THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the REAPS Technical Symposium

Paper No. 13:
Ship Structural Cost Program

U.S. DEPARTMENT OF THE NAVY
CARDEROCK DIVISION,
NAVAL SURFACE WARFARE CENTER
The National Shipbuilding Research Program

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP 1981</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Form Approved
OMB No. 0704-0188

Approved for public release, distribution unlimited

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z99-18
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
SHIP STRUCTURAL COST PROGRAM

Anthony Furio
Structural Engineer
David Taylor Naval Shipyard
Bethesda, Maryland

ABSTRACT

A ship-cost computer tool has been developed to estimate U.S. Naval Surface Ship construction for both shop and field Engineered Uniform Method and Standards and current Naval shipbuilding practices.

This procedure has been incorporated into the Ship Structural Cost Program (SSCP) to provide a means of rapidly estimating structural cost for ship structures. In this form SSCP provides a three-phase cost analysis where the shop erection and field installation procedures are included in Phases 2 and 3 and the panel/grillage shop assembly procedures are included in Phase 1.

The overall aim of our cost program is to develop a cost/weight tradeoff tool that has the capability of performing weight/cost optimization tradeoff studies. This information will become useful for Navy research and design communities in assessing high cost areas in the new ship construction, identification of optimum plate-beam combinations with respect to cost and/or weight, and the identification of materials and design details which tend to reduce cost.
SHIP STRUCTURAL COST PROGRAM

AUTOMATED COST ESTIMATING TOOL

BASED ON NAVSEA

ENGINEERED UNIFORM METHODS & STANDARDS

FOR NAVAL SURFACE SHIP CONSTRUCTION

SHIP STRUCTURAL COST PROGRAM

SSCP

PHASE 1 - SUBASSEMBLY
PHASE 2 - SHOP ERECTION
PHASE 3 - FIELD INSTALLATION

SIGNIFICANT OPTIONS:
GEOMETRY
MONOHULL OR HIGH PERFORMANCE SHIP
HULL AND/OR DECKHOUSE
FLAT BAR STIFFENERS
MATERIALS
HS, HTS, HY88, ALUM
DETAILS

CAPABILITIES:
MATERIAL COST STUDIES
CONFIGURATION STUDIES
COST/WEIGHT OPTIMIZATION

FUTURE IMPROVEMENTS:
NEW DETAILS
ALUM FIRE PROTECTION COSTS
BALLISTIC PLATING COSTS
WELD BONDS COSTS
SHIP STRUCTURAL COST PROGRAM

OBJECTIVES

LONG TERM
- DEVELOP COST/WEIGHT TRADE-OFF CAPABILITY FOR EFFICIENT USE OF MATERIAL & STRUCTURES

SHORT TERM
- DEVELOP A COST ESTIMATION PROGRAM FOR SURFACE SHIP STRUCTURES
- INCORPORATE THE CAPABILITY OFNAVY DESIGN PROGRAMS WITH THE COST PROGRAM TO PERFORM COST/WEIGHT OPTIMIZATION STUDIES
- IMPROVE RELATIVE COST/WEIGHT TRADE-OFF CAPABILITY FOR R & D COMMUNITIES
- PROVIDE NAVAL SHIPYARDS WITH COMPUTERIZED METHOD FOR COST ESTIMATING REPAIR & CONVERSION
- EVALUATE HIGH COST AREAS OF SHIP CONSTRUCTION

COST/WEIGHT TRADE-OFF

323
SSCP APPLICATIONS

RELATIVE COST COMPARISONS

<table>
<thead>
<tr>
<th>Configuration Study</th>
<th>MS/HTS</th>
<th>HYGO</th>
<th>HTS</th>
<th>MS</th>
<th>AL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cost/Weight Optimization Study</th>
<th>6' F.S.</th>
<th>8' F.S.</th>
<th>10' F.S.</th>
<th>12' F.S.</th>
</tr>
</thead>
</table>

BASIC CONCEPT

```
```

STRUCTURAL UNIT

MATERIAL COST $/LB

CONSTRUCTION COST (H-HD/H(L)/H-D)

TOTAL GROUP 100 COST FOR UNIT
ENGINEERED
UNIFORM METHODS & STANDARDS

TITLE: STRUCTURAL-LOFT LAYOUT & MACHINE

- LOFT
 DEVELOP & BUILD TEMPLATES & DRAWINGS 1/10 SCALE (PLATES & SHAPES)

- LAYOUT
 TRANSFERRING TEMPLATES & DRAWINGS (PLATES & SHAPES)

TITLE: BURN FLAME CUT PRODUCTION

- PLATES
 TELEREX 90° CUT
 RADIOGRAPH BEVEL CUTTING
 SAW CUT ALUM
 SHEARING AL & ST

- STIFFENERS & DETAILS
 MANUAL TAMP GUIDED
 90° CUT & BEVEL CUTTING
 SHEARING ALUM
ENGINEERED UNIFORM METHODS & STANDARDS

TITLE, ROLLING OPERATIONS

PLATING MAN HOURS AREA FUNCTION OF PLATE THICKNESS & WIDTH OF ROLL

STIFFENERS: MAN HOURS AREA FUNCTION OF THE TYPE OF MACHINE OPERATION

TITLE: STRUCTURAL SHOP ASSEMBLY

- PLATE ASSEMBLY
- STIFFENER ASSEMBLY
- DETAIL ASSEMBLY
- VAC-U-BLAST
- PNEUMATIC SERVICES
- BURNING & WELDING SERVICES
- CRANE SERVICES

TITLE: WELDING, STRUCTURAL PRODUCTION

- MANUAL WELDING (MS, HTS, HY80)
 - SHIELDED METAL ARC
- AUTOMATIC WELDING
 - SUBMERGED METAL ARC (MS, HTS)
 - GAS METAL ARC (ALUM)

INSPECTION
- A: ND N.D.T
- B: BASIC N.D.T
- C: FULL N.D.T

326
PHASE 2 - SHOP ERECTION

COST INFORMATION

PLATE
STIFFENERS DETAIL ERECTION OF SUBASSEMBLY

PAN EL JOINTS

- STIFFENER BUTTED AGAINST HATE
- END STIFFENER CUT - STIFFENER BUTTED
- END STIFFENER CUT - CUT OUT PLATE, STIFFENER BUTTED
- STIFFENER BUTTED - SAME SIZE
FUTURE WORK

- AUTOMATED COST/WEIGHT OPTIMIZATION PROGRAM

- DEVELOP COST ESTIMATING TOOL (REPAIR & CONVERSION) FOR NAVAL SHIPYARDS

DEVELOP COST ESTIMATING TOOL (REPAIR & MAINTENANCE) FOR NAVAL SHIPYARD
Additional copies of this report can be obtained from the National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu