasks while exploiting the silicon, the MATTER hardware architecture distributes the

data structure state over a large number of small, fast memories and associates active logic with each piece

of the data store so that it can perform the necessary operations on its local data. The small memories are

connected by an efficient, high-bandwidth network, so that we can quickly bring together diverse pieces of

the data structure to perform calculations.

1.1.1 Optimization Prospects

A graph machine can provide orders of magnitude higher performance than conventional alternatives on

graph-intensive applications. The optimization prospects, listed in Table1.1, are easy to understand:

1. By specializing the datapath for common graph operations, such as marking a node or an edge, each

graph operation can be lightweight, taking only 1 to 10 cycles.

2. By using small, distributed memories, each graph operation completes in a few cycles, rather than

taking hundreds of cycles to fetch data from a large, distant memory.

3. Using a low-latency, efficient network, data can be routed between distributed graph nodes in 10

to 100 cycles with minimum protocol and switching overhead.

4. Exploiting many distributed memories and distributed processing, many graph operations may occur

in parallel.

Lightweight operations and local memories make operations that can take thousands of cycles on a conven-

tional processor operate in approximately 10 cycles. Low-latency interconnect takes connection links that

are normally 1000 to 100,000 cycles down to approximately 100 cycles. Using a large number of small,

simple logic/memory blocks allows hundreds to thousands of operations to occur in parallel on a modest

silicon die, whereas conventional processor architectures do well to complete 1 to 10 operations per cycle.

2

1.1.2 Graph Model

The abstract model for the user is a graph of object nodes. Conceptually, each node is its own locus of

execution (its own thread) and all nodes operate concurrently. Each node receives messages (method calls)

with data and can, in turn, send messages to (invoke methods on) any of the other graph nodes to which it

is connected in response to the incoming message. Messages/methods may modify the object data. Each

object has a set of defined operations. Data can be accessed only through the defined object methods.

1.1.3 Folding onto Memory

In the extreme, each object could have its own physical resources. The hardware-assisted router [DHW02]

and the spatial annealer [WD03] were designed to this extreme. In general, however, we will most likely

group a set of graph nodes into a single memory and share a single graph processing node. This folding

is an implementation decision and should not change the semantics of the graph operations. An important

question for a given technology will be the right virtualization factor—that is, the appropriate number of

nodes to share a physical graph operator.

A common optimization would be to place graph nodes of a single type on a single, physical graph

processing node. In this way the logic executing on (or implemented by) the graph processing node can be

tightly specialized for the single type of data object in its memory. This is, however, an optimization, and

the graph node could be generalized where appropriate.

1.1.4 Graph Node Implementation Microarchitectures

There are many different microarchitectures we might use to implement a graph processing node. For

example,

• Use a simple, generic microprocessor and compile the graph operations for a particular graph node

type to it.

• Design a specialized processor optimized for generic graph operations and compile the graph opera-

tions for a particular graph node type to it.

• Provide a fixed amount of reconfigurable hardware for the graph node processing and compile the

graph operations for a particular graph node to it.

• Define a standard format for graph nodes (analogous to IEEE-754 as a standard format for floating-

point representation) and a standard set of common graph operations, and build a specialized hardware

datapath for handling.

Abstractly, the architectural goal would be to admit these implementations (although the last would admit a

different architectural view than the other three). Quantitatively, we can then evaluate which is most suitable

for a given technology. We might even mix and match within a system or implementation. For example, on

3

an FPGA implementation, we might start using a generic, soft processor for a graph node (easy compilation

target). We could transition to a specialized soft processor by extracting special graph operations for the

particular object. We could later compile the graph node operations directly to a VHDL or LUT-level

implementation.

1.1.5 Interconnect Microarchitecture

The model for graph nodes is that they are directly connected to their neighbors. However, there are many

ways we could implement the connections:

• static (FPGA-like) configurable network

• circuit-switched connections

• packet-switched connections

• bus or hierarchy of buses

• shared memory

Different network structures will be appropriate based on the common graph usage pattern (Section1.1.6)

and the folding (Section1.1.3).

1.1.6 Graph Usage Patterns

Different applications have very different usage patterns for graphs. It will be useful to identify the patterns,

optimize for them, and, perhaps, allow higher-level programming to provide hints or directives as to which

case is most appropriate.

• static graph – the graph is constructed once and then used repeatedly. The graph structure does not

change during the bulk of operation. Values at the graph nodes may change. Performing queries and

evidence updates on a static knowledge corpus might have this characteristic. Placement and routing

on fixed architectures has this characteristic.

• quasi-static graph– the graph is incrementally changed, but changes are relatively infrequent com-

pared to the other graph operations. A large knowledge base (106+ nodes) that has only a few (10s)

of changes per hour would certainly fit this model.

• dynamic graph – the graph is generated and changed regularly. A graph generation operation may

be as complex as, or more complex than, any operations run on the graph once created. In another

case, a large fraction of the graph links change every few cycles.

Of course, it is an oversimplification to say that the application will exhibit a single one of these patterns. It

may be more accurate to say that each data structure in an application may exhibit one of these patterns. For

example, an application might have a static knowledge base, and then abstract a series of instance-specific

Bayesian networks from it.

4

1.1.7 Results: Speeding Up Cognitive Applications

In AppendixA and AppendixB, we analyze the propagation algorithm used by ConceptNet [LS04], a com-

monsense reasoning tool from MIT. ConceptNet’s semantic network contains 300,000 nodes and 1,600,000

edges, with 25 distinct link types. Starting with a set of nodes of interest, weights propagate through the

graph, discounted by the types of edges, until a threshold is reached. A final phase ranks the nodes (con-

cepts) based on the weights they have received. This style of propagation algorithm is similar, for instance,

to the Probabilistic Relational Neighbor (pRN) algorithm [MP03] used in the CADRE system [WF05].

ConceptNet includes challenges for MATTER mapping, such as a small number of very highly con-

nected nodes, labeled edges, and irregular communication and activity patterns. In spite of these challenges,

our results show that a speedup of three orders of magnitude is possible, when compared with a high-end

commercial sequential processor (e.g., Pentium 4).

Other relevant work, where we have analyzed proto-graph-machine field-programmable gate array (FPGA)

applications, includes

• Routing (path search, effectively a multicommodity flow optimization) [DHW02, HWD03]

• Placement (simulated annealing, starting point for partitioning, clustering) [WD03]

• Sparse Matrix-Vector Multiplication (example of sparse connectivity and demonstration of core rou-

tine for numerical processing) [dD05]

In routing and placement, the FPGA implementation can achieve speedups as high as three orders of mag-

nitude over the traditional implementations.

The following chapter describes the MATTER architecture in more detail.

1.2 Nanowires and MATTER

FPGAs are one way to instantiate the MATTER architecture, using current and readily available technology.

In the longer term, nanowire technology offers a promising avenue for implementation of MATTER-like

architectures in the future.

The MATTER architecture provides a good match to the large capacity that nanowire hardware enables.

In particular, it is clear that conventional architectures do not scale to even exploit their own available

hardware well. Thus, there is a need for architectures that can bring very large amounts of hardware capacity

to bear on a problem.

Conversely, we can look at the nanowire implementation as an answer to the question of how to re-

alize the large capacity that MATTER requires, integrating memory and compute devices. Certainly, one

could argue that our current-technology, FPGA-based prototypes are excessively large, requiring hundreds

of chips. Looking ahead, those kinds of systems shrink down to a single chip (perhaps with an even larger

memory ratio) when realized using the nanowire architectures.

5

The nanowire chemistry component of this project, described in Chapter4, explored the prospect of

adding nanowires as a unique capability enabled by the nanowire implementation. This allows us to consider

features such as self-repair (which is increasingly important at these small feature sizes) and adaptation (to

application, environment, and dataset). Particularly for cognitive applications, we expect the machine to

need to learn and adapt over time. This in-field addition of nanowires provides another mechanism to tailor

the machine to the application.

Full deployment of in-field nanowire growth or assembly still requires much research and development.

However, the MATTER architecture provides a concrete application driver for this new capability as it makes

the transition from science to technology.

1.2.1 Adaptive Growth

Controlled nanowire growth, such as described in Chapter4, also has the potential of allowing circuit spe-

cialization over time. New connections can be created and destroyed depending on the characteristics of the

task being performed by the circuit.

The ability to grow new wires (and remove old ones) adds new adaptation possibilities at run-time. If

we map the data onto the hardware, we can adjust to small incremental changes on the data. Consider

a cognitive application such as ConceptNet (which we analyze further in the following chapters). As the

knowledge base changes, we would like to change the weights and connections in the hardware encoding of

the graph. A fixed wiring scheme, that includes all connections a priori, would require orders of magnitude

more memory and wiring than the graph itself, increasing the bandwidth cost that is already dominant in the

application. If we want to exploit sparseness in the data, dynamic reconfiguration is essential.

When re-organizing the data on the existing hardware is not enough, new connections can make new

configurations possible to alleviate bandwidth problems.

Online Partial Evaluation : Just as partial evaluation is analogous to the process of compiling some aspects

of the problem formulation onto the hardware, reconfigurable hardware can be used foronlinepartial eval-

uation, which has been more commonly investigated in the case of software. Often, there are characteristics

of the input data, context and environment that can only be detected at runtime, but which are also useful

for optimization.

If we implement a nano-MATTER architecture, and the nanowire chemistry gives us exact control of

the design, we may be able to optimize the hardware with respect to the operating environment as detected

at runtime, through periodical use of “sleep” intervals, during which the system reconfigures itself.

6

Chapter 2

A System Architecture for Sparse-Graph

Algorithms

Summary: This chapter describes GraphStep, a system architecture that embodies the main ideas in the

MATTER Graph Machine. Many important applications are organized around long-lived, irregular sparse

graphs (e.g., data and knowledge base application, CAD optimization, numerical problems, simulations).

The graph structures are large and the applications need regular access to a large, data-dependent portion

of the graph for each operation (e.g., the algorithm may need to walk the graph, visiting all nodes, or the

algorithm may need to propagate changes through many nodes in the graph). On conventional micropro-

cessors the graph structures exceed on-chip cache capacities, making main-memory bandwidth and latency

the key performance limiters. To avoid the “memory wall,” we introduce a concurrent system architecture

for sparse graph algorithms that places graph nodes in small distributed memories paired with specialized

graph processing nodes interconnected by a lightweight network. This gives us a scalable way to capture

and map these applications so that they can exploit the high-bandwidth and low-latency capabilities of em-

bedded memories (e.g., FPGA Block RAMs). On typical spreading-activation queries on the ConceptNet

Knowledge Base, this translates into an order of magnitude speedup per FPGA compared to a state-of-the-art

Pentium processor.

2.1 Comparison Notes

The primary comparison is an order-of-magnitude speedupper FPGA, assuming that we have sufficient

FPGAs to perform the task (more on this below). This is a deliberatelyconservativecomparison to standard

processors. The best that conventional processors could do is to get a linear speedup with the number of

processors, requiring no additional resources for interconnect. (We have charged the FPGA architecture for

using FPGAs for interconnect.)

In practice, it is highly unlikely a conventional multi-processor implementation would scale linearly with

7

the number of processors, given the difficulty in parallelizing the application in a sequential environment.

In fact, there is evidence that Pentiums (or ASCI machines) perform abysmally on these sparse graph oper-

ations. So, in practice, if we were to make a direct comparison between the two, the conventional processor

would fare even worse.

Separately, a common objection is that applications are serial-bottlenecked, so one cannot do better than

building a fast serial processor. Our results show, for an important class of problems, that the parallelism

is there and can be exploited. Therefore, for these problems there are much better approaches than just

building the fastest sequential-processor possible.

The above comparison assumes that we are willing to dedicate a sufficient number of FPGA’s to the

task. (The analogue of this, in the single-processor case, is that we buy enough RAM.) If the goal is to

minimize the area, and one does not care about performance, then the processor may still be the right way to

go. However, we’re showing that we can exploit the silicon capacity that is available now (and will be even

more available in the future) to do much better. This, even though FPGA’s are not the perfect memory vs.

compute balance point for MATTER. Nonetheless, we show that theyare good enough to deliver a significant

performance and capability advantage. With further research, we may zero in on a better balance point,

which will show even greater advantage.

2.2 Introduction

We have long noted the fact that spatial hardware organizations, such as FPGAs and other reconfigurable ar-

chitectures, offer computational density superior to that of more conventional, temporal hardware organiza-

tions [DeH00, DeH96]. Conferences such as FCCM (Field-Programmable Custom Computing Machines),

where a version of this chapter will appear [dKM+06], have showcased numerous compute-intensive appli-

cations where FPGAs deliver performance that is orders of magnitude superior to that of processor-based

systems. Further, we are beginning to see high-level system architectures for capturing these compute-

intensive applications in scalable manners (e.g., SCORE [CCH+00], and cellular automata models [DAd+04,

MCMB93, STO03, KMH01, Mar97]).

Nonetheless, many problems are limited by memory speed rather than compute speed. As processing

speeds continue to increase faster than memory speeds, the effect is exacerbated, leaving many applications

limited by memory performance rather than compute performance [WM95, McK04].

Spatial organization of computations turns many memory operations into interconnect [DeH96]. Nonethe-

less, it often remains infeasible to implement tasks with large data sets in a fully spatial manner (e.g.,

[dD05]), leaving a need to use memories for virtualization. To address this, modern FPGAs integrate in-

creasingly larger quantities of on-chip memory. The aggregate memory bandwidth accessible from the

collection of small, distributed memories is two orders of magnitude larger than the memory bandwidth

available on processors (Section2.3). This presents a new opportunity for FPGAs to offer superior perfor-

mance to microprocessors on data-intensive applications.

8

Family Pentium-4 Virtex-2 Virtex-4 Stratix-2
Chip Pentium-4 550 XC2V6000 XC4VLX200-12 EP2S180

Technology 90 nm 150 nm 90 nm 90nm
Memory Clock 3.4 GHz 260 MHz 500 MHz 475 MHz

On-chip Memory BW 0.2 Tb/s 1.2 Tb/s 5.4 Tb/s 12 Tb/s
from L1 D-Cache 144 BRAMs 336 BRAMs 768 M4Ks

On-chip Memory Capacity
at speed quoted 16 KB 288 KB 688 KB 192 KB

total 1 MB 0.29 MB 0.69 MB 1.1 MB
Off-chip Memory BW 51 Gb/s 77 Gb/s 110 Gb/s 77 Gb/s

Reference [Int05] [Xil03] [Xil05] [Alt05]

Table 2.1: Raw Memory Bandwidth Available from FPGAs and Processors

Algorithms that represent data with sparse graphs are a large class of these data-intensive applications.

While small graphs can be directly implemented spatially in FPGAs (e.g., [BFA96, MHH02]), the size of

graphs that can be realized with a modest number of FPGAs is extremely limited. Consequently, we intro-

duce a new concurrent system architecture for sparse graph-processing algorithms. The system architecture

provides a high-level way to capture a large range of graph-processing tasks abstracted from the detailed

hardware implementation. We can efficiently map tasks in this system architecture to collections of FPGAs

with embedded memories, allowing performance to scale with the number of FPGAs used to solve the prob-

lem. The new system architecture is complementary to compute-intensive system architectures like SCORE,

providing a natural way to capture these data-intensive applications.

The novel contributions of this work include:

1. Highlighting the raw, memory-bound performance potential of FPGA hardware

2. Introduction of data-centric system architecture for sparse-graph applications

3. Mapping of new system architecture to FPGAs with a collection of small distributed on-chip memories

4. Demonstration of performance benefit on a sample application

5. Identification of class of applications that conceivably benefit from the performance potential using this

system architecture

2.3 Raw Memory Performance

Table2.1 summarizes the raw, aggregate memory bandwidth available on processors and FPGAs to both

on- and off-chip memory. In each case, this is computed in the most simplistic and direct way. For the

processors, on-chip bandwidth is the bandwidth available from L1 memory. For the FPGAs, on-chip band-

width assumes that specified RAMs (Block RAMs, M4Ks) operate concurrently at their dual-port operating

speed (given by the memory clock speed) and width transfering data on both ports. For the FPGA off-chip

bandwidth, we assume that the off-chip pins are dedicated SDRAM interfaces (twelve 32b SDRAM inter-

9

faces operating at 200 MHz for Virtex-2, twelve 32b SDRAM interfaces operating at 300MHz for Virtex 4,

eight 16b SDRAM interfaces operating at 300 MHz on two edges for Stratix 2).

We can make several important observations from this data:

• A single FPGA can offer higher on-chip memory bandwidth than the most advanced microprocessors—

one to two orders of magnitude at comparable technology generations.

• For the FPGA, the on-chip bandwidth is one to two orders of magnitude higher than off-chip bandwidth;

further, we expect on-chip capacities and hence potential bandwidth to increase more rapidly than off-

chip bandwidth, widening the on-chip vs. off-chip bandwidth gap.

• Assuming we can exploit the parallelism, we can scale bandwidth in large systems by tiling FPGAs;

similarly, vendors scale the on-chip bandwidth along with compute capacity by scaling the number of

independent, on-chip memory banks.

These are, of course, peak memory numbers. Neither architecture is likely to achieve them. Processors

can seldom run entirely from L1 memory, and practical caching schemes fail to exploit the potential band-

width available (e.g. [HS95]). Nonetheless, these observations do point to real performance ceilings and

raw potential that we may be able to exploit.

Further, traditional ways of organizing computations result in very significant deviations from these

peaks when the dataset is large. That is, traditional processor applications will fetch data and stall execution

until the data is returned (allowing multiple, outstanding memory references helps, but does not completely

compensate for this strategy). Consequently, when the dataset is large and cannot be contained in the on-

chip memory, bandwidth becomes limited by the off-chip access latency rather than the on- or off-chip

bandwidth. Consequently, access bandwidth may easily drop another order of magnitude.

2.4 Idea

If we could arrange for all of our data to reside in distributed on-chip memory (e.g., FPGA Block RAMs),

and arrange to perform parallel operations and hence parallel access to the data, we could exploit this raw

potential (Section2.3) and achieve orders of magnitude improvement in net memory bandwidth and hence

performance on data-centric processing tasks. To handle large tasks, we assemble multiple-FPGA collec-

tions to contain the data. This gives us two additional wins:

1. We scale bandwidth and processing with the dataset.

2. We keep all data within a constant (small) latency of the active processing.

Of course, we get less memory capacity per die (perλ2 or per cm2 of silicon) using memory in an

FPGA than we get using off-chip DRAMs. This is a deliberate tradeoff we make to get higher performance

on these tasks. If performance is limiting the application, then this gives us a way to trade area to obtain

higher performance.

10

We can also engineer FPGAs with a different memory/logic balance or with embedded DRAMs (e.g.,

[MAS+97, PJA+99]) that would provide an architectural point between these extremes. These architectures

might trade only a factor of 2 to 3 in net memory density for orders of magnitude improvement in usable

memory bandwidth.

2.5 Graph Applications

Many graph processing applications are naturally represented by sparse graph data structures and can exploit

the opportunity identified in the previous section. In these problems:

• The graph is sparse and irregular, meaning nodes have a bounded [O(1)] number of edges, but are

not necessarily connected in nearest-neighbor fashion in any number of dimensions. Because of the

irregular connectivity and data access, it is not possible to localize processing to a small subset of the

graph;i.e., traditionalspatial localityexploited in cache-line blocking and virtual memory pages is

not adequate to hide the long delay to off-chip memory on processors.

• Algorithms require that the whole graph (or large fractions of the graph) be traversed as part of an

iteration.

• Algorithms admit to parallelism across the graph.

To be concrete, consider the following kernels and applications:

• Iterative Sparse Matrix-Vector Multiply – Here we must complete each sparse matrix-vector mul-

tiply (SMVM) before starting the next, and each SMVM requires that we access all the sparse-matrix

coefficients. Each entry in the vector result is independent and can be computed in parallel [dD05].

• Sparse Neural-Network Evaluation– This can essentially be the same problem as SMVM above.

• Shortest Path– A traditional (e.g., Bellman-Ford [CLR90]) shortest path computation requires that

every node update its delay on every cycle. The serialization goes only as the depth (diameter) of the

graph, which is typically small compared to the size of the graph for high-speed circuit graphs.

• Routing – Routing (e.g., FPGA routing such as Pathfinder [ME95]) is based on a series of shortest

path searches. For nets that cross the entire device, the shortest path search can potentially touch

the majority of routing resources in the circuit. When nets are highly localized, it may be possible

to perform multiple route searches on different portions of the device in parallel. We already have

evidence that this parallelism can lead to substantial speedups in routing [DHW02, HWD03, Hua04].

• Timing Calculations – Simple timing analyses (ASAP and ALAP calculations) also perform whole

graph traversals in order to update delays and slack.

11

• Placement– Node placement can move a large number of nodes, potentially all of them, and update

their costs in parallel [WD03, Wri03].

• Associative Search– In some applications, we need to check every graph node for some property.

• Transitive Closure – Transitive closure is a reachability search that can be seen as a simplified version

of the shortest path problem.

• Marker Passing – Many knowledge-base queries, inferences, and classification tasks can be sup-

ported by algorithms that propagate binary data along neighboring links and perform local and global

binary state operations [Fah79, KM93].

In general, any application that needs to walk the entire graph will fit the properties noted above, particularly

when the operations at each node can be cast as one of the following:

• perform operation at a node (data parallel)

• accumulate information from nodes (associative reduce)

• propagate information to neighboring nodes

2.6 GraphStep System Architecture

To exploit the idea introduced above, we develop the GraphStep concurrent system architecture. We call

this a concurrent system architecture in the spirit of “Software Architectures” [SG96], and, in fact, the

GraphStep architecture is closely related to an Object-Oriented or Repository software architecture. As a

concurent system architecture, GraphStep gives a gross organization for conceiving the task and managing

the parallelism in the task.

2.6.1 System Architecture Description

In the GraphStep architecture, the computation is organized as a graph of nodes connected by edges.

Nodes: Each node is an object or actor [HBS73]. That is, it has:

• local state, typically in typed data fields

• edges to other graph node objects along which it can send messages or method invocations

• a set of methods through which the object data is accessed and modified

It can be useful to think of each object as having its own locus (thread) of control and acting concurrently

with all other objects. The program counter is part of its local state. As explained below, the objects

synchronize in “steps”, so it is alternately possible to simply think of the objects being invoked in a data-

parallel, concurrent manner and performing operations that depend on their state.

12

Methods: In strict, object-oriented fashion, the object can be accessed only through its methods. Most

methods are invoked through messages from edges (connected objects), although methods can also be self-

invoked or invoked globally (typical in broadcast operations). Methods are of bounded length and atomic.

Self-invoked methods may be used to perform recursive operations on a single node. In response to a method

invocation, an object may change its state and send a message (i.e., method invocation) along each of its

edges or may produce a message into a global reduce operation.

Graph Operation: The graph evaluates as a series of synchronized steps. The evaluation model is a

Receive-Update-Send sequence:

1. Graph nodes receive input messages.

2. Graph nodes wait for an activation signal to proceed.

3. Graph nodes perform an update operation.

4. Graph nodes send output messages.

This evaluation sequence is the basis of semantic correctness and scaling. Graph node operations appear

concurrent in that all nodes perform their update and exchange messages between synchronization events

regardless of how they are sequentialized onto physical processing engines. Deterministic computation is

guaranteed by forcing a step’s set of messages to be received before performing each update. The GraphStep

name was selected to emphasize this step-by-step operation.

Global Operations: A central controller can perform global broadcast and reduce operations on the graph or

an activated subset of the nodes in the graph. The broadcast operations are effectively a designated method

invocation on every node.

2.6.2 Relation to Other Concurrent System Architectures

The GraphStep architecture can be seen as a stylized restriction of the Bulk-Synchronous Parallel (BSP)

model [Val90]. Like BSP, its semantics are based on a series of steps synchronized across the entire machine.

The GraphStep architecture is more stylized in that it restricts the computational tasks to method updates

on an object graph and emphasizes communication along object links, whereas BSP takes no stand on how

communication occurs.

GraphStep can also be seen as a Data Parallel model in that operations are performed on a set of concur-

rent objects. The operations are not necessarily homogeneous actions applied to data because:

• Nodes may be of different object types.

• Nodes often depend on methods invoked, which may differ within a single operational step.

13

Dataflow

Multithread/CSP

Sequential Control (BSP)

Data Parallel

 SIMD
(Vector)

GraphStepVLIW

Streaming Dataflow
 (Pipe−and−Filter)

SCORE

Figure 2.1: Portion of Concurrent System Architecture Taxonomy Placing GraphStep

The SCORE architecture [CCH+00] also organizes computation as a graph of nodes. However, there

is a fundamental difference between the semantics of the SCORE model and the GraphStep model in that

SCORE is based on dataflow semantics, while GraphStep is based on lock-step sequential semantics. That

is, SCORE nodes (operators or “filter” using the “pipe-and-filter” terms) synchronize only on the presence

of data on their inputs, allowing some nodes to run ahead of other nodes as long as they have present data.

In GraphStep all nodes are allowed to evaluate each step. In SCORE, a computation may wait for a set of

inputs to occur, whereas in GraphStep, the node processes all the edges that have arrived on a cycle, even

when this is only a subset of the potential inputs. One consequence of the dataflow semantics is that SCORE

allows unbounded FIFOs on the edges (streams, pipes) between nodes, whereas GraphStep demands that all

messages be delivered and consumed synchronously.

Philosophically, GraphStep is a data-centric concurrent system architecture and consequently takes a

very different stand on how computation progresses than either SCORE or traditional, multithreaded com-

putations. In GraphStep, the graph is the fixed point and computations are sent to the data. In SCORE, the

graph is the computation and data is streamed through the graph. In a traditional processor organization, the

computation runs on a processor and data is fetched from memory (possibly remote memory) to the pro-

cessor in order for computation to proceed. Consequently, multithreaded, processor-oriented computations

always involve a round-trip message pair to acquire data. Without careful latency-hiding hardware (e.g.,

[AI87, SCB+98]), the round-trip latency for data fetches can end up limiting exploitable data bandwidth

and computational throughput. In contrast, GraphStep operations have a Continuation Passing Style (CPS)

(e.g., [AJ89]) with execution always moving to the data.

Figure2.1shows a piece of the concurrent system architecture taxonomy, illustrating how GraphStep is

related to the other architectures discussed in this section.

14

2.6.3 Possible Realizations

The concurrent system architecture defines the way the computation should be organized and expressed, as

well as its semantics. While preserving the semantics, the architecture admits to a wide range of implemen-

tations. For example:

• Fully Spatial – The entire graph can be implemented spatially, with each node getting its own pro-

cessing engine and with dedicated links between graph nodes. The graph may be configured on top

of one or more FPGAs (e.g., [BFA96, MHH02, HWD03]).

• Sequential Processor– The entire graph could be processed by a single processor that picks up each

node and executes it in turn. In this case, during data propagation steps, when no global operations

are performed, the implementation may keep an active node set [Hil85] so it can avoid visiting nodes

that have received no messages during the previous GraphStepsend operation.

• Multiprocessor – The graph nodes can be distributed among the nodes of a multiprocessor. Each

processor is responsible for evaluating its nodes in sequence. This could even be realized using

multiprocessor chips with local memory such as MIT’s RAW [WTS+97] or IBM’s Cell [PAB+06].

Processor-in-memory (PIM) message-passing nodes would also let us exploit a close coupling of on-

chip memory and data (e.g., [LRSS84, DFK+92, SMK+96]).

• Specialized Graph Processor– It may be useful to build specialized processors designed to han-

dle the typical operations involved in handling graph node messages. This could include integrated

message handling (e.g., [HJ92, LDK+98]).

• Reconfigurable with Embedded Memories– the graph nodes can be distributed among specialized

graph processing nodes configured on top of an FPGA with the nodes associated with each graph

processing node stored in on-chip, embedded memories (e.g.Block RAMs; see Section2.7.4).

• Object-Specialized Graph Processing Engines– when implementing the nodes on top of an FPGA,

we can potentially assign graph nodes to processing nodes by object type and specialize each process-

ing node to handle a single type of node object.

In practice, the fully spatial case is unlikely to be ideal when supporting graphs with thousands of nodes.

In particular, the GraphStep model demands that we complete communication between phases. That means

we must wait for the worst-case communication latency between nodes in the graph. If this latency is large

(e.g., hundreds of cycles) compared to the processing of a single message or node update (e.g., 1 to 10

cycles), then a fully spatial implementation will spend all of its time waiting for messages to be routed.

Consequently, sharing a processing node among a modest number of graph nodes will better balance out

the computation and communication latency. Effectively, this allows us to use substantially less hardware

without increasing execution time; since the worst-case communication distance shrinks with the size of the

physical hardware, up to a point, this may yield a net reduction in the time required for each GraphStep.

15

Ultimately, node serialization will dominate communication latency and further serialization comes at the

expense of slower computation.

2.7 Example: ConceptNet

As a concrete example, we consider an FPGA implementation of spreading activation on the ConceptNet

Knowledge Base [LS04] and compare this to a C-coded, sequential Pentium implementation.

2.7.1 Knowledge Base

ConceptNet is a knowledge base for common-sense reasoning compiled from a Web-based, collaborative

effort to collect common-sense knowledge [LS04]. Nodes in the ConceptNet knowledge base are nouns

and verb-noun pairs (e.g., “run marathon”). Edges are distinguished by type to denote specific semantic

relationships (e.g., “effect of”, “used for”). The knowledge base is used in natural language processing and

commonsense reasoning tasks. Specific applications to date have included identifying contextual neighbor-

hoods, topic gisting, analogy generation, predictions from sensor data, semantic prediction (projections),

disambiguation, and affect sensing.

A “small” version of the ConceptNet knowledge base contains more than 14K nodes and 27K edges.

The default ConceptNet knowledge base contains 220K nodes 550K edges. There are 25 types of semantic

relationships.

2.7.2 Spreading Activation

A key operation on the ConceptNet knowledge base is spreading activation. In spreading activation, an

initial set of graph nodes are activated; these may be keywords or portions of a natural language text. Based

on the application, each edge is given a weight coefficient based on its type. Starting with an activation

potential of one (1.0) for the initial set of nodes, activities are propagated through the network, stimulating

related concepts. After a series of propagation steps, each node in the network will have an updated activity

factor. Typically, nodes with the highest activity factors are then identified as being most relevant to the

initial query. The spreading activation calculation is similar to neural-network simulation, the difference

being the source of the links and weights, and the fact that the link weights vary based on the application in

which ConceptNet is used, as well as the specific query being performed.

Figure2.2 describes the spreading activation calculation. For actual implementation, this can be opti-

mized while achieving the same semantics. Sequential implementations can take care to visit only nodes

that receive at least one input message in a step. Since the update operation is associative, an implementation

can directly sum the message intostep-activitywithout waiting for the update phase; this avoids the need to

make a full pass over the inputs during the update phase and avoids the need for space to store the full set

of input activities in a step. To avoid buffering all the incoming messages, send and receive phases can be

overlapped.

16

AUPDATE(v1,v2)
tmax= max(v1,v2)
tmin= min(v1,v2)
return (tmax+(1-tmax)×tmin)

SPREADINGACTIVATION

//start with activities of non-initial nodes set to zero
foreachstep

foreachgraph nodeg
// receive
foreach incoming messagem

g.edges[m.edge].activity←m.activity
wait for step synchronization
// update
g.step-activity←0
foreach input edgee to g

g.step-activity← AUpdate(g.step-activity,
e.activity)

g.node-activity← AUpdate(g.node-activity,
e.activity)

// send
foreachoutput edgee from g

if (g.step-activity>THRESHOLD)
send toe.sinkwith

activity=g.step-activity×g.discount
×weight[e.type]

// reset
foreach input edgee to g

e.activity←0

Figure 2.2: Basic Computation for Spreading Activation Calculation

2.7.3 Sequential Implementation

For baseline comparison, we implemented a streamlined version of spreading activation in C to run on

standard microprocessors. The default ConceptNet graph requires more than 30 MB to represent and, con-

sequently, will not fit in the 1 MB on-chip cache on Pentium processors. Even the smallest ConceptNet

graph requires 1.5 MB to represent.

To optimize the sequential implementation, we use an active graph node queue so that we need to visit

only the nodes that have new activity on each graph step. We also use an efficient radix sort data structure

(similar to the one used in [FM82]) so we can extract the highest-activity nodes without walking the entire

graph or payingO(N log(N)) to perform the sort. Both insertion into the activity queue and replacement

in the sort areO(1) operations.

On a typical, modest query (“boy” “play” “park”) on the default ConceptNet database, we allow acti-

17

Small ConceptNet P4-3.4 GHz XC2V6000
8 FPGAs 40 FPGAs
(128 PEs) (512 PEs)

Query per per
initial edges % query edges query FPGA edges query FPGA
nodes visited active time visited time speedup visited time speedup

“run marathon” 1 370 0.45 75µs 81K 15µs 0.63 81K 4.3µs 0.43
“boy”

“play” “park” 3 4600 5.6 0.99 ms 81K 15µs 8.3 81K 4.3µs 5.6
“person” “play”

“dog” “park” 4 22K 27 3.4 ms 81K 15µs 28 81K 4.3µs 20
NYT-Abramoff

article 109 23K 28 3.5 ms 81K 15µs 29 81K 4.3µs 20

Table 2.2: Comparison of Query Execution Times on Small ConceptNet Database

Default ConceptNet P4-3.4 GHz XC2V6000
176 FPGAs
(2048 PEs)

Query initial edges % query edges query total per FPGA
nodes visited active time visited time speedup speedup

“run marathon” 1 450K 27 94 ms 1.6M 19µs 4900 28
“boy” “play” “park” 3 540K 32 110 ms 1.6M 19µs 5800 33

“person” “play”
“dog” “park” 4 920K 55 190 ms 1.6M 19µs 10000 57

NYT-Abramoff article 109 930K 56 190 ms 1.6M 19µs 10000 57

Table 2.3: Comparison of Query Execution Times on Default ConceptNet Database

vation to spread for three steps and visit 539,819 edges. Each edge visit takes about 700 cycles (around

200 ns) including one cache miss to main memory, which accounts for roughly 300 of the 700 cycles. On

average, this includes 12 L1 cache misses that are serviced by the L2 cache at 20 cycles apiece. All told, the

query takes over 386,841,905 cycles, or about 113 ms. This query starts with three graph nodes activated,

so the first few graph steps have moderate activity as activation spreads out from the initial nodes. Queries

that start with many initial terms or high fanout nodes, as is typical in document processing tasks, will start

with more of the graph active and consequently visit more nodes and require greater runtime (e.g., the NYT

query in Table2.2).

To collect data for the sequential implementation, we compiled the code with GCC 3.4.1 with the -O3

option and ran it on a 3.4 GHz Pentium-4 Xeon machine. We used the Pentium cycle counters to capture

complete runtime. Separate non-timing runs were used to collect basic statistics on edges visited. Cache

statistics were captured with the Pentium event counters using PAPI-3.2.1 [BDG+00, PAP06].

Tables2.2and2.3summarize the results from several typical ConceptNet queries.

18

2.7.4 FPGA Implementation

For the FPGA implementation, we place graph nodes into Block RAMs and built a specialized processing

engine for ConceptNet spreading activation, which is pipelined to handle one edge operation per cycle.

Each such processing engine requires 320 Virtex-2 slices. We exploit the dual-port capabilities of the Block

RAM to perform a read of the current graph node state, compute an activity update, and write back the

graph node state in the edge-update pipeline. We connect graph-processing engines together with a packet-

switched or time-multiplexed overlay network (i.e., network-on-a-Chip—see companion paper [KMd+06]).

The processing engine and network operate at 166 MHz (XC2V6000-4). To avoid serial bottlenecks on node

processing, we decompose large nodes, those with high fanin or fanout, into a set of edge-limited nodes using

fanin and fanout trees to preserve the original graph connectivity. To minimize network contention, we place

graph nodes onto processing engine-memory block pairs to maximize locality using an efficient partitioner

(UMpack’s multilevel partitioner,UCLAMLPart4.21.1 [CKM00]) similar to [dD05].

In the simplest case, we use a time-multiplexed network and process every graph node and every edge on

every graph step. That is, we do not exploit activity sparseness. Note that since each edge update occurs in

pipelined fashion, we spend two cycles processing each edge (one sending and one receiving) for a total of

12 ns (XC2V6000-4) compared to the 200 ns per edge for the processor. Further, we get multiple processing

engines per FPGA (e.g., 32 on an XC2V6000), so that we get two to three orders of magnitude higher edge-

processing throughput on the FPGA than on the processor. Since the FPGA implementation processes every

edge, it processes an order of magnitude more edges than the processor in modest queries like (“boy” “play”

“park”); however, it takes no more time to process compound queries that start with more initial terms (see

Tables2.2and2.3).

Each ConceptNet edge can be represented in 32b. Assuming that we can use only a power of two number

of Block RAMs, we use 128 of the 144 Block RAMS on the XC2V6000. This gives us128 × 512 = 64K

edges per XC2V6000. Consequently, it will take at least 16 leaf FPGAs to hold the default ConceptNet.

Our FPGA performance numbers are calculated from a mapped implementation for the key elements

(processing engine and network switches) and a cycle-accurate schedule of a graph step. We mapped our

processing engine and network switches to an XC2V6000-4 and validated 166 MHz operation. On one

XC2V6000, we get 32 processing engines using a Butterfly fat tree (BFT) interconnect structure (see Ta-

ble 2.4). At the root of the leaf FPGAs, we have 4 input and 4 output channels. We use dedicated route

FPGAs with 4 input and output downlinks and two input and output uplinks to continue to connect the leaf

FPGAs up into ap ≈ 0.5 BFT (see Figure2.3 and Table2.5). Based on timing from this implementation

(e.g., cycles per switch, pipeline stages in the processing engine), we completely scheduled computation and

communication in a single graph step for a given number of processors and network organization [KMd+06].

2.7.5 Discussion

As shown in Tables2.2 and 2.3, the reconfigurable implementation gets at least an order of magnitude

speedup per FPGA compared to the processor solution for modest queries. Further, the FPGA shows ex-

19

Slices Total %
Component # Each Slices Area

Processing Engines 32 320 10240 30%
Node Address 448 12/node 5376 16%

Memory max graph nodes/PE
BFT Switches 3630 11%

L1 16π 96 1536
L2 16 T 72 1152
L3 8 π 96 768
L4 8 T 72 576
L5 4 T 72 288

TM Memory 1600 9/cycle 14400 43%
max cycles supported

Total 33646 100%

Table 2.4: Breakdown of Logic in ConceptNet Leaf FPGA with 32 PEs (XC2V6000)

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

Compute
 Leaf
 32 PEs

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

 T
re

e
FP

G
A

Figure 2.3: BFT Network with 128 PEs in 8 FPGAs

20

FPGAs
Total Compute Tree
PEs Leaves Interconnect Total

128 4 4 8
512 16 4×4+8=24 40

2048 64 4×24+16=112 176

Table 2.5: Multichip BFT Composition

cellent scaling to tens and hundreds of FPGAs, whereas the processor version will not scale as nicely. For

compound queries, the advantage per FPGA increases. For the simple queries with low activity, it may

be possible to also exploit sparse activity using packet-switched interconnect to further reduce the FPGA

runtime (see [KMd+06]).

2.8 Variations and Future Work

The applications outlined so far have all worked on static graphs. That is, we know the graph before the

computation starts and the graph does not change during the computation. Further, since the graphs are

known, we can place the tasks offline for spatial locality. Note that placement and routing are graph algo-

rithms, so we expect to be able to use the same machine for placement and routing of the graph as we use to

run the graph algorithms.

One generalization for future work is to efficiently support graph algorithms where the graph changes

during the computation, that is, allow nodes and edges to be added and removed from the graph. In addition

to allowing support for the new nodes, this will demand online placement of the new nodes and routing of

the new links.

Many applications have mostly static graphs. That is, the graph may be large (millions of nodes and

edges), but only a few edges are changed at a time. One example is a large knowledge base that filters out

facts and adds new facts (nodes and edges) as it identifies facts that are not already in the knowledge base.

Another example is a learning-based SAT solver (e.g. [MSS99, ZMMM01]). In these SAT solvers, the

learned clause database becomes large (hundreds of thousands to millions of entries); however, there will be

many graph operations per conflict and each conflict adds only a few clauses to the database. Consequently,

we are changing only a tiny fraction (maybe 0.001%) of the graph at a time.

As noted in Section2.7 our primary comparison is to a static, time-multiplexed GraphStep implemen-

tation. For low activities, a dynamic version might be more efficient. Further, low activities and evolving

graphs might motivate adaptive techniques for graph node placement, perhaps moving nodes based on dy-

namic activity to enhance locality and parallelism.

21

2.9 Related Work

The idea of integrating computing with memory certainly is not new [LRSS84, DFK+92, PAC+97, Mar97,

OCS98, PJA+99, SMK+96]. What is new is a suitable concurrent system architecture that organizes appli-

cations to exploit the parallelism and high memory bandwidth of these hardware architectures. As already

noted in Section2.6.3 many existing or proposed multiprocessor and PIM architectures could be useful

implementation targets.

Some efforts to explore logic and DRAM integration have been focused around other concurrent system

architectures. Active Pages [OCS98] was designed to support a data parallel model that specifically did not

efficiently handle interconnect between pages. Vector IRAM [KP02] supported a vector model, making it

suitable for dense applications, but not necessarily efficient for irregular, sparse-graph applications.

The GraphStep system architecture follows the vision of Hillis’ Connection Machine (CM) [Hil85]. The

CM was an early herald of the data parallel system architecture [HS86], and the first Connection Machines

were SIMD implementations. As Figure2.1suggests, GraphStep is a refinement and restriction on the data

parallel system architecture to more directly and efficiently support parallel graph algorithms.

2.10 Conclusions

The high bandwidth and low latency available from the small, distributed, on-chip memories in modern

FPGAs provide another opportunity for delivering high performance with field-programmable custom com-

puting machines. This opens up the opportunity for these machines to accelerate a distinct and complemen-

tary class of applications to those that traditionally exploit the high computational throughput of FPGAs

and reconfigurable architectures. We can capture many of these data-intensive applications with a sparse,

graph-oriented concurrent system architecture. We show how we can use this system architecture to exploit

the high memory performance of these machines to deliver performance that is orders of magnitude better

than that of microprocessors on these memory-bound applications.

22

Chapter 3

The Dishoom Reconfigurable Compute

Platform

The Dishoom platform, which provides the hardware implementation for MATTER, is organized into a

series of tiles, as shown in Figure3.1. Figure3.2shows a close-up of a single board. The major components

of each tile are a Xilinx XC2V6000-4 FPGA, Xilinx XC2C512 Complex Programmable Logic Device

(CPLD), Arcturus Networks uC-DIMM Coldfire 5272, 128 Mb of Intel FLASH memory, and 512 Mb of

Micron DDR-SDRAM. The uC-DIMM, FLASH, and CPLD are primarily used to program the FPGA. The

FPGA will be used to implement MATTER, while the DDR-SDRAM serves as a high-capacity off-chip

store to complement the on-chip memory. It can also hold data in stasis while the FPGA is reconfigured

dynamically.

The Dishoom platform increases vastly in usefulness when tiles are networked together. The tops and

bottoms of the tiles each have four HSEC8 high-speed connectors from Samtec, one on each edge. When

connected on all four sides, the tiles form a network similar to a 3D Manhattan Mesh, albeit one where each

layer is offset from the one below it. Each connector provides 36 unidirectional signals between FPGAs, at

a speed of 200 MHz, or 7.2 Gb/s.

The Dishoom Virtex 2 FPGA can be programmed over ethernet through the uC-DIMM, which is con-

nected via the CPLD to the FLASH memory. This memory can hold as many as five configuration files for

the Virtex 2 FPGA. The CPLD acts as a programming interface between the FLASH and the FPGA. The

FPGA-CPLD connection also lets the FPGA communicate with the uC-DIMM, and can be used to trigger

mid-execution reconfiguration. Configuration files are delivered through the uC-DIMM through ethernet,

over the Internet or a local intranet. The secondary programming interface is a JTAG chain, available mainly

as a backup and debugging interface.

23

Figure 3.1: Tiled MATTER Dishoom Board

Figure 3.2: MATTER Dishoom Board

24

Chapter 4

Nanowire Chemistry: Dielectrophoretic

assembly, reconfiguration, and disassembly

of nanowire interconnects

This section describes the nanowire chemistry work peformed by Prof. Charles M. Lieber and Alexander D.

Wissner-Gross, at Harvard University. (The connections between this work and the MATTER architecture

are discussed in Section1.2.)

We report the dielectrophoretic assembly, reconfiguration, and disassembly of heavily doped silicon

nanowire interconnects in benzyl alcohol. Electrode pairs with high field enhancement factors enable the

assembly of up to 50-µm-long single-nanowire interconnects, and electrical transport measurements indi-

cate that the nanowires function as 1-MΩ resistances. Phase modulation of one electrode in a set causes

nanowires to reversibly reconfigure between the electrode tips. Moreover, multi-electrode phase modulation

allows parallel reconfiguration of proximal interconnects. Field simulations indicate that this reconfiguration

method can potentially scale to approximately 30 kHz switching speeds. For disassembly of interconnects,

short high-voltage pulses trigger thermal detonation. The controllable reconfiguration of electronic nanos-

tructures in situ opens up opportunities for colloidal, nanoelectromechanical connection architectures with

synapse-like plasticity.

25

Programmability in electronic systems originates from the ability to form and reform nonvolatile con-

nections. Devices in modern programmable architectures, such as FPGAs, typically derive this ability

from controlled internal changes in material composition (antifuses) or charge placement (EPROM and

flash) [Rose93]. However, for bottom-up nanoelectronics applications it may be advantageous to derive

programmability from the manipulation of mobile components in addition to their internal states. Novel

potential applications for which traditional device immobility is disadvantageous include dense arrays of

nanostructure- mediated artificial synapses, breadboards for rapid prototyping of nanostructure circuits, and

fault-tolerant logic in which individual components can be replaced automatically from a reservoir. In this

report we take the first step of demonstrating that the simplest nanoelectronic components and interconnects

can be assembled, reconfigured, and disassembled by an electromechanical process.

Various techniques for manipulating electronic nanostructures have been developed, including opti-

cal [Ritesh05], mechanical [Yu01], and electrical [Jang05,Dong05,Lieber01,Chen05,Bashir03,Harnack03]

methods. Electromagnetic field switching is especially attractive for inexpensive parallel manipulation, and

low-frequency near-field manipulation of neutral structures by dielectrophoresis is potentially less expensive

than optical manipulation because of the low cost of semiconductor processing. Dry dielectrophoresis has

been used to make a carbon nanotube switch [Jang05], but components cannot be replaced by this method.

Wet dielectrophoresis has been previously used to trap a variety of structures, including NiSi nanowires

[Dong05], CdS nanowires [Lieber01], carbon nanotubes [Chen05], silicon blocks [Bashir03], and ZnO

nanorods [Harnack03]. Post-deposition electrical transport measurements were performed after drying the

substrate [Bashir03,Harnack03], making reconfiguration impossible because of van der Waals pinning, or

performed over an uncontrolled large number of pinned parallel interconnects [Chen05]. In this work, for the

first time we demonstrate that dielectrophoresis may be used to reconfigure and disassemble nanoelectronic

devices and that this process is compatible with simultaneous electrical transport.

Near-degenerately p-doped silicon nanowires were grown by established methods [Growth,Yi01] and

then filtered and suspended in benzyl alcohol to remove highly polarizable, free gold catalyst particles. The

nanowire growth wafer was sonicated lightly in isopropanol for1 min. The suspension was vacuum filtered

using a 12-µm mesh (Millipore Isopore). The filter mesh was sonicated in isopropanol, and the suspension

was again filtered. The second filter mesh was sonicated in benzyl alcohol for 2 min and the suspension

was used for trapping experiments. (Doped Si nanowires were grown using 20- to 150-nm diameter Au

nanocluster catalysts, andSiH4 reactant (99.7%) andB2H6 dopant (0.3%) in He (100 ppm), at 450 torr and

450oC. Growth was performed for 10 to 60 min to achieve desired nanowire lengths.)

As a solvent for reconfiguration, benzyl alcohol has the advantages of being relatively viscous (µ≈
5.47cP) and thus inhibiting nanowire motion in the absence of a field [CRC02]. It is nontoxic, protic (al-

lowing stable suspension of silicon nanowires over days), and has a low vapor pressure. For long-term

prevention of nanowire aggregation, it is especially attractive because its permittivity,εs ≈ 11.9ε0, is almost

index-matched to the permittivity of bulk silicon,εnw ≈ 12.1ε0 [CRC02]. Silicon was selected to demon-

strate potential compatibility of our technique with the assembly of more complex devices, such as axial

26

Figure 4.1: Dielectrophoretically assembled single-nanowire interconnects. (a) Schematic illustration of
single-nanowire trapping process. (b) Light microscope image of individual nanowire stably trapped be-
tween electrodes separated by 50µm. Scale bar is 50µm. (c) AC electrical transport curves before (red)
and after (green) nanowire trapping. Calculated parallel transport through nanowire is also shown (blue).
Inset, single nanowire trapped by a 10-µm gap. Scale bar is 10µm. (d) Dry transport curves of nanowires
trapped from ethanol. Successive sweep numbers are indicated. Scale bar is 20µm.

heterostructures [Gudiksen02]. In contrast, carbon nanotubes generally must be chemically functionalized

to prevent aggregation, which can diminish their electrical conductivity [Zhang05].

Trapping experiments were performed with 100- to 250-nm-thick Au/Cr electrodes on a silicon wafer

with a 200-nm oxide, to prevent shorts. Thicker electrodes were found to better allow nanowires to migrate

along their edges toward the trapping region, most likely because of their reduced fringing fields, while

thinner electrodes caused nanowires to make larger contact with the top faces of the electrodes. The electrode

material was selected primarily to avoid oxidative damage and not by Schottky barrier considerations, since

adsorption to electrodes would leave a large contact resistance regardless. Each electrode tapered to a tip at

a 10o angle with a 0.5- to 2.5-µm radius of curvature and a field enhancement factor of∼ 150, in order to

preferentially trap nanowires at the tip.

The nanowire suspension was pipetted onto the electrode chip to form a 100- to 500-µm-thick film [Fig-

ure4.1(a)]. For single-nanowire trapping and generally, electrode pairs were biased at 10 kHz, which lies

above the solvent electrolysis frequency but minimizes parasitic capacitance effects. The bias was modulated

27

Figure 4.2: Reconfiguration of a single nanowire bundle. (a-c) Light microscope images of three-electrode
planar reconfiguration, as the phase of the middle electrode is modulated. Scale bars are 15µm. (A movie
is available in the supplementary information CD-ROM that accompanies this report).

into 10-ms bursts with a period of 100 to 250 ms, which allowed hysteretic migration of nanowires toward

the trapping region while minimizing “burn-in” from nanowires permanently conforming to an electrode.

The amplitudes of the bursts were varied linearly as a function of desired nanowire length in order to keep

power dissipation per unit length along the nanowire constant, and individual nanowires with lengths up

to 50µm were thus stably trapped [Figure4.1(b)]. After averaging over transport hysteresis and subtracting

the parallel solvent conductance, it was found that the nanowires behave as switchable 1MΩ/µm resistances

with a∼ 3 V built-in potential consistent with the work-function explanation [Figure4.1(c)]. Transport mea-

surements occurred at lower voltages than trapping, so nanowire movement is minimal. Trapping nanowires

from ethanol and then allowing the substrate to dry showed that the wires indeed act as 200-400 kΩ/µm

resistances [Figure4.1(d)] with a sharp current turn-on at biases of 7-15 V, suggestive of electromechanical

switching behavior.

Nanowire interconnect reconfiguration was achieved by modulating the phase of a third electrode [Fig-

ure 4.2], locking it opposite the phase of the electrode to which the interconnect is desired. After each

reconfiguration, electrical transport between the third and first electrode was measured with a 20 V peak-

to-peak sawtooth wave bias, in order to exceed the metal work function, and at 10 Hz, in order to slow

electrolysis.

In addition to the reconfiguration of nanowires between adjacent gaps, it is possible both to manipulate

larger numbers of interconnects in parallel and to completely remove an interconnect. Parallel reconfigura-

tion of nanowire interconnects between shared electrodes was achieved by modulating the locked phases of

multiple electrodes [Figure4.3].

Given the average field intensity gradient in this system, it is possible to estimate how rapidly a nanowire

might be dielectrophoretically reconfigured. Consider a Stokes flow model for reconfiguration of a nanowire.

The drag coefficient for an infinitely long cylinder [Tritton88] is given by

CD ≡
fD

1
2ρnwu2d

≈ 8π

Re(2.002− lnRe)
,

wherefD is the drag force per unit length,ρnw is the cylinder density,u is velocity, d is the cylinder

28

Figure 4.3: Parallel reconfiguration of nanowires. (a-c) Light microscope images of parallel reconfiguration
of nanowires among four electrodes. The phases on the upper-right and lower- left electrodes are equal, and
are modulated to induce the reconfiguration. Scale bars are 20µm. (A movie is available in the supplemen-
tary CD-ROM).

diameter,Re ∼ dρsu/µ is the Reynolds number,ρs is the solvent density, andµ is the dynamic viscosity.

Two types of dielectrophoretically induced motion are observed: motion parallel and perpendicular to the

nanowire axis. Under the mean-field approximation, the dielectrophoretic force per unit length along the

field intensity gradient is

fDEP =
εsπd2

8
Re

{
~K(f) · ~5(~E2)

}
,

whereεs is the solvent permittivity and~K(f) is the Clausius-Mossotti factor. For a cylindrical nanowire,

the Clausius-Mossotti components are approximately

K‖(f) ∼=
ε∗nw − ε∗s

ε∗s + (ε∗nw − ε∗s)(1− (1 + (d/2)2/L2)−1/2)
≈ ε∗nw − ε∗s

ε∗s
(d << L)

and

K⊥(f) ∼=
ε∗nw − ε∗s

ε∗s
(
1− π

8

)
+ ε∗nw

(
π
8

)
parallel and perpendicular to the nanowire axis, respectively, whereε∗ ≡ εnw,s − i

σnw,s

2πfε0
are the complex

permitivities of nanowire and solvent, andL is the nanowire length. For the materials in this experiment, the

remaining relevant electrohydrodynamic values are the densitiesρs ≈ 1.04g cm−3 andρnw ≈ 2.33g cm−3

[CRC02]. Nanowires were doped near the metallic limit [Lieber00] so it is estimated thatσnw ∼ 1S/m

and, in this non-electrolytic context, the solvent is assumed to be nonconductive (σs ∼ 0). The terminal

velocityu during switching is found numerically, by matching forces, to be∼ 0.6m/s, suggesting a 30-kHz

reconfiguration frequency for 10-µm displacements.

29

Figure 4.4: Disassembly of nanowire interconnects by high-voltage detonation. (a) Stably trapped nanowire
before detonating voltage pulse. (b) Vapor bubble resulting from thermal detonation. (c) Only submicron
fragments remain, and region is cleared to trap a new nanowire. Scale bars are 20µm.

Interconnect “disassembly”was accomplished with 10-ms bursts at 110 V peak-to-peak for 10-µm elec-

trode spacing [Figure 4.4]. The estimated current density under these conditions is as high as∼ 5× 1010A ·
m−2, which is consistent with thermal detonation. Together with the ability to assemble and reconfigure

colloidal electronic nanostructures, the disassembly of electronic nanostructures is reminiscent of receptor

trafficking for synaptic plasticity [Manilow02].

30

Chapter 5

Activities and Additional Material

5.1 Activities

The group has performed the following activities under this contract:

• Kickoff meeting in Boston, January 7, 2005

• Bi-weekly videoconferences between Caltech, MIT, and SRI

• Visits to Charles Lieber’s lab at Harvard

• André deHon (Caltech) visit to SRI

• Ian Eslick (MIT) visit to Caltech

• DARPA review at Boston (Harvard), March 16, 2005, including tour of nanowire lab

• MATTER retreat in Santa Barbara, California

• Tomás Uribe (SRI) visit to Caltech

• ACIP PI meetings in Monterey, California, and Marco Island, Florida

5.2 Software development

• MIT developed a LISP reference implementation of the ConceptNet algorithm

• MIT developed LISP infrastructure to simulate the concurrent hardware operations

• Caltech and SRI developed two C reference implementations

The SRI team was given access to CVS and SVN source code control repositories set up at Caltech and

MIT.

31

Bibliography

[AI87] Arvind and R. A. Ianucci. Two fundamental issues in multiprocessing. InProceedings of

DFVLR Conference on Parallel Processing in Science and Engineering, pages 61–88, West

Germany, June 1987.

[AJ89] Andrew Appel and T. Jim. Continuation-passing, closure-passing style. InProceedings of

the ACM Conference on Principles of Programming Languages, pages 293–302, 1989.

[Alt05] Altera Corporation, 2610 Orchard Parkway, San Jose, CA 95134-2020.Stratix II Device

Handbook, 4.0 edition, December 2005.

[Bashir03] Lee, S. W.; Bashir, R.Appl. Phys. Lett.2003, 83, 3833.

[BDG+00] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-

face for performance evaluation on modern processors.The International Journal of High

Performance Computing Applications, 14(3):189–204, 2000.

[BFA96] Jonathan Babb, Matt Frank, and Anant Agarwal. Solving graph problems with dynamic com-

putational structures. InProceedings of SPIE: High-Speed Computing, Digital Signal Pro-

cessing, and Filtering Using Reconfigurable Logic, volume 2914, pages 225–236, November

1996.

[CCH+00] Eylon Caspi, Michael Chu, Randy Huang, Nicholas Weaver, Joseph Yeh, John Wawrzynek,

and Andŕe DeHon.Stream Computations Organized for Reconfigurable Execution (SCORE):

Introduction and Tutorial. <http://www.cs.berkeley.edu/projects/brass/

documents/score_tutorial.html >, short version appears in FPL’2000 (LNCS

1896), 2000.

[Chen05] Chen, Z.; Yang, Y.; Chen, F.; Qing, Q.; Wu, Z.; Liu, Z.J. Phys. Chem.B. 2005, 109, 11420.

[CKM00] Andrew Caldwell, Andrew Kahng, and Igor Markov.Improved Algorithms for Hypergraph

Bipartitioning. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 661–666, January 2000.

32

http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html
http://doi.acm.org/10.1145/368434.368864
http://doi.acm.org/10.1145/368434.368864

[CLR90] Thomas Cormen, Charles Leiserson, and Ronald Rivest.Introduction to Algorithms. MIT

Press, 1990.

[CRC02] Lide, D. R., ed.CRC Handbook of Chemistry and Physics; 82nd ed.; CRC Press: New York,

2001, pp. 3-52, 6-163, 12-59.

[DAd+04] André DeHon, Joshua Adams, Michael deLorimier, Nachiket Kapre, Yuki Matsuda, Helia

Naeimi, Michael Vanier, and Michael Wrighton.Design Patterns for Reconfigurable Com-

puting. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 13–23, April 2004.

[dD05] Michael deLorimier and André DeHon. Floating-Point Sparse Matrix-Vector Multiply for

FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Ar-

rays, pages 75–85, February 2005.

[DeH96] André DeHon.Reconfigurable Architectures for General-Purpose Computing. AI Technical

Report 1586, MIT Artificial Intelligence Laboratory, 545 Technology Sq., Cambridge, MA

02139, October 1996.

[DeH00] André DeHon. The Density Advantage of Configurable Computing. IEEE Computer,

33(4):41–49, April 2000.

[DFK+92] William J. Dally, Stuart J. A. Fiske, John S. Keen, Richard A. Lethin, Michael D. Noakes,

Peter R. Nuth, Roy E. Davison, and Gregory A. Fyler. The message-driven processor: A

multicomputer processing node with efficient mechanisms.IEEE Micro, pages 23–39, April

1992.

[DHW02] André DeHon, Randy Huang, and John Wawrzynek.Hardware-Assisted Fast Routing. In

Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines,

pages 205–215, April 2002.

[dKM+06] Michael deLorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Eslick, Raphael Ru-

bin, Toḿas E. Uribe, Thomas F. Knight, Jr., and André DeHon. Graphstep: A system ar-

chitecture for sparse-graph algorithms. InProceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines. IEEE, 2006. To appear.

[Dong05] Dong, L.; Bush, J.; Chirayos, V.; Solanki, R.; Jiao, J.; Ono, Y.; Conley, J. F., Jr.; Ulrich, B.

D. Nano Lett.2005, 5, 2112.

[Fah79] Scott E. Fahlman.NETL: A System for Representing and Using Real-World Knowledge. MIT

Press, 1979.

33

http://www.cs.caltech.edu/research/ic/abstracts/despat_fccm2004.html
http://www.cs.caltech.edu/research/ic/abstracts/despat_fccm2004.html
http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html
http://www.cs.caltech.edu/research/ic/abstracts/smvm_fpga2005.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://csdl.computer.org/comp/mags/co/2000/04/r4041abs.htm
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving network parti-

tions. InProceedings of the 19th Design Automation Conference, pages 175–181, 1982.

[Gudiksen02]Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D.; Lieber, C. M.Nature2002, 415, 617.

[Harnack03] Harnack, O.; Pacholski, C.; Weller, H.; Yasuda, A.; Wessels, J. M.Nano Lett.2003, 3, 1097.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for

artificial intelligence. InProceedings of the International Joint Conference on AI, 1973.

[Hil85] W. Daniel Hillis. The Connection Machine. MIT Press, 1985.

[HJ92] Dana S. Henry and Christopher F. Joerg. A tightly-coupled processor-network interface. In

Proceedings of the Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, 1992.

[HS86] W. Daniel Hillis and Guy L. Steele. Data parallel algorithms.Communications of the ACM,

29(12):1170–1183, December 1986.

[HS95] Andrew S. Huang and John P. Shen. A limit study of local memory requirements using value

reuse profiles. InProceedings of MICRO-28, pages 71–91, December 1995.

[Hua04] Randy Ren-Fu Huang.Hardware-Assisted Fast Routing for Runtime Reconfigurable Com-

puting. PhD thesis, University of California at Berkeley, 2004.

[HWD03] Randy Huang, John Wawrzynek, and André DeHon. Stochastic, Spatial Routing for Hy-

pergraphs, Trees, and Meshes. In Proceedings of the International Symposium on Field-

Programmable Gate Arrays, pages 78–87, February 2003.

[Int05] Intel Corporation. Intel Pentium 4 processor product briefs.<http://www.intel.

com/design/Pentium4/prodbref/ >, December 2005.

[Jang05] Jang, J. E.; Cha, S. N.; Choi, Y.; Amaratunga, G. A. J.; Kang, D. J.; Hasko, D. G.; Jung, J.

E.; Kim, J. M.Appl. Phys. Lett.2005, 87, 163114.

[KM93] Jun-Tae Kim and Dan I. Moldovan. Classification and retrieval of knowledge on a paral-

lel marker-passing architecture.IEEE Transactions on Knowledge and Data Engineering,

5(5):753–761, October 1993.

[KMd+06] Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin, Henry Barnor, Michael J.

Wilson, Michael Wrighton, and André DeHon. Packet-switched vs. time-multiplexed fpga

overlay networks. InProceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines. IEEE, 2006.

34

http://www.cs.berkeley.edu/~rhuang/rhuang_thesis.pdf
http://www.cs.berkeley.edu/~rhuang/rhuang_thesis.pdf
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fpga2003.html
http://www.intel.com/design/Pentium4/prodbref/
http://www.intel.com/design/Pentium4/prodbref/

[KMH01] Tomoyoshi Kobori, Tsutomu Maruyama, and Tsutomu Hoshino. A cellular automata system

with fpga. InProceedings of the IEEE Symposium on Field-Programmable Custom Comput-

ing Machines, 2001.

[KP02] Christoforos Kozyrakis and David Patterson. Vector vs superscalar and vliw architectures

for embedded multimedia benchmarks. InProceedings of the International Symposium on

Microarchitecture, pages 283–293, 2002.

[LDK +98] Whay Sing Lee, William J. Dally, Stephen W. Keckler, Nicholas P. Carter, and Andrew

Chang. An efficient, protected message interface.IEEE Computer, 31(11):69–75, November

1998.

[Lei92] Frank Thomson Leighton.Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann Publishers, Inc., 1992.

[Lieber00] Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M.J. Phys. Chem. B.2000, 104, 5213.

[Lieber01] Duan, X.; Huang, Y.; Cui. Y.; Wang, J.; Lieber, C. M.Nature, 2001, 409, 66.

[LRSS84] Chris Lutz, Steve Rabin, Chuck Seitz, and Don Speck. Design of the mosaic element. In

Paul Penfield, Jr., editor,Proceedings, Conference on Advanced Research in VLSI, pages

1–10, Cambridge, MA, January 1984.

[LS04] Hugo Liu and Push Singh.ConceptNet – A Practical Commonsense Reasoning Tool-Kit. BT

Technical Journal, 22(4):211, October 2004.

[Mar97] Norm Margolus. An fpga architecture for dram-based systolic computations. InProceedings

of the IEEE Symposium on FPGAs for Custom Computing Machines, pages 2–11, 1997.

[MAS+97] Masato Motomura, Yoshiharu Aimoto, Atsufumi Shibayama, Yoshikazu Yabe, and

Masakazu Yamashina. An embedded dram-fpga chip with instantaneous logic reconfigu-

ration. InDigest of Technical Papers Symposium on VLSI Circuits, pages 55–56, 1997.

[McK04] Sally A. McKee. Reflections on the memory wall. InProceedings of Computing Frontiers,

April 2004.

[MCMB93] George Milne, Paul Cockshott, George McCaskill, and Peter Barrie. Realising massively

concurrent systems on the space machine. InProceedings of the IEEE Workshop on FPGAs

for Custom Computing Machines, pages 26–32, April 1993.

[ME95] Larry McMurchie and Carl Ebling.PathFinder: A Negotiation-Based Performance-Driven

Router for FPGAs. In Proceedings of the International Symposium on Field-Programmable

Gate Arrays, pages 111–117. ACM, February 1995.

35

http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps

[MHH02] Oskar Mencer, Zhining Huang, and Lorenz Huelsbergen. Hagar: Efficient multicontext graph

processors. InProceedings of the International Conference on Field-Programmable Logic

and Applications, pages 915–924, 2002.

[MP03] S. Macskassy and F. Provost. A simple relational classifier. InProc. of the KDD-2003

Workshop on Multirelational Data Mining, 2003.

[Manilow02] Manilow, R.; Malenka, R. C.Ann. Rev. Neuro. 2002, 25, 103.

[MSS99] Jõao P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

[OCS98] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active pages: a model of compu-

tation for intelligent memory. InProceedings of the International Symposium on Computer

Architecture, June 1998.

[PAB+06] Dac C. Pham, Tony Aipperspach, David Boerstler, Mark Bolliger, Rajat Chaudhry, Den-

nis Cox, Paul Harvey, Paul M. Harvey, H. Peter Hofstee, Charles Johns, Jim Kahle, At-

sushi Kameyama, John Keaty, Yoshio Masubuchi, Mydung Pham, Jürgen Pille, Stephen

Posluszny, Mack Riley, Daniel L. Stasiak, Masakazu Suzuoki, Osamu Takahashi, James

Warnock, Stephen Weitzel, Dieter Wendel, and Kazuaki Yazawa. Overview of the architec-

ture, circuit design, and physical implementation of a first-generation cell processor.IEEE

Journal of Solid State Circuits, 41(1):179–196, January 2006.

[PAC+97] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

and K. Yelick. A case for intelligent ram: Iram.IEEE Micro, 17(2):34–44, Mar/Apr 1997.

[PAP06] PAPI Project. Performance application programming interface.<http://icl.cs.utk.

edu/papi/ >, January 2006.

[PJA+99] Stylianos Perissakis, Yangsung Joo, Jinhong Ahn, André DeHon, and John Wawrzynek.Em-

bedded DRAM for a Reconfigurable Array. In Proceedings of the 1999 Symposium on VLSI

Circuits, June 1999.

[Pohl78] Pohl, H. A.Dielectrophoresis; Cambridge University Press: Cambridge: 1978.

[Ritesh05] Agarwal, R.; Ladavac, K.; Roichman, Y.; Yu, G.; Lieber, C. M.; Grier, D. G.Opt. Express

2005, 13, 8906.

[Rose93] Rose, J., el Gamal, A., Sangiovanni-Vincentelli, A.Proc. IEEE 1993, 81, 1013.

[SCB+98] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin, Nick Mitchell,

John Feo, and Brian Koblenz. Multi-processor performance on the tera mta. InProceedings

of Supercomputing, November 1998.

36

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html
http://www.cs.berkeley.edu/projects/brass/documents/cmb_vlsi99.html

[SG96] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerging Disci-

pline. Prentice Hall, 1996.

[SMK+96] Toshia Sunaga, Hisatada Miyatake, Koji Kitamura, Peter M. Kogge, and Eric Retter. A

processor in memory chip for massively parallel embedded applications.IEEE Journal of

Solid State Circuits, 31(10):1556–1559, October 1996.

[STO03] Ryan Schneider, Laurence Turner, and Michal Okoniewski. Application of fpga technology

to accelerate the finite-difference time-domain (ftdt) method. InProceedings of the Interna-

tional Symposium on Field-Programmable Gate Arrays, pages 97–105, 2003.

[Tritton88] Tritton, D. J. Physical Fluid Dynamics; 2nd ed.; Oxford University Press: Oxford, 1988, p.

32 and references therein.

[Val90] Leslie G. Valliant. A bridging model for parallel computation.Communications of the ACM,

33(8):103, August 1990.

[WD03] Michael Wrighton and Andŕe DeHon.Hardware-Assisted Simulated Annealing with Appli-

cation for Fast FPGA Placement. In Proceedings of the International Symposium on Field-

Programmable Gate Arrays, pages 33–42, February 2003.

[WF05] J.V. White and C.G. Fournelle. Threat detection for improved link discovery. InInternational

Conference on Intelligence Analysis, 2005.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the obvious.

Computer Architecture News, 23(1):20–24, 1995.

[Wri03] Michael Wrighton. A Spatial Approach to FPGA Cell Placement by Simulated Annealing.

Master’s thesis, California Institute of Technology, June 2003.

[WTS+97] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee, Victor

Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman Amaras-

inghe, and Anant Agarwal. Baring it all to software: Raw machines.IEEE Micro, 30(9):86–

93, September 1997.

[Xil03] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.Xilinx Virtex-II Platform FP-

GAs Data Sheet, October 2003. DS031<http://direct.xilinx.com/bvdocs/

publications/ds031.pdf >.

[Xil05] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.Xilinx Virtex-4 Family Ovreview, June

2005. DS112<http://direct.xilinx.com/bvdocs/publications/ds112.

pdf >.

37

http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html
http://www.cs.caltech.edu/research/ic/abstracts/hwassistsa_fpga2003.html
http://www.cs.caltech.edu/~wrighton/ms_thesis.doc
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds031.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf
http://direct.xilinx.com/bvdocs/publications/ds112.pdf

[Yi01] Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M.Appl. Phys. Lett.2001, 78,

2214.

[Yu01] Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M.Science2001, 291, 630.

[Zhang05] Zhang, Z.-B.; Cardenas, J.; Campbell, E. E. B.; Zhang, S.-L.Appl. Phys. Lett.1995, 87,

043110.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Efficient

conflict driven learning in a boolean satisfiability solver. InProceedings of the International

Conference on Computer-Aided Design, pages 279–285, 2001.

38

Appendix A

MATTER Graph Machine Design Space for

Marker Passing

We sketch the design space for a Graph Machine targeted at Marker-Passing algorithms, and assess the

performance potential and area costs.

A.1 Basic Marker Passing Algorithm

1. Broadcast initial facts/activation to all nodes

2. Repeat until no updates (reach fixed point)

a. Marker-Pass-Step: For each graph node

• Push marker(s) along all appropriate edges

3. Perform Reduce to collect all results

A.2 Key Operations

• Broadcast – send a message (invoke a method) on all graph nodes

• Marker-Pass-Step – perform one step = make local update and push results out all (appropriate) edges

• Reduce – collect results from all graph nodes

 39

A.3 Parameters

Algorithm I Number of initial broadcast operations

R Number of results

Graph V Number of nodes in graph

D Diameter of graph

p Rent parameter characterizing locality of graph

Graph Implementation B Bits per graph node

Graph Machine N Number of processors

M Maximum number of graph nodes per processor

P Clock cycles per graph op on each graph node

Pbcst Clock cycles per broadcast op on each graph node

Preduce Clock cycles per reduce op on each graph node

Cmem Memory capacity per node

Mapping Quality γ Memory filling factor

Technology α Clock cycles to cross one PE width (height)

β Clock cycles to cross chip boundary

Tclk Clock cycle

Timing Talg Time for marker passing algorithm

Tbcst Time for initial broadcast

Treduce Time for final reduce

Tmps Time to compute one marker-pass step

Tcomp Time to perform compute operations

Tcomm Time to perform communication

Tlat Latency for communication operation

Tload Load factor on communication network

(number of cycles due to network bandwidth limitations)

A.4 Basic Relationships

Memory size and folding factor:

M = γ

⌈
V

N

⌉
(A.1)

Cmem ≥ B ×M (A.2)

γ is our fudge factor for imperfect filling of nodes.

A complete marker passing algorithm involves the broadcasts, a set of marking-passing steps, and the

40

reduce.

Talg = Tbcst + D × Tstep + Treduce (A.3)

The longest distance to propagate is the diameter of the graph,D.

D ≤ N (A.4)

We called outPbcst, Preduce separately fromP on the assumption that they are most likely smaller.

Notably, a marker-step op may need to send something out to each of edges, while broadcast and reduce

operations set only one thing or grab one result.

Tbcst ≈ I + Tlat + M × Pbcst (A.5)

Treduce ≈ M × Preduce + Tlat + R (A.6)

Tstep ≈ Tcomp + Tcomm (A.7)

Tcomp ≤ P ×M (A.8)

Tcomm ≥ max(Tlat, Tload) (A.9)

Tlat ≤ α
√

N (A.10)

Tlat here is for a simple 2D configuration. Later, we will look at alternate and more sophisticated models.

We also assume that the node size, and henceα, is independent ofM . This will not be a valid assumption

across an extremely largeM . Also, a better model (accounting for possible superlinear network growth) is

to look at machine size in terms of area, and have a function for area in terms ofN and other parameters

(e.g.p).

A.5 Simple, Optimal Size Calculation

Our goal in this section is to keep it simple and demonstrate the basic calculations and optimizations.

Assuming that latency dominates:

Tstep ≈ P × γ

(
V

N

)
+ α
√

N (A.11)

Minimize by taking derivative and setting equal to zero:

P × V × γ

(
−1
N2

)
+

(α

2

) 1√
N

= 0 (A.12)

41

P × V × γ

(
1

N2

)
=

(α

2

) 1√
N

(A.13)

P × V × γ =
(α

2

)
N(3

2) (A.14)

2× P × V × γ

α
= N(3

2) (A.15)

N =
(

2× P × V × γ

α

)(2
3)

(A.16)

E.g., considerV = 105, α = 1, P = 5, γ = 1

N =
(

2× 5× 105 × 1
1

)(2
3)

= 104 (A.17)

Tstep ≈ 5× 1
(

105

104

)
+
√

104 = 150 (A.18)

M = 1×
⌈

105

104

⌉
= 10 (A.19)

For a broadcast operation:

Tbcst ≈ I + Tlat + M × Pbcst

≈ I + α
√

N + γ

(
V

N

)
Pbcst (A.20)

Taking the derivative and setting to zero will have similar structure with different constants:

N =
(

2× Pbcst × V × γ

α

)(2
3)

(A.21)

Similarly for reduce.

For the full algorithm:

Talg = Tbcst + D × Tstep + Treduce

= I + α
√

N + γ

(
V

N

)
Pbcst

+ D ×
(

P × γ

(
V

N

)
+ α
√

N

)
(A.22)

+ R + α
√

N + γ

(
V

N

)
Preduce

42

= I + R + α (D + 2)
√

N + γ

(
V

N

)
(D × P + Pbcst + Preduce) (A.23)

We have the same powers ofN , so only the constants change.

(D × P + Pbcst + Preduce)× V × γ

(
1

N2

)
=

(
α (D + 2)

2

)
1√
N

(A.24)

(D × P + Pbcst + Preduce)× V × γ × 2
α (D + 2)

= N(3
2) (A.25)

N =
(

2× γ × (D × P + Pbcst + Preduce)× V

α (D + 2)

)(2
3)

(A.26)

A.6 Sequential Optimization and Optimized Sequential Performance Model

A simple marker-passing phase is a transitive closure computation. That is, we are looking for reachability

between some starting points (e.g., properties) and various nodes. In a transitive closure, we need to visit

each node only once. Consequently, the basic algorithm and analysis above is inefficient in the extreme of a

sequential implementation, and most likely wasteful even in the parallel case.

In a sequential implementation, we would make sure to visit each node at most once during a marker

passing phase:

1. For each node:

a. apply broadcast markers

b. put nodes meeting activation criteria into work queue

2. While work queue not empty:

a. pop a node

b. propagate marker out all suitable edges

• if node at end of edge not already marked, mark and add to work queue

A.6.1 Sequential Parameters

Graph Structure and Locality Ea Average number of active edges requiring a fetch

Technology Tfetch Time for a non-local fetch (miss in cache(s))

Architecture/Impl. Tset Time to set state based on broadcast

Tgop Time for graph operation

Timing Tserial Time for serial algorithm

Tivisit Time for initial visits based on broadcast

Tmark Time for marker pass phase

43

A.6.2 Sequential Model

Here, our time is:

Tserial = N × Tivisit + S × Tmark (A.27)

We walk through the entire graph on the initial visit. If the database is large, it will not fit in the cache.

We pay (at least) one expensive fetch bringing in the data item. If it is laid out well relative to the cache

lines, perhaps prefetch brings in the rest of the graph node, so we pay only the one miss.

Tivisit = Tfetch + I × Tset + Tgop (A.28)

We lump together the operations for graph handling (e.g., procedure call overhead) intoTgop.

If the activated set is large, most of the graph fetches will be misses. As each of those follows links, they

may result in cache misses; some will be recently visited, so they will not generate cache misses.

Tmark = Tfetch + Ea × Tfetch + Tgop (A.29)

E.g.Ea = 1, Tfetch = 50, Tgop = 100, S = 0.5N , N = 105:

S × Tmark = 100× 105 = 107 (A.30)

The marker passing phase in the previous example was

D × Tstep = D × 150 (A.31)

If D = N , our simple, parallel version is actually slower (1.5×107) than the serial

case. IfD = log(N) ≈ 17, it is almost 4000 times faster.

A.7 Low Diameter Graphs and Pointer Jumping

A.7.1 Low Diameter Graphs

It may be that all the interesting graphs have low diameter,D, such that long paths are not an issue.

Fahlman suggests that one can add nodes to shorten the graph height; certainly this works for long VC

(virtual copy) chains. Outstanding questions include:

• does this work for all link types we might need to search?

• can we automatically add these link to keepD ≈ log(N) while keeping the node degree bounded?

44

A.7.2 Pointer Jumping

Even if the paths are long, we can probably use pointer jumping (e.g.[HS86] [Lei92]) so we need to perform

only log(D) marking-passing steps instead ofD.

A.7.3 FPGAs and Dishoom Board (2D)

So far, we have collected some anecdotal information:

• At 300 MHz, it takes nine clock cycles to cross a large Spartan 3

• We currently think we can run board-to-board connections (perhaps even crossing an intermediate board)

in less than 3 ns (one clock)

The most straightforward arrangement is to just build a mesh. For simplicity, let’s say we put8 × 8
PEs on the FPGA. Further, let’s assume it takes one clock cycle to cross a PE (maybe that means slowing

the clock to 250 MHz for the Spartan), and one extra clock cycle to cross between chips. That means

α = 2·9
8 = 9

4 (the factor of 2 here is for crossing both dimensions).

However, since we should certainly be able to cross the physical distance of the chip on the printed-

circuit board in one clock cycle, we can do better if we build some hierarchical wiring. The most conserva-

tive (from the PC-board latency standpoint) would be to simply bypass the chip:

Exit FPGA on one side,
 run trace on board,
 enter on far side.

We can now cross chips in three clock cycles, makingα = 2·3
8 = 3

4 .

It is not asking much more to be able to cross between boards and enter the far side of the FPGA, as

shown in the following figure:

45

Trace runs on PCB
 under the FPGA
 and only enters on
 far side.

This lets us cross a chip in two clock cycles, bringingα = 2·2
8 = 1

2 . The row shown above is asymmetric

in timing and wiring requirements. To compensate, alternate rows in the mesh on the FPGA could have the

bypass connection on opposite sides of the chip. Some rows could even have straight-across connections, as

shown below:

A similar bypass would be used in both mesh directions (but only the left↔right bypasses are shown in

the above figure).

We can add an outer layer of boards to support full board bypass. If we can travel across two board

lengths and a pair of connectors in a single clock cycle, this would bring latency down even further:

46

Top Bypass Board

Bottom Bypass Board

Here we cross two full chips in two clock cycles, soα = 2·2
16 = 14. With source-synchronous clocking,

we may pay one additional clock cycle crossing the clock boundaries between chips, so a better number

might beα = 3·2
16 = 38.

A 4096 PE machine would haveTlat = 3
8 × 64 = 24 clocks. At 4 ns, this is a 96 ns cross machine

latency.

A.7.4 FPGAs and Dishoom Board (3D)

By continuing to stack Dishoom processing boards, we can go to three-dimensional topologies. Note that

a horizontal layer actually exists in two staggered layers in the third (vertical) dimension. Further, when

we cross the two boards in a layer, we only change the vertical PE identification by one (unlike in X and Y

where we change it by the width or height of the PEs in each FPGA).

The most direct topology starts with nearest-neighbor board connections:

z+1

z

Here we must switch through two links to achieve∆Z of one. Each board hop requires a chip-to-

chip cycle and a switching cycle in the FPGA. Together, this means it takes four clock cycles to cross one

horizontal plane in the vertical direction. Consequently:

Tlat = α2d

√
N

Nz
+ αz (Nz − 1) (A.32)

HereNz is the number of vertical layers,α2d is theα we have been looking at, which captures distances in

each horizontal plane, andαz is the cycles per plane. In the case above, we notedαz = 4.

47

To minimize latency, we pick the appropriateNz based onN . We take the derivative of EquationA.32:

α2d

√
N ×

(
−1
2

)
Nz

(−3
2) + αz = 0 (A.33)

√
N ×Nz

(−3
2) − 2αz

α2d
= 0 (A.34)

√
N ×Nz

(−3
2) =

2αz

α2d
(A.35)

√
N × α2d

2αz
= Nz

(3
2) (A.36)

N ×
(

α2d

2αz

)2

= Nz
3 (A.37)

Nz = 3

√
N ×

(
α2d

2αz

)2

(A.38)

E.g., N = 214, α2d = 1
4 , αz = 4.

Nz = 3

√
214 ×

(
1/4
2 · 4

)2

(A.39)

Nz = 3

√
214 × (2−5)2 (A.40)

Nz = 3
√

214 × 2−10 (A.41)

Nz = 3
√

16 (A.42)

SoNz is between 2 and 3.

In this case,Tlat ≈ 27 for both 2 and 3.

Tlat =
1
4

√
214

2
+ 4× 1 ≈ 27 (A.43)

Tlat =
1
4

√
214

3
+ 4× 2 ≈ 27 (A.44)

This is slightly smaller thanTlat = 32 for Nz = 1.

If we can go through two vertical connectors in one clock cycle, we could add vertical bypass paths that

allow us to travel∆Z = 1 in a single board hop.

48

z+1

z

This bringsαz down to 2. As shown above, we include a second vertical connector to accommodate the

fact that these bypass wires will now be crossing each other, doubling our local wiring requirement.

E.g.N = 214, α2d = 1
4 , αz = 2.

Nz = 3

√
214 ×

(
1/4
2 · 2

)2

(A.45)

Nz = 3

√
214 × (2−4)2 (A.46)

Nz = 3
√

214 × 2−8 (A.47)

Nz = 3
√

26 = 4 (A.48)

Tlat =
1
4

√
214

4
+ 2× 3 ≈ 22 (A.49)

A.7.5 Dishoom Bandwidth

Each Dishoom board has eight edge connectors ={N,S,E,W} × {up,down}. Each of these carriesBWconn

signals per cycle. The current estimate isBWconn = 40.

If Nz > 1 we have a bandwidth across a Z-axis bisection:

BWz = 4×BWconn ×
N

Nz
(A.50)

Across an X- or Y-axis bisection, we have

BWx = 2×BWconn ×Nz ×
√

N

Nz
= 2 ·BWconn ×

√
Nz ×N (A.51)

49

Considering8× 8 planes of Dishoom boards stackedNz high withBWconn = 40,

we have

BWz = 4× 40× 64 = 10240 (A.52)

BWx = 2× 40× 8×Nz = 640Nz (A.53)

FromBW{x,y,z} we can calculate a lower bound onTload:

Tload >
Gbisect

BWx
(A.54)

hereGbisect is the bisection of the graph. If we haveNz > 1, and the Z-axis bisection bandwidth is larger,

the first cut isGbisect
BWz

; nonetheless, the second bisection will be only a small constant factor (2p) smaller and

must cross the X-axis (Y-axis) bisection.

For the single plane, 64 PE design withα = 3
8 considered above,Tlat = 24.

AssumingBWconn = 40, how large a bisection can we handle before bandwidth

dominates latency?

Tload >
Gbisect

640
= 24 (A.55)

Gbisect ≈ 640× 24 = 1536 (A.56)

Note, if messages are 32 bits wide, this corresponds to only 48 edges.

For theN = 214, α2d = 1
4 , αz = 2 case above, we computedNz = 4 and

Tlat = 22. AssumingBWconn = 40, how large an x-bisection can we handle

before bandwidth dominates latency?

Tload >
Gbisect

640× 4
= 22 (A.57)

Gbisect ≈ 640× 4× 22 = 5632 (A.58)

If messages are 32 bits wide, this corresponds to only 176 edges.

Note: going to a largerNz will increase the latency, but can decrease the bandwidth limit. So, if we

see substantially larger graph bisections, we may need to pay the extra latency to reduce the bandwidth

bottleneck

50

Appendix B

MATTER Graph Machine Operation

Assessment for ConceptNet

Here we begin to sketch the design space for a Graph Machine targeted at supporting the ConceptNet context

calculation (spreading activation).

B.1 Node Decomposition

ConceptNet has some very large nodes. If we atomically assigned nodes to PEs (and hence active memories)

we would be forced to have very large memories—much larger than a single Virtex block RAM and much

larger than the kind of sizes that look promising when we looked at marker-massing in AppendixA. Even

aside from memory size, if a large node is atomically assigned to a processing node, it can serve as a serial

bottleneck. Consequently, we should consider how we can decompose large nodes into smaller, bounded-

degree graph objects. Questions include:

• Should there be a single, fixed-size graph node?

• ...or should there simply be a maximum bound on the execution-level graph node size?

• Should we handle hypergraph links with special edge/fanout nodes? For very high fanouts, should those

be decomposed into multiple graph nodes as well?

• Logically, the graph node should be programmed as a single node. What needs to be done so we can

efficiently decompose the large node into smaller nodes (e.g., how can we (preferably automatically)

figure out the necessary associative transformations for handling data combining)?

• Ultimately, how large should the graph node size bound be?

• How do we place graph nodes on processing nodes (associated memories)?

• How do we efficiently support fanout (fanin)?

• How many bytes per node (base bytes per node + bytes per edge)?

• How do we make the spreading activation score calculation associative?

51

B.1.1 Graph Node Statistics

Total Edges 0–1 2 3–4 5–8 9–16 17–32

Node Count 41189 106272 72224 49804 25640 9305

Total Edges 33–64 65–128 129–256 257–512 513–1024 1025–2048

Node Count 4771 2664 1584 808 406 170

Total Edges 2049–4096 4097–8192 8193–16384 16385–32768 32769–65536 65537–131072

Node Count 59 12 1 0 0 1

Preliminary cuts suggest that we have a bisection cut around 186,000 edges when the original graph is

cut. After thresholding at 128 edges, we get a top cut under 5,000 edges and a second cut around 27,000

edges.

The threshold is a quick way to estimate edge impact of building distributed trees for large fanout nodes.

B.1.2 Graph Object Memory Requirements

Snode = Sbase + Edges× Sedge (B.1)

Sedge = Graph Node Pointer+ Link Type (B.2)

Sbase = Discount+ Score (B.3)

With 20 to 30 link types, Link Type will require at least 5b. With≤ 256K nodes, Graph Node Pointer

will require at least 18b.

Assuming Discount and Score are 16b each:

Snode ≈ 32 + Edges× 24 (B.4)

B.1.3 Fanout

Options:

1. No fanout in net (simply a collection of point-to-point links)

2. Net support for fanout

3. Net does not support fanout, but fanout nodes allow efficient message fanout.

• Placement and topology of fanout nodes based on placement of connections. Perhaps we place the

nodes first, then build the fanout tree nodes to minimize communication requirements

52

B.2 Edge Weighting

Depending on the algorithm, each edge type will be given a different weighting. How do we handle edge

weight mapping?

Options:

• Reserve a slot in every graph edge to insert current weight. This is probably prohibitively expensive,

almost doubling link area.

• Each processing node has its own translation table,i.e., abstract model is a global table. Implementation

pattern is distributed replicas. Update via broadcasts.

1. If number of link types is small, store complete table at every node.

2. If number of link types is large and edges sparsely use link types, store sparse table at every node.

B.3 Sequential Performance Model and Data

We want to decompose the runtime.E.g. we have an anecdotal number of 10 to 15ms per query. How does

this break down? First, break down into visits and time per visit:

Talg =
∑
v∈V

v.visits× v.Tvisit (B.5)

We probably want to know how many nodes are visited and the average number of times each node is visited.

Total V isits =
∑
v∈V

v.visits (B.6)

Nodes V isited =
∑
v∈V

((v.visits > 0)?1 : 0) (B.7)

From this we know the average number of visits (updates) per active node:

E(visits) =
Total V isits

Nodes V isited
(B.8)

It will probably be useful to know the maximum and minimum number of visits, as well,e.g.,

Max V isits = max
v∈V

(v.visits) (B.9)

We will want to break downTvisit. One model will be fixed node work plus work per edge:

v.Tvisit = Tnode fixed + v.Edges× Tedge (B.10)

We will want to be able to break down each of these costs into operation time and memory time. Perhaps,

53

break down into random memory references (cache misses) and ops/local ops.

Tnode fixed = Nrnd × Tmem access + Nlocalops (B.11)

Similarly for each edge:

Tedge = Nernd × Tmem access + Nelocalops (B.12)

B.3.1 Pragmatic Suggestion for Measurement

Useifdef ’s on the code to define various measurements/instrumentation. Run multiple times with differ-

ent defines to collect all the data.

1. turn off everything and simply capture time for complete job (Talg)

2. turn on all event counters (e.g., visits) and turn off all timing counters

3. turn on counter around each node-op only (Tvisit)

4. turn on counter around node-fixed only (Tnode fixed)

5. turn on counter around per edge processing only (Tedge)

We may need to do something else (look at assembly, or use some of the other performance counters) to

break down memory access times.

B.4 Parallel Execution Model

For conceptual simplicity, we start with the assumption that computation proceeds in steps where we perform

on graph update and edge hop per step. This can be relaxed later, but it is easier to think about one set of

message hops occurring at once.

At each node, we keep state:

• current-step-max // all this current-step detail is for message digesting

• current-step-min

• current-step-sum

• current-step-count

• my-activity // this is the aggregate (old “score”)

Computation proceeds in three phases:

1. Receive messages

• initialize all current-step variables to 0 (except, perhaps, min)

• for each message:

1. current-step-max=max(current-step-max,message-max)

54

2. current-step-min=min(current-step-min,message-min)

3. current-step-sum+=message-sum

4. current-step-count+=message-count

2. Update node

• my-activity=f(my-activity,current-step-variables) // assume function is some constant time op

3. Send out updates

• if ((current-step-count>0) && (current-step-sum>THRESHOLD)) for each outgoing edge: send

message with (message-max=current-step-max*edge.weight, message-min=current-step-min*edge.weight,

message-sum=current-step-sum*edge.weight, message-count=current-step-count // not weighted

)

B.5 Parallel Performance Model

Key model parameters are

• Mbits – message bits

• Ein−comp – cycles of computation per input message

• Ncomp – cycles of computation at node once all step messages arrive // i.e. f above

• Eout−comp – cycles of computation per output message

From this, we have

Tgn−comp = Ein−comp ×Max(Inputs) + Ncomp + Eout−comp ×Max(Outputs) (B.13)

If Ein−comp = Eout−comp = Ecomp, then

Tgn−comp = Ecomp × Edges per node + Ncomp (B.14)

We compose the overall performance much as in AppendixA:

Tstep ≈ Tcomp + Tcomm (B.15)

Tcomm ≈ Tlat + Tload (B.16)

Tcomp = GraphNodes per PE × Tgn−comp (B.17)

Together:

Tstep ≈ Tcomp + Tlat + Tload (B.18)

For the whole algorithm:

Talg ≈ Tbcst + D × Tstep + Treduce (B.19)

55

With

Tbcst ≈ I + Tlat (B.20)

and

Treduce ≈ R + Tlat (B.21)

The assumptions above are that the phases do not overlap. Compute and communicate may be able to

overlap, reducingTstep. Note, however, that this cannot offer more than a factor of 2 in savings.

We assume here that every node and every edge is active on every cycle. If that is not the case, we can

replaceGraphNodes per PE with the maximum number of active graph nodes per PE. Similarly, we may

be able to replace the maximum number of input edges with the maximum number of active input edges. By

this model, if there is any activity in a graph node, we will send messages out all output nodes. Of course,

to get a benefit out of these lower-activity cases, we will need well-balanced graph node clustering so that

the maximum number of active graph nodes per PE per step is close to the average number.

B.6 FPGA PE Design Starting Point

Assume that we assign two FPGA Block RAMs per PE. That gives us data 36b wide and 1024b deep. With

each edge requiring less than 36 bits, that means we get roughly 1000 edges per PE. If we limit the edges

per node to 10, we have about 90 nodes per PE (or if we limit them to 100, we have about 10 nodes per

PE). Block RAMs are dual ported, supporting one read and one write per cycle. This suggests a target for

Ecomp = 1. That is, on message arrival, we perform one read, compute the update, and then perform one

write. We provide a pipelined datapath so that we can receive or initiate one edge message per cycle. The

single read and single write are key to making sure we do not have a bottleneck in memory.

The V2-6000 FPGAs have 144 Block RAMs. Consequently, we could put at most 72 such nodes on the

FPGA; 64 PEs arranged in an 8×8 grid might be the appropriate target for simplicity. This gives us about

600 4-LUTs per PE. We need to use this logic to both implement the node and provide the interconnect.

Most likely, each PE has an input FIFO built from SRL16s to buffer between the network and the node.

ConceptNet has around1.6× 106 edges. Assume that breaking up large nodes gives us2× 106 edges.

We get roughly103 edges per PE, so we will need at least 2000 PEs to hold ConceptNet. With 64 PEs per

FPGA, a minimum of 32 FPGAs is needed to hold the entire ConceptNet; 64 FPGAs is probably a more

comfortable number to allow for uneven packing of the graph nodes into the PE node memory. Examples

from AppendixA suggest that we can go to larger machines and reduce the runtime.

Consider using8 × 8 planes of Dishoom boards as the base and stackingNz of those high. Assume

Ecomp = 1 andNcomp = 0 (for simplicity, assuming it will be dominated byEcomp). Take the Dishoom

bandwidth and latency from AppendixA. AssumeGbisect = 3× 104 and each node message is 32b wide.

56

Tcomp ≈ 2× 106

64× 64Nz
(B.22)

Tload ≈ 3× 104 × 32
640×Nz

(B.23)

Tlat ≈
(

3
4

)
64 + 4 (Nz − 1) (B.24)

Collapsing more constants:

Tcomp ≈ 5× 102

Nz
(B.25)

Tload ≈ 1.5× 103

Nz
(B.26)

Tlat ≈ 48 + 4 (Nz − 1) (B.27)

This gives us

Nz NFPGA Tcomp Tload Tlat Tstep

1 64 500 1500 48 2048

2 128 250 750 52 1052

4 256 125 375 60 560

8 512 63 188 76 327

Running at 200 MHz, this is 1.5→10µs per step. Assuming 8 steps, this is 12 to 80µs for the application

(maybe say 10 to 100µs).

The sequential version runs in 10 ms, so we can estimate a performance improvement of two to three

orders of magnitude.

57

	Flynn_FA8750-05-C-0011.pdf
	1 Introduction
	1.1 Overview of the MATTER Graph Machine
	1.1.1 Optimization Prospects
	1.1.2 Graph Model
	1.1.3 Folding onto Memory
	1.1.4 Graph Node Implementation Microarchitectures
	1.1.5 Interconnect Microarchitecture
	1.1.6 Graph Usage Patterns
	1.1.7 Results: Speeding Up Cognitive Applications

	1.2 Nanowires and MATTER
	1.2.1 Adaptive Growth

	2 A System Architecture for Sparse-Graph Algorithms
	2.1 Comparison Notes
	2.2 Introduction
	2.3 Raw Memory Performance
	2.4 Idea
	2.5 Graph Applications
	2.6 GraphStep System Architecture
	2.6.1 System Architecture Description
	2.6.2 Relation to Other Concurrent System Architectures
	2.6.3 Possible Realizations

	2.7 Example: ConceptNet
	2.7.1 Knowledge Base
	2.7.2 Spreading Activation
	2.7.3 Sequential Implementation
	2.7.4 FPGA Implementation
	2.7.5 Discussion

	2.8 Variations and Future Work
	2.9 Related Work
	2.10 Conclusions

	3 The Dishoom Reconfigurable Compute Platform
	4 Nanowire Chemistry: Dielectrophoretic assembly, reconfiguration, and disassembly of nanowire interconnects
	5 Activities and Additional Material
	5.1 Activities
	5.2 Software development

	Bibliography
	A MATTER Graph Machine Design Space for Marker Passing
	A.1 Basic Marker Passing Algorithm
	A.2 Key Operations
	A.3 Parameters
	A.4 Basic Relationships
	A.5 Simple, Optimal Size Calculation
	A.6 Sequential Optimization and Optimized Sequential Performance Model
	A.6.1 Sequential Parameters
	A.6.2 Sequential Model

	A.7 Low Diameter Graphs and Pointer Jumping
	A.7.1 Low Diameter Graphs
	A.7.2 Pointer Jumping
	A.7.3 FPGAs and Dishoom Board (2D)
	A.7.4 FPGAs and Dishoom Board (3D)
	A.7.5 Dishoom Bandwidth

	B MATTER Graph Machine Operation Assessment for ConceptNet
	B.1 Node Decomposition
	B.1.1 Graph Node Statistics
	B.1.2 Graph Object Memory Requirements
	B.1.3 Fanout

	B.2 Edge Weighting
	B.3 Sequential Performance Model and Data
	B.3.1 Pragmatic Suggestion for Measurement

	B.4 Parallel Execution Model
	B.5 Parallel Performance Model
	B.6 FPGA PE Design Starting Point

