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1 Introduction

Movies of the Solar atmosphere reveal motions and variations of brightness.
In particular a sequence of two coronal images may exhibit the plane-of-
the-sky component of the speed combined with variation of the signal. The
present work focuses on solar extreme-ultraviolet images as produced by the
Extreme ultraviolet Imaging Telescope (EIT) aboard the Solar Heliospheric
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Observer (SoHO). Our aim is to estimate both the apparent motion vector
and the variation of brightness from two successive images. The Motion and
brightness Variation Tracking (MoVaTrac) algorithm is based on a multi-
scale optical flow algorithm derived from a local gradient-based technique.
We demonstrate a new differential rotation measurement technique and the
identification of coronal events as outliers to the differential rotation or as
regions exhibiting a significant brightness variation. Space weather services
have motivated this study. The range of potential interests includes but also
extends beyond early warnings of flares and coronal mass ejection (CME) on-
sets. It includes for example studies of nanoflares or macrospicules, coronal
seismology, MHD and EIT wave investigations, etc.

1.1 New Challenges in Space Weather Forecasting

The study of solar activity is needed for the protection of satellites, human
space activities, etc. Scientists investigate the influences of solar events -flares
and Coronal Mass Ejections (CMEs)- on the Earth environment. One crucial
task in space weather applications consists in predicting major geomagnetic
disturbances from the observation of the Sun corona and in situ records in
the interplanetary space. Expert observers are carrying out the forecast,
by especially using extreme ultraviolet coronal images from the Extreme ul-
traviolet Imaging Telescope (EIT, Delaboudiniere et al. (1995)) instrument
aboard SoHO (Solar and Heliospheric Observatory). Early CME signatures
include intensity variations in EUV images such as dimmings, EIT Waves, or
motions such as loop openings and prominence eruptions. Since CMEs can
cause geomagnetic storms, a fast detection of these signatures is very usefull
to the space weather forecasters. Improving the prevision of geomagnetic dis-
turbances from solar observations is a crucial task for space weather forecast
centers. In the low corona, CME onset signatures include filament eruptions,
coronal dimmings, EIT waves, loop openings, post-eruption arcades observed
in the EUV and sigmoid-to-arcade restructuring in soft X-rays (Hudson &
Cliver, 2001). Unfortunately, image processing of solar EUV image sequences
is difficult. The main problems stem from the noise, the variations in source
brightness discussed in Sect. 1.2, the swift and hence under-sampled topo-
logical changes, the lack of spatial resolution (spatial aliasing) and the trans-
parency.

1.2 Dynamics in the Corona

The dynamic nature of the solar atmosphere has been observed and modeled
(Rosner et al., 1978; Moses et al., 1997; Schrijver et al., 1999). The re-

3



cent years have accentuated the irrelevance of stasis in studying the physics
of the chromosphere, transition region and corona. Dynamics is concerned
with the effects of forces upon motion. Reciprocally, the knowledge of move-
ments and accelerations must constrain the models, validating or falsifying
consequently the underlying physics. While forces are invisible, motion can
be quantitatively estimated by observational means. Both spectroscopy and
image sequences can reveal motion. Spectroscopy informs on the line-of-sight
(LOS) velocity component for traveling plasma, whilst movies exhibits only
the transversal component of the speed. Both approaches have their respec-
tive advantages and restrictions, but they are complementary when the two
types of observations coincide (e.g. Kucera et al., 2003). The shifts must in
that case be of the order of the resolution element, i.e. macroscopic. The
present work deals only with the second method. It specially focuses on
solar extreme ultraviolet (EUV) images as produced in surfeit by EIT (De-
laboudiniere et al., 1995) on board SoHO (see for instance Fig. 1), TRACE
(Handy et al., 1999) or SPIRIT-CORONAS (Oraevsky & Sobelman, 2002).
Yet, the presented developments has the potential to be applied on magne-
tographic, photospheric and coronographic image sequences or future data
such as SWAP/Proba2, AIA/SDO or SECCHI/STEREO.
Introducing the concept of apparent motion states immediately a fundamen-
tal limitation of imaging data: images are projections in the 2D plane of the
sky of 3D features. This problem of perspective in the mostly transparent
corona creates not only geometrical distortions of the velocity fields but also
ambiguities if more than one "feature" superimpose on the LOS. It also gen-
erates annoying occultations where opaque objects such as prominences or
the solar disc itself are considered. However, apparent motion goes beyond
mere projection effects: motion tracking algorithms, as well as human ob-
servers, can trace only intensity patterns but not actual plasma blobs. With-
out spectroscopic information, propagating brightness patterns are a priori
indistinguishable from actual motions (De Groof et al., 2004). Fortunately,
at the same time, this ambiguity gives access to a range of wave phenomena
able to bring physical insights of their own (e.g. Deforest & Gurman, 1998;
Klimchuk et al., 2004). Noglik et al. (2005) calculate the reconnection rate
from the estimated velocity at which successive loops brighten.
Nevertheless, solar rotation dominates the motion in image sequences. Re-
cent works (e.g. Braj~a et al., 2001; Vr~nak et al., 2003) have studied differ-
ential rotation in various layers of the atmosphere. The present report uses
their results for calibration purposes. In a future publication, our method
eases the survey of solar rotation over long periods. After differential rotation
compensation, residual motion brings a wealth of insights. Coronal activity
is obviously not limited to mere topological evolutions and rearrangements.
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a. EIT image J 1. b. EIT image J2.

Figure 1: A sequence of two successive EIT images observed on 1998-05-03,
repectively at times 21:00:21 (I1) and 21:12:09 (12) in the CME Watch mode,
at the wavelength 19.5 nm.

Temperature and density variations are ubiquitous. When they combine with
instrumental passbands, the observed volumes of plasma brighten or darken.
As long as too few bandpasses are recorded, the differential emission mea-
sure (DEM) cannot be recovered and it is necessary to separate motion from
brightness variations (BV). We will see in Sect. 2.3.1 the required conditions
for such disentanglement.
Estimating both speed and brightness variations in parallel is mathematically
logical and also physically meaningful; solar activity exhibits both motion
and brightenings, flaring and dimmings. A technique capable of producing
velocity and BV maps addresses essentially all phenomena seen in imag-
ing data. Space weather services have motivated this study (e.g. Hochedez
et al., 2005), although the range of potential interests extends beyond early
warnings of flares and Coronal Mass Ejection (CME) onsets. It includes
for example studies of nanoflares or macrospicules, coronal and seismology,
MHD and EIT wave investigations, etc.

1.3 EUV Sequence Analysis of the Solar Corona

There exist three main classes of methods for motion analysis of a sequence of
two images (Barron et al., 1992) : gradient-based (local or global), matching-
based and feature-based. Gradient-based and matching-based, such as Local

Correlation Tracking (LCT) are said to be dense, contrary to feature-based
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methods, in the sense that they provide an estimation of the velocity at ev-
ery pixel and not only at sparse features. Dense does not mean that the
quality of the estimation is uniform over the image, and we expect that some
solar regions have better estimations, since motion is better defined at these
locations. In feature-based methods, the extraction of the features is a prob-
lematic preprocessing step.
Several authors have proposed matching techniques based on the local corre-
lation tracking (LCT) for sequences of solar images at the photospheric level
(November & Simon, 1988; Welsch et al., 2004). This technique has also
been modified by Roudier et al. (1999) and applied to TRACE photospheric
data (see Krijger et al., 2002; Krijger & Roudier, 2003). In order to process
vector magnetograms, Longcope (2004) estimates the velocity by minimizing
an energy term. Their "minimum energy fit" enforces consistency with the
magnetic induction equation. All these techniques deal with photospheric
velocity flows.
To our knowledge and apart from our early results (Gissot et al., 2003), dense
velocity field estimations, have not been calculated from EUV sequences of
the corona. Braj~a et al. (2001) uses a feature-based method to track bright
points and point-like structures (PLS). Each feature is a point in the (b, wrot)
plane where b is the heliospheric latitude and Wrot is the angular velocity.
The authors then fit a parametric model of differential rotation through the
cloud of feature points. This method is sensitive to the reliability of the
feature extraction. In this report, we present a multiscale optical flow (OF)
algorithm derived from the work of Lucas & Kanade (1981) (LK), which
states a local gradient-based technique. Our aim is to estimate both the
fields of apparent displacement and brightness variation from two successive
images.
We further demonstrate a new differential rotation measurement and the
identification of coronal events as outliers to the differential rotation or as
regions exhibiting a significant BV. We apply the algorithm on EIT sequences
of May 3, 1998 (Fig. 1) and April 17, 1999, that have been observed during
the CME Watch observation mode at the wavelength 19.5 nm (Fe XII spec-
tral emission line). The report is organized as follows : in Sect. 2, we present
the formulation of our new method of motion analysis. In Sect. 3, we show
the results of the calibration of the method on synthetic signals and discuss
the analysis of observations in Sect. 4.
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2 MovaTrac: A New Algorithm Analyzing
Sequences of EUV coronal Images

In order to calculate the coordinates of the velocity vector for each pixel, we
can establish the optical flow (OF) using the brightness constancy assumption
(BCA). The BCA (Horn & Schunck, 1981) states that the source of intensity
remains constant over time. This provides a single equation per pixel -the
optical flow constraint equation (OFCE)- while there are two unknowns,
namely the 2 velocity vector coordinates. This is the aperture problem. To
solve this under-determination, following Lucas & Kanade (1981), we fur-
ther assume the local uniformity of the velocity field in the neighborhood of
a pixel. An alternative approach would be to solve globally and iteratively
until convergence of the velocity field (Horn & Schunck, 1981) by adding
a constraint on its smoothness. The disadvantage of this other method is
that bad estimations can propagate to the rest of the image through the
smoothing. Furthermore a local diagnostic on the quality of the estimation
is impossible because the solution is global. Other important approaches to
optical flow computation are probabilistic (Simoncelli et al., 1991; Simoncelli,
1999) or robust minimization (Black & Anandan, 1993). In our algorithm, we
extend the BCA and the OFCE to estimate both the velocity and the bright-
ness variation (BV) fields in the special case of coronal ultraviolet images. To
this end, a multiscale computation of the flow iterates the estimation from an
upper scale to a lower scale, the scale being the size of the neighborhood of
observation. The estimation is updated if a quality index for the estimation,
that we define in Sect. 2.3.1, is improved across scales. In this section, after
describing the preprocessing that we apply to the images (Sect. 2.1), we
introduce our new symmetric optical flow equations (SOFA, see Sect. 2.2.3).
It induces a symmetry constraint between the first and the second image and
we can express the estimation in the Bayesian framework.

2.1 Sequence Preprocessing

First we remove the cosmic ray hits (CRH) using a median filter (this proce-
dure is part of the solar soft library). We apply a logarithmic transform to
bring out the low-intensity part of the signal. Finally, we apply a gaussian
smoothing to the image before computation. This step allows us to compute
robust spatial gradient estimations, and is also important to remove the esti-
mation biases. Thus, if we note g the gaussian kernel of our smoothing, our
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signal becomes 1D = g, * ID. The spatial derivatives are

WD a ID)

-- * ID

S<91,a, ID >

Similarly we have
WlD_

'9- < 92,a, ID >

We have access to an analytical derivative of the preprocessed signal I = ga*I•2

where a is the scale of the gaussian function g,(-) = exp (-2-). The
analytical expression of the gradient is given by:

vi= (o oi Og Og
a~x'ay ax a

2.2 The optical flow equations

There are two equivalent formulations of the OFCE: partial differential equa-
tion (PDE) and image registration. We aim at estimating the deformation,
if small enough, between the first image I, and the second 12. The PDE
formulation is detailed in appendix (Sect. A).

2.2.1 Image Registration

We note 9 = (x, y)T is the spatial position in the image plane (plane-of-sky).
We can formulate the BCA as:

A linear approximation of this equation, using Taylor series at first order on
the left hand side, gives:

X(, 6:) = 12 (X+ X3 ,
= 12( Y) + V .12 6 - 11( X) ,

which leads to a formula similar to (24):

v .i2 -J9 + (1) - i1 () = 6(,6f), (2)

This formulation is used by Lucas & Kanade (1981), where the time variable
does not appear explicitely. The motion vector is then defined as 6 = 6Y/6t,
where Rt is the time distance between two images ii and 12. This approach
leads to the same equation as the PDE formulation (see Sect. A), so that in
practice they are equivalent.
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2.2.2 Optical Flow Computation

In the original Lucas & Kanade (1981) optical flow estimation, in order to
solve the aperture problem, an assumption of uniformity is made on the
velocity vector: V has to be uniform over a local neighborhood (see Fig.
2). The set of OFCE equations over this neighborhood Q yields to a linear
system, where the unknowns are the two parameters of the deformation (the
motion vector). The linear system can be solved using a weighted linear
least-squares method (Press et al., 1992).

The local uniformity assumption (LUA) The local uniformity assump-
tion proposed by Lucas & Kanade (1981) states that Eqs. (2) or (24) should
be true locally around the location estimation, that is over a finite domain or
neighborhood Q(f, s) centered on Y and of size (or scale) w. If Q(:F) contains
N > 2 pixels, this assumption provides more equations of type (2) than un-
knowns Jxj so that the system can be solved.
The LK optical flow is the least-square (LS) minimizer of ý in (2) on Q.

6 XLS(Y) = argmin (3)
6x

"-'ýJy 12 Ni~ýy'- =-,ý1

where QVS)IIa(•) = i1 F xi,5F)2 = is the 12 vector norm of RN

corresponding to the finite neighborhood Q(F-). This solution is the maximum
likelihood estimator when the residual term ý is a random variable following
a gaussian distribution N(O, 2 ). In practice, we assign coefficients to each
pixel, or equivalently to each optical flow equation in the neighborhood Q(Y),
so that the pixel at the center has a greater statistical weight than at the
boundaries of Q(f). For that we use the Mahalanobis distance

RI1 2 = Tvjl ,

which allows to assign weights to each pixels Yi. It is equivalent to minimizing

11w * ýlI2 where * represents the 2D convolution operator and w is the
weighting function. In our application w is an isotropic gaussian function
normalized so that I1w112 = 1.

LK solution to optical flow We introduce the notation fx = af/lx.
Solving Eq. (3) is equivalent to finding the solution of the linear system

AY = b, (4)

where:
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12.(NI 12y(:XN)

-12x(1 i)( 1 )

A -•-2 -

b

(12Il)(:N)I

The LS solution is:

6 XLS (ATVC'-A)-lATV - b, (5)

where Vý = E[ýTý], is the covariance matrix of the residual error. The
covariance matrix of 6XLS is given by:

V&F = (AT V'•-A)-l. (6)

In the rest of this report, we will note this covariance matrix as V$, and we
will use it to define our criterion for the quality of the estimation. Indeed the
diagonal elements of V, are the variance of the estimation parameters. The
LS estimator converges to the correct solution if the following conditions are
satisfied: E[ý] = 0 and Vý = ac2I, plus an additional constraint on the matrix
A: det AT A = 0.

Blank Wall and Aperture The blank wall effect occurs in 1D when all
the 9I/19x term vanishes, i.e. when the signal gradient is null over the
neighborhood. Then it is not possible to estimate a motion vector, even
if the object is moving. In 2D, the matrix singularity det ATA = 0 means
either that the image has a uniformly vanishing 2D gradient, which is the 2D
blank wall, or that the image has a unidirectional anisotropic structure. For
that reason, the matrix ATA characterizes the gradient texture of the image
within a given neighborhood Q. Furthermore one equation is not enough
anyway to derive the two variables of the motion vector 69. This is the
aperture problem. We need at least one extra constraint to carry out locally
the estimation, namely in our case, the local uniformity assumption.

2.2.3 Symmetric Optical Flow Analysis (SOFA)

We opt for a symmetric formulation of the optical flow that can involve a
prior information, or constraint, on the flow &f. To impose symmetry in the
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optical flow estimation, we combine the two reciprocal equations:

12 (Y + (6:i-- h)) = I2(),
11 (Y- (52-52,h)) = 12 M2.

We linearize both equations assuming that &5 xth = 6. It is possible to impose
a predetermined &xth, for instance the theoretical differential rotation. We
get:

V12  +±(i)-i 1 (2) = X, (7)

11 + 2(9) - ()=X (8)

We note:

iM I/ + 12 (average),2
D= 12 - 11 (difference).

Adding and substracting (7) and (8)), we obtain:

2 x VI = ýl +ý2 (9)
V1D'5i = 1- 1-- (10)

The goal of the algorithm is to minimize a cost function g1k112 now redefined,
using the parallelogram identity, as:

g1_11 (g, 112 + 1ý2112) = I11 + 6 1 - 6 112. (11)
2 2 2

We note 5x = 6YLS,,vs the vector that minimizes the quantity arg minbg ll*(&2) j•.
We can interpret this new minimization either as a generalized Tikhonov reg-
ularization or in the Bayesian framework. The advantage of this method is
that the constraint (seen as a regularization constraint or a prior distribu-
tion) is derived from the data (the matrix M) and does not require any extra
arbitrary parameter. Furthermore the estimation is symmetric: the param-
eters that minimize g112 do not depend on the ordering between I, and 12.

We note:

-IIM (:IM,(l) -y V-)

"IM9(N IM,y(XN)
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ID Vb

[-ID (XN)1
2 D,i (:fl) !D,y(:fl)

2

where Ix means Ol/Ox.

The cost function IIý112 can be written as:
= = -21 (IIA6•_ b.12 + IIM3•II 2) 112 (IIA3%- b1 + II6yI2MTM) . (12)

In the Bayesian framework, it appears that imposing the symmetry is equiva-
lent to adding a prior constraint to the vector 6:f. Using the Bayes' theorem,
we interpret Eq. (11) as the following conditional probability:

Pr(6Yj1D) = Pr(ID16Y) x Pr(& )
Pr(ID) (13)

where

Pr(IDI16) cx exp (-•(A&x- b)TV (AMY- b) , (14)

Pr(&•) oc exp (1-T-(MTVlM)6F). (15)

Indeed Eq. (10) can be used to define a prior distribution on &f:. This
prior distribution plays a role when the gradient texture is deformed, and
the two diagonal elements MTM then represent the deformation rates along
the x and y axes. When the gradient texture is deformed between I, and
12, because of occlusion or strong deformation (due for instance to heatings),
then estimation is forced to tend to the displacement vector used in the
linearization (here Ath is the 0 vector). Basically, it stabilizes the estimation
towards the reference value (null displacement but could be the differential
rotation for instance) when the gradient texture is modified between I, and
12. Finally, we get the solution:

5Y= (ATV(-A + MTV•lM)-'AT -1lb. (16)

The covariance matrix of 6Y is now:

VKsym = (ATVV-IA + MTv- M)-1. (17)
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y --.--.-

s+1

y-2

x x+2
estimated pixels at scales s and s+1

0 window Q (estimation at scale s and s+1)

- real velocity vector

•- outlying velocity vector in the LS estimation at scale s+1

Figure 2: The local uniformity assumption in the multiscale estimation pro-
cess with an update between scale s + 1 and scale s. At the lower left corner,
the estimation at location (x + 2, y - 2) is updated because the quality Q has
been improved (see Sect. 2.3.1).
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Figure 3: 1D example of an updating step in the multiscale MoVaTrac
algorithm. At scale s + 1, the estimation is updated from (Jx,,6Is) to

2.2.4 Brightness Variation Estimation

We extend the OFCE with JI, that estimates the brightness variation be-
tween the two images, relaxing the BCA assumption. This approach has been
suggested by Lucas & Kanade (1981) and has been recently used by several
authors (e.g. Odobez &: Bouthemy, 1995; Periaswamy &• Farid, 2003). An
example of a one dimensional signal undergoing a translation plus a bright-
ness variation is shown in Fig. 3. The BV map can be interpreted as the
variation of LOS emission parameters (temperature and density).

The symmetric optical flow equation (9) becomes (without the residual
term I):

VIM. -J +!D+JI = 0, (18)

where 61 = ce x cj. The quantity a is a parameter measuring the amount
of variation Al of intensity as a function of the pixel unit Ax. It affects
the estimation covariance matric but not the estimation itself. It modifies
the dynamics of the estimated parameter c,. From now on, we will note
0 = (Jx, Jy, cj)w the vector of parameters that we want to estimate.
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2.3 The multiscale SOFA computation

In order to make the maps (6x, 6y), which corresponds to the velocity vector
map, and 61 (bv) as local as possible, we compute the optical flow in a
multiscale framework (see Fig. 4). The scale is defined by the scale parameter
s of the function w (see Sect. 2.2.2). The first computation is carried out
at a predefined large scale so. At this scale, a large number of pixels are
used in the estimation. This estimation may nevertheless be strongly biased.
Furthermore, within a large neighborhood (i.e. at large scale), the hypothesis
made on the optical flow (extended BCA and LUA) are no longer valid. To
compensate for this effect, we add a multiscale updating step. It consists in
an update of the parameter estimation, from the upper scale s0 to a lower
scale, if the quality index Q of the estimation has increased. In other terms,
there is an update when the quality at the smaller scale s + 1 is higher than
the current larger scale s. From our definition of the quality index Q (see
Sect. 2.3.1 for details), we know that if the texture and the similarity have
been improved from s to s + 1, then there is an update. We also leave as
an option in our implementation the propagation of the large scale velocity
to the lower scale, inducing some stiffness between features across scales,
i.e. when finer scales undergo the motions of large scales. Combined with
an multiresolution pyramid approach, it gives the possiblity to handle larger
motions (more than - 1.5 pixels).

2.3.1 Quality index

Contrary to global methods such as Horn & Schunck (1981), our optical flow
approach gives the possibility to carry out the registration depending on the
neighborhood content. For that reason, we define an index Q (for "quality").
We will use this index for:

"* interscale comparison in order to find the best scale of estimation in the
multiscale implementation by comparing Q between successive scales,

"* interpixel comparison the pixels that have the best estimation by or-
dering the pixels according to the Q-criterion.

In order to illustrate the meaning of Q, we can use the space of parameter 0. If
we assume V = a- I and since ATA is symmetric, we can write ATA = PDPT
with pT = p', which gives:

VT 1 P-PDPT
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Figure 4: Description of the MoVaTrac algorithm.
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D = [ A2 A •

We then define our quality index as:

Q = mineigenvalue (V~),
1

=-j x min(A,, A2 , A3 ).

If we note S = - and T = min(A,, A2 , A3 ), we finally obtain:

Q = S x T. (19)

where S can be seen as the similarity between both images after deformation,
while T quantifies the amount of texture in the observation window. Indeed,
we have :

1 •- (20)

where
"= E W2((I 2 + O•5I)(xi + 6X) - Ii(xi))

2
. (21)

xi £•

S-1 is an estimation of the quantity c7. As the noise on images I, and 12

is supposed to be gaussian white noise N(O, u2), i• can be interpreted as an
estimation of 2uj. This estimator has well-known statistical properties that
can be used for statistical tests. It is also bounded by the dynamics of the
signal. To check the numerical stability of the matrix ATA, we compute its
eigenvalues A and look at the minimum eigenvalue Amzn. In fact, this quantity
corresponds to a " texture " criterion. It is homogeneous with Z Ix, which
indicates that it is high when the texture is well suited to the motion analysis.
It is low when there is a blank wall effect or a strong aperture. For this reason
we define a "texture" index T equal to Amin = min(A1 , A2, A3).

2.3.2 Updating through scales

The variance a of the residual is estimated by the dissimilarity quantity a2

and the similarity is equal to the inverse of S. Two conditions have to be
respected for a reliable matching (Shi &8 Tomasi, 1994): first the signal "tex-
ture"' (T) must be sufficient (no aperture, that is enough "texture"), and
second the matching measured by similarity S must be acceptable after the
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estimated deformation. Both conditions are satisfied when the quality index
Q is high, where the term "high" will be quantified in the calibration phase.
When T is low (unadapted texture, blank wall), then S can still be high and
meaningless. If S is low, and T is high, the quality is low but the estimation
is then indeed incorrect.
T = Amjn is the texture parameter, and S is a measure of similarity be-
tween the first image and the second image after warping. If T is large, then
the quality is high because the texture of the signal enables motion analysis
(no aperture problem). If the similarity is low, then the quality is penal-
ized because the registration (comparison of deformed image 12, warped into
reference frame of image I,), and image I, is bad (high dissimilarity a2).

Our quality criterion Q is related to the theoretical standard deviations
of the parameters given by a linear least-squares fit.

The updating stape corrects locally the error on velocity estimation but
increases the variance of the estimation because there are less pixels con-
tributing to the estimation. The updating phase enables a tradeoff between
large scales, where the bias is due to the non uniformity of the deformation,
and small-scales, where the variance of estimation is due to the low number
of pixels (low N). In our computations, the set of scales is a sampling of four
scales. A higher number of scales only improves the estimation and removes
the threshold effect due to the updating step. For a large number of scales,
the parameter maps (velocity, brightness variations and quality index) are
smooth. The flowchart of the algorithm is shown in Fig. 4.

2.3.3 Error Analysis

Our residual term may not be gaussian for the following reasons:

" non-gaussian noise implying a non gaussian residual distribution (sta-
tistical error): e.g. poisson noise, spatial noise : intrapixel activity
caused by sub-pixel motions, can be due to transparency effect can
cancel the advection effect at small scales. For instance there could be
subpixel opposite motion of two structures, which mixture will yield to
outlying pixels,

" modelling error (non-zero second or higher order terms): motions more
complex than translation, non uniform intensity variations, presence of
non negligible higher order terms in Eq. (2) (systematic error),

"* noise in the matrix A due to noisy spatial gradient estimations.
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2.4 Postprocessing: coordinate transform rotation ve-
locity and meridional motions

After estimating the velocity parameters vx = 6x/3t and v. = Jy/St, we
project them on heliospheric coordinates, to get the rotation velocity and
the meridional velocity. In this report, we only use the synodic observation.
The observed synodic rotation velocity (observed from SoHO or from the
Earth) is corrected to get the sidereal velocity, for a comparison of the rota-
tion velocities that we find. We first transform the spatial coordinates into
heliospheric coordinates.

3 Calibration

3.1 Synthetic images

We test the efficiency of our algorithm on a couple of images. The first image
is shown in Fig. 5.

G (X',fi•,7i, Ai) = Ai exp (_ W - gll i 022 ),i=0,7

2u?2

The parameters fli,ai,Ai have been generated randomly in order to produce
an image that is similar to an EIT image.

In Fig. 6 we see that above a predefined threshold q, the objects are well
located and the estimated motion parameters are correctly estimated (same
for by, not show here).

3.2 Semi-artificial EIT sequences

We calibrate our method on semi-artificial solar sequences. We apply a dis-
placement field to an EIT image 11 and we obtain a second image II,dr using
a parametric model of differential rotation estimated by Vrgnak et al. (2003).
The interpolation procedure is based on the IDL function of cubic interpola-
tion (Park & Schowengerdt, 1983). This method uses cubic polynomials to
approximate the optimal sine interpolation function. Due to spatial aliasing,
this method gives bad results when there are high spatial frequencies since it
assumes that the signal is band-limited (DeForest, 2004). This effect lowers
the similarity term S, since the image pattern is not correctly deformed and
the simple model of deformation (local translation and constant bv) is no
longer valuable. The measurements are then projected back into rotational
motions and meridional motions. In Fig. 7 we compare the extracted ro-
tation velocity with the curve of the theoretical rotation. Each bin is 0.5
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degree per day wide and 1 degree in latitude high. The relative dispersion
around the theoretical rotation is approximatively ± 5 %. This value will to
be compared with the discrepancy that we find on the real sequences (Sec.
4).

4 EIT Sequence Analysis

Three successive images are observed on the 1998-05-03, repectively at times
21:00:21 (1,), 21:12:09 (12) and 21:25:35 (13) in the CME Watch mode, at the
wavelength 19.5 nm (see Fig. 1). A second sequence of two images (J1 , J2)
observed on the 1999-04-17, repectively at times 00:12:10 (Jr) and 00:24:42
(J2). We run the algorithm on rebinned images with resolution 512 x 512
pixels to reduce the computation time. We choose 5 quality bins that segment
the solar disk into 5 sets of equal number of pixels.

4.1 Differential Rotation Analysis

We analyse the sequence (J 1, J2) in the same conditions of section 3. Figure
8 shows the density of pixels that have the highest estimation quality (levels
4 and 5), according to their latitude and their velocity rotation. We also plot
the theoretical rotation (plain line). The estimated velocities are variable
(up to ± 2 degrees per day).

We note that for the quality level 4, the rotation velocities of the two
couples are - 10 % lower than the expected curve.

Figure 9 (left), the subsampled velocity is displayed. After examining
the histograms (Fig. 8), we retrieve the cluster of pixels that have a fast
rotation velocity (latitude range : 30 to 40 degrees). A zoom on a particular
region belonging to this cluster, with high quality estimation (level 5) and
high rotation velocity (above 15 degrees per day) is displayed on the right,
and for which we choose to overplot a greater density of arrows.

4.2 Brightness Variation Maps

Figure 10 shows the BV maps of the two successive couples of images (I1, 12)

and (12, 13), limited to the ondisc pixels. In the latter, an obvious change in
brightness is observed. In this example, the thresholds are obvious to choose
in order to detect brightenings from the histogram (Fig. 11). The same
for dimmings or negative brightness variations. This will be made using a
set of selected sequences containing typical eruptive events. In the sequence
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(images 1 , 12), we have some precursors in the BV maps have been identified
in the active regions.

Figure 11 (left), the plain line shows peaks (intensity greater than 1)
of outstanding brightness variations. These peaks are hardly visible in the
difference image, because of the motion effect, which motivated the use of
this technique to process long sequence of EIT images (typically one day of
observations) and extract the interesting but faint brightness variation areas
from the bv histogram. In the right figure, the extracted region is outlined
over the difference image.

5 Conclusion

Real and semi-artificial EIT sequences have been analysed in terms of mo-
tions and brightness variation over the full solar disc. This estimation is
dense (one estimation for each pixel), but a quality level is assigned to each
pixel. When this index is high, the estimation is reliable. A multiscale im-
plementation refines the estimation from coarse scale to fine scales. For each
pixel, when the quality estimated at one scale increases at the finer scale,
then the estimation is updated. Thus the algorithm has a preference for
coarse scale estimations, that are kept through the multiscale refinement un-
less the quality of the estimation is locally improved. At coarse scales, the
number of pixels used in the estimation is higher than at finer scales: the
estimation is more robust. In the velocity maps, and for high quality levels (4
and 5), we observe accumulations of pixels into clusters that have a common
rotation velocity. Using the histogram (Fig. 8), we have identified pixels
from an active region (figure 9). We now want to know how variable is the
rotation velocity of the active region over half a rotation. This will be pos-
sible after the processing of longer sequences (several days). The variations
around the rotation velocity could be interpreted as oscillations around the
theoretical and global differential rotation. The systematic analysis the EIT
archive will help us confirm this result. Furthermore a full disc analysis of
our algorithm enables an operational detection of events in sequences of two
coronal EUV images, using the BV maps. In the sequence of 1998-05-03, a
strong brightening covering a large area has been undoubtedly singled out
from the regular solar activity. On the other hand, this event is classified
as an EIT wave. The analysis of the histogram of the BV map shows peaks
deviating from regular BV histograms. We will use this criterion to extract
outstanding intensity variations in long sequence of EIT images. A future
objective of this is to associate motions and brightness variations with coro-
nal events defined by observers. We will also investigate the correlations in
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time between the outstanding estimations (fast motions, strong brightness
variations), and their localizations, and the in-situ measurements (LASCO
CMEs and in-situ ACE data) and other space weather observations relevant
to event prediction. This work leads to solar physics research as well as real
time space weather services.

A PDE formulation of the optical flow

The PDE approach considers the image intensity I(X(t),t) as a physical
quantity that is conserved over time, where £ = (x, y)T is the spatial position
in the image plane. The PDE form of the BCA is:

dl
d- = 0. (22)

The differentiation of I(Y(t), t) in Eq. (22) gives the OFCE:

aI
VI. V+ T = 0, (23)

where V7 = (dx/dt, dy/dt)T is the velocity vector of the apparent motion.
As the real signals are discretized, the temporal and spatial derivatives

must be approximated. We use hereafter the finite difference scheme to
compute the temporal derivative O9/Ot using the difference image JI = 12 - I1
and the time distance 5t between I, and 12:

aI = lim I(g, t + At) - I(g, t) 5I 021

S= -0 At- + o(St -).

The discretized OFCE is:

SI
V! -6 + - Vs, it), (24)

St

where SI = I2(X-) - I1(Y) = g, * JI. The order of the discretization error
(different from the model error) is (see Press et al., 1992):

02i
S i t ) . 6t --t2

In this first approach, the spatial derivatives can be computed from either
image I, and/or 12. In the case of image registration, the order of error due
to the truncation of higher order terms is:

6(g, Jg) J 6THi JSX,

where HI is the Hessian matrix of I.
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a. The gaussian objects numbered from 0 to 7. b. Diffference Image.

Figure 5: Left: image showing the 8 gaussian objects Gi with the additive
white noise. Right: the difference image.

Figure 6: Left: Quality level lines. The letter qi represents the i -level line of
quality. At q1 (lowest level, dotted-dashed line), some noisy structures are
still selected. The level q2 is a dotted line, while the plain lines represent the
superior levels q3,q4 and q5 . Right: Velocity estimation for a given quality
threshold q.
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Figure 7: Calibration procedure using semi-artificial EIT sequences on which
a synthetic rotation has been applied. The grey level represents the density
of solar disc pixels. Vertical axis: synodic rotation velocity (in degree per
day). Horizontal axis: solar latitude (in degree).
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Figure 8: Density of solar disc pixels as a function of synodic rotation velocity
(ordinate) and latitude (abeiss) for quality levels 4 and 5.
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Figure 9: Left: full disc subsampled velocity field (v., v.). Right: zoom on
an active region with a rotation velocity greater than the expected value of
the differential rotation.
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a. BV (I1,,/2) b. 12- 11

c. BV (12,13) d. 13 12

Figure 10: The two BV maps for the sequences (I1, 12) and (12, 13) and the
corresponding difference images. The grey levels have the same scale in each
image.
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Figure 11: Left. Plain line: histogram of BV for (12, 13). Dotted line: his-
togram of the difference image (13 - 12). Dashed line: histogram of BV for
(I1, 12). Right: superimposed on I3, the thresholded bv map of (12, 13) using
the threshold 1 suggested by the peaks in the BV histogram (plain line in the
left figure). In this histogram, the brightness variations that are not due to
the motion effect appear clearly, while they are not observed in the histogram
of the difference image (dotted line).
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