THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Proceedings of the IREAPS Technical Symposium

Paper No. 28: Standardization and Integration of Shipyard Processes and Procedures

U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER
The National Shipbuilding Research Program, Proceedings of the IREAPS Technical Symposium Paper No. 28: Standardization and Integration of Shipyard Processes and Procedures

Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128-9500 MacArthur Blvd Bethesda, MD 20817-5700

Approved for public release, distribution unlimited

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
DISCLAIMER

These reports were prepared as an account of government-sponsored work. Neither the United States, nor the United States Navy, nor any person acting on behalf of the United States Navy (A) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness or usefulness of the information contained in this report/manual, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (B) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in the report. As used in the above, “Persons acting on behalf of the United States Navy” includes any employee, contractor, or subcontractor to the contractor of the United States Navy to the extent that such employee, contractor, or subcontractor to the contractor prepares, handles, or distributes, or provides access to any information pursuant to his employment or contract or subcontract to the contractor with the United States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED.
STANDARDIZATION AND INTEGRATION OF SHIPYARD PROCESSES AND PROCEDURES

Captain James Ronald Fisher
Engineering Duty Officer
Industrial Facilities Management Directorate
Naval Sea Systems Command
Washington, D.C.

Captain Fisher is currently serving a second tour. As a line officer, he served in a destroyer, four different attack and fleet ballistic missile submarines and as the training officer of one of the nuclear power training units. As an ED, he served at Charleston Naval Shipyard, and at NAVSEA as the assistant Ship Logistics Manager for SSNs and as Head of the Resources Planning Division.

Captain Fisher is a member of the Naval Institute, The American Society for an Engineering Education, and The Institute of Industrial Engineers. He is on the Education and Industrial Engineering Panels of the Ship Production Committee of SNAME. He is also a member of ASNE and was Chairman of the Charleston Chapter in 1976-77. He is a graduate of the U.S. Naval Academy and the Industrial College of the Armed Forces and has a MA degree in Business Management.

ABSTRACT

NAVSEA's ongoing efforts to improve, standardize and integrate shipyard process instructions are outlined. This plan, will combine the best features of various DOD, Navy and Private programs including for example: (1) the navy technical information presentation programs, (2) DOD computer aided time standards, (3) Navshipyd/Ordnance Station EM&S automated support (NEAS), (4) the Carnegie Mellon/USS CARL VINSON CUN 70 ZOG program, (5) shipboard nontactical ADP system (SNAP), (6) NAVSHIPYD Norfolk - work planning and control systems - PROMPT, and (7) technical repair standards (TRS) program. Specific aspects of these programs will be discussed including computer aided authoring, group technology, and common vocabularies, and a status report of these efforts as well as future plans will be provided.
"IT'S TIME FOR CHANGE IN THE WAY WE BUILD SHIPS"

, , , BANGS, , , I REAPS

OBJECTIVES

I STANDARDIZE & AUTOMATE PROCESSES & PROCEDURES FOR SHIPYARD WORK

I INCORPORATE BEST FEATURES OF EXISTING & FUTURE AUTOMATED DATA INPUT, STORAGE & RETRIEVAL PROGRAMS

SHIPYARD PROCESS INSTRUCTION

* AN AID FOR THE MECHANIC THAT GIVES HIM CONFIDENCE IN THE FACT THAT HE IS DOING A JOB CORRECTLY AT A REASONABLE RATE AND UTILIZING THE RIGHT TOOLS AND MATERIAL.

* A LOGICAL COLLECTION OF BOTH OPTIONAL AND MANDATORY TECHNICAL INFORMATION AND GUIDANCE FOR PERFORMING WORK, SUCH AS OVERHAULING A PUMP, WELDING A SEAM, FABRICATING A JOINER BULKHEAD.

* A FRAMEWORK THAT A SHIPYARD SHOULD BE ABLE TO USE TO ORGANIZE ITS WORKFORCE, FACILITIES, EQUIPMENT, AND MATERIAL IN AN EFFICIENT MANNER FOR A PARTICULAR TASK.

* A LOGICAL FRAMEWORK FOR PRODUCTIVITY IMPROVEMENTS.
G O A L S

• Common format for processes, procedures, alterations, etc.
• One print out yields all information needed to perform the job and no unnecessary information
• Ability to extract worksheet that contains all data collection tag out, safety, etc. requirements
• Eliminate codes & vague acronyms & print information in clear text
• Information recorded in only one location
• All data needed on the subject prints out on one inquiry

DESIRED RESULTS

• Easy to use
• Increased efficiency by standardizing operations
• Adaptable to planning, estimating, budgeting, training, etc.
• Interface with other systems:
 • Specifications & standards
 • Supply
 • 3M
 • Quality assurance
 • Training
 • Facilities, tools, shipyard modernization, Milcon etc.
SHIPYARD PROCESSES

SHIPYARD PROCESSES INCLUDE SPECIFIC EQUIPMENT, COMPONENT, MODULE OR SYSTEM FABRICATION, OVERHAUL, REPAIR MAINTENANCE, MODIFICATION AND TEST PROCEDURES

THESE PROCEDURES CAN BE BROKEN DOWN INTO GENERIC PROCESSES SUCH AS PAINTING, WELDING, SILVER BRAZING, PIPEBENDING, ETC.

PROCESS & PROCEDURE INSTRUCTION

<table>
<thead>
<tr>
<th>PERSONNEL REQUIREMENTS</th>
<th>WORK TO BE DONE</th>
<th>SPECIFICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND TIME ESTIMATES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| DRAWINGS, SKETCHES | | |
| CAD/CAM | | |

MATERIAL (KITS, PARTS,	QUALITY ASSURANCE
CONSUMABLES, ETC.)	INSPECTION & VERIFICATION
	POINTS

| FACILITIES | | |
| EQUIPMENT & TOOLS | | |

| DATA COLLECTION | | |
| | | |

| | CONFIGURATION |
| | SAFETY, TAGOUT |

516
PROCESS & PROCEDURE
STANDARDIZATION TEAM

<table>
<thead>
<tr>
<th>CAPT RON FISHER</th>
<th>CAPT BOB SULIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA 07Z/07OZ</td>
<td>SEA 070 STAFF</td>
</tr>
<tr>
<td>COORDINATOR</td>
<td>NEAS PROJECT MANAGER</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MR RON SHARBAUGH</td>
<td>MR HARRY DASHIELL</td>
</tr>
<tr>
<td>SEA 070K</td>
<td>DOD PRODUCTIVITY OFFICE</td>
</tr>
<tr>
<td>PRODUCTIVITY</td>
<td>CATS PROJECT MANAGER</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MR SAM RAINELY</td>
<td>JOHN HARTIGAN</td>
</tr>
<tr>
<td>DTMB</td>
<td>SEA 072</td>
</tr>
<tr>
<td>NTIPS PROJECT MANAGER</td>
<td>SHIPYARD SKILLS TRNG</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MR VIC BURNETT</td>
<td>CAPT JAY WHEELE</td>
</tr>
<tr>
<td>NAVSEA</td>
<td>SEA 07D</td>
</tr>
<tr>
<td>SPECIFICATIONS & STANDARDS</td>
<td>SUPPLY/MATERIAL</td>
</tr>
</tbody>
</table>
"HERE, FINALLY, IS A BOOK THAT EXPLAINS, IN FUNDAMENTAL TERMS, WHY PRODUCTIVITY IN JAPAN IS SO MUCH HIGHER... In the years ahead, common use of the term 'Theory Z' will attest to the significant contribution of this important work."
Arjay Miller, Director, Ford Motor Company

"The Buick assembly plant in Flint, Michigan, used the Theory Z approach... Within two years, the plant had become the most efficient General Motors facility."
Time

"Theory Z concentrates on the organizational and behavioral side of management. One of the central tenets is that the traditional adversarial relationship between American management and workers is badly outdated."
The New York Times

"A hot new plan to revitalize corporate America."
The Los Angeles Times

"Powerful answers for American firms struggling with high employee turnover, low morale, and falling productivity."
Dallas Times-Herald

"Combines the best of the American and the Japanese business styles."
Akio Morita, Chairman, SONY Corporation

"Theory Z has to do with important matters—productivity, the welfare of corporations and their employees, and, by extension, the competitiveness of the national economy."
Fortune
LESSONS FROM THEORY Z

TRUST

PRODUCTIVITY

SUBTLETY INTIMACY

LIFE & WORK

PRODUCTIVITY, MORALE, SUCCESS

TRUST, SUBTLETY, INTIMACY, ENTHUSIASM, SHARING, REALIZATION

DECREASING
RELATED EFFORTS AND INITIATIVES

This plan interfaces with and draws on other ongoing initiatives:

- Technical Repairs Standards (TRS)
- Naval Technical Information Presentation Program (NTIPP) — provides format computer-aided authoring
- DOD Computer Aided Time Standards (CATS) — provides search by word; library of estimated time by process
- Society of Naval Architects & Marine Engineers (SNAME) Ship Production Committee
- MARAD's initiatives: Most AT NNEWS — used for both studs & automatic MUST AT B&W issue of work
- Manufacturing Shipbuilding Technology (MTST) Program — 4IM EBDIV CAD CAM
- Shipbuilding Standards Program
- Carnegie Mellon-ZoG-USC Carl Vinson CVN 70 — human computer interface
- Shipboard Non Tactical ADP Program (SNAP) — Honeywell has contract
- Naval Aviation Logistics Data Analysis (NALDA)
- Naval Aviation Logistics Command Management Information System (NALCOMIS) — Willow Grove
- Naval Shipyard/Ordnance Station Engineered Methods and Standards Automated Support System

SPECIFIC EQUIPMENT OVERHAUL AND REPAIR PROCEDURES

Technical Repair Standard (TRS) is the top level document:

- NAVSEA INSTR 4160.2 promulgated program
- NAVSHIPYD Norfolk coordinating preparation efforts of naval shipyards
- Applicable to public & private yards
- Will be non deviation (ND) — when invoked for Class B overhaul
- Will include I & V points
- Will be the primary NAVSEA document for conducting Class B overhauls of machinery

Other procedures are expected to evolve into TRSs:

- Methods and Standards, Uniform Methods and Standards, Engineered Methods & Standards
- Technical Overhaul Procedures (TOPs)
- Standard Items (SI's)
- Class Standard Work Items (CSWIs)
- MRCs
NTIPS COMPUTER-BASED AUTHORING SYSTEM

- TASK LIST
 - TASKS FOR TRAINING NOMENCLATURE LIST

- STANDARD INFORMATION
 - VERB LIST
 - FAMILIAR WORDS
 - WARNINGS/CAUTIONS
 - BOILER PLATE

- SOURCE DATA
 - PARTS ILLUSTRATIONS
 - SCHEMATICS
 - WIRING
 - FUNCTIONAL DIAGRAMS
 - MFR. INFO.

- MODULAR SPECS

- HARD COPY PROOFS AND INTERIM DELIVERIES

- DIGITIZED TEXT & GRAPHICS

- ELECTRONIC DELIVERY PROGRAMS

- ON-LINE VALIDATION
NTIPS COMPUTER–BASED AUTHORING SYSTEM

<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prompted Interactive Data Entry</td>
</tr>
<tr>
<td>2</td>
<td>On–Line Editing (for Text and Graphics)</td>
</tr>
<tr>
<td>3</td>
<td>Project Management and Indexing</td>
</tr>
<tr>
<td>4</td>
<td>Automated Quality Inspection</td>
</tr>
<tr>
<td>5</td>
<td>Automated Output Formatting</td>
</tr>
<tr>
<td>6</td>
<td>Access and Security Control</td>
</tr>
<tr>
<td>7</td>
<td>Interactive Communications</td>
</tr>
<tr>
<td>8</td>
<td>On–Line User Training and Support</td>
</tr>
<tr>
<td>9</td>
<td>Access to Flexible Authoring Tools</td>
</tr>
</tbody>
</table>

PROCESS INSTRUCTION VARIABLES

Under NTIPPS, Navy Technical Information Presentation Program, process instruction variables are:

- Content
- Format
- Style
- Medium
CONTENT CONSIDERATIONS

ACCOMPLISHMENT OF SYSTEM-RELATED TASKS REQUIRES INFORMATION OF ONLY FOUR GENERAL TYPES:

1. DESCRIPTIVE — TELLING HOW A GIVEN PART OF A SYSTEM WORKS.

2. PROCEDURAL — TELLING A TECHNICIAN HOW TO DISASSEMBLE A GIVEN COMPONENT OR REPAIR AN IDENTIFIED FAULT.

3. TROUBLESHOOTING — TELLING A TECHNICIAN HOW TO LOCATE THE SOURCE OF A MALFUNCTION.

4. PARTS DESCRIPTION — ILLUSTRATED PARTS BREAKDOWN (IPB) PARTS CATALOGUES, LISTS.

MANY TASKS WILL REQUIRE SOME CONTRIBUTION OF SEVERAL OF THESE TYPES. FOR EACH INFORMATION TYPE, SPECIFIC FORMAT AND STYLE GUIDANCE SHOULD BE PROVIDED.

FORMAT CONSIDERATIONS

ALL INFORMATION REQUIRED TO PERFORM A TASK SHOULD BE INCORPORATED IN THE SAME SECTION.

- USE TEXT/GRAPHICS MODULES. RELATED TEST AND GRAPHICS MUST BE IMMEDIATELY ADJACENT TO OR INSCRIBED ON THE GRAPHICS.

- TROUBLESHOOTING IS A SPECIAL CASE, REQUIRING LOGIC TREES OR THEIR EQUIVALENT. PROVIDE ALL LOGIC CHAINS AND IMPLICIT DECISION POINTS.

- ELIMINATE ERRORS THROUGH VALIDATION, REPEATED CHECKING AND INSTANT FEEDBACK OF CORRECTED DATA.

- BE SURE PROCEDURES, EQUIPMENT, TOOLS, TEST EQUIPMENT & FACILITIES CALLED OUT ARE/CAN BE MADE AVAILABLE AT THE MAINTENANCE LEVEL INVOLVED.

- PROVIDE FOR WORKSHEET WITH THE MINIMUM INFORMATION REQUIRED TO COMPLETE THE TASK.

- BREAK DOWN INTO LOGICAL TASKS AND SUBTASKS.
STYLE CONSIDERATIONS

- CALL A GIVEN PART, TOOL, OR ACTION ALWAYS BY THE SAME NAME.

- WRITE THE ENTIRE PROCESS INSTRUCTION USING A CONTROLLED VOCABULARY; I.E., USE ONLY THOSE WORDS ON A PREDETERMINED LIST. NOTE: THE NTIPP OFFICE HAS DEVELOPED A CONTROLLED VOCABULARY MADE UP OF:
 1. A BASIC VOCABULARY
 2. A SPECIALIZED VOCABULARY
 3. A SYSTEM-UNIQUE VOCABULARY

- USE SIMPLE SENTENCES ONLY; NO COMPLEX OR COMPOUND SENTENCES. SAMPLE: REMOVE THE FACEPLATE USING A SCREWDRIVER.

 (NOTE THAT A COMPUTER CAN BE PROGRAMMED TO CHECK FOR COMPLIANCE WITH THE ABOVE RULES.)

- USE QUALITY PRINTING, COMPETENT DRAWING STYLE, ETC.

MEDIUM CONSIDERATIONS

BEST MEDIUM FOR EACH APPLICATION MUST BE ASCERTAINED IN ADVANCE

ELECTRONIC PRESENTATION IS AVAILABLE NOW

COMPUTER DISPLAYED TECHNICAL INFORMATION

- CAN BE VERY INTERACTIVE ON USER-FRIENDLY HARDWARE
- AMENABLE TO LOCAL TAILORING
- APPLICABLE TO BOTH TRAINING AND JOB EXECUTION

MICROFILM USES

- LOOK UP INSTRUCTIONS ON A RELATIVELY INFREQUENT BASIS

MOTION PICTURES – SUITABLE FOR SOME TYPES OF TRAINING

HARD COPY EXAMPLE: CIRCUIT DIAGRAMS
RELATED EFFORTS AND INITIATIVES (CONT)

- Logistics Management Institute Studies to exploit new Information Technology
- NALC 05 - Workload Control System (WCS)
- Dover Air Force Base - 436th Military Air Wing Automated Maintenance System
- NAVSHIPYD Mare Island - NAVSEA Material Inventory, Storage and Tracking System (SEA MIST)
- NAVSHIPYD Norfolk - Work Planning & Control (PROMPT)
- National Academy of Science - Study of NAVY ADP Needs
- All activities - Revisions and updates of almost all MIS and ADP systems

RELATED EFFORTS AND INITIATIVES (CONT)

- Shipyard Skill Training Program
- NAVSEA Specification Upgrade Program
- Modified Overhaul Planning Process (MOPP)
- SMMSO - SSBN + SSN
- PERA Efforts
- DOIP, SOIP, SORT
- EBDIV Manufacturing Technology CAD-CAM Project
- Long Beach Total Integrated CAD CAM System
- Mare Island CAD Projects
- AFLC Integrated Computer Aided Manufacturing Projects
- DEERS
- NAVMAT
- Class Standard Work Items
1. **Assign Responsibility for Specific Process to Each Naval Shipyard** (below assignments are the same as those for the Skills Training Program).

<table>
<thead>
<tr>
<th>SHIPYARD RESPONSIBLE FOR MODULE TRAINING DEVELOPMENT</th>
<th>NAVSEA TECHNICAL MANUAL</th>
<th>NAVSEA CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEPPING</td>
<td>NAVSEA TECHNICAL MANUAL</td>
<td>NAVSEA CODE</td>
</tr>
<tr>
<td>PORTSMOUTH</td>
<td>HULL STRUCTURES</td>
<td>050</td>
</tr>
<tr>
<td></td>
<td>LADDERS</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>ACCESS CLOSURES</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>WINDING PORTLIGHTS & RELATED EQUIPMENT</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>CATHODE PROTECTION</td>
<td>050</td>
</tr>
<tr>
<td>WELDING</td>
<td>NAVSEA TECHNICAL MANUAL</td>
<td>NAVSEA CODE</td>
</tr>
<tr>
<td>NORFOLK</td>
<td>VOL 1 WELDING & ALLIED PROCESSES</td>
<td>060</td>
</tr>
<tr>
<td>SHEET METAL</td>
<td>LOCKS KEYS & HASPS</td>
<td>515</td>
</tr>
<tr>
<td>MARINE MACHINIST</td>
<td>CHARLESTON</td>
<td>075</td>
</tr>
<tr>
<td></td>
<td>THREADED FASTENERS</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>GASKETS PACKINGS & SEALS</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>PROPELLER TURBINES</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC MOTORS</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>MARINE GAS TURBINES</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>REDUCTION GEARS</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>SHAFTING</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>AUX STEAM TURBINES</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>SUBMARINE STORAGE BATTERIES</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC PROPULSION INSTALLATION</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC PLANT GENERAL</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC MOTOR & CONTROLLERS</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER GENERATORS AND CONVERSION EQUIPMENT</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRIC POWER DISTRIBUTION</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>LIGHTING</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL MEASURING AND TEST INSTRUMENTS</td>
<td>520</td>
</tr>
<tr>
<td>ELECTRONICS</td>
<td>PEARL</td>
<td>530</td>
</tr>
<tr>
<td>WOODWORK</td>
<td>PUGET</td>
<td>530</td>
</tr>
<tr>
<td>FABRICATION</td>
<td>MARINE ISLAND</td>
<td>530</td>
</tr>
<tr>
<td>SURFACE PRESERVATION AND PAINTING</td>
<td>PEARL</td>
<td>530</td>
</tr>
<tr>
<td>RIGGING</td>
<td>NORFOLK</td>
<td>613</td>
</tr>
<tr>
<td>ELECTROPLATING</td>
<td>CHARLESTON</td>
<td>613</td>
</tr>
</tbody>
</table>

527
2. DESIGNATE OTHER SHipyARDS FOR COGNIZANCE OVER OTHER SPECIFIC AREAS:

SUPPLY
PLANNING
ESTIMATING
SCHEDULING
WORKLOADING
PROGRESSING
TESTING

3. DETERMINE STANDARD FORMAT AND SPECIFICATION FOR PROCESSES INCLUDING IN PARTICULAR USEFULNESS BY ALL WORKERS, ADAPTABILITY TO WORD PROCESSING AND AUTOMATED DATA PROCESSING SYSTEMS, SIMPLICITY, UNIFORMITY, THE AVOIDANCE OF DUPLICATION AND INTEGRATION WITH OTHER SYSTEMS (MT, OA, NDE, ETC.).

4. TRIAL RUN COMBINATION OF BEST FEATURES OF NTIPS, CATS, PROMPT, SKILLS TRAINING PROGRAM UTILIZING BEST AVAILABLE ADP SYSTEMS FOR REACHING CONSENSUS ON BEST SYSTEM.

5. UTILIZE TRADE SKILLS WORK SHOP: TO PROMULGATE AND REFINE SKILLS TRAINING AND STANDARD PROCESSES.
6. CONTINUE TO DEVELOP AN EVOLUTIONARY PLAN THAT REFINES THE FOLLOWING ASPECTS:
7. INTEGRATE INTO A TOTAL INFORMATION AND DECISION SUPPORT SYSTEM:

- NEED
 INVENTORY, PERFORMANCE REQUIREMENTS & DESCRIPTION,
 LOCATION, DESIGN LIFE,
 DESIGN MTBF

- WHAT?
- WHY?
- WHEN?
- HOW?

- HAVE
 INVENTORY, DESCRIPTION, STATUS,
 LOCATION, HISTORY,
 MAINTENANCE & MODIFICATION PLANS

- THINGS
 • CLASS OF SHIPS/FACILITIES
 • SPECIFIC HULL
 • SYSTEM
 • ASSEMBLIES
 • COMPONENTS
 • PARTS
 • CONSUMABLES

- PEOPLE
 • SERVICE
 • SYSCOM
 • SHIPYARD
 • GROUP
 • SHOP
 • WORK CENTER
 • INDIVIDUAL
Additional copies of this report can be obtained from the National Shipbuilding Research and Documentation Center:

http://www.nsnet.com/docctr/

Documentation Center
The University of Michigan
Transportation Research Institute
Marine Systems Division
2901 Baxter Road
Ann Arbor, MI 48109-2150

Phone: 734-763-2465
Fax: 734-763-4862
E-mail: Doc.Center@umich.edu