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Abstract— Corrosion, stress-corrosion cracking or 
corrosion-initiated fatigue significantly impact maintenance 
downtime and structural life limitations of aging aircraft.  
Both legacy and new air platforms such as the Joint Strike 
Fighter (JSF), realize that corrosion will likely continue to 
be a structural challenge that warrants a structural health 
management system to provide accurate, cost effective 
assessments of a platform’s current (diagnosis) and future 
(prognosis) readiness. Corrosion/fatigue models exist that 
can reasonably predict failure progression in laboratory 
environments with controlled materials, usage profiles and 
environmental conditions.  The prognostic challenge 
however, is to employ such models in the field where a 
priori factors and loading are far less certain and damage 
state awareness much more imprecise.  With the goal of 
improving the accuracy of useful life estimates or time to 
inspection, an approach is presented in this paper for fusing 
imperfect state information such as global/local 
environmental measurements with physics of failure models 
to enable adaptive prognosis.  Under the support of 
DARPA’s Structural Integrity Prognosis System (SIPS) 
program, a corrosion/fatigue growth model developed by 
Wei and Harlow of Lehigh University is adapted though 
calibration of initial conditions as well as internal state 
variables given measurements of temperature and periodic 
local damage estimates, using a technique known as Kalman 
filtering.  When coupled with a stochastic wrapper, the 
prognostic model output provides time to a given structural 
damage level with confidence bounds from which informed 
operational and maintenance decisions can be made. 

1. INTRODUCTION 

Since primary purpose of this paper is to introduce the 
concept of adaptive prognosis via model/sensor fusion, the 
author’s have chosen to utilize a very straightforward 
corrosion/fatigue model which will be described herein. 
After a brief description of the adaptive prognosis concept, 
the Wei/Harlow model will be introduced followed by a 
Monte Carlo analysis of the model so that estimates on 
fatigue transition and fatigue failure are available as 
probability density functions (PDFs).  Next, “hooks” 
between the model and observable parameters will be 
described.  Finally, a generic approach for current state 
sensor/model fusion known as a Kalman Filter will be 
described and illustrated in application. 

2. ADAPTIVE PROGNOSIS 

In the context of structural health management (SHM), 
diagnosis is essentially classification of a current material 
damage state.  Prognosis is the prediction of a future 
damage state (preferably with confidence bounds) and does 
not necessarily require a diagnosis.  Adaptive prognosis, 
however, entails that information available at the current 
time (which may or may not be diagnostic in nature) are 
used to modify future predictions.  This concept is 
illustrated in Figure 1 and Figure 2 [1,2] and described next. 

Consider point d0 in Figure 1 to be the mean initial damage 
condition for a prognostic model.  A prognosis of life, from 
time k to predetermined damage level is found to be 
represented by RUL0 or Remaining Useful Life.  Suppose 
that some imperfect measurement z(k) regarding the damage 
state becomes available at time k=k+p∆T.   The challenge is 
to find optimal current damage state to re-initialize the 
model and/or adjust model parameters so that a calibrated 
and more accurate prognosis can be established1.   

 

Figure 1: Adaptive Prognosis 1 

Though utilization of a new initial condition,   at time 
k=k+p∆T  as shown in Figure 2, it is apparent that the 
prediction mean has shifted and the confidence bounds on 
the resulting RUL has less variance than the original. The 
prediction accuracy improvement would generally mean 
that a decision to take action based on failure probability 
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1 The decision to take this action is one that must be carefully considered.  
One criteria may be based on a statistical hypothesis test of the 
measurement and model prediction PDFs. 
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will likely reduce lost operational availability over a run-to-
failure maintenance plan. 

 
Figure 2 - Adaptive Prognosis – 2 

 

3. CORROSION/FATIGUE MODEL BASIS 

A simplified model for pit growth proposed by Harlow and 
Wei [3] to estimate corrosion-initiated fatigue damage 
evolution for aircraft-grade aluminum was employed in this 
study. The model assumes the pit to be hemispherical in 
shape, with radius and volume, V = (2/3)πa3.  The rate of pit 
growth is given in terms of Faraday’s law as shown in 
Equation 1, with it’s solution determined from finite-
difference integration for each timestep ∆t. 
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Where in Eqn (1), 
  
M = Molecular weight;  
Ip = Pitting current [A];  
n = Valency;  
ρ = Density [kg/m3];  
F = Faraday’s constant [C/mol]; 
a(k)o= Initial pit size, or the size of the initiating particle or 
particle cluster [m]; 
R= Universal gas constant [J/mol-K]; 
∆H=Activation enthalpy [kJ/mol]; 
T=Temperature [K] 
 
Note that Equation (2) contains environmental temperature 
and initial effective galvanic pitting current as key inputs.  
The resulting current density that can be supported by the 
particle (or cluster of particles) and its surface area is thus a 
function of both material properties and environmental 
conditions.  Equation (1) can be linearized if expressed in 

terms of  volume growth rate.  This will become an 
important point regarding the Kalman Filter approach 
described later. 
 
Wei and Harlow have linked the corrosion model to the 
Paris fatigue law [4] given as: 
 

( ) cn
scc KCdN

da ∆=     (3) 

 
Where: 
 
N=Cumulative load cycles 
a=Crack size 
∆K=Threshold intensity range 
Cc ,nc= linear elastic crack growth (Phase II) characteristics  
 
The ∆K  term is a function of both crack geometry and 
stress condition, details of which are omitted here. The 
corrosion and fatigue model descriptions provide the 
framework for transition from an initial corrosive state to a 
mechanistic crack growth failure mode.  This transition is 
governed via the rate comparison (Figure 3, lower plot) of 
both models simultaneously [3], with the transition from 
corrosion to mechanistic surface crack (denoted “sc”) given 
as: 
 

 ( ) ( )
PITSC dt

da
dt

da ≥  (4) 

A deterministic simulation of this model is shown in upper 
plot of Figure 3, for an ambient temperature of 293 [K], 
initial pit size of 4.78 x 10-6 [m], and cyclic stress of 100 
[MPa].  Transition to surface fatigue crack growth occurs at 
approximately 770 days in this case. 

 
Figure 3 - Deterministic simulation 

 
For prognosis, deterministic life estimates are inadequate for 
risk-based decision making.  Therefore a Monte-Carlo 
simulation was run on the model.  300 simulations were 
performed with the initial pit size, temperature and stress 
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used as random variables.  The resulting PDFs were best 
approximated by lognormal distributions with normal means 
and standard deviations provided in Table 1 for the time to 
fatigue transition and to a crack of size of 1 mm. 
 

Table 1 - Simulation results 

 
 

 
Figure 4- Histograms of results 

 
If maintenance decisions, such as when to initiate 
inspections, where based solely on this analysis, a 
considerable amount of cost and operational availability 
would be sacrificed to maintain an acceptable failure risk.  If 
additional parameters in the model were defined as random 
variables the variability in the result would be even greater!  
There are simply too many unknowns in this simple model 
to have a prognosis from a virgin material be of practical 
use.  Information that can be used to update the model, no 
matter how imperfect, must be used calibrate (shift mean) or 
reduce the variability in the predictions. 

4. SENSOR/MODEL “HOOKS” 

In reality, there are generally very few, if any, model 
parameters that can be obtained directly from fielded 
sensors, let alone in a laboratory environment.  For this 
model, let us assume that two parameters can be inferred: 
the local surface temp and the volumetric material loss at 
discrete points in time.  If we use ambient temperature as a 
direct input to the pitting current calculation in the model, it 
is no longer required it to be a random variable input.  Note 
that utilizing a temperature vs. time history will certainly 
reduce the variability in the current damage state estimate.  
In addition, statistics of the model-sensor residuals e(k) can 
be used for prognosis.   

Using a temperature measurement to estimate the pitting 

current is an input parameter substitution.  A different 
situation arises when the measured parameter is a state or 
output of the model such as when a pit damage estimate can 
be obtained.  While the many methods for assessing 
corrosion damage are beyond the scope of this paper, let us 
consider a micro-electro mechanical (MEM) sensor 
application to estimate damage state.  MEM sensors for 
corrosion are sacrificial and fabricated out of the same    
material as the substrate material that is to be monitored [5].  
The resistance of the sacrificial material can be related to 
the free corrosion potential and the current density to the 
rate of corrosion.   Hence, given calibrated initial conditions 
a material loss estimate of a substrate material can be 
provided at a desired sampling rate. 
 

5. OPTIMAL MODEL/SENSOR FUSION 

The means with which to minimize the variance, e(k), 
between a sensor and model-based state estimates is a 
classic control problem.  For linear systems and with the 
assumption of zero mean Gaussian noise, a technique called 
a Kalman filter [6,7] can be used to estimate a time-varying 
optimal gain that minimizes the variance in e(k) as depicted 
in Figure 5. 
 

 
Figure 5 - Process with Feedback Gain 

 
Consider the linear corrosion-only model in the volume 
form of Eq.1 with Gaussian model (process) noise wk as 
shown in Equation (5).   In addition, consider a 
measurement zk with measurement noise υk as given in 
Equation (5). 

ρnF
MIAwdAd P

kkk =+=+           ,ˆˆ
1

  (5)

kkkk vdHz +=      (6) 

Define Qk, Rk as the covariance matrices of process and 
sensor noise sequences ωk, υk. 

 ][      ][ k
T

ikk
T

ik RvvEQwwE ==   (7) 
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Define  to be the a priori state estimate (prediction) at 
step k given knowledge of the process prior to step k, and 

 to be the a posteriori state estimate at step k given 
measurement . We can then define a priori and a 
posteriori estimate errors as, 

−
kd̂

kd̂

kz

−− −≡ kkk dde ˆ  

and  . kkk dde ˆ−≡
The a priori estimate error covariance is then, 

 ])ˆ)(ˆ[(][ T
kkkk

T

kkk ddddEeeEP −−−−− −−==  (8) 
and the a posteriori estimate error covariance is, 

 ])ˆ)(ˆ[(][ T
kkkk

T
kkk ddddEeeEP −−==   (9) 

The Kalman Gain  is chosen to minimize the a 

posteriori error covariance . 
kK

kP
With 
      (10) k

T
kkkk QAPAP += −

−
1

and      (11) −−= kkkk PHKIP )(
the Kalman Gain (K) is found to be: 

1)( −−− += k
T

kkk
T

kkk RHPHHPK  (12) 
Therefore, new optimal damage estimate can be found to be: 

kkkkkk zKdKHI d +−= −ˆ)(ˆ    (13) 

1
ˆˆ

−
− = kk dAd      (14) 

In this case, . 1=kH
 
With the assumption of constant model and measurement 
noise, both error covariance and Kalman gain will converge 
to a constant value.  The final effect of the Kalman filter is 
shown in the subplot of Figure 6, where we simulated a 
noisy sensor signal that was ‘filtered’ via combination with 
a model estimate.  The optimal Kalman estimate at current 
time then becomes the initial conditions for an estimate of 
when fatigue crack initiation should occur, as shown in 
Figure 6.  Note that transformation back to a pit radius 
(damage) has already been applied.  The use of the Kalman 
filter, in this case, not only resulted in a mean shift in the 
prediction (bold lines) but also a variance reduction due to 
the fact that the model prediction now stems from a new 
initialization point.   

 

 
Figure 6: Kalman Enhancement to Prognosis 

 

6. SUMMARY 

Prognosis is inherently a statistical process in which the 
aggregate of many unknowns can result considerable 
prediction variability.  The concept of adaptive prognosis 
was introduced in this paper whereby available, albeit 
imperfect, information is used to update elements of the 
prognostic model.  Only one of many approaches for 
accomplishing this was introduced as Kalman Filtering 
applied to a corrosion model and material loss estimates.  
Other techniques include Bayesian updating, constrained 
optimization and particle filtering.     
 
The process by which features and models are integrated is 
vital to the success of future corrosion health management 
programs and there are many remaining challenges.  It is a 
significant challenge to design systems so that data such as 
pitting current, material loss, time-of wetness, etc. estimates 
can be fused and used in conjunction with corrosion life 
models to estimate current and future damage states. 
Furthermore, in the case of corrosion fatigue or stress 
corrosion cracking, multiple models will be required that 
may or may not use various feature inputs.  Finally, 
feedback mechanism in the system design cannot be 
ignored.  Specifically, the system must be capable of 
intelligently calibrating a-priori initial conditions (i.e. 
humidity, strain and temperature have changed), random 
variable characteristics or switching prognostic models in an 
automated yet lucid process to empower better operational 
and logistical decisions for air platforms.  
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