“Aircrew Endurance and Effectiveness”
NACES Endurance Improvement

By Dr. Michelle Ransley and Eileen Loughran
Martin-Baker Aircraft Company Ltd. and NAWC-WD China Lake

Contact Information:

Martin-Baker Aircraft Company Limited
Attn: Michelle Ransley
Human Engineering Department,
Lower Road, Higher Denham, near Uxbridge,
Middlesex. UB9 5AJ. England
E-mail: mransley@martin-baker.co.uk

COMMANDER
Code 466200D Eileen Loughran
NAVAIRWARCENWPNDIV
Bldg 02466 Room 1600
1900 N Knox Road STOP 6206
China Lake, CA 93555-6106. USA
E-mail: eileen.loughran@navy.mil

Abstract

With changing operational environments for tactical aircraft new demands are being placed on aircrew, which are pushing the limits of physical endurance. In particular, mission durations have increased to the point that previous issues with ejection seat comfort have become more pronounced and have begun to affect aircrew performance.

In the past, short duration missions have been the norm and the effect of ejection seat comfort was not well documented. However, changed mission profiles requiring extended seated durations have highlighted the effect of discomfort on aircrew performance.

As part of the Navy Aircrew Common Ejection Seat (NACES) Stability Improvement Programme (SIP) Martin-Baker have been working alongside the US Navy to assess and develop comfort improvements suitable for the SJU-17A seat used in F-18’s and T-45’s. Various cushion designs were first assessed for anthropometric compatibility and thus comfort, and then environmental testing was undertaken on a reduced number of the chosen cushioning designs. The 3 most promising designs were finally tower and ejection tested in support of a flight clearance. Three F-18 squadrons, who complete regular evaluation questionnaires, are currently flying these three ejection seat designs. The initial results of this trial are demonstrating a need for improved lumbar support and the introduction of non-foam cushion inserts, rather than the highly compressible urethane and slow response cushions that are currently used.

It is acknowledged that comfort affects the state of mental and physical well being of the aircrew, and their performance in the cockpit. Therefore understanding their endurance requirements and providing solutions to resolve these issues are imperative for the future of high performance fast jet aircrew.
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE OCT 2005
2. REPORT TYPE N/A
3. DATES COVERED -

4. TITLE AND SUBTITLE Aircrew Endurance Effectiveness

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Commander Code 466200D Eileen Loughran

NAVAIRWARCENWPNDIV Bldg 02466 Room 1600 1900 N Knox Road STOP 6206 China Lake, CA 93555-6106

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited

14. ABSTRACT

15. SUBJECT TERMS Safe

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT SAR
18. NUMBER OF PAGES 7
19a. NAME OF RESPONSIBLE PERSON

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Introduction

When designing ejection seat profiles, two main problems occur, the first is how sufficient comfort can be offered to a pilot so that backache, reduced blood flow and muscle damage leading to fatigue and reduced lethality can be prevented. Secondly, is how such a comfortable sitting posture can meet the requirements for a safe and optimal ejection from the aircraft.

It is considered that historically comfort has been neglected, and in the past with short sorties this may have been acceptable, but the emergence of this problem is all the more apparent since the introduction of mid-air refuelling and increased mission durations. This has led to pilots sitting in excess of 7 hours with minimal movement.

Previous seat evaluations by Fernandez and Poonawala (1998) have been able to show that the comfort of a sitting platform can be assessed without the need for equal duration comfort trials when using the 11-point general comfort rating scale (GCR) (Figure 1) devised by Shackel et al. (1969). It can be concluded that at the end of the third hour, the results obtained are not significantly different from those obtained at longer seated durations.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I feel completely relaxed</td>
</tr>
<tr>
<td>2</td>
<td>I feel perfectly comfortable</td>
</tr>
<tr>
<td>3</td>
<td>I feel quite comfortable</td>
</tr>
<tr>
<td>4</td>
<td>I feel barely comfortable</td>
</tr>
<tr>
<td>5</td>
<td>I feel uncomfortable</td>
</tr>
<tr>
<td>6</td>
<td>I feel restless and fidgety</td>
</tr>
<tr>
<td>7</td>
<td>I feel cramped</td>
</tr>
<tr>
<td>8</td>
<td>I feel stiff</td>
</tr>
<tr>
<td>9</td>
<td>I feel numb (or pins and needles)</td>
</tr>
<tr>
<td></td>
<td>I feel sore and tender</td>
</tr>
<tr>
<td>10</td>
<td>I feel unbearable pain</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 11-point general comfort rating scale devised by Shackel et al. (1969)

The introduction of pressure mapping techniques like the Tekscan System have increased the science behind comfort, moving it away from a purely subjective definition, to a quantifiable, graphical image, when used with reference to a controlled baseline.

This comfort evaluation methodology when used in conjunction with a subjective questionnaire has been the chosen method for the stability improvement program (SIP) being undertaken on the NACES F-18 ejection seats.
Down Selection Process

To develop comfort improvements suitable for NACES, the initial task was to undertake a trade study on existing market products and materials. 12 suitable cushion products were initially tested for comfort. These included slow response, memory foams, honeycombs, air-filled and gel-filled cushions, vibrating and massage cushions and spacer fabrics.

Two human anthropometric extremes volunteered to undertake comfort trials on various new cushioning materials and sitting profiles to determine the ability of each material to remain comfortable over 3 hours of seated duration. Wearing summer Aircrew Equipment Assembly (AEA) and a PCU-56/P torso harness each subject was required to sit in an unarmed mock-up NACES equipped cockpit for three hours being monitored at 5-minute intervals by the Tekscan system, whilst completing a comfort questionnaire every hour (Figure 2) produced from combining the 11-point general comfort rating scale (GCR) and the work of Lusted et al. (1994) who devised the body area chart discomfort checklist for monitoring the discomfort of any particular body part.

<table>
<thead>
<tr>
<th>Area</th>
<th>No Pain or Distress</th>
<th>1 to 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thighs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Legs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Comfort Questionnaire used for ‘In-House’ Evaluation

At this stage materials were only de-selected based on comfort, therefore 7 of the 12 materials continued through to the environmental testing. This testing included fire resistance, altitude, decompression and behaviour over the temperature range of -65°F to 165°F. At this stage a further down select was undertaken leaving only 3 material candidates. A Vicair insert comprising of individual air bags, a Supracor insert comprising of a honeycomb structure and a Spacer Fabric insert consisting of layers of fabric resembling netting.
Tower testing was then undertaken on these 3 insert materials and the existing NACES cushion to determine the dynamic response index (DRI) and insure that it did not exceed a value of 18, which would lead to possible spinal injuries. All three of the cushions recorded DRI values of below 14, and were within the scatter of the current NACES baseline cushion.

Flight Trials

With 3 cushion inserts providing equally good evaluation results a decision was taken with the US Navy to flight trial all 3 and let to aircrew down select to the final candidate solution.

Three F-18 squadrons were chosen to trial these cushions based on their availability and typical sortie duration, and to increase the knowledge gained from this assessment external materials for the covers were also discussed. Each Squadron was given one set of 10 cushions all in leather, sheepskin or the existing black honeycomb fabric, so that within a squadron each cushion looked the same. However, internally a variety of the 3 insert materials were provided for evaluation, only to be identified by a numerical label or by the aircraft that they were installed in. After each sortie, aircrew were requested to complete a single questionnaire, (Figure 3) which provides Martin-Baker and the US Navy with comfort data for analysis to assist with the future down select.

![Figure 3](image)

COMFORT EVALUATION QUESTIONNAIRE

<table>
<thead>
<tr>
<th>Cushion Ref</th>
<th>Total Flight Duration</th>
<th>Date</th>
<th>Name</th>
<th>Squadron</th>
<th>Type of Mission</th>
<th>Height</th>
<th>Weight</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>X23232</td>
<td>4 Hours</td>
<td>2.12.05</td>
<td>J Jones</td>
<td>208</td>
<td>Transit Flight</td>
<td>5'10"</td>
<td>194 lbs</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Example of the Comfort Questionnaire completed after each Sortie
The flight trial began in March 2005 and has so far provided over 640 flight hours of data from 69 different aircrew, including 124 hours on the existing NACES cushion to use as a comparative baseline.

As the regularity of each cushion insert to be flown depends on the aircraft availability, there will not be the same number of flight surveys for each, therefore the results shown in Figure 4 have been normalised against the maximum score that they could have received for the number of surveys. This number is shown within brackets in the dialogue box of Figure 4.

![Discomfort Comparison](image)

Figure 4 Displays a comparison between the 4 cushions being flown. The higher the score the greater the discomfort.

The duration of each sortie will affect the results therefore Figure 5, displays the spread of durations, clearly showing that the majority (79%) have occurred at 2 hours or below.
Figure 5 Displays the variation in Sortie duration

When the results for the comfort questionnaires are separated into above and below 2-hour sortie durations the results show that the Vicair out performs the others for short duration missions and the Supracor performs best for longer duration missions. In both cases the existing NACES cushion has the highest level of discomfort with the Spacer Fabric a close second.

Future Work

A second round of flight trials are set to begin before the end of 2005, with three further squadrons with only two cushions for evaluation. The Spacer Fabric has been de-selected based on comfort performance and the leather external cover has also been removed from the evaluation as it was seen to be too hot and costly without showing any benefit.

Slight modifications will be made to the contours of the cushion based of fleet comments, and the flight trials are expected to be only 4 months in duration, leading to a final comfort improvement solution being reached by the middle of 2006.

Conclusion

From the research and development that has been undertaken within the SIP programme it can be shown that although many cushions display instantaneous comfort, over time they can collapses or ‘bottoms out’ or experiences a temperature rise due to there inability to breathe. By starting the down selection process with ‘in-house’ comfort evaluations, using the Tekscan System, comfort was given the greatest importance. Ensuring that all the remaining cushions from each down selection processes will be comfortable.
The test results showed that most cushions only begin to become uncomfortable after 1 or 2 hours, therefore previous short duration studies (less that 1 hour seated) would not effectively assess the duration comfort of a cushion. Therefore showing that for aircrew instantaneous comfort is not the solution, rather it is an unchanging cushion solution that will remain comfortable and acceptable for the entire flight duration. Leaving the pilot unaware of their sitting surface and free to concentrate without fatigue on their mission.

With this information the final three solutions were provided for flight trial and were expected to be better than the cushion currently being flown on NACES by the F-18 aircrew. Figure 4 confirms the use of pressure mapping techniques in the design of comfort improvements, as all three are an improvement.

The devised comfort questionnaire is straightforward, quick and easy to use, and because of this has improved the quality of the subject’s evaluation data being received. Limiting the variables and removing the need for comments by introducing crosses and the GCR number scale, has meant that very few surveys have been completed incorrectly.