Reanalysis of Skylab S-194 L-band data in view of validating sea surface roughness corrections for salinity measurements from space

Nicolas Reul, Joseph Tenerelli and Bertrand Chapron
IFREMER
Laboratoire d’Océanographie Spatiale
Brest, France 29200
Email: nreul@ifremer.fr

Doug Vandemark
NASA/GSFC
Wallops Island, USA

Abstract—Of the satellite radiometer sensors, there has been only one instrument that provides any heritage at L-band: the Skylab S-194 instrument that operated in the 1970s. From an analysis of S-194 brightness temperature (Tb) sensitivity to SSS, SST and wind speed, [1] concluded that the wind speed dependence of L-band brightness temperature at nadir is about 0.16 K/knot. This is almost four times higher than what is predicted by recently developed sea surface emissivity models at L-band and twice the experimental value reported during the Bering Sea Experiments [2].

To investigate the possible reasons for such discrepancies, two data sets acquired by the S-194 Skylab instrument from 1973-1974 missions are used in the present paper in conjunction with products from climate model reanalysis projects as ancillary data. The re-analyses shows that it is very likely that [1] overpredicted the quasi-linear wind speed dependence of L-band sea surface emissivity at nadir by a factor of about 2. Main discrepancies being due to different wind speed data used in the analysis. Still, we found that emissivity models for the foam free sea surface based on the small perturbation method underestimate the roughness impact at nadir by a factor of 2. Including the foam impact cannot explain all the differences.

I. INTRODUCTION

Space-borne sea surface salinity (SSS) observations are considered as a promising technique for future oceanographic satellite missions. New developments in L-band radiometry will provide the key technology to obtain salinity estimates with sufficient accuracy. The ESA SMOS mission, currently under preparation, and the proposed US/Argentinean Aquarius mission will facilitate the first space-borne salinity measurements from 2007 onwards.

The current empirical understanding of the sea surface emissivity at 1.4 GHz mainly relies on a few experiments conducted in the 1970s ([1], [3], [4], [2]) and from recent field studies performed in the context of the future SMOS ([5], [6], [7]) and AQUARIUS ([8]) missions.

Data acquired during these experiments from either towers, aircraft and satellite sensors have all demonstrated that the sea surface emissivity at L-band being dependent on salinity is also function of the ocean surface roughness. Recently conducted experiments provided estimates of the wind speed sensitivity of L-band sea surface emissivity only for incidence angles larger than 25°. As SMOS will provide multi-angle brightness temperature, it is important to validate roughness corrections for low incidences around nadir as well.

Of the past measurements, there have been only two campaigns that provide near nadir data at L-band: the data from the Skylab spaceborne S-194 radiometer [1] and the Bering sea Experiment aircraft data [2]. From an analysis of S-194 brightness temperature (Tb) sensitivity to SSS, SST and wind speed, [1] concluded that the wind speed dependence of L-band brightness temperature at nadir is about 0.16 K/knot. This is almost four times higher than what is predicted by recently developed sea surface emissivity models at L-band (two-scale [7], and Small Slope Approximation [9]) and twice the experimental value reported by [2] (0.154 K/ [m.s$^{-1}$]).

To investigate the possible reasons for such discrepancies, two data sets acquired by the S-194 Skylab instrument from 1973-1974 missions are used in the present paper for re-analysis: (i) the first includes parts of the data set from [10], recently reanalyzed by [11] for Soil Moisture purposes, for which several tracks were available over the ocean, but no coincident ground truth is available; (ii) the second set of data is extracted from the NRL report of [1]. In this analysis, Lerner and Hollinger used an approximate model for the sea water dielectric constant [12] and crude auxiliary data. Using a more accurate dielectric constant model at L-band ([two-scale [7], and Small Slope Approximation [9]]) and twice the experimental value reported by [2] (0.154 K/ [m.s$^{-1}$]).

To investigate the possible reasons for such discrepancies, two data sets acquired by the S-194 Skylab instrument from 1973-1974 missions are used in the present paper for re-analysis: (i) the first includes parts of the data set from [10], recently reanalyzed by [11] for Soil Moisture purposes, for which several tracks were available over the ocean, but no coincident ground truth is available; (ii) the second set of data is extracted from the NRL report of [1]. In this analysis, Lerner and Hollinger used an approximate model for the sea water dielectric constant [12] and crude auxiliary data. Using a more accurate dielectric constant model at L-band ([two-scale [7], and Small Slope Approximation [9]]) and twice the experimental value reported by [2] (0.154 K/ [m.s$^{-1}$]).
Reanalysis of Skylab S-194 L-band data in view of validating sea surface roughness corrections for salinity measurements from space

Abstract

II. SKYLAB DATA SET RE-ANALYSIS

A. SkyLab data sets

Skylab was launched on May 14th, 1973 in a near-circular Earth orbit. Orbital inclination was 50° and the nominal altitude was 435 km. The S-194 microwave sensor was a nadir viewing L-band H polarization radiometer. It utilized a fixed planar array antenna oriented toward nadir, recording thermal radiation at a frequency of 1.4 GHz (21-cm wavelength) and measuring the absolute antenna temperature. The sensor used a calibration scheme referenced to fixed hot and cold load input. [1] analyzed several aspects of the data quality of the S-194 sensor, which included an evaluation of the absolute accuracy and stability. Over the course of the entire series of data collection passes (7 through 98) they found that the standard error was approximately 1.3 K with close to zero bias. Half-power beam width of the sensor was 15°, which provided a swath width or resolution footprint of approximately 110 km at an orbital altitude of 435 km. Data were recorded approximately three times per second, which resulted in a distance between centers of two consecutive resolution cells on the ground of 2.5 km.

There were several Earth remote sensing experiments conducted using the S-194 instrument. These included coverage of specific targets and also larger regions that were not the focus of the specific experiment. [1] state that they had data from 27 passes for their ocean studies. A compendium of all the S-194 measurements analyzed by [1] including collected ground truth data (sea surface temperature (SST), sea surface salinity (SSS), wind speed and sun elevation angle) is available in [1]. The measured antenna temperatures were averaged for a period of several minutes and re-calibrated. Note also that the corresponding estimated ground truth SSS, SST and wind speed data in [1] were given to the nearest 0.5 psu, 1 °C and 1 m/s, respectively.

Other sets of Skylab S-194 data were recently recovered and reprocessed by [11] to conduct soil moisture analysis (data available on the web). The only data they were able to obtain were those used by [10] corresponding to several days in 1973 and 1974. Portions of several tracks from these data extend over the ocean and are used here for re-analysis. Unlike the analyzed data in [1], the antenna temperature provided by [11] are not averaged but given at about 0.3 Hz, not re-calibrated and as well, no ground truth data are given over the ocean. Figure 1 summarizes the tracks of the S-194 oceanic data available combining these two sources.

B. Re-analysis

The sea surface brightness temperatures observed by a radiometer at frequency f, looking at nadir can be expressed as follows:

$$T_B = T_s \cdot \epsilon_s = T_s \left(1 - |R^{(0)}|^2\right) + \Delta\epsilon$$ \hspace{1cm} (1)

where T_s is the SST, ϵ_s is the sea surface emissivity, $R^{(0)}$ is the Fresnel reflection coefficient at nadir, and the $\Delta\epsilon$ term is the emissivity changes due to the rough sea surface.

In the following analysis we compare the S-194 satellite-derived emissivity ϵ_s with emissivity computed assuming a flat sea surface using the Klein and Swift dielectric constant model [13] applied to SSS and SST data extracted from World Ocean Atlas 2001 (WOA) monthly SSS climatology at 1°×1° resolution and ECMWF ERA-40 reanalysis on a 2.5x2.5° grid, respectively. For each satellite measurement we bilinearly interpolate the SSS field nearest in time to the observation point, and we use the same method for SST and 10 m wind.

To derive the sea surface emissivity from the satellite measurements, we must correct the antenna temperatures for atmospheric emission, attenuation, cosmic and galactic radiation, and sun glint. For this analysis we only consider data for which the sun elevation angle is less than 70° and we make no sun glint correction to the remaining data. In this case, we can write the antenna temperature T_A as

$$T_A = (1-A)\epsilon_s T_s + T_u + (1-A)(1-\epsilon_s) [T_d + T_{gal} + T_{cos}] \hspace{1cm} (2)$$

where, A is the total atmospheric attenuation from the surface to the satellite, ϵ_s is the sea surface emissivity, T is the SST and T_d, T_{gal}, T_{cos} T_{gal} are brightness temperatures corresponding to, respectively, downwelling atmospheric radiation, downwelling galactic radiation, and downwelling cosmic background radiation.

We compute atmospheric attenuation and emission using the Millimeter-wave Propagation Model MPM described in [14]. We consider absorption due to water vapor and molecular oxygen, which are the major contributors to atmospheric absorption and emission at L-band. Although cloud liquid water and ice contribute to atmospheric absorption, their contributions are small relative to those of oxygen and water vapor [15].

For water vapor, temperature and pressure as a function of height, we use ECMWF ERA-40 reanalysis on a 2.5x2.5° grid, which provides data up to about 50 km. For each satellite observation, we use the reanalysis grid nearest in time and then interpolate pressure, temperature and relative humidity in space to the satellite subpoint. We then discretize the atmosphere along the nadir path between the satellite and the
surface into 50 m grid intervals from the surface to 50 km. We
then fit natural splines to the model data and compute, at each
level, atmospheric absorption coefficients for water vapor and
oxygen. If we let \(\alpha(z) \) represent the total absorption coefficient
in nepers, then the optical path \(\tau \) between heights \(z_0 \) and \(z_1 \) is

\[
\tau(z_0, z_1) = \int_{z_0}^{z_1} \alpha(z) dz,
\]

and the total atmospheric attenuation from \(z_0 \) to \(z_1 \) is then

\[
A(z_0, z_1) = e^{-\tau(z_0, z_1)}
\]

The downward atmospheric emission at the sea surface is

\[
T_d = \int_{z_s}^{z_t} \alpha(z) T_a(z) A(z_s, z) dz
\]

and the atmospheric emission at the top of the atmosphere is

\[
T_u = \int_{z_s}^{z_t} \alpha(z) T_a(z) A(z, z_t) dz
\]

In the above expressions for \(T_d \) and \(T_u \), \(T_a(z) \) is the atmo-
spheric temperature at height \(z \), \(z_s \) is the sea surface height, and \(z_t \) is the top of the atmosphere which is taken to be 50 km.

The cosmic background brightness temperature \(T_{cos} \) assume to be 2.7 K and is independent of incidence angle.

For the galactic background brightness temperature \(T_{gal} \) we use the data from [16] and presented in [17]. For simplicity we only consider the contribution from the nadir direction. Using equations presented in [17] we transform each satellite observation location onto the celestial sphere, obtain the galac-
tic brightness contribution, and then attenuate the resulting brightness temperature by the atmosphere to obtain the galactic contribution to \(T_b \) incident at the earth’s surface.

III. RESULTS

Antenna temperatures for all satellite observations are shown in Figure 2. We only considered observations at distances from coast exceeding than 120 km to avoid side-
lobe contamination by land. In accordance with [1] and [10], we found atmospheric transmittance and upward atmospheric brightness temperatures of order 0.99 and 2 K, respectively. As illustrated in Figure 3, the total atmospheric and galactic corrections are almost uniform over the complete data set and of order 7-8 K.

Figure 4 shows the difference \(\Delta\varepsilon \) as function of wind speed between emissivity inferred from S-194 antenna temperatures (corrected for atmospheric, cosmic, and galactic contributions) and emissivity computed by assuming a flat sea surface using the dielectric model of [13] for sea water. Note that in producing this figure, we remove the mean \(\Delta\varepsilon \) for each pass of the Eagleman and Lin [10] data and for all the Lerner and Hollinger data. This was done to remove clear biases in certain passes (particularly during the month of june) possibly due to calibration issues. The linear best fit through the wind speed-binned averaged data is shown in Figure 4 and exhibits a slope...
of 6.2 \times 10^{-4} \text{ per m.s}^{-1} which corresponds approximately to an increase in brightness temperature of about 0.17 K per m.s^{-1} at an SST of 15°C. Assuming an SST of 0°C, the Bering sea measurements [2] indicates a sensitivity with wind speed of 5.7 \times 10^{-4} \text{ per m.s}^{-1}, which is very close from Skylab data deduced sensitivity.

In comparison, we plot as well the results predicted by the Small Slope Approximation (SSA) theory as applied in [9], which exhibits a linear slope of around 3.5 \times 10^{-4} \text{ per m.s}^{-1}. Despite the large scatter in the Skylab data, it is clear that SSA model underpredicts the observed wind sensitivity at L-band and nadir.

IV. DISCUSSION AND CONCLUSIONS

In preparing for future L-band passive microwave sea surface salinity satellite missions, investigators have employed ground, aircraft and satellite sensors. Of the satellite sensors, there has been only one instrument that provides any heritage at L-band: the Skylab S-194 instrument that operated in the 1970s. Here several dataset from the S-194 missions have been re-analysed expecting that the effort will expand our knowledge of the L-band brightness temperature over the ocean. In this investigation we explored the use of products from climate model reanalysis projects as ancillary or alternative validation data.

Despite a large scatter in the data, which might be due to several reasons (calibration issues, bad quality ancillary data, etc...) the re-analyses showed that it is very likely that [1] overpredicted the quasi-linear wind speed dependence of L-band sea surface emissivity at nadir by a factor of about 2. The results from our reanalysis is consistent with previous aircraft measurements by [2]. As revealed by Figure 5, which shows the linear fits of the wind excess emissivity \Delta e for four combinations of auxiliary data, the wind speed data used by Lerner and Hollinger in their analysis are mostly responsible for the different sensitivity observed. Still, we found that emissivity models for the foam free sea surface based on the small perturbation method underestimate the roughness impact at nadir. According to [2], a 0.07K/\% of whitecap coverage should be expected at nadir. This translates into an increase of the total wind excess emissivity slope of about 4.3 \times 10^{-4} per m.s^{-1}, still underestimating the observations.

REFERENCES