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Chapter 1

Introduction

This thesis describes an experimental message-driven file system and its implemen-
tation on a 512-computer J-machine with thirty-two, 402Mb SCSI disks. The J-
machine [5] is an architectural experiment which focuses on the evaluation of hard-
ware support for concurrent execution and active messages. The hardware is de-
signed to scale to many thousands of fine-grain nodes, each of which has a relatively
small local memory (1Mb) but fast communications. Active messages are supported
directly through the hardware process model and integrated low latency messaging
model.

The system described here is an experiment to exploit these hardware features
to implement a file system optimized for the needs of scientific computing. For the
target applications, it is important that files be easily transferred to and from other
computers over the local network. In this way, valuable disk space on the J-machine
can be reserved for running applications. Also, computations on the data which do
not need the power of a massively parallel machine can be carried out on a desktop
workstation instead. Ideally, the user could manipulate files and transfer them
to and from the J-machine using familiar commands implemented using industry
standard protocols. To meet these goals, MDFS implements a Network File System
(NFS) [18] compatible interface.

MDFS is written so as to be optimized for another common characteristic of
scientific codes: checkpointing. Typical scientific code will write intermediate results
to disk from time to time so that long jobs can be stopped and later restarted.
Typically, each node in the system reads one file of data at startup. It then alternates
between computing data and writing results to disk. Each node only writes its own
data, but most or all nodes will want to write at approximately the same time.
Thus, checkpointing is characterized by few reads and many writes, bursts of disk
operations with long periods of inactivity between bursts, and a single reader or
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Figure 1.1: File system layers

writer per file. While optimized for checkpointing, MDFS supports other file access
patterns for increased compatibility with older codes.

Within this scientific computing context, our efforts to exploit concurrent execu-
tion and active messages lead naturally to a few simple design principles: fine-grain
layering and low overhead in upper layers. MDFS is composed of a collection of
software layers. Each layer is a collection of servers which provide services to upper
layers by using the services provided by lower layers. This produces a structured
software design in which each component can be independently written and tested.
It also provides the flexibility needed for experimentation as the internal design of a
layer may be changed drastically without affecting other layers, and new layers may
be added as decisions on functionality or global design change. Layers are fine-grain
in that they perform small, well defined task in the overall file system. In addition
to the obvious benefit that an implementation of small, well defined functions is
easier than that of larger, more complex functions, this design eases partitioning
into fine-grain tasks. Each request to a layer is already a fine-grain task and may be
partitioned further by issuing multiple requests to lower level layers. Thus fine-grain
layering provides many opportunities for concurrency.

The MDFS design attempts to minimize overhead associated with requests at



the “client” nodes, i.e. those implementing higher layers. This serves two purposes:
first, it maximizes resources on the client, and second, it decouples clients from
servers. It is important, especially in the upper layers, that the interface minimize
its usage of CPU and memory to maximize resources available for implementing
the client’s tasks. Additionally, minimal state should be kept on the client side
in order to maximize the flexibility inherent in the interface and to maximize the
opportunities for parallel execution.

Figure 1.1 illustrates the relationship of the layers in MDFS. Except for the
hardware and MDC layers which may interact with all layers, each layer only com-
municates with the layers immediately above and below it. Within a computer,
procedure calls are used for requests to the layer below and return values communi-
cate information to the layer above. The remote procedure call mechanism in MDC
can be used to execute multiple requests concurrently across nodes.

Services have a well defined interface written, whenever possible, in terms of
“stateless” requests. That is, all necessary state is either encoded within the ar-
guments of a request or derivable from them. The server needs to maintain no
implicit client state to fulfill a request. For efficiency, servers may cache information
to optimize common requests, but such behavior is hidden from the client. This
approach is similar to the one employed in NFS[18]. While NFS uses this approach
to increase reliability, MDF'S uses it to minimize interdependent requests: requests
can be issued in parallel without concern for their affects on hidden state.

The remainder of this paper describes in detail the various layers of MDFS and
the experiments performed using it.
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Chapter 2

Design and Implementation

2.1 The Hardware Layer

2.1.1 Basic Hardware Mechanisms

User Application

NFS

C Stdio Unix 1/0

file I/O

block cache

disk block read/write

MDC programming system

hardware

The J-machine consists of a number of Message
Driven Processor (MDP) nodes arrange in a three di-
mensional mesh. Physically, a J-machine consists of
an stack of processor boards, each containing an 8 by 8
grid of MDPs and associated memory. The boards are
stacked vertically with special connectors sandwiched
between them to provide for the Z-direction connec-
tions. The X- and Y-direction connections are pro-
vided by traces on the processor boards. Additional X
and Y connections are possible via connectors located
around the edges of each board. The message pass-
ing network employs deterministic worm-hole routing
for efficient communication of small messages. Each
MDP computes independently of all others, having its

own local memory, registers, and instruction stream. Message passing is used for all

communications and synchronization between processor nodes.

The MDP provides direct hardware support for active messages accessible via

machine language instructions. The active message paradigm treats messages as a
means of program control as well as data movement. Thus each message is explicitly

associated with code, and message reception is implicit. To facilitate this, a program

running on one MDP may send messages asynchronously to any other MDP in the

network (including itself) by issuing an appropriate set of assembly language send

D
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Figure 2.1: Abstract view of MDP active messages

instructions. The destination MDP needs to take no special actions for this message
to be received. Upon reception, messages are place in a hardware managed queue
(see figure 2.1). As part of its header, each message must contain the location of a
message handler, a routine which will interpret the message and act on it appropri-
ately. When a message reaches the head of its queue, the hardware places a pointer
to it in a special register and dispatches the message handler automatically. Thus,
a message automatically starts a thread of execution (including access to associated
data) on the destination MDP. Message handlers execute until completion, at which
point the associated message is removed from the queue and the next message han-
dler is dispatched. Message reception is handle by the hardware in parallel with
execution of message handlers. A handler may be dispatched prior to the arrival of
the end of its message: the MDP automatically blocks when it needs data still in
transit. To aid in system programming, there are two message priorities, each with
its own hardware queue. Message handlers at the lower priority are preempted by
message handlers at the higher priority. Additionally, there is a background context
which executes when all message queues are empty. These hardware mechanisms
provide the framework for a low overhead implementation of active messages.

The MDP also has hardware support for efficient synchronization. Each memory
location in the MDP consists of a 32 bit value and four tag bits which (among other
things) can be used for hardware synchronization. The tag bits can be set to indicate
the location is a future variable, a location whose value is as yet undefined and which
will be defined sometime in the future. A read of a future variable causes a fault,
allowing the operating system to suspend the process until the appropriate data
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arrives.

2.1.2 File System and Networking Support Hardware

In addition to the mesh of MDPs, a fully functional J-machine includes a host
(currently a Sun Microsystems IPX workstation), a host interface, a set of disk
interfaces, and a set of Small Computer System Interface (SCSI) disks. The host
boots the machine, performs diagnostics on it, and downloads code to it. These
tasks are accomplished through the host interface card which connects to the host
via an SBus slot, and to the J-machine using an edge connector.

The host, acting through the host interface, can inject messages directly into the
message passing network and receives messages from the network. After the initial
boot sequence, this is the primary method for the outside world to interact with J-
machine nodes. The host interface card contains hardware FIFOs which allow sends
and receives without assistance from the host. To send, the host simply fills a buffer
and tells the host interface to inject the message. When messages are received, they
are stored in a receive FIFO, which the host can poll at a later time. Thus the host
is capable of asynchronous sends and receives, so other J-machine nodes see it as an
ordinary node. The message passing interface is accessible at the Unix application
level through a library. Coupled with the standard Unix networking facilities, this
allows the J-machine to participate in a conventional LAN through software on the

host without LAN hardware or a full TCP/IP layer.

The disk subsystem is designed to interact with the J-machine solely through
message passing. The disk interface consists of a set of disk nodes attached to the
main J-machine through a set of edge connectors on one end, and attached to disks
through a SCSI bus on the other. Each disk node consists of a basic J-machine node
(an MDP and memory) coupled with a SCSI controller and Direct Memory Access
(DMA) hardware. Multiple disks can be attached via the SCSI bus. Currently, four
402Mb disks are attached to each bus.

This design provides many levels of concurrency. Each disk can be used concur-
rently: unlike having one larger disk, the disk heads for each disk are not coupled so
one can be performing a write while another is reading and neither operations needs
to be in the same area of the disk. Exploiting this concurrency requires the use of
two important SCSI features: target initiated disconnect/reselect and synchronous
transfer. The SCSI protocol allows the disk (the “target” in SCSI terminology) to
release the bus in the middle of transaction (the “disconnect”) and regain it later
(the “reselect”) to complete the transaction, thus splitting the request from the re-
sponse. This allows the controller to send requests to multiple disks on one bus
before the first request completes, thus hiding seek times. FEach disk has an on-



8 CHAPTER 2. DESIGN AND IMPLEMENTATION

board 64kb buffer which allows it to read and write data without data loss while
disconnected from the bus. To provide opportunities to fruitfully use such split
transaction, data transfers over the bus must be fast. The synchronous transfer
option of the SCSI protocol allows for very fast burst transfers by removing some
of the request/acknowledge overhead involved in its normal asynchronous transfer
protocol. Note that both of these features are currently available using industry
standard SCSI disks and controllers.

Disk nodes gain additional concurrency from the DMA hardware, which allows
the SCSI controller to transfer data to and from memory without going through
the CPU. The MDP only needs to set up the transfer and issue a command to the
controller. It is then free to perform other tasks (such as sending messages or moving
data) while the controller finishes the transfer.

Even more concurrency is gained by having multiple disk nodes. Each disk node
has its own SCSI bus, so the potential bandwidth is the product of the number of
disk nodes and the bandwidth of the SCSI bus. Each disk node can process requests
independently, and transfer data to and from the message passing network. Having
multiple disk nodes also leads to a higher bandwidth as each disk node has its own
connection to the main mesh.

2.2 Message Driven C

More complete information on the Message Driven C
Ueer Applioaton EM]DC) programming system is available in [13] and
NFS 14].

C Stdio Unix 1/0

MDC makes available to the C programmer many

e of the hardware features of the MDP. MDC allows
block cache multiple processes per node with all processes on one
MDP node sharing a global address space. MDC does

disk block read/write not provide for address space sharing among nodes.

The basic communication and synchronization mech-

MDC programming system . . .
prog 9% anism is the “spawn” call, an active message based

_ remote procedure call which creates a process on the
hardware

destination (see figure 2.2). Spawn is used to create

new processes within one node as well as on other

nodes. This programming model maps directly to the
hardware mechanisms in the MDP. Spawn is implemented as a library of C prepro-
cessor macros that map directly to in-line assembly code producing an extremely low
overhead software interface. These macros support the creation of custom versions
of spawn that make sending a complex data structure convenient.
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Figure 2.2: Single computer operation in MDC

Unlike the basic hardware message passing which addresses nodes via their phys-
ical three dimensional location, MDC uses logical node numbers within logical ma-
chine partitions. This allows multiple programs to run on the J-machine simul-
taneously if they do not need the entire machine by splitting the machine into a
number of partitions, one for each application. MDC provides the functions node
(the logical node number of the MDP it’s executed on) and nodes (the number of
nodes in the logical partition) allowing programs to be written so that they will run
without modification on different sized partitions, while still exploiting all resources
available.

Spawn supports synchronization via an optional return value: the calling process
continues executing until it reads the return value, at which point it waits until the
value is defined. The hardware tag bits allow this to happen without explicit checks
by the user program. To make this mechanism efficient, the basic J-machine model
is enhanced to include the possibility of process suspension: under MDC, a process
may allow other processes to execute before it has completed. The MDC runtime
suspends processes when they access an as yet undefined return value by utilizing
the hardware future variable mechanism. When the data arrives, the process wakes
up and resumes execution. Note that the process does not suspend until it actually
needs the return value. Thus, communications latency can be hidden by further
computation within the same process as well as by other processes. The suspension
mechanism is more efficient than a simple spin wait since it allows other computation
to take place during the wait. Another benefit of this mechanism is that it allows a
nested function to spawn and efficiently wait for a reply multiple times without any
special code in its callers: with this mechanism, spawning a function and calling a
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function are interchangeable except for the use of global variables and concurrency
issues.

MDC also enhances the basic J-machine model by allowing for code (but not
data) to be distributed among nodes by the system. The runtime retrieves non-
resident code from a remote location automatically. Unlike data, code does not
change within one program execution so no coherency mechanism is needed to pre-
serve the standard semantics. The MDC linker and runtime cooperate to allows one
program to contain both code replicated on all nodes and code distributed among
the nodes. This allows the programmer to trade time and space efficiency, keeping
frequently called functions local on all nodes for speed while distributing infrequently
needed functions to save space. Code retrieval latency can be hidden by using the
process suspension mechanism to overlap communications and computation.

Beyond these basic enhancements, MDC improves the programmer productivity
immensely by being a complete programming system. It supports structured pro-
gramming in C and the standard C library, allowing for readable and portable code.
It provides a standard C preprocessor to allow shared declarations among modules.
The MDC compiler and linker support multiple compilation units and object code
libraries. Additionally, the linker provides needed support for code distribution and
selectable code replication. While most of these features are not new, they simplify
the implementation of any program as large and complex as a file system.

2.3 Block Level I/0

Just as the MDC layer simpli-
Ueer Applcation fies the programmers’ view of
NFS basic MDP features, the block

C oo | Umio I/O layer presents a simplified

file /0 interface to the disk subsys-
— tem. Rather than interacting

plock cache striping with DMA buffers and mem-
sk block readliurite rpc ory mapped hardware registers

I/O manager spread among many different

MDC programming system - nodes, layers above the blOCk
disk control I/O level use a procedural in-
terface to one large disk com-
posed of (hardware determined)

hardware

fix sized blocks, grouped into stripes. While operating on one or more contiguous
stripes produces the best performance, the procedural interface supports operations
on any contiguous set of blocks.



2.3. BLOCK LEVEL 1/0 11

DMA requests

|

data from
disk

data to write

Figure 2.3: Data and control flow through the disk control layer

The block 1/0 layer is actually composed of four sub-layers: a disk control layer,
the I/O manager layer, an RPC interface, and a striping layer.

2.3.1 The Disk Control Layer

The disk control layer implements the SCSI protocol with assistance from the SCSI
controller and DMA hardware. Although the controller handles many of the low
level features of SCSI, it leaves much of the higher levels to the software. The basic
data and control flow is illustrated in figure 2.3. Requests flowing into this layer are
translated into a series of SCSI messages and requests for DMA transfers. The layer
returns status information when a request completes, an error occurs, or a request
is split.

One of the more important tasks of this layer is the detection of SCSI split trans-
actions. After receiving a request, the controller hardware on the disk itself decides
how quickly it can service the request. If the data is not immediately available or
the disk head is not in the appropriate position, it will send a message to the SCSI
controller asking to split the transaction. The control layer will, upon receiving this
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Figure 2.4: An example of SCSI bus activity during a split transaction. An operation
on a second disk is initiated before the first operation completes.

message, save its state, release the SCSI bus, and return an “in progress” status.
At a later time, the disk will gain control of the bus and attempt to resume the
transaction by using the SCSI protocol’s low level arbitration mechanism. The con-
trol layer will detect this condition and resume the request. An example of this
interaction is presented in figure 2.4. A disk may choose to split a transaction many
times to compensate for mismatches between SCSI bus transfer rates and physical
disk transfer rates.

For most common requests, the control layer must transfer a large amount of
data, a task handled most efficiently using the DMA hardware. The control layer
must set up the DMA transfer, both within the DMA hardware and the SCSI
controller. For disk reads, the data will be sent to a remote destination using an
optimized block send routine directly from the DMA buffer. Data must be copied
into a DMA buffer from an intermediate buffer in local memory for write operations
because of disk timing constraints and the limitations of the DMA hardware.

To decrease latency on both the send and copy operations, these operations are
overlapped with DMA by pipelining. This process is illustrated in figure 2.5. Each
disk transfer is split into many DMA transfers along block boundaries. During a read
operation, all DMA transfers after the first are overlapped with a send of previously
read data by starting a DMA operation to retrieve the next block, sending the most

time
CPU start ne start send ncl ... start send ne send
operation |DMA ¥ DMA| blocko [¥ DMA | block N-1 |¥™®| block N
DMA 4 read 4 read 4 read
( a) operation block 0 block 1 block N
time_
CPU copy start copy nel e start copy nc start ne
operation | _block0 |DMA| block1 |¥ DMA| blockN [¥™|DmA ¥
DMA 4 write 4 write A write
(b) operation block 0 block N-1 block N

Figure 2.5: Overlap of DMA and CPU activity in (a) reads and (b) writes
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recently read block, and then synchronizing. Multiple buffers are used to safely
overlap the operations. For large reads, the inter-node transfer will overlap with the
disk to memory transfer. Similarly, during a write operation, all memory-to-memory
copy operations after the first are overlapped with a DMA transfer by starting a
DMA operation to write the most recently copied block, copying the next block,
and then synchronizing. This process overlaps transfers from memory to memory
and memory to disk.

This design allows us to concurrently use the CPU resources (including the mes-
sage network) and the SCSI bus. Support for SCSI split transactions allows higher
levels to exploit the available inter-disk concurrency. Each request to the disk con-
trol layer corresponds to all or part of one transaction with one disk, allowing higher
layers to manage this concurrency at a fine-grain level.

2.3.2 The I/O Manager

The main task of the I/O manager is to fairly control access to the SCSI bus. When
multiple requests for each of the disks are outstanding, it is important to ensure
that each disk is given one request at a time and that the idle times of disks with
outstanding requests are minimized. However, starting a request requires having
control of the SCSI bus, and disks may need access to the bus to complete requests.

This complexity is managed in a fairly straightforward way, as illustrated in
figure 2.6. For each disk, the [/O manager maintains a queue in which it stores
requests for that disk on a FIFO basis. As requests come in, they are placed in the
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appropriate queue by a sorting process. A scheduling process cycles through each
of the disks which are idle, starting the request at the head of the queue for that
disk. Requests are removed from the head of the queue when they complete. If a
disk needs the bus to resume a transaction, it may gain it at the end of any active
transaction using the SCSI arbitration process, thus ensuring fairness among disks.
If the I/O manager detects outstanding messages from the message passing network,
it will suspend between operations and allow other processes to execute.

This architecture allows concurrent use of the disks by building on the lower
level split transaction concept. Assuming that most SCSI requests will be split, one
request per disk (the hardware limit) may start before waiting for the first request
to complete, thus masking disk seek times and utilizing the SCSI bus at peek bus
transfer rates instead of physical disk transfer rates. Scheduling is handled on a fine
grain level, one request per scheduling decision. By cycling through the queues, this
architecture schedules bus access fairly among disks and thus the disks are utilized
efficiently. Additional concurrency is achieved by overlapping communications over
the message passing network and the SCSI bus: the MDP hardware queues incoming
messages automatically while the CPU is busy. By periodically suspending, the 1/0
manager allows new requests to enter the request queues and/or new data to arrive
while the disks prepare for transfers.

2.3.3 The Block I/O RPC Interface

The Block I/O Remote Procedure Call Interface layer is designed to allow any node
on the J-machine to treat the disk nodes as a set of servers of physical disks. This
layer has only a few small tasks to perform. On the client side, it just needs to
send a message. On the disk node side, read messages are translated directly into
requests that are placed in the 1/O manager queues. Since writes must occur from
local memory, additional work is required to allocate a buffer and transfer the data
from the remote location. Only when all data is present does the write request enter
the queue. This is handled by the RPC interface transparently. If a disk node has
too many outstanding write requests buffer memory will run out. In this case, the
client is asked to retry later.

This simple interface has very low overhead at the client: it just needs to send
requests. Other processes on the client node can continue processing. Additionally, it
supports concurrency by easily accommodating multiple overlapping requests from
different nodes or different processes within one node. This interface decouples
clients (which may be on any node) from servers (which must have access to physical
disks) yet allows any process in the machine to conveniently access the disks. Since
all needed data is present on the disk node once a request is in the queue, lower
layers need only manage one nodes resources, greatly simplifying their design.
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2.3.4 Disk Striping

The disk striping layer joins all the separate physical disks among all of the disk
nodes into one logical disk, simplifying the view of the disk subsystem. To optimize
the utilization of the disks, each disk is divided into a number of stripes. Logical
blocks are translated first into logical stripes, and then blocks within those stripes.
Requests spanning multiple stripes are split automatically into multiple requests,
each entirely within one stripe. Fach of the resulting requests is handled concur-
rently. Each request, now addressed to one logical stripe, is distributed among disk
nodes and disks within these nodes based on a logical stripe number. Stripes are
first distributed among nodes, and then among disks within nodes. Thus, a large
requests for many consecutive blocks will access one stripe on one disk within each
node, then a second (different) disk on each node, and so on, until all requested
blocks are handled. Except for the last stripe on each disk, the stripe size used is
64kb. This corresponds to the size of the memory buffer on each disk, the optimal
transfer size for the J-machine disks. The last stripe on each disk may be shorter
since the capacity of a disk need not be a multiple of 64kb.

This architecture has several benefits. First, it splits requests into fine-grain
tasks which are mapped directly to a particular node. This limits the complexity of
lower levels by limiting operations to take place within one node. This also ensures
that the task given to lower levels are sufficiently fine-grain that the scheduling
mechanisms work well. Striping also enables concurrency among SCSI busses and
disks by mapping each stripe to a particular disk on a particular bus, splitting
requests along stripe boundaries, and executing requests concurrently. This is in
addition to the more basic concurrency gained by allowing multiple processes to
issue requests concurrently.

The striping mechanism used also aids in load balancing, so that the concurrency
provided by higher levels can be fully exploited: striping maximizes bandwidth in
a scalable manner. Two related properties of the striping algorithm ensure this.
First, for sequential accesses, no disk node will receive a second request before all
disk nodes receive at least one request (thus SCSI busses are load balanced) and no
disk within the whole system will receive a second request before all disks in the
system receive at least one request (thus balancing load among disks). Second, for
random accesses there is an equal probability that any SCSI bus and any disk will
receive the request, so over sufficiently many accesses, each disk and each bus will
receive approximately the same number of requests. Load balancing is important to
achieving maximum bandwidth in periods of high activity: the observed bandwidth
of many sequential or random requests starting roughly simultaneously should be
the peak combined bandwidth of the disk system (the minimum of the peak rates
for all communications, the peak SCSI bus rate times the number of buses, and the
peak disk transfer rate times the number of disks).
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2.4 The Distributed Block Cache

The block cache layer presents

the same interface to the upper
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NFS —I—I layers as the block 1/0 layer.
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distribution layer As such, it is not strlctly. neces-
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block cache DCM implementations of MDFS. Its
flusher main purpose is to enhance per-
disk block readurite formance by reducing the load

local cache ) e
- B on the disk systems, optimiz-
MDC programming system . .

ing transfers, and softening the
hardware “bursty” nature of checkpoint-

ing.

Caches reduce load by em-
ploying the principle of locality: most programs tend to work in nearby regions
of space over short periods of time. Repeated reads of the same data can be avoided
if the accesses happen closely in time, thus better dealing with “hot spots” generated
by global data such as directories and the free block list. Similarly low lifetime data
(from writes) is dropped as repeatedly overwritten data need not be flushed until
it has stabilized. More importantly, nearby reads will be combined into one read:
the first of a set of many small reads will bring in an entire cache line thus avoiding
reading the disk on subsequent nearby requests. Similarly, adjacent writes can be
aggregated into one large write by delaying the flush to disk and joining requests.

These same properties lead to optimized access to disks. Transfers will occur in
larger units, more fully utilizing burst transfer modes. Also, the write pattern can
be tuned by adjusting the flushing algorithm.

These properties are designed into the MDFES block cache. The cache is designed
as a distributed cache (i.e., it is a global structure spanning many MDP nodes) to
take advantage of the increased memory bandwidth provided by the fast communi-
cation rates but low memory of the fine-grain MDC environment. To ease the design
of the cache, it consists of several layers: a local cache, a set of migrating flusher
processes, a distributed cache management (DCM) layer, and a distribution layer.

2.4.1 The Local Cache Layer

The local cache layer manages the cache within one node. Each cache entry is an
entire disk stripe. Read operations for data not already in the cache always read in
the complete stripe. Write operations to stripes not in the cache present a problem
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when not writing a complete stripe: should the entire stripe be read before executing
the write in order to fill in the missing data, or should it be assumed later writes will
do this? The MDFS cache is designed to avoid a read on a partial stripe write. This
is accomplished by keeping track of “valid” portions of the stripe, i.e. those that
have been written or read. If it is necessary to flush an incomplete stripe (one that is
not all valid), the system attempts to write a partial stripe. Read requests trigger an
actual read only if it is not in the valid portion (i.e., what has been written). Also,
a “write zeros” operation is provided to aid in preventing reads of newly allocated
blocks: the file system can clear the entire block when it allocates a block so that
subsequent reads or writes won’t fetch old data from disk.

The local cache layer operates concurrently. It handles multiple requests in
parallel: later requests will execute while earlier requests are waiting for responses
from the disk system. In most cases, this is easily handled in MDC by simply
ensuring that all functions are written in a re-entrant manner (i.e., they do not rely
on global data for their operation) with an “in-use” counter to prevent replacement
of cache lines on which operations have not yet completed. A “state” field in the
cache line prevents concurrent operations on a single cache entry from interfering
with each other: prior to reading or writing data for a cache entry, the state is set
to “reading” or “writing” causing subsequent conflicting operations to suspend until
the cache line returns to a normal state.

2.4.2 Flusher Processes

The cache flusher processes ensure a safety property of the cache: all new data
is eventually written to disk. This property is necessary to ensure data retention
through system crashes and power downs. A least recently used algorithm is used
to select among dirty blocks, those whose data has been written and thus no longer
mirror the contents of the disks.

Data for each disk is flushed concurrently with data for other disks. This is
accomplished by having one flusher process per disk. Processor nodes participating
in the cache are logically organized in a ring, with flusher processes migrating around
the ring. At each processor a flusher process writes at most one dirty stripe before
migrating to the next processor node. This orchestrates the write pattern so that a
requests is sent to each disk having dirty stripes, but avoids flooding the disk nodes
with write requests. It also load balances flusher processes among the processors
with dirty cache entries.

To lower overhead, the flushing algorithm runs only when the block cache is
otherwise idle. Each flusher must wait until it detects an idle condition on all nodes
for some minimal time. This is accomplished using a simple algorithm. The local
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cache counts the number of requests received. At each node, the flusher waits until
the node has been idle for a minimum time period. It then migrates to the next
node in the ring. When the request count does not change at any node over three
cycles through the ring, it is assumed that all nodes are idle. At that point, the
flusher begins flushing blocks by migrating around the ring flushing one block per
node until no blocks are left, or the block cache is not idle. This process stops when
a request count on any node in the ring changes, at which point the idle detection
algorithm is restarted.

Flusher processes consume very little resources. The MDP background context
is used to detect the idle period, so idle detection only executes on a node when all
message queues on that node are empty, a condition that occurs only when an MDP
has no work that is not in transit. The only data that needs to be transmitted when
processes migrate is the idle state (one integer) and a couple of parameters.

2.4.3 The Distributed Cache Management Layer

This layer is analogous to the block I/O RPC and striping layers. Its purpose is
to package requests into RPC calls to make each of the local caches on each node
available to all nodes, and to implement the distribution strategy specified by the
upper layers. It also handles allocation and deallocation of memory for data on the
client side.

The DCM layer is written in an object-oriented manner for data reuse and flexi-
bility. By using object oriented techniques, one framework works for multiple types
of cache. These same routines are used in the file I/O layer for implementing a
distributed cache for meta-information (see below). Additionally, these techniques
allow us to swap out distribution strategies to allow alternate implementations for
our experiments.

2.4.4 Request and Data Distribution

Data is distributed over all file system nodes, thus using all of the otherwise unused
memory in the file system. Requests execute on the node containing the data. A
request will migrate to the appropriate node via the DCM layers RPC system.

This distribution strategy is based on a hashing technique: requests contain a
key which is hashed into an integer using a call-back routine unique to each type
of cache. This integer is then mapped to a node number via the modulo operation,
thus striping requests and data among nodes.

For the block cache, the key used is the stripe number portion of the the logical
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block number. This is a very low overhead technique, in that calculating the hash
value of a key (and thus the location of the requested data if it is in the cache) is
a simple integer operation on the block number. It also produces a roughly load
balanced distribution of data (and thus workload from cache requests) for reasons
very similar to those given in the discussion of striping in the block level.

This technique propagates the concurrency inherent in lower layers up to higher
layers. Requests for different data can execute concurrently as they will often map
to different nodes. Since lower levels can handle multiple requests concurrently, the
upper levels need not restrict their calls to prevent multiple requests to one node.
Requests for the same data will share disk transactions because of the design of the
local caches.

2.5 File Level I/O

The file I/O layer allows applica-
tion programs to treat the disk
subsystem as a set of named
file and dir. ops. files. Files can be created, writ-

User Application
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fle /0 - ten, read, and deleted indepen-
meta-info manager .
o : dently of each other. Multiple
block allocation files can be read or written con-
disk block read/write Currently
MDC programming system TO Slmphfy thlS CompleX

rdware task, the file I/O layer is com-
posed of a number of sub-layers.
The bottom-most layer deals
with disk allocation and partitioning: it divides the unified logical disk into a few
partitions, and then subdivides each partition into fix sized allocation units (log-
ical blocks). The next layer manages a number of data structures (the file meta-

information) necessary to keep track of a file’s attributes (such as its length and date
of creation) and structure (where the data is located for a given offset into the file).
Other layers provide routines to manipulate files and directories (the file/directory
layer) and provide user applications access to files via RPC (the applications layer).

2.5.1 The Block Allocation Layer

The block allocation layer provides a number of routines to partition the logical disk
presented by the block 1/0 and cache layers. This disk can be divided into a number
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of logical partitions, allowing different file systems to coexist on the same set of disks
so that applications and file systems research may continue independently.

More importantly, each partition is further divided into blocks whose length is
some multiple of the hardware block size. The size of a logical block is constant
within a partition, but can vary among partitions. Logical blocks are the minimal
allocation unit within the file system: files are allocated space in multiples of the
logical block size. In MDFS, the logical block size is typically (but not necessarily)
smaller than the stripe size.

Once a block is allocated to a file, that block can be read or written concurrently
with any other blocks within that file or any other. However, the allocation algorithm
itself relies on mutual exclusion for correctness and thus is effectively sequentialized.

2.5.2 The Meta-Information Management Layer

The meta-information management layer manages the data structures necessary to
maintain file attributes and file layout on disk. The top level structure for this
information is an “inode”, similar to the corresponding data type in the Unix file
system. Inodes are numbered by a (block, entry) pair which gives their location
on disk. A number of file attributes, including the nominal length of the file, are
stored within the inode. Additionally, inodes maintain the basic information on the
structure of the file. MDFS files are structured as a tree of blocks, with data blocks
at the leaves. The logical block size determines the upper bound on the number of
branches within a non-leaf node. Some portion of the tree can be left unallocated
allowing for sparse files. The root and depth of this tree are stored in the inode entry
for the file. The meta-information management layer handles the tasks of creating
and deleting inode entries, changing attributes within these entries, mapping offsets
within a file to blocks on disk, and allocating new blocks to fill out the tree as
needed.

Most of the necessary information for managing meta-information is cached
within the layer to reduce disk accesses. MDFS uses a stateless call paradigm to
improve opportunities for concurrency, but this architecture necessitates re-reading
much of the meta-information for a file on every call. The meta-information cache
prevents this from being a burden on the lower levels: caching this information
reduces contention for inode blocks in the block cache. Also, the data can be re-
distributed to fit the needs of the meta-information management layer decreasing
communication: meta-information can be kept on the node which is most likely to
need it rather than the node maintaining the block cache entries for the blocks in
which it is stored on disk.

The meta-information cache actually consists of two independent caches: one
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for partition-wide information which doesn’t change often, and one for file level
information. The partition information cache is local and replicated in each node
since the few entries in it take up little memory and change infrequently.

The file information cache is a distributed cache using the same design as the
block cache: it is further layered into a local cache, a DCM layer, and a request/data
distribution layer. The local cache can handle information for multiple files concur-
rently. The DCM layer is the same as the DCM layer in the block cache. The same
hashing-based request/data distribution scheme is used, with the hash key derived
from inode location information, i.e the partition id, inode block number, and entry
number within the block. In addition to the information contained in the inode, the
cache contains the block numbers around the most recently accessed section of the
file, along with the locations of all the index blocks required to get to that section.

Since the meta-information cache reuses the distributed cache management layer
from the block cache, it gains many of the advantages of the block cache. The local
cache can execute multiple concurrent requests. When coupled with the distributed
cache management layer, many requests may execute concurrently among processors
in the system and may overlap execution within a node using suspension. Requests
execute on the node containing the data to lessen communication overhead. Map-
ping is based on hashing the inode location, a low overhead technique which just
needs a few arithmetic and bitwise operations. Since different files have different
inodes, this tends to distribute handling of files among all processors in the ma-
chine, leading to good load balancing behavior. This latter effect is enhanced by
checkpointing: during checkpointing behavior, the files are all created at approxi-
mately the same time so they will be allocated by adjacent inodes because of the
simple “next available space” algorithm used to allocate inodes. The hashing-based
mapping strategy converts this spatial locality into an even load distribution.

2.5.3 File and Directory Operations

The file and directory operations are written in terms of the meta-information man-
agement layer. The directory operations provide for mapping human readable names
to inodes. This layer creates a file by creating an inode and inserting a map entry
from the desired file name to that inode. Similarly, it deletes a file by removing its
entry and deleting the corresponding inode. A lookup operation returns a “handle”
to the file (really just the inode location) which allows read and write operations on
it. The read and write operations are all written in terms of the file meta-information
layer. Thus they are fairly simple.

All read, write, and lookup requests within the layer are handled concurrently.
However, directory operations require mutual exclusion on writes for safety. To
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partially alleviate this problem, operations only lock one section of the directory at
a time, thus pipelining create and remove operations.

2.5.4 The Applications Interface

The applications interface provides user applications access to the file system. It
consists mainly of an RPC interface to the the file and directory operations layer.
This RPC interface decouples the application from the file system, allowing the
system to change without changing the application. This takes the place of the
traditional system call mechanism used for this purpose in sequential operating
systems such as Unix and MS-DOS. Under MDC, the file system is not part of the

kernel: it is an “application” with some very unique capabilities.

The RPC interface has very little overhead in the client applications. Only a
small amount of state information (file handles for the open files) needs to be stored
in the application, although some buffering reduces call overhead for small requests.
Code overhead is minimal: the application only needs to link in small routines to
pack requests and unpack responses.

The RPC interface has another benefit: it eases the NFS implementation. Since
the file system interface it based on an RPC interface implemented over the native
message passing system, any node that can exchange messages with the file system
nodes can make file system requests. Since the host is such a node, it can simply
send requests to the file system for its NFS implementation.

The other major task for the applications interface is request distribution. Since
there are many file system nodes in a system, the applications interface must choose
one to send a request to. This choice is made based on a hashing scheme similar
to the one used in the caches. The hash key is based on the file name for directory
operations, and the file handle for read and write operations. Again, a hashing-based
request distribution scheme has little overhead: only a few arithmetic operations to
compute the hash key. For directory operations, the overhead is slightly greater
because the hash is based on a string, so the time to compute is based on the length
of the string. Since these operations are rare compared to read and write operations,
this is not very important. Also, as in the same scheme for the caches, hashing leads
to a first order load balancing among file system nodes. This is important, in that
if all requests during a checkpoint were to go to one node, the volume of requests
would quickly overwhelm it. In addition to the speed penalty associated with having
only one node handle requests, having many outstanding requests may exhaust the
memory of a single processor node.

By carefully choosing the hash key and hashing method, we can improve the
locality of operations and thus the speed of the system. Since the file handle is
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just an opaque representation of the file inode location information, we choose the
same hashing scheme as in the meta-file information cache. Thus only local meta-
information cache requests are necessary to implement read and write. However, for
directory operations, such requests may be remote.

Like previous RPC interface layers, the applications interface layer executes con-
currently and enables upper layers to execute concurrently. It can handle multiple
outstanding requests. Thus, many processes, whether on one node or distributed
among several nodes, can each make a request to the file system at approximately the
same time. Since calls into the RPC layer are stateless, the application could issue
multiple requests without interference between requests, allowing parallel execution
among many processes within one application.

2.6 The C Stdio Interface

The C stdio interface provides a portable interface to
Deer Aplication the file syst.em by 1mplem(?ntlr.1g the ANSI C St&.m—
NFS : dard 1/0O Library. An application may choose to in-
g | vmee terface to the file system either through this interface

file /0 or directly through the applications interface. While
presenting a portable interface, the C interface limits
concurrency because of the semantics of operations
on its file pointers. The semantics of this interface
specify that a file pointer does not update its location

block cache

disk block read/write

MDC programming system if an error occurs. Since success or failure of an op-
eration is not easily predictable, file pointers update
hardware only after an operation completes thus sequentializing

file operations. However, the concurrency provided by
having multiple processes access different files is still
available as long as each process maintains its own file pointer (i.e., they do not
share a global location for this pointer). Another drawback to the C interface is
that its buffering mechanism adds memory overhead: if the data is read or written
in large chunks, as would be the case in writing an entire array of data to disk with
one call, the buffer allocated by the library remains unused.

The C stdio interface is implemented entirely as a library written on top of the
MDFS applications interface by porting the GNU C standard 1/0O routines. These
routines implement the C I/0O library in terms of a few basic routines (stdio_open,
stdio_read, stdio_write, and stdio_close) which were easily implemented in
terms of the file systems applications interface. The ease of this task was mainly
due to the structure of the GNU library which was designed specifically to simplity
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porting to new operating systems. Other file interfaces, such as the Unix 1/O calls
or the forthcoming MPI I/O standard, could be added to MDF'S just as easily given

a good reference implementation.

2.7 The Network File System

The NFS layer provides the LAN connectivity for
Deer Application MDFS. Any workstation on the LAN can mount a
NFS J-machine’s file system directly using NFS. The user

C Stdio Unix 1/0

can then access this file system using standard com-

file VO mands. As long as the relevant formats are binary
compatible (using only 32 bit integers, 64 bit IEEE
block cache floating point numbers) simply copying a file into the

appropriate directory makes it available to J-machine
disk block read/write . . . .
applications. Files on the J-machine can be exam-

MDC programming system ined using standard tools, either by accessing them

directly or copying them to local disk. The former is
hardware generally more convenient, while the latter is useful

for backup purposes and is more efficient if the file is
to be read multiple times. Utilities are provided for
converting pure text files to and from the J-machine’s native format (a matter of
inserting or deleting the extra zero bytes needed because the J-machine uses only
word addressing.)

The NF'S layer is treated as if it were just another application by the Unix kernel
and the other layers of MDFS. It executes on the host as a user level process under
Unix, accepting RPC requests via the standard networking libraries. A standard
SBus driver provides all the hardware access necessary, so no special kernel code is
needed. For its MDFS related operations, the NFS layer simply sends messages to
the MDFS applications interface just as an MDC application would. A messaging
library and a version of the client side of the interface recompiled for a Sun host
simplify this task.

The NFS layer has a fairly simple task. It translates NFS requests into mes-
sages that follow MDFS applications RPC interface. Similarly, it must translate the
responses back into NFS return values. Since both the MDFS and NFS are based
on stateless RPC calls this is a relatively straightforward process. The applications
interface was specifically chosen so that most NFS requests map directly to one or
two MDF'S requests, making this translation even easier.

To ensure that multiple NFS requests can take advantage of the concurrency in
the file system, the NFS layer uses a multi-threaded implementation based on the
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active messages paradigm. Each NFS RPC request triggers the creation of thread
within the system. These threads suspend when waiting for responses for the file
system, allowing other requests to continue. Responses from the J-machine resume
execution of the suspended thread. When all necessary information is received, the
NFS layer responds to the NFS RPC request and destroys the thread for it. By using
this technique, the NFS layer can have multiple outstanding requests within one
Unix process. It begins processing an NFS request as soon as it arrives, allowing the
underlying file system to handle all requests concurrently. Multiple Unix processes
can take advantage of the concurrency in MDF'S, but a single Unix process typically
has only one thread of execution and uses synchronous file system calls, so to see this
concurrency requires many processes (either on the same or different workstations)
to issue commands simultaneously.
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Chapter 3

J-Machine Implementation
Experiences

3.1 Node Partitioning

Except for the association of the low level block 1/O with disk nodes, there has
been no mention of the mapping of file system layers to physical processors. Ideally,
all processes not needing direct access to disk hardware could be anywhere in the
machine. However, the small memory in each processor node and lack of a memory
management unit in the MDP architecture means that it is not possible for MDC to
execute multiple applications on one node. As a result, we divide the J-machine into
disk nodes, file system nodes, and application nodes at boot time using the MDC
loader’s ability to logically partition the machine among different applications. Each
set of nodes runs a particular set of layers in the file system. Figures 3.1 and 3.2
illustrate this arrangement. The disk nodes consist of all processor nodes with
attached disks. Most of the block I/O layer runs on the disk nodes. The file system
nodes form a slice of the machine adjacent to the disk nodes. The middle layers up
to the client side of the applications interface reside on the file system nodes. The
NFS layer runs solely on the host, with the client side of the application layer linked
into it. The remainder of the machine is left unallocated at boot and can be used by
any application. The client side applications interface and the C stdio library link
into the user application and reside on the application’s nodes when an application
is run. Multiple applications can run in the applications nodes by using MDC to
further partition the machine.

This approach allows us to reserve resources for a specific task. Thus, if the
file system has inadequate resources, we can simply increase the size of its logical
partition, giving it more memory and processors.

27
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Figure 3.1: Node partitioning in a 512 node J-machine with 32 disks.
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Figure 3.2: Distribution of layers among node partitions.
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A minor difficulty with this approach is that MDFS needs to circumvent MDC’s
default mapping of node numbers to physical nodes to achieve inter-application com-
munications. MDC only maps nodes within one partition into its node numbering
sequence for that partition. Thus, to access nodes outside the current partition, the
client side of the applications interface and the block 1/0 interface need to use an
alternate map which includes the nodes they need to access. This is accomplished
by modifying some of the macros used by the MDC spawn macro library to allow
the use of an alternative mapping of node addresses within client side interfaces.

3.2 Message Forwarding

One of the premises of our system is that all nodes should be accessible from any
other processor node. This is not the case in the J-machine. To understand why,
recall that the J-machine disk nodes are only connected to the rest of the system
via Y edge connectors. This means that there is no channel connecting them in the
7, direction to any other node. Additionally, since there are only two disk nodes per
physical board, each disk node is only connected to the other node on its board in
the X direction. Given a sophisticated routing system, this would not be a problem
as there exists a path from any node to any other. However, the J-machine employs
a deterministic routing technique: each message first travels along the X direction,
then the Y direction, and finally the Z direction. This means that a node on the
bottom board can not send a message directly to a disk node connected to the next
board up, because that disk node has no 7 connection to the disk board below it.
Similarly, a disk node can not send a message to any node whose position along
the X axis is not 0 or 1. This problem is only relevant for communications between
file system and disk nodes: the file system and applications nodes are in the main
J-machine board stack which has all possible X, Y, and 7 connections available.

To solve this problem, the MDFS kernel was augmented to implement forwarding.
When a node needs to communicate with another node to which it can not send
directly, it computes the address of an accessible intermediate node (the forwarder)
which can send to the ultimate destination. Instead of sending directly to the desired
node, it sends the message to the forwarder with a header indicating the message
destination. The forwarder then resends the message (minus the header) to the
true destination. Note that since the X,Y,Z pattern of the J-machine’s routing may
choose different paths for different directions, some candidates for forwarders are not
suitable as forwarders in the return direction. In practice, this situation is avoided
by appropriate choice of a forwarding node. Also note that any message can be
delivered by passing through at most one forwarder due to the pattern of partial
connections within the J-machine and the deterministic routing scheme.
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Forwarding is handled at a very low level by adding a message handler to the
MDC kernel. This message handler simply re-sends a part of itself to the physical
node given by its first argument. By taking advantage of the high priority queue
and the MDP’s ability to dispatch a message before the entire message arrives, this
process increases latency only minimally and does not decrease bandwidth. However,
a forwarding node pays a small price in computational time, so we limit forwarders
to be within the file system partition to avoid impact on applications.

3.3 NFS

The host interface in the J-machine was the key to the NFS strategy chosen. It
simplified the network implementation by allowing messages to enter the network
directly from the host. The alternative would have required Ethernet hardware
and a full TCP/IP design from the Ethernet hardware interface up to Sun RPC.
However, the given hardware design did present some difficulties: to send and receive
messages, a process needed exclusive access to the hardware. Since both NFS and
the MDC loader needed to use the facility this was not ideal. Also, Unix allowed us to
block until until the arrival of either LAN messages or J-machine messages, but not
both without resorting to polling. These problems were easily solved by sending all
messages through an intermediate process. This process has exclusive access to the
hardware, so it ensures that message sends and receives are implemented correctly.
It uses a combination of polling and the Unix select mechanism to receive messages
through both the J-machine hardware and Unix sockets. By using a socket interface,
the Unix select call can be used to wait on J-machine messages, LAN messages, or
both without polling within NFS and the loader, so such polling was restricted to
one process where it can be carefully controlled.

Another minor difficulty was the complexity of Sun’s NFS and RPC. To decrease
development time, we chose to use Sun’s RPCgen compiler and RPC library. RPC-
gen automated the tedious work of implementing packing and unpacking routines
for the various NFS data types and call sequences. RPCgen also produced the nec-
essary code to register the NF'S protocol, initialize its RPC interface, and dispatch
request handlers.

A drawback of the Sun RPC library is that it is poorly suited for multi-threaded
applications: it stores return information in globals within the library preventing
context switches within a RPC request handler. Since we implemented our own
simple threads package based on active messages, this did not prove to be a major
obstacle. Two routines were added to the RPC library to save and restore the
appropriate context information needed to implement RPC return messages. When
creating a context for a new NFS request, the threads package calls the first of these
routines to save all needed information in the context. This information is restored
prior to an RPC return.



Chapter 4

Evaluation

4.1 Performance

In terms of performance, the goals of MDFS were modest. Emphasis was placed
on designing implementation techniques. As such, algorithms were chosen under a
“good enough” criteria: preference was given to simple algorithms with adequate
performance rather than difficult to implement algorithms that have optimal or
nearly optimal performance. The performance results should be evaluated in terms
of the scalability demonstrated rather than absolute numbers.

4.2 Hardware and MDC Performance Limits

Hardware limits on MDFS performance can be classified into three categories: disk
bandwidth, interprocessor communications, and CPU speed. The disk drives used
have average seek time of 12.6 milliseconds [10]. Given the 64k stripes used, ran-
dom disk seeks should limit transfer rate to approximately 5Mb/s when transferring
whole stripes. Sustained transfer rates through the internal disk controller vary
from 1Mb/s to 1.6Mb/s depending on the location accessed on disk, and maximum
SCSI bus transfer rates are quoted at 10Mb/s. The SCSI controller used in the disk
interface cards can achieve a maximum transfer rate of 5Mb/s [15]. Thus sustained
disk transfer should peak at 4Mb/s if all disks can be kept busy.

Due to the architecture of the MDP, interprocessor communications are actually
limited by memory bandwidth. The communications network is designed to send
at the maximum rate instructions can be issued: one send of two words of data per
cycle, with each word consisting of four tag bits and thirty-two data bits. However,
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the data sent either must be loaded from memory or generated via arithmetic op-
erations. In the case of disk I/0O, data will come from a disk buffer. An access to
memory takes 5-8 cycles so we expect a peek transfer rate of about 2Mb/s out of a
20MHz' MDP. Thus, we can see that with no processing time in MDFS, we would
at best see a 2Mb/s transfer rate.

The impact of CPU speed on MDFS is hard to quantify beyond the memory
access rate. The MDP is not a fast processor by modern standards: it was designed
over three years ago using a commodity fabrication process. Thus, compared to
modern chips, it runs at a low clock rate and does not have enough registers or
on-chip cache. MDC increases these liabilities somewhat by attempting to support
multiple processes without a memory management unit: MDC adopts a heap-based
rather than stack based architecture[13], thus making the implementation of dy-
namic memory allocation very important. Even with these deficiencies, we would
still expect that a highly tuned SCSI implementation should achieve at least 50%
of peek bandwidth.

4.3 Block I/0O performance results

Performance was measured using a 512-node J-machine running at 20MHz. Figures
are given for a test program which was designed specifically for the purpose of
measuring read /write performance. The number of “clients” is the number of nodes
generating requests and data. Accesses are distributed among these nodes roughly
equally. The number of “disk nodes” given is the number of MDP with attached
disks. This number ranges from one to eight disk nodes (half to four disk boards).
Times given are for writing 4Mb of data. Read performance is similar.

Figure 4.1 shows the performance of block 1/O against request load. The data is
divided into 64kb chunks. Each chunk is either written to a consecutive set of blocks
distributed among processors in a round-robin fashion or written to a random group
of blocks. Notice /O performance increases until the disk system is saturated. After
that point, extra load no longer fills unused bandwidth but instead delays processing
of existing requests by consuming CPU resources. More work needs to be done to
limit requests sent to avoid overloading the disk nodes. For some unknown reason,
six disk nodes are more efficient than eight on large workloads. This is likely due to
network utilization patterns, but it is unclear. Also notice that sequential access is
no more efficient than random access. This indicates that seek time is not a limiting

factor on 1/0 bandwidth.

Figure 4.2a shows the time under optimal load for different numbers of disk nodes

!The MDP divides its external clock by two so it is actually running at 10MHz internally
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Figure 4.1: The affect of load on run-time in the block I/O layer with (a) a round-
robin distribution of consecutive blocks and (b) a random distribution
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Figure 4.3: Performance of 32 node block cache on repeated writes of same cache
line for various client loads.

on a linear-log scale. Also shown is the line of linear speedup. Although it does
scale, there seems to be significant overhead involved in adding more disk nodes. If
performance on high workloads for six and eight boards could be improved, then the
speedup curve would show more improvement. Figure 4.2b gives the performance

of the disk I/O system in kb/s.

4.4 1/0O performance with the distributed block
cache.

Figure 4.3 shows the scaling characteristics of the block cache decoupled from
the disk system. Each client writes 64kb of data repeatedly to the same cache line,
thus avoiding disk flushes. Different clients write to different cache lines to avoid
data dependencies. As can be seen from the graph, the block cache scales well up
to 24 client nodes. Somewhere between 24 and 32 nodes, blocks begin to map to
the same processor node. This behavior is similar to collisions in hash tables.

Figure 4.4 shows performance of the block cache and disk 1/O subsystem in
various configurations on round-robin writes to consecutive blocks. Performance
generally improves with increasing numbers of nodes and clients until either disk or
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Figure 4.4: Block cache performance for round-robin block writes. The number of
processor nodes participating in the block cache and the number of disk nodes are
given along the horizontal axis with time along the vertical axis. Curves are given

for 1 to 8 client processes.
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Figure 4.5: File system read/write performance writing eight 64k files in 2k chunks.
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network bandwidth is saturated.

4.5 File system I/O performance

Figure 4.5 shows times for writing files. The performance of the file system does
not scale for this test. This is mainly due to the sequential nature of the block
allocation and directory search routines: the allocation routines need exclusive access
to the free list while manipulating it, and the directory search routines compete
for the same shared directory blocks. Alternative allocation routines are needed,
as attempting to parallelize conventional ones proved inadequate. For directory
operations, a change to a hash based directory would improve matters some. Further
improvements might be made by attempting to handle multiple create and lookup
operations at once. This could be done by scanning and changing the directory once
for each burst of create and/or lookup operations instead of once for each operation.
Thus less time would be spent transferring data to and from the block cache during
directory operations.

4.6 Implementation Experiences

MDEFS provided a good framework for addressing most of the issues involved in
writing a file system in a scalable manner. Layering and the use of fine-grain par-
allelism provide for a clean, scalable, structured design. However, the design leaves
unaddressed the issue of resource allocation. Fair, scalable allocation techniques
are needed for memory and disk allocation. The conventional techniques used were
not appropriate for a parallel design where multiple processes share one processor’s
resources. For example, memory allocation proved difficult because the space avail-
able depended on the number of processes running. There was no convenient way to
block until adequate memory was available. Similarly, block cache requests needed
explicit in-use flags to prevent other processes from changing data. There is often
a tradeoff between the simplicity of enforcing atomic operation and the efficiency
gained through interleaving multiple processes. The later is especially important for
hiding the latency of disk 1/O within the cache, but complicated the management
of global data structures needed to avoid repeated requests for the same blocks.
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Chapter 5

Related Research

Due to the increasing mismatch between CPU and disk throughput, much research
has focussed on increasing 1/O performance. Approaches to this problem vary
widely, from focusing on improving single disk and disk array performance to im-
proving the applications interface to better reflect parallelism.

Early research focused on scheduling accesses to disk to minimize seek time.
Often, this is accomplished by queuing requests as they come in and then choosing
a request from this queue based on some optimality criterion, such as the request
for a block nearest the current position. One of the earliest method employed
was the shortest-seek-time-first (SSTF) algorithm, where seek time is considered
proportional to the distance from the current head position. This algorithm may
lead to starvation of some requests: request from the current position may never be
serviced because of more requests for nearby blocks are generated. To avoid this
problem, alternatives modify the algorithm by servicing seeks in phases of inward
movement and outward movement (the SCAN or LOOK algorithms), or by grouping
requests into blocks and using SSTF only within a block (BSSTF algorithm). A more
extensive discussion of disk-arm scheduling algorithms can be found in most good
operating systems texts (for example [7]). MDFS does not use these techniques
since the request queues for each disk are relatively short. For disk arm scheduling
to be effective, a significant number of requests for one disk must accumulate during
the processing of a request for that disk. Since requests in a parallel file system
such as MDF'S are distributed among several disk and computational nodes, request
queues remain small. This reduces the opportunities to improve performance by
reducing seeks times, the main purpose of disk arm scheduling. Additionally, the
SCSI features which allow overlapping requests to disk make seek time less of an
issue.

More recently, efforts have been made to increase disk bandwidth by exploiting
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parallelism in arrays of disks. The basic idea, called striping, involves distributing
requests among disks so that multiple requests and multiple portions of large re-
quests are serviced simultaneously [2]. MDF'S uses this technique to improve block
[/O bandwidth. Gibson [8] noted that one could exploit striping in disk arrays
to improve reliability by writing redundant stripes to disks. The resulting array
is known as a Redundant Array of Inexpensive Disks (RAID). He presents various
methods for accomplishing this, each with its own performance, cost, and reliability
trade-offs and labels each with a RAID level. An updated version of this discussion
is present in [2]. RAID techniques increase space requirements to improve reliability.
Additionally, some RAID methods can exploit redundancy to improve disk band-
width for reads. However, without hardware support, RAID techniques have lower
write performance than simple striping. Because of the intended use of MDFS as a
temporary store, reliability due to disk degradation was not a significant consider-
ation. Thus, redundancy for reliability is not present in the current MDFS design,
but it could easily be incorporated by introducing a new layer either in software
above the block I/O (like in [1]) or cache layers, or in hardware by replacing each
disk with a RAID array and a faster driver implementation. The chief difficulty in a
software implementation would be minimizing the impact of generating redundancy
codes on write performance, both by optimizing communications and processor use.
Additionally, atomicity in write operations may prove to be a problem since under
a RAID approach the file system would need to ensure consistency of the redundant
blocks distributed among disks.

At higher levels of implementation, much work has been devoted to alternative
interfaces to the file system to improve efficiency. This work is based on the as-
sumption that Unix and/or C Standard Library file models no longer match the
hardware models adequately, especially in the case of parallel computing. These
attempts range from simple extensions to the Unix model (as in [6]) to complete re-
working of the system model, as in ELFS [9], the Alloc Stream Facility [12], and the
forthcoming MPI-10 standard[3]. ELFS replaces the Unix’s untyped byte stream
files with typed object based files. The intent is for file objects to exploit their
knowledge of internal structure and data layout: typed objects can selectively ap-
ply techniques such as prefetching, parallel asynchronous file access, and caching to
improve performance as well as allowing the user to provide “oracles” which predict
access patterns. A distributed object, such as the two or three dimensional grid
found in typical scientific codes, can optimize writing itself to disk by taking advan-
tage of its knowledge of the distribution scheme. A different approach is taken by
the Alloc Streams Facility: it attempts to minimize copying by exposing buffering
within the operating system through an interface modeled on dynamic memory al-
location. Support for parallelism is improved because of better control on atomicity.
MPI-1IO attempts to extend the Message Passing Interface (MPI) standard’s data
types to support file access. Parallelism is supported explicitly by mapping in-core
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data layout to file data layout, allowing collective operations to efficiently transfer
data to and from disk. All of these alternative interfaces require substantial work
to port existing applications. Except for the Alloc Stream Facility, none provide a
good backward compatibility layer that actually improves performance. In MDFS,
we attempt to use already defined interfaces to minimize the changes required to
port applications. This makes a variety of applications immediately available.

Many of the issues confronting implementation of a parallel file system are also
relevant to distributed file systems. For instance, the caching issues we confronted
are also present in the Andrew File System [11], Sprite [16], and LOCUS [17]. Most of
this work assumes workstation-like nodes with large memories, slow communications,
and local disks. Thus, many of the choices are not appropriate to a fine-grain
environment like the J-machine. For instance, in LOCUS, files are cached both at
the “storage site” (a server) and the “using site” (a client). Requests are file (not
block) based so that a file can move. On the J-machine, two separate buffer caches
like this would consume too much memory resources. Furthermore, communications
is fast enough that sharing a single cache is practical. Also, caching must be done
at the block level since file replication requires local disk. Some work has been done
on distributed caches, similar to the one in MDF'S, but in a network of workstations
framework. Dahlin, et. al. [4] assume a fast communications substrate and simulate
various distributed cache algorithms using synthetic workloads. Such simulations
prove the value of a distributed cache over strictly local caches when communication
is fast. As the main focus of the MDFS work is implementation techniques, we did
not explore many alternative cache strategies.

Our choice of NFS as a network protocol was largely based on its availability on
all of our workstation platforms. There has been recent work on improving the NFS
protocol for greater client cache efficiency, file lengths of greater than two gigabytes,
and better support for non-Unix file systems[19]. The NFS layer of MDFS could be
extended to support this interface, or replaced with an alternate interface (such as

AFS[11]) as needed.
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Chapter 6

Conclusions

This work demonstrates that it is possible to construct scalable fine-grain parallel
code in a structured, easily understood manner by using the techniques described.
The division into small, well defined layers coupled with remote procedure calls for
communication and synchronization leads naturally to a well structured system.
When sufficiently well-defined and small in scope, layering produces code that is
inherently fine-grain. The resulting code maps well to the J-machine by exploiting
its hardware support for fine-grain concurrent execution with active message based
communications and synchronization. When data dependencies are avoided, the
resulting code scales well. Hashing based request and data distribution proved to be
important as a low-overhead technique for parallelizing operations on global data in
scalable manner.

These techniques, however, are not applicable to all algorithms: as with standard
methods, algorithms with inherent data dependencies do not parallelize well. This
is born out in the good scalability of the block 1/O layer compared to the poor
scalability of the file layer. The later could not be written without using mutual
exclusion to solve the allocation issues, and thus scaled poorly. Further research is
needed to find scalable resource allocation algorithms.
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