Author Request (To be completed by applicant) - The following author(s) request authority to disclose the following presentation in the MORSS Final Report, for inclusion on the MORSS CD and/or posting on the MORS web site.

Name of Principal Author and all other author(s):
2 Lt Jennifer R. Plourde, USAF
Dr. Jeffrey P. Kharoufeh

Principal Author’s Organization and address:
AFRL/HEPC CBD
2729 R Street
Bldg 837
Wright Patterson AFB, OH 45433-5707

Phone: 937-255-4903
Fax: 937-656-4664
Email: Jennifer.Plourde@wpafb.af.mil

Original title on 712 A/B: Time-Adaptive Sampling of a Chemical Hazard Area

Revised title: ___

Presented in (input and Bold one): (WG 2, CG___, Special Session ___, Poster, Demo, or Tutorial):

This presentation is believed to be:

UNCLASSIFIED AND APPROVED FOR PUBLIC RELEASE
Time-Adaptive Sampling of a Chemical Hazard Area

Jennifer R. Plourde
Human Effectiveness Counter Proliferation Branch
Chem-Bio Defense Team
Air Force Research Laboratory (AFRL/HEPC CBD)
Wright Patterson AFB, OH 45433-5707

and

Jeffrey P. Kharoufeh
Department of Operational Sciences
Graduate School of Engineering and Management
Air Force Institute of Technology
Wright Patterson AFB, OH 45433-7765

73rd MORS Symposium, 21-23 June 2005
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 SEP 2005</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-Adaptive Sampling of a Chemical Hazard Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human E®ectiveness Counter Proliferation Branch Chem-Bio Defense Team Air Force Research Laboratory (AFRL/HEPC CBD) Wright Patterson AFB, OH 45433-5707</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

- Background
- Problem statement and assumptions
- Methodology
- Illustrations
- Conclusions
- Future Work
Background

- Chemical and biological WMDs are a current threat to the United States
 - 2001 U.S.: anthrax attacks
 - 1998 Iraq: “cocktail” of weapons killed 5,000+
 - 1995 Tokyo: sarin nerve gas, killed 12, injured thousands

- Terrorist groups are willing to use asymmetric measures
 - Easy manufacturing, storing, and transportation appeal to terrorists
Problem Dynamics

- A chemical agent weapon is released over a fixed operational site
 - Entire site enters the highest level of MOPP
 - Contamination from secondary vapors is the main concern

- Reduce mission oriented protective posture (MOPP)
 - MOPP is cumbersome
 - High levels of MOPP can reduce work efficiency
Problem Dynamics

Figure 1. Mission-oriented protective postures.

- MOPP 0, MOPP 1, MOPP 2, MOPP 3, MOPP 4, MOPP Alpha
- Progressively add gear for increased safety
Problem Statement

• Develop an optimal sampling strategy
 - Route a search crew
 * Reach as many locations as possible (to identify maximum number of areas below the vapor concentration threshold)
 * Time constraint

• Provide a framework for future work
 - Using sensor data
 - Predicting future hazard areas
Model Assumptions

- Rectangular region with a finite number of “critical” areas
- Single crew that samples vapor concentrations
- Static, deterministic, and symmetric travel times
- Travel at constant velocity with zero delays
- Fixed amount of time allotted for the search
Model Assumptions

- Chemical agent/characteristics are known

- Only one instrument reading is required, consuming a fixed amount of time

- Known fixed threshold indicating contamination/no contamination

- Secondary vapor concentrations evolve spatially
Optimization Model

- Model the site and its critical areas as a network
- Develop a technique for optimally searching the site
- Desired outcome: Identify areas where secondary vapor levels have decreased (below the fixed vapor concentration level v^*) so MOPP can be safely reduced at those locations
Consider the following notional site

Figure 2. Graphical depiction of areas on an installation.
Network Model

Definitions:

• $G = (\mathcal{N}, \mathcal{A})$ describes the graph with:

 − $\mathcal{N} \equiv \{1, 2, ..., N\}$, where N is the number of critical areas

 − $\mathcal{A} \equiv$ set of arcs (i, j) for $i, j \in \mathcal{N}$
Network Model

- $N_i \equiv \text{set of nodes adjacent to node } i$

- $t_{i,j} \equiv \text{constant time required to travel from node } i \text{ to node } j$

 - $t_{i,j} > 0, \forall (i,j) \in A$

 - $t_{i,j} = t_{j,i}$

- $v_j(t) \equiv \text{nonnegative vapor concentration at node } j \in N \text{ at time } t$

- $r_j(t) \equiv \text{binary reward received from searching node } j \text{ at time } t$
Figure 3. Example of the network representation for a 4-node site.

- $\mathcal{N} = \{1, 2, 3, 4\}$
- $\mathcal{A} = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)\}$
Well-known Network Models

- Shortest Path Problem (SPP)
 - Path from source to sink
 - Not all nodes must be reached

- Knapsack Problem
 - Maximize a value with a constraint on the resource
 - Order does not matter
Well-known Network Models

- Travelling Salesperson Problem (TSP)
 - Minimize tour length
 - Must reach every city
 - Start and end at the origin
Methodology

We consider four distinct cases:

- Static and deterministic vapor concentrations
- Static and stochastic vapor concentrations
- Dynamic and deterministic vapor concentrations
- Dynamic and stochastic vapor concentrations
Dynamic and Deterministic

- Deterministic:
 - Assume vapor level concentration at each node can be calculated deterministically

- Dynamic:
 - Vapor levels depend on time, $v_j(t)$, for all $j \in \mathcal{N}, t \geq 0$
Dynamic and Deterministic

Objective: Maximize reward:

\[
\max \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} r_j(t)x_{i,j}
\]

- Time constraint

- Backtracking is allowed

- Vapor concentrations are dynamic ⇒ rewards are dynamic

- Possibly not all nodes will be reached
Algorithm

Initialization:

\[\mathcal{N} = \{1, 2, \ldots, N\}; \mathcal{N}_i = \{j : i \rightarrow j\}; \]
\[R = \emptyset; \psi = \emptyset; \]
\[t \leftarrow t_0; \]
\[i = 1; \]

Calculate current vapor level at node \(i \), \(v_i(t) \)

If \(v_i(t) < v^* \)

\[r_i(t) \leftarrow 1; \]
\[R \leftarrow \{i\}; \psi \leftarrow \psi \cup \{i\}; \]

Else

\[r_i(t) \leftarrow 0; \]
\[\psi \leftarrow \psi \cup \{i\}; \]

End
Algorithm

Step 1

Calculate $v_j(t + t_{i,j}) \forall j \in \mathcal{N}_i$

If $v_j(t + t_{i,j}) < v^*$

\[r_j(t + t_{i,j}) \leftarrow 1; \]

Else

\[r_j(t + t_{i,j}) \leftarrow 0; \]

End
Algorithm

Step 2

For each \(j \in \mathcal{N} \) such that \(r_j = 1 \)

Choose \(j \) such that \(v_j(t + t_{i,j}) = \arg \min_{j \in \mathcal{N}_i} \{ v^* - v_j(t + t_{i,j}) \} \)

\(R \leftarrow R \cup \{ j \} \);

\(\psi \leftarrow \psi \cup \{ j \} \);

End

If \(r_j(t + t_{i,j}) = 0 \ \forall \ j \in \mathcal{N}_i \)

Choose \(j \) such that \(t_{i,j} = \min_{j \in \mathcal{N}_i} \{ t_{i,j} \} \forall j \in \mathcal{N}_i \)

\(\psi \leftarrow \psi \cup \{ j \} \);

End

\(t \leftarrow t + t_{i,j} \);
Step 3

If \(t \geq T \)

STOP

Else

\(i \leftarrow j; \)

Return to Step 1

End
Dynamic/Deterministic

Result: iterative process yields a time-adaptive policy

• Future decisions depend on arrival times at nodes

• Vapor concentrations (rewards) drive the solution
Dynamic/Deterministic

Network Configuration

![Network Diagram]

Air Force Institute of Technology

UNCLASSIFIED
Dynamic/Deterministic

Example: Iteration 1: $t_0 = 7$

$v^* = 0.0006$

$v_3(13.88) = 0.0036$
$v_2(13.71) = 0.0035$
$v_2(14.31) = 0.0036$
$v_8(13.16) = 0.0054$
$v_8(13.16) = 0.0064$
Iteration 2:

$v^* = 0.0006$

$v_6(20.34) = 0.0048$

$v_9(21.10) = 0.0080$

$v_{10}(18.73) = 0.0070$
Iteration 3:

\[v^* = 0.0006 \]

\[v_4(27.86) = 0.0035 \]

\[v_7(26.16) = 0.0056 \]

\[v_5(26.16) = 0.0056 \]

Air Force Institute of Technology
Dynamic/Deterministic

Final Solution:

$v^* = 0.0006$

$t = 91.77$

$t = 81.72$

$t = 73.78$

$t = 68.21$

$t = 70.78$

$t = 53.78$

$t = 60.78$

$t = 91.77$
Table 1. Vapor concentrations and rewards for nodes in ψ.

<table>
<thead>
<tr>
<th>Node</th>
<th>t (min)</th>
<th>$v_j(t)$</th>
<th>$r_j(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7.00</td>
<td>0.000650</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13.16</td>
<td>0.005400</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>18.73</td>
<td>0.007000</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>26.16</td>
<td>0.005600</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>32.92</td>
<td>0.002800</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>39.08</td>
<td>0.002200</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>44.65</td>
<td>0.001400</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>53.78</td>
<td>0.000410</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>60.78</td>
<td>0.000330</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>68.21</td>
<td>0.000190</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>73.78</td>
<td>0.000110</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>81.72</td>
<td>0.000059</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Vapor concentrations and rewards at termination.

<table>
<thead>
<tr>
<th>Node</th>
<th>$v_j(81.72)$</th>
<th>$r_j(\tau^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000023</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.000025</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0.000030</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0.000034</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.000040</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0.000042</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0.000052</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0.000054</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0.000059</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.000057</td>
<td>1</td>
</tr>
</tbody>
</table>
Dynamic and Stochastic

- Time-variant probability distribution for each node (e.g., $V_j(t) \sim \exp(\mu_j(t))$ for all $j \in N$)

- Objective: Maximize reward - The number of areas searched where the vapor concentration has most likely decreased below v^*

 - Reward is dynamic and computed from the expected value

 - If $E[V_j(t)] < v^*$, $r_j(t) = 1$, otherwise $r_j(t) = 0$.

Air Force Institute of Technology
Algorithm

Initialization:
\[N = \{1, 2, \ldots, N\}; \quad N_i = \{j : i \rightarrow j\}; \]
\[\mathcal{R} = \emptyset; \quad \psi = \emptyset; \]
\[t \leftarrow t_0; \]
\[i = 1; \]

Obtain realization of vapor level \(v_i(t) \)

If \(v_i(t) < v^* \)
\[r_i(t) \leftarrow 1; \]
\[\mathcal{R} \leftarrow \mathcal{R} \cup \{i\}; \quad \psi \leftarrow \psi \cup \{i\}; \]

Else
\[r_i(t) \leftarrow 0; \]
\[\psi \leftarrow \psi \cup \{i\}; \]

End
Algorithm

Step 1

Calculate $\pi_j(t + t_{i,j}) \equiv P\{V_j(t + t_{i,j}) < v^*\}$ $\forall j \in \mathcal{N}_i$

Step 2

Choose j such that $\pi_j(t) = \max_{j \in \mathcal{N}_i} P\{V_j(t + t_{i,j}) < v^*\}$

Obtain instrument reading at this node.

If $v_j(t + t_{i,j}) < v^*$

$r_j(t) \leftarrow 1; \mathcal{R} \leftarrow \mathcal{R} \cup \{j\}; \psi \leftarrow \psi \cup \{j\};$

$t \leftarrow t + t_{i,j};$

Else

$r_j(t) \leftarrow 0;$

$\psi \leftarrow \psi \cup \{j\};$

$t \leftarrow t + t_{i,j};$

End
Step 3

If $t \geq T$

STOP

Else

\[i \leftarrow j; \]

Return to Step 1

End
Dynamic/Stochastic

Result: iterative process yields a time-adaptive policy

- Future decisions depend on arrival times

- *Probability* a vapor concentration is below the threshold ν^* drives the solution
Dynamic/Stochastic

Example: Iteration 1:

\[v^* = 0.0006 \]

\[P\{ V_1(14.31) < v^* \} = 0.989 \]

\[P\{ V_2(13.71) < v^* \} = 0.757 \]

\[P\{ V_3(13.88) < v^* \} = 0.726 \]

\[P\{ V_4(14.31) < v^* \} = 0.989 \]

\[P\{ V_5(13.76) < v^* \} = 0.955 \]

\[P\{ V_6(13.16) < v^* \} = 0.155 \]

\[P\{ V_7(13.76) < v^* \} = 0.955 \]

\[P\{ V_8(13.16) < v^* \} = 0.155 \]

\[P\{ V_9(14.31) < v^* \} = 0.989 \]

\[P\{ V_{10}(14.31) < v^* \} = 0.989 \]
Dynamic/Stochastic

Iteration 2:

\[v^* = 0.0006 \]

\[P\{ V_4(20.83) < v^* \} = 0.816 \]

\[P\{ V_2(20.60) < v^* \} = 0.811 \]
Table 3: Vapor concentrations for nodes in $\psi \ (v^* = 6.0 \times 10^{-4})$.

<table>
<thead>
<tr>
<th>Node</th>
<th>t (min)</th>
<th>$v_j(t)$</th>
<th>$r_j(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>0.0011</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>14.31</td>
<td>0.000012</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>20.83</td>
<td>0.000106</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>29.96</td>
<td>0.000172</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>37.39</td>
<td>0.000103</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>44.15</td>
<td>0.000113</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>51.46</td>
<td>0.000172</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>57.98</td>
<td>0.000179</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>67.11</td>
<td>0.000609</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>74.54</td>
<td>0.000693</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>81.3</td>
<td>0.000803</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>88.61</td>
<td>0.000001</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary/Conclusions

- Ignoring dynamics may lead to under- or over-estimation of the number of safe areas (in these examples)

- Spatiotemporal characteristics are critical in developing the sampling strategy

- Want to minimize Type II error (i.e., accept H_0 that area is safe given it is not)

- Data was assumed to exist for illustrative purposes, however...

- Real problem presents significant data requirements
Future Work

- Relax assumptions
 - Consider non-deterministic travel times
 - Multiple search crews
 - Estimate probability distributions

- Incorporate real-time information
 - Real-time concentration readings from sensors
 - Road closures/openings
 - Weather changes (e.g., wind velocity, temperature, humidity, etc.)
Questions?
Backups
The following parameters must be known to employ advection diffusion equation to compute v_j:

$x, y, z \equiv$ coordinates in the direction of the mean wind, horizontal cross-wind, and upwards vertical direction.

$k_x, k_y, k_z \equiv$ eddy diffusivities in m2sec$^{-1}$

$q \equiv$ the total mass release in kg

$h \equiv$ instantaneous gas release height above the ground in m

$u \equiv$ wind velocity in m/sec
\[v_j = \frac{q}{8\pi^{\frac{3}{2}}(k_x k_y k_z)^{1/2} t_0^{3/2}} \exp\left[-\frac{(x - ut_0)^2}{4k_x t_0} - \frac{y^2}{4k_y t_0} \right] \times \]

\[\left(\exp\left[-\frac{(z - h)^2}{4k_z t_0} \right] + \exp\left[-\frac{(z + h)^2}{4k_z t_0} \right] \right). \] \tag{1} \]

Equation 1 can be simplified to

\[v_j = \frac{q}{8\pi^2 (k_x k_y k_z)^{1/2} t_0^{3/2}} \exp \left[-\frac{(x - ut_0)^2}{4k_x t_0} - \frac{y^2}{4k_y t_0} \right] \times \left(2 \exp \left[-\frac{h^2}{4k_z t_0} \right] \right), \quad (2) \]

since \(z = 0 \) for our numerical illustrations.
Table 6. Rate parameters chosen for the exponential distributions used for example 2.

<table>
<thead>
<tr>
<th>Node</th>
<th>μ_j</th>
<th>$E[V_j](\times 10^{-4})$</th>
<th>r_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6666.67</td>
<td>1.50</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1538.46</td>
<td>6.50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1322.75</td>
<td>7.56</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1574.80</td>
<td>6.35</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1754.39</td>
<td>5.70</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>10000.00</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4347.83</td>
<td>2.30</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2222.22</td>
<td>4.50</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>909.09</td>
<td>11.00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>7692.31</td>
<td>1.30</td>
<td>1</td>
</tr>
</tbody>
</table>
Case 1: Static and Deterministic

- Deterministic:
 - Assume vapor level concentration at each node is calculated via a deterministic formula immediately after the attack

- Static:
 - Assume for each $j \in \mathcal{N}$, v_j does not evolve over time
Case 1: Static/Deterministic

Objective: Minimize time required to reach as many areas as possible to obtain the maximum reward (i.e., maximum number of areas not requiring protective gear).

- Time constraint implies it is possible that not all areas will be sampled

- No backtracking unless necessary (i.e., there is no reward for returning to an area)

- No subtours ($\mathcal{S} \subset \mathcal{N}$ ≡ set of all possible subtours)
Figure 4. Example of subtour in a 4-node site.
Case 1: Static/Deterministic

\[
\begin{align*}
\max \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} r_{j} x_{i,j}(\text{opt}), \quad \min \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} t_{i,j} x_{i,j}
\end{align*}
\]

subject to

\[
\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} t_{i,j} x_{i,j} < T
\]

\[
\sum_{j \in \mathcal{N}} x_{s,j} = 1 \text{ for } s \in \mathcal{N}
\]

\[
\sum_{i \in \mathcal{N}} x_{i,j} \leq 1 \text{ for } j = 1, \ldots, N; j \neq i
\]

\[
\sum_{j \in \mathcal{N}} x_{i,j} \leq 1 \text{ for } i = 1, \ldots, N; i \neq j
\]

\[
x_{i,j} + x_{j,i} \leq 1 \text{ for all } (i, j) \in \mathcal{A}
\]

\[
\sum_{i \in S} \sum_{j \in S} x_{i,j} \leq |S| - 1 \text{ for } S \in \mathcal{N}, 2 \leq |S| \leq N - 1
\]

\[
x_{i,j} \in \{0, 1\}
\]
Case 1: Static/Deterministic

Example 1: Consider the following 10-node network

\[r_j = 1 \text{ for } j = 1, 2, 3, 6, 8, 10; \quad r_j = 0 \text{ for } j = 4, 5, 7, 9 \]
Case 1: Static/Deterministic

Solution:

- Total time of search: $\tau^* = 62.85$ minutes
- Optimal path: $\psi = [5, 8, 10, 7, 4, 1, 2, 3, 6, 9]$
 Total reward: $r^* = 6$ from nodes 1, 2, 3, 6, 8, 10
Case 2: Static and Stochastic

- **Stochastic:** Assume vapor level concentration at each node is a random variable V_j, for all $j \in \mathcal{N}$, with an associated probability distribution.

- **Static:** $P\{V_j \leq v^*\}$ does not change with time, nor does $E[V_j] \ \forall j \in \mathcal{N}$.
Case 2: Static/Stochastic

Objective: Minimize time required to reach as many areas as possible to obtain the maximum reward

- Same formulation as Case 1

- Rewards are found from expected vapor concentrations

 - E.g., $V_j \sim \exp(\mu_j)$ for all $j \in \mathcal{N}$

 - $E[V_j] = \frac{1}{\mu_j}$

 - If $E[V_j] < v^*$, $r_j = 1$, otherwise $r_j = 0$.
Case 2: Static/Stochastic

\[
\max \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} r_{j} x_{i,j}(opt), \quad \min \sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} t_{i,j} x_{i,j}
\]

subject to

\[
\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} t_{i,j} x_{i,j} < T
\]

\[
\sum_{j \in \mathcal{N}} x_{s,j} = 1 \text{ for } s \in \mathcal{N}
\]

\[
\sum_{i \in \mathcal{N}} x_{i,j} \leq 1 \text{ for } j = 1, \ldots, N; j \neq i
\]

\[
\sum_{j \in \mathcal{N}} x_{i,j} \leq 1 \text{ for } i = 1, \ldots, N; i \neq j
\]

\[
x_{i,j} + x_{j,i} \leq 1 \text{ for all } (i, j) \in \mathcal{A}
\]

\[
\sum_{i \in S} \sum_{j \in S} x_{i,j} \leq |S| - 1 \text{ for } S \in \mathcal{N}, 2 \leq |S| \leq N - 1
\]

\[
x_{i,j} \in \{0, 1\}
\]
Case 2: Static/Stochastic

- Total time of search: 62.85 minutes
- Optimal path: $\psi = [5, 8, 10, 7, 4, 1, 2, 3, 6, 9]$
- Total reward: $r^* = 6$ from nodes 1, 5, 6, 7, 8, 10
Comparison: Deterministic Results

Table 4. Comparison of solutions to the static/deterministic and dynamic/deterministic examples.

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>r_j</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Time (min)</th>
<th>r^*</th>
<th>Total Time (min)</th>
<th>$r^(\tau^)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.85</td>
<td>6</td>
<td>81.72</td>
<td>5</td>
</tr>
</tbody>
</table>
Comparison: Deterministic Results

- Static/deterministic vapor concentration case
 - Search each node exactly once
 - Less amount of time

- Dynamic/deterministic vapor concentration case
 - Searches only critical nodes
 - Utilizes time allotted
 - Total reward value accounts for dynamic nature of concentrations
Comparison: Deterministic Results

Main result of comparisons: Incorporating temporal evolution reduces risk of overestimating/underestimating the number of areas safely operating without protective gear.

- **Solution 1: Static**
 - 60% of the areas are determined to be safe
 - 33% of those will become unsafe at later times

- **Solution 2: Dynamic**
 - 50% of areas are determined to be safe
 - 3 of these were previously unsafe
Comparison: Stochastic Results

Table 5. Comparison of solutions to the static/stochastic and dynamic/stochastic examples.

<table>
<thead>
<tr>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>r_j</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Time (min)</th>
<th>r^*</th>
<th>Total Time (min)</th>
<th>$r^(\tau^)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.85</td>
<td>6</td>
<td>88.61</td>
<td>5</td>
</tr>
</tbody>
</table>
Comparison: Stochastic Cases

- **Static/stochastic vapor concentration case**
 - Search each node exactly once
 - Less amount of time
 - Reward based on *expected* vapor concentrations

- **Dynamic/stochastic vapor concentration case**
 - Search is driven by probability a node will be less than the threshold v^*
 - Rewards determined from *expected* values and rate parameters are time-dependent
Comparison: Stochastic Cases

Main result: Reduce risk of overestimating/underestimating safe areas in dynamic case. Stochastic elements account for randomness of the real problem.

- Solution 1:
 - 60% of areas are determined to be safe
 - Following this path declares safe areas prematurely
 - 2 of the areas would likely not be safe at later times
Comparison: Stochastic Cases

• Solution 2:

 – 50% of areas are determined to be safe

 – 1 of the unsafe nodes in the previous case becomes safe at a later time