21-23 June 2005, at US Military Academy, West Point, NY

Name of Principal Author and all other author(s):
Joseph G. Kovalchik, Ph.D.

Principal Author’s Organization and address:
11100 Johns Hopkins Road
Laurel, MD 20723

Phone: 240-228-6264
Fax: 240-228-5910
Email: Joseph.Kovalchik@jhuapl.edu

Original title on 712 A/B:
APL Integrated Multi-warfare Simulation (AIMS): Considering Resource Conflict Resolution and Warfare Area Inter-dependencies in Multi-Warfare Analyses

Presented in: WG-6

This presentation is believed to be:
UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
1. REPORT DATE
01 JUN 2005

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
APL Integrated Multi-warfare Simulation (AIMS) Considering Resource Conflict Resolution and Warfare Area Inter-dependencies in Multi-Warfare Analyses

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, MD 20723-6099

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
36

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
APL Integrated Multi-warfare Simulation (AIMS)
Considering Resource Conflict Resolution and Warfare Area Inter-dependencies in Multi-Warfare Analyses

Dr. Joseph G. Kovalchik

Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, MD 20723-6099
Agenda

• Problem Addressed
• Proposed Solution
• Simulation Federation Development
• Simulation Federation Execution
• Future Work
• Summary
The Need

There is an emerging need for analysis to be performed at the “multi-warfare” level, motivated by:

- Transition to “capabilities-based” acquisition
- Creation of multi-mission structures (e.g., Sea Shield)
- Need to assess performance/effectiveness of multi-mission platforms (e.g., DD(X))

Integrated multi-warfare analyses have been difficult to conduct in the past:

- No one model can be easily used to faithfully replicate the detailed warfare area treatments found in specialized mission-level simulations (e.g., AAW, ASW, SUW, MIW, etc.)
- When a series of “stove-piped” models are used independently (to do each of the warfare area analyses) for a common scenario, it is difficult to “integrate” the results, i.e.,
 - By off-line methods
 - By “sneaker net” approaches
Observations

• There is a gap in the analysis modeling and simulation toolset
 • Previous efforts to conduct multi-warfare analyses have been conducted on carefully constructed scenarios, which has led to artificially stove-piped, single-mission-area analyses
 • *These studies have avoided both the effects of competing resources across multi-warfare areas and the dependencies of one warfare area on another*
 • Campaign-level simulations tend to lack sufficient fidelity to answer specific multi-warfare questions
 • “Simulations of choice” of analysts in individual mission areas do not represent other mission areas adequately for use in multi-mission analyses
Agenda

- Problem Addressed
- Proposed Solution
- Simulation Federation Development
- Simulation Federation Execution
- Future Work
- Summary
General Solution

- Create a tool to support analysis at a new “multi-warfare” level in the traditional military analysis simulation pyramid

- The enablers:
 - Continuing advances in computer processing speed (Moore’s law) and networks
 - An interoperable simulation standard (the High Level Architecture)
Solution Requirements

• Develop the APL Integrated Multi-warfare Simulation (AIMS), which provides the means to conduct analysis on the execution of integrated warfare in multiple mission areas

• AIMS should provide the capability to
 • Incorporate simulations of choice based on the analysis task at hand
 • Consider the effects of competing resources across multi-warfare areas and the dependencies of one warfare area on another
 • Provide a Single Point of Entry (SPE) for scenario data
 • Coordinate the execution of scenario runs and data collection
 • Visualize the scenario interactions, and
 • Assist in post-run analysis
FY05 AIMS Federation Structure

Maritime Component Commander
Commander Federate

Component Commanders
- USWC
- MIWC
- SUWC
- ADC
- Other

Alignment w/Simulations in Federation
- USWC
- MIWC
- SUWC
- ADC
- ADC
- Other

Platform Commanders
- Platform A CDR
- Platform B CDR
- Platform C CDR
- Platform D CDR
- Platform E CDR
- Platform F CDR

*Simulation in federation that is “controlling” a particular platform will change, e.g., as mission priorities change due to events; this is accomplished by “transfer of ownership” from one simulation to another
Selected Federate Summary
(1 of 2)

- Battle Force Engagement Model (BFEM) was selected to simulate the ASW warfare area
 - BFEM is a Monte Carlo simulation (C code) of Undersea Warfare (USW) engagements for both mine warfare (MIW) and ASW
 - models the tactics, kinematics and performance of submarines, surface combatants, ASW aircraft, mines and individual offboard sensors
- Extended Air Defense Simulation (EADSIM) was chosen to assess the effectiveness of Ballistic Missile Defense (BMD)
 - It provides a many-on-many theater-level simulation of air and missile defense, an integrated simulation tool (C++) to support joint and combined force operations
- Naval Simulation System (NSS) was selected to model various functions not adequately addressed by specialized combat models
 - NSS is a multi-sided, multi-warfare, object-oriented, Monte Carlo maritime simulation (C++) intended primarily for use by the analysis community in support of concept assessments and system effectiveness studies
Selected Federate Summary
(2 of 2)

- Orbis was selected to model the SUW mission area.
 - Orbis is a multi-sided, object-oriented (Java), Monte Carlo simulation intended for a variety of maritime applications including defending against small-boat attacks
- Surface AAW Multi-ship Simulation (SAMS) was selected to simulate the shipboard defenses against anti-ship cruise missiles
 - SAMS is a Monte Carlo event driven air defense system simulation (GPSS/H code) designed to evaluate multi-ship effectiveness. It utilizes results from high-fidelity models that provide performance data at the combat system level for sensors and weapons
- Commander Federate
 - Expert-system federate used to resolve resource allocation conflicts among warfare areas
Commander Federate Logical Components

Commander Federate

- Warfare Priorities
- Rule Engine
- Rule Sets
- Federation Management
- Blue Asset Assignments
- Common Operational Picture
- Damage Assessment
- Request Queues

National Security Analysis Department

June 2005 73rd MORSS 13
Commander Federate Tasks

- **Set warfare priorities**
 - By time and/or event

- **Provide conflict resolution on asset allocation**
 - Allocate a multi-warfare capable platform to a warfare area when conflicts arise

- **Provide conflict resolution on motion plans**
 - General force motion
 - Motion plans to optimize sensors
 - Water/air management assignments

To be discussed in Future Work

- **Provide conflict resolution on weapon utilization**
 - Allocate a weapon system to a warfare area when conflicts arise

- **Provide conflict resolution on sensors utilization**
 - Allocate a sensor system to a warfare area when conflicts arise
Setting Warfare Priorities
Commander Federate

- Commander federate uses event triggers to expose Commander's intent to Combat Models (CMs)
- Triggering events are associated with timeouts at which time the next highest triggered priority is assigned
- Contact reports give an indication of threats
 - Distance, accuracy, classification

Event Triggers
- Contact Reports
- Weapon Fires
- Weapon Hits
- Blue Casualties
- Geographic Events

Decision Rules
- ROE State
- Timeouts
- COP
- Engagement Data

Commander's Intent
• Commander federate uses Asset Requests from CMs to address resource allocations

• Asset Requests include:
 • Mission Area, Reason, Urgency, Earliest Start, Latest Start, Duration, Class Type Requested
 • Requests can be withdrawn any time prior to reassignment

• Readiness reports provide the means to communicate mission status and equipment configuration
Asset Transfers

- Assets are chosen from lowest to highest warfare priority area
 - If an asset is available and can meet time on datum (transit and reconfiguration) then a grant is sent to gaining and loosing CM that sets in motion the following sequence
• Commander federate uses Maneuver Requests from CMs to address changes to Commander-imposed constraints

• Maneuver Requests include those for:
 • Moving/fixed area assignments
 • Course/speed directives
 • Independent operations
Commander Federate enables blue damage assessments from red weapons.
Agenda

- Problem Addressed
- Proposed Solution
- Simulation Federation Development
- Simulation Federation Execution
- Future Work
- Summary
Executing Multiple Federations

- Execution is coordinated through a combination of Remote Method Invocation Servers (or APL Distributed Scheduler) and the use of synchronization points
- Multiple federations run concurrently
Agenda

- Problem Addressed
- Proposed Solution
- Simulation Federation Development
- Simulation Federation Execution
- Future Work
- Summary
Commander Federate Tasks

- Set warfare priorities
 - By time and/or event
- Provide conflict resolution on asset allocation
 - Allocate a multi-warfare capable platforms to a warfare area when conflicts arise
- Provide conflict resolution on motion plans
 - General force motion
 - Motion plans to optimize sensors
 - Water/air management assignments
- Provide conflict resolution on weapon utilization
 - Allocate a weapon system to a warfare area when conflicts arise
- Provide conflict resolution on sensors utilization
 - Allocate a sensor system to a warfare area when conflicts arise
One platform, many sensors and weapons

Control of individual sensors and weapons is implemented by different federates “owning” those objects

Commander Federate

SAMS

NSS

BFEM

EADSIM

ORBIS

Drives
Agenda

- Problem Addressed
- Proposed Solution
- Simulation Federation Development
- Simulation Federation Execution
- Future Work
- Summary
Summary

- APL Integrated Multi-warfare Simulation (AIMS) provides a flexible architecture to conduct analysis on the execution of integrated warfare in multiple mission areas
- AIMS can add value to multi-warfare analysis
 - A Commander Federate, utilizing an expert system, sets warfare priorities either by time or event, and provides inter-warfare area conflict resolution for asset allocation, motion plans, and weapon and sensor allocation among warfare area commanders
 - Eliminates sequential, time-consuming data transfers between “stove-piped” single-warfare analysis simulations when conducting multi-warfare studies
 - Enhances integrated warfare analysis through selective use of appropriate simulations which have been used in individual warfare area analyses
 - Focuses several warfare areas to a common scenario selection across all warfare areas
 - Preserves the ability for each model to be used in a stand-alone mode
 - Streamlines development of three-dimensional visualization of common OPSITs/TACSITs
 - Single Point of Entry reduces duplication of effort and data entry errors by using a single interface for scenario creation
AIMS Teams (CY05)

- Requirements for AIMS, SUW, and CDR Federate inputs and rules set (John Benedict, Paul Gulotta, Mike Morris, Ted Smyth, Joe Kovalchik)
- TACSIT Development (Matt Scarlett)
- CDR Federate Development
 - Expert inference engine integration (Joe Kovalchik, Jonathan Labin)
 - CDR HLA Wrapper (Joe Kovalchik, Jonathan Labin)
 - Internal Computations (Joe Kovalchik, Jonathan Labin)
- Combat Model internal software modifications
 - ORBIS (NSTD, Eric Hu, Dennis Patrone, Todd Warfield)
 - SAMS (Kay Stuckey, Ben Kerman)
 - BFEM (Ian Craig, Trey Vecera)
- HLA Wrapper development for Combat Models
 - HLA Wrapper Development for ORBIS (Labin, Kovalchik, Todd Warfield)
 - HLA Wrapper Completion/Expansion for SAMS (Chris McDonald, Labin, Kovalchik)
 - HLA Wrapper Expansion for BFEM (Labin, McDonald)
- RTI Infrastructure (Bruce Miller)
- Scenario Implementation
 - ORBIS Inputs, Decision Rules for Scenario/Demo (Morris, Emily Stoll)
 - SAMS Inputs, Decision Rules for Scenario/Demo (Kay Stuckey)
 - BFEM Inputs, Decision Rules for Scenario/Demo (Ian Craig)
 - NSS Inputs, Decision Rules for Scenario/Demo (Steve Lange)
 - EADSIM Inputs, Decision Rules for Scenario/Demo (Kanaya Chevli, Ken Ryals)
 - SPE testing (John Schloman)
Supporting slides
CONTRACTOR DISCLOSURE FORM

73rd MORS Symposium

US Military Academy, West Point, NY - 21-23 June 2005

DEADLINE: 9 MAY 05 Fax to 703-933-9006

MORS P #: P-023-154

PART I - Author Request (to be completed by applicant)

Name of Contractor: Joseph C. Kosakowski
Address: US Army Research Laboratory
Laurel, MD 20723

PART II - Contractor Security Officer Endorsement

Author's Signature:

PART III - Government Contracting Officer or Study Sponsor

PART IV - Required applicable distribution statement

Releasing Official's Signature: X

Date: 12 Apr 05
• **Goal:**
 • Increase number of Federation iterations which can be completed in a given time period

• **Approach**
 • Use many network nodes to execute simultaneous Federation executions
 • Requires multiple rtiexec instances
 • Requires multiple RID files
 • Must archive federate results
APL Distributed Scheduler (ADS)

- **Technology**
 - Written in C#
 - Requires .Net framework 1.1
 - Use Windows Management Infrastructure (WMI)
 - Windows OS Only
 - Uses Domain authentication – user must have rights in order to use a node
APL Distributed Scheduler (ADS)

- Network can be crawled to find nodes/resources available to user
- Simulation is defined in XML format
 - Work: A task (or set of tasks) to be executed on a node
 - Prework: copy federate locally
 - Work: execute federation
 - PostWork: copy results/remove copied files
 - May set all relevant environmental variables and paths

- ExecutionEngine:
 - Allocates Work to nodes
 - Maintains queue of available/used resources
 - Will time out Work if desired
Example Simulation XML File

<?xml version="1.0" encoding="utf-8"?>
 <WorkItem WorkName="RTI Executive" CommandLine="\jwadsim\AIMS\RTI\RTI1.3NG-V6\bin\rtiexec -endpoint %NODE%.scni.jhuapl.edu:%PORT% -multicastDiscoveryEndpoint 224.9.9.9:%MULTICAST_PORT%" WorkingDirectory="\jwadsim\AIMS\RTI\RTI1.3NG-V6\bin" Priority="0" Sequence="1" Pause="15000" Timeout="600000">
 <EnvironmentVariables>
 <EnvironmentVariables>RTI_BUILD_TYPE=Win2000-VC6</EnvironmentVariables>
 <EnvironmentVariables>RTI_HOME=\jwadsim\AIMS\RTI\RTI1.3NG-V6</EnvironmentVariables>
 <EnvironmentVariables>SystemRoot=%SYSTEM_ROOT%</EnvironmentVariables>
 <EnvironmentVariables>Path=%SYSTEM_ROOT%;%SYSTEM_DIRECTORY%;\jwadsim\AIMS\RTI\RTI1.3NG-V6\bin;\jwadsim\AIMS\RTI\RTI1.3NG-V6\lib;</EnvironmentVariables>
 </EnvironmentVariables>
 <PreWork>
 <PreWork WorkName="RID Maker" CommandLine="\jwadsim\AIMS\Scheduler\RIDMaker %NODE% \jwadsim\AIMS\Scheduler\%RID_FILE% %PORT% %MULTICAST_PORT%" WorkingDirectory="\jwadsim\AIMS\Scheduler" Priority="0" Sequence="1" Pause="5000" Timeout="0">"</PreWork>
 </PreWork>
 </WorkItem>
</Simulation>
Scenario Breakdown Structure for Single Point of Entry

LEGEND
- Implemented in first version.
- Partial implementation / more features in revisions.
- No implementation / to be implemented in later revisions.

SCENARIO
Title, date, time-step, local start, local end, ...

METADATA

COMPONENTS

ORGANIZATION
Alliance (Red, Blue), Hostile to, Allied with, ...

COMMAND
Commander Type, Location

ASSET
Military ID, category (aircraft, ship...), classification, FOM, publisher, subscriber, ...

ENVIRONMENT
Cloud cover, sea state, DTED regions, coordinate units distance units, ...

HLA
FED, FOM, Federate names, versions, random seeds, ...

BEHAVIORS

ASSETS

EMCON
Item, Type, Schedule

LOGISTICS
Supply item, Replenishment station, ...

NETWORKS
Network type (duplex, landline), participants, protocol, baud rate, ...

MOTION PLANS
Type (fixed, autonomous), waypoints/bounds (speed, time, course), ...

TACTICS
Conditions, criteria, Location, response, ...

PLANS

IMPLEMENTED IN FIRST VERSION

PARTIAL IMPLEMENTATION / MORE FEATURES IN REVISIONS

NO IMPLEMENTATION / TO BE IMPLEMENTED IN LATER REVISIONS
Object Publication and Subscription

<table>
<thead>
<tr>
<th>Ground (N)</th>
<th>Base (PS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entity (S)</td>
</tr>
<tr>
<td>Air (N)</td>
<td>Missile (PS)</td>
</tr>
<tr>
<td></td>
<td>RotaryWing (PS)</td>
</tr>
<tr>
<td></td>
<td>FixedWing (S)</td>
</tr>
<tr>
<td></td>
<td>Collector (PS)</td>
</tr>
<tr>
<td></td>
<td>Strike (PS)</td>
</tr>
<tr>
<td>Sea (PS)</td>
<td>Carrier (PS)</td>
</tr>
<tr>
<td></td>
<td>SurfaceCombatant (PS)</td>
</tr>
<tr>
<td></td>
<td>Submarine (PS)</td>
</tr>
<tr>
<td>System (PS)</td>
<td>SensorSystem (PS)</td>
</tr>
<tr>
<td></td>
<td>WeaponSystem (PS)</td>
</tr>
<tr>
<td></td>
<td>PropulsionSystem (PS)</td>
</tr>
<tr>
<td>Federation (IR)</td>
<td>Shutdown (IR)</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>EngagementReport (IR)</td>
<td>DamageAssessment (IR)</td>
</tr>
<tr>
<td>ContactReportBgOnly (IR)</td>
<td></td>
</tr>
<tr>
<td>ContactReport (IR)</td>
<td></td>
</tr>
<tr>
<td>ReadinessReport (IR)</td>
<td></td>
</tr>
<tr>
<td>ReadinessReportRequest (IR)</td>
<td></td>
</tr>
<tr>
<td>WeaponHit (IR)</td>
<td></td>
</tr>
<tr>
<td>CDROrder</td>
<td></td>
</tr>
<tr>
<td>RequestWithdrawal</td>
<td></td>
</tr>
<tr>
<td>Request (IR)</td>
<td>ManeuverRequest (IR)</td>
</tr>
<tr>
<td></td>
<td>CourseSpeedRequest (IR)</td>
</tr>
<tr>
<td></td>
<td>AreaManeuverRequest (IR)</td>
</tr>
<tr>
<td></td>
<td>IndepOpsRequest</td>
</tr>
<tr>
<td>Grant (IR)</td>
<td>AssetRequest (IR)</td>
</tr>
<tr>
<td></td>
<td>AssetGrant (IR)</td>
</tr>
<tr>
<td></td>
<td>ManeuverGrant (IR)</td>
</tr>
<tr>
<td></td>
<td>AreaManeuverGrant (IR)</td>
</tr>
<tr>
<td></td>
<td>CourseSpeedGrant (IR)</td>
</tr>
<tr>
<td></td>
<td>IndepOpsRequest</td>
</tr>
<tr>
<td>WeaponLaunch</td>
<td>Surface_Surface</td>
</tr>
</tbody>
</table>