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Abstract

A key problem for face recognition has been accurate iden-
tification under variable illumination conditions. Conven-
tional video cameras sense reflected light so that image
grayvalues are a product of both intrinsic skin reflectivity
and external incident illumination, thus obfuscating the in-
trinsic reflectivity of skin. Thermal emission from skin, on
the other hand, is an intrinsic measurement that can be iso-
lated from external illumination. We examine the invari-
ance of Long-Wave InfraRed (LWIR) imagery with respect
to different illumination conditions from the viewpoint of
performance comparisons of two well-known face recogni-
tion algorithms applied to LWIR and visible imagery. We
develop rigourous data collection protocols that formalize
face recognition analysis for computer vision in the thermal
IR.

1 Introduction

The potential for illumination invariant face recognition us-
ing thermal IR imagery has received little attention in the
literature [1, 2]. The current paper quantifies such invari-
ance by direct performance analysis and comparison of face
recognition algorithms between visible and LWIR imagery.

It has often been noted in the literature [3, 2, 4] that vari-
ations in ambient illumination pose a significant challenge
to existing face recognition algorithms. In fact, a variety
of methods for compensating for such variations have been
studied in order to boost recognition performance, including
among others histogram equalization, laplacian transforms,
gabor transforms and logaritmic transforms. All these tech-
niques attempt to reduce the within-class variability intro-
duced by changes in illumination, which severly degrades
classification performance. Since thermal IR imagery is in-
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dependent of ambient illumination, such problems do not
exist.

To perform our experiments, we have developed a spe-
cial Visible-IR sensor capable of taking simultaneous and
co-registered images with both a visible CCD and a LWIR
microbolometer. This is of particular significance for this
test, since we are testing on exactly the same scenes for
both the visible and IR recognition performance, not a bore-
sighted pair of images.

In order to perform proper invariance analysis, it is nec-
essary that thermal IR imagery be radiometrically cali-
brated. Radiometric calibration achieves a direct relation-
ship between the grayvalue response at a pixel and the ab-
solute amount of thermal emission from the correspond-
ing scene element. This relationship is called responsivity.
Thermal emission is measured as flux in units of power such
asW/cm2. The grayvalue response of thermal IR pixels for
LWIR cameras is linear with respect to the amount of inci-
dent thermal radiation. The slope of this responsivity line
is called thegain and they-intercept is theoffset. The gain
and offset for each pixel on a thermal IR focal plane array
is significantly variable across the array. That is, the linear
relationship can be, and usually is, significantly different
from pixel to pixel. This is illustrated in Figure 1 where
both calibrated and uncalibrated images are shown of the
same subject.

While radiometric calibration provides non-uniformity
correction, the relationship back to a phisical property of
the imaged object (its emmisivity) provides the further ad-
vantage of data where environmental factors contribute to a
much lesser degree to within-class variability.

An added bonus of radiometric calibration for thermal
IR is that it simplifies the problem of skin detection in clut-
tered scenes. The range of human body temperature is quite
small, varying from96◦F to100◦F. We have found that skin
temperature at70◦F ambient room temperature to also have
a small variable range from about79◦F to 83◦F. Radiomet-
ric calibration makes it possible to perform an initial seg-
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Figure 1: Calibrated (right) and uncalibrated LWIR im-
ages. There is significant pixel-wise difference in respon-
sivity which is removed by the calibration process.

mentation of skin pixels in the correct temperature range.

2 Data Collection Procedure for
Multi-Modal Imagery

The data used in the experiments performed for this pa-
per was collected by the authors at the National Institute
of Standards and Technology (NIST) during a two-day pe-
riod. Visible and LWIR imagery was recorded with a pro-
totype sensor developed by the authors, capable of imag-
ing both modalities simultaneously through a common aper-
ture. The output data consists of240x320 pixel image pairs,
co-registered to within1/3 pixel, where the visible image
has8 bits of grayscale resolution and the LWIR has12 bits.

2.1 Calibration Procedures

All of the LWIR imagery was radiometrically calibrated.
Since the responsivity of LWIR sensors are very linear, the
pixelwise linear relation between grayvalues and flux can be
computed by a process of two-point calibration. Images of
a black-body radiator covering the entire field of view are
taken at two known temperatures, and thus the gains and
offsets are computed using the radiant flux for a black-body
at a given temperature.

Note that this is only possible if the emissivity curve of
a black-body as a function of temperature is known. This is
given by Planck’s Law, which states that the flux emmited
at the wavelengthλ by a blackbody at a given temperature
T in W/(cm2µm) is given by

W (λ, T ) =
2πhc2

λ5
(
e
hc
λkT − 1

) (1)

whereh is Planck’s constant,k is Boltzman’s constant, and
c is the speed of light in a vacuum. To relate this to the flux
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Figure 2: The Planck curve for a black-body at 303K
(roughly skin temperature), with the area to be integrated
for an 8-12µm sensor shaded.

observed by the sensor, the responsivity,R(λ) of the sensor
must be taken into account. This allows the flux observed by
a specific sensor from a black-body at a given temperature
to be determined:

W (T ) =
∫
W (λ, T )R(λ)dλ . (2)

For our sensor, the responsivity is very flat between8 and
12 microns, so we can simply integrate Equation (1) forλ
between8 and 12. The Planck curve and the integration
process are illustrated in Figure 2.

One can achieve marginally higher precision by taking
measurements at multiple temperatures and obtaining the
gains and offsets by least squares regression. For the case
of thermal images of human faces, we take each of the two
fixed temperatures to be below and above skin temperature,
to obtain the highest quality calibration for skin levels of IR
emmision.

It should be noted that a calibration has a limited life
span. If a LWIR camera is radiometrically calibrated in-
doors, taking it outdoors where there is a significant ambi-
ent temperature difference will cause the gain and offset of
linear responsivity of the focal plane array pixels to change.
Therefore, radiometric calibration must be performed again.
This effect is mostly due to the optics and FPA heating up,
and causing the sensor to “see” more energy as a result.
Also, suppose two separate data collections are taken with
two separate LWIR cameras but with the exact same model
number, identical camera settings and under the exact same
environmental conditions. Nonetheless, no two thermal IR
focal plane arrays are ever identical and the gain and off-
set of corresponding pixels between these separate cameras
will be different. Yet another example; suppose two data
collections are taken one year apart, with the same thermal
IR camera. It is very likely that gain and offset character-



Figure 3: Camera and lighting setup for data collection.

istics will have changed. Radiometric calibration standard-
izes all thermal IR data collections, whether they are taken
under different environmental conditions or with different
cameras or at different times.

The grayvalue for any thermal IR image is directly phys-
ically related to thermal emission flux which is a universal
standard. This provides a standardized thermal IR biometric
signature for humans. The images that face recognition al-
gorithms can most benefit from in the thermal IR are not ar-
rays of gray values, but rather arrays of corresponding ther-
mal emission values. If there is no way to relate grayvalues
to thermal emission values then it is not possible to do this.

2.2 The Collection Setup

For the collection of our images, we used the FBI mugshot
standard light arrangement, shown in Figure 3. Image se-
quences were acquired with three illumination conditions:
frontal, left lateral and right lateral. For each subject and
illumination condition, a40 frame, four second, image se-
quence was recorded while the subject pronounced the vow-
els looking towards the camera. After the initial40 frames,
three static shots were taken while the subject was asked
to act out the expressions ‘smile’, ‘frown’, and ‘surprise’.
In addition, for those subjects who wore glasses, the entire
process was done with and without glasses. Figure 4 shows
a sampling of the data in both modalities.

A total of 115 subjects were imaged during a two-day
period. After removing corrupted imagery from24 sub-
jects, our test database consists of over25, 000 frames from
91 distinct subjects. Much of the data is highly correlated,
so only specific portions of the database can be used for
training and testing purposes without creating unrealisti-
cally simple recognition scenarios. This is explained in Sec-
tion 4.

Figure 4: Sample imagery from our data collection. Note
that LWIR images are not radiometrically calibrated.

3 Algorithms Tested

Since the purpose of this paper is to remark on the viability
of visible versus thermal IR imagery for face recognition,
we used two standard algorithms for testing. We review
them briefly in this section. Let{xi}Ni=1 be a set ofN vec-
tors inRk, for some fixedk > 0. Digital images are turned
into vectors, converting a two-dimensional array into a one-
dimensional one, by scanning in raster order.

Perhaps the most popular algorithm in the field is Eigen-
faces [5]. Given a probe vectorp ∈ R

k and a training
set{ti}Ni=1, the Eigenfaces algorithm is simply a1-nearest
neighbor classifier with respect to theL2 norm, where dis-
tances are computed between projections of the probe and
training sets onto a fixedm-dimensional subspaceF ⊆ Rk,
known as theface space. The face space is computed
by taking a (usually separate) set of training observations,
and finding the unique ordered orthonormal basis ofR

k

that diagonalizes the covariance matrix of those observa-
tions, ordered by the variances along the corresponding one-
dimensional subspaces. These vectors are known aseigen-
faces. It is well-known that, for a fixed choice ofn, the
subspace spanned by the firstn basis vectors is the one with
lowestL2 reconstruction error for any vector in the train-
ing set used to create the face space. Under the assumption
that that training set is representative of all face images, the
face space is taken to be a good low-dimensional approxi-
mation to the set of all possible face images under varying
conditions.

We also performed tests using the ARENA algorithm [6].
ARENA is a simpler, appearance based algorithm which
can also be characterized as a1-nearest neighbor method.
The algorithm proceeds by first reducing the dimensionality
of training observations and probes alike. This is done by
pixelizingthe images to a very coarse resolution, replacing
each pixel by the average gray value over a square neighbor-



hood. Once in the reduced-resolution space, of dimension
n, 1-NN classification is performed with respect to the fol-
lowing semi-norm

L0
ε(x, y) =

n∑
j=1

1[0,ε]‖xj − yj‖, (3)

where1U denotes the indicator function of the setU .

4 Testing Procedure

In order to create interesting classification scenarios from
our Visible/LWIR database, we constructed multiple query
sets for testing and training. Frames0, 3 and 9 (out of
40) from a given image sequence are referred to as vowel
frames. Frames corresponding to ‘smile’, ‘frown’ and ‘sur-
prise’ are referred to as expression frames. Our query crite-
ria are as follows:

1. Vowel frames from all subjects, all illuminations.

2. Expression frames from all subjects, all illuminations.

3. Vowel frames from all subjects, frontal illumination.

4. Expression frames from all subjects, frontal illumina-
tion.

5. Vowel frames from all subjects, lateral illumination.

6. Expression frames from all subjects, lateral illumina-
tion.

7. Vowel frames from subjects wearing glasses, all illu-
minations.

8. Expression frames from subjects wearing glasses, all
illuminations.

9. 500 random frames, arbitrary illumination.

The same queries were used to construct sets for visible and
LWIR imagery, and all LWIR images were radiometrically
calibrated. Locations of the eyes and the frenulum were
semi-automatically located in all visible images, which also
provided the corresponding locations in the co-registered
LWIR frames. Using these feature locations, all images
were geometrically transformed to a common standard, and
cropped to eliminate all but the inner face. For the visi-
ble imagery, in addition to images processed as described
above, we created a duplicate set to which we applied a mul-
tiscale version of center-surround processing [7] (a cousin
of the Retinex algorithm [8]), to compensate for illumina-
tion variation.

The relation between vowel frames and expression
frames is comparable to that betweenfa andfb sets in the

FERET database, although our expression frames are often
more different from vowel frames than in the FERET case.
Frontal and lateral illumination frames are comparable to
fa versusfc sets in FERET. Query set number9 was used
for face space computations for testing of the eigenfaces
algorithm. Lastly, we should note that queries7, 8 and9
were only used as testing sets and not as training sets (ex-
cept7 versus8), since the maximum possible correct clas-
sification performance achievable for those combinations is
lower than100%, and therefore those combinations were
ignored to simplify the analysis.

All performance results reported below are for the top
match. That is, a given probe is considered correctly clas-
sified if the closest image in the training set belongs to the
same subject as the probe. Note that when using nearest-
neighbor classifiers, one runs the risk that multiple train-
ing observations will be at the same distance from a probe.
In particular it is possible to have multiple training ob-
servations at the minimum distance. This is especially
likely when high-dimensional data is projected onto a low-
dimensional space. In that case, it is possible to have false
alarms even when considering only the top match, as it may
not be unique. LetT be a training set andP a set of probes.
Forp ∈ P, letm be the distance fromp to the closest train-
ing observation, andHp = {t ∈ T | dist(p, t) = m}.
Defineαp to be1 if any member ofH belongs to the same
class asp, and zero otherwise. Further define‖Hp‖ to be
the number of distinct class labels among elements ofH
and#P the number of probes inP. With this notation, the
correct classification rate and false alarm rate are given by

CC =
1

#P
∑
p∈P

αp , (4)

FA =
∑
p∈P

‖Hp‖
‖Hp‖+ αp

(5)

5 Experimental results

For the ARENA algorithm, 240x320 images (in each
modality) were pixelized and reduced to15x20 pixels. We
experimented with multiple values for the parameterε, in
theL0

ε norm, and found that best performance was obtained
with ε = 5 for visible imagery andε = 10 for LWIR.
This is consistent with the empirically observed fact that
the LWIR imagery from this data set has an average effec-
tive dynamic-range of about500 grayvalues, versus the256
for the visible. Comparing Tables 1 and 2, we see that the
ARENA algorithm on visible imagery benefits greatly from
pre-processing with the center-surround method. The mean,
and minimum classification performance over our queries
on unprocessed visible imagery are72% and13%, respec-
tively, with the minimum occurring when training is done



on lateral illuminated vowel frames and testing on frontal
illuminated vowel frames. For center-surround processed
visible imagery, the mean and minimum classification per-
formance for ARENA are93% and76%, respectively, with
the minimum occurring with training on frontal illuminated
expression frames and testing on lateral illuminated vowel
frames.

All performance results below are reported in tabular for-
mat, where each column of a Table corresponds to a train-
ing set and each row to a testing set. The numbering of
the rows and columns matches that of the list at the start
of Section 4. The diagonal entries are ommitted, since in
all cases the classifiers achieve perfect performance when
trained and tested on the same set. Also, certain sets are
not used for training, since they do not contain images of
all subjects, and therefore the maximum possible classifica-
tion perfomance is strictly lower than100%. Such sets are
useful when testing the ability of a classifier to determine
whether a given probe has a match in the training set at all,
but we do not consider that problem in the current article.

Table 3 shows classification performance for ARENA on
LWIR imagery. The mean and minimum performance are
99% and97%, respectively. The minimum in this case oc-
curs when we train on expression frames with frontal il-
lumination and test on vowel frames for subjects wearing
glasses. It is not surprising that the lowest performance
would occur for probe sets where subjects are wearing
glasses, since glass is opaque in the LWIR (see Figure 4).
However it is surprising that the lowest performance is still
quite high.

Despite the big performance boost that center-surround
processing affords the ARENA algorithm on visible im-
agery, such processing is not suitable for use in combination
with Eigenfaces. Our experiments show that it reduces per-
formance in all situations. This is probably due to the fact
that center-surround processing acts partially like a high-
pass filter, removing the low-frequency components which
are normally heavily represented among the first few princi-
pal eigenfaces. Since results were so poor on pre-processed
visible imagery, we do not report specifics below. For our
experiments we took the240x320 images and subsampled
them to obtain768-dimensional feature vectors.

In Table 4, we see classification performance of Eigen-
faces on visible imagery. The mean and minimum perfor-
mance in this case are78% and 32%, respectively. Min-
imum performance occurs for training on lateral illumi-
nated vowel frames and testing on frontal illuminated ex-
pression frames, similar to the ARENA case. Performance
of Eigenfaces on LWIR imagery is displayed in Table 5.
Mean and minimum performance are96% and 87%, re-
spectively. Interestingly, the minimum occurs for the same
training/testing combination as for the visible imagery. We
can see by comparing Tables 4 and 5, that Eigenfaces on

LWIR is uniformly superior to Eigenfaces on visible im-
agery. Classification performance is on average17 percent-
age points higher for LWIR imagery, with the best scenario
yielding an improvement of54 percentage points over visi-
ble imagery, while never underperforming it.

Figures 5 and 6 show the first five eigenfaces for the vis-
ible and LWIR face spaces, respectively. The visible eigen-
faces have a (by now) familiar look, containing mostly low-
frequency information, and coding partly for variation in
illumination. The corresponding LWIR eigenfaces do not
have the ‘usual’ characteristics. In particular, we see that
the LWIR eigenfaces have fewer low frequency components
an many more high frequency ones. We verified this nu-
merically by examining the modulus of the2-dimensional
Fourier transforms of the first eigenfaces in each modality,
although it should be reasonably clear by simply looking at
the images.

It is very interesting to look at the spectra of the
eigenspace decompositions for the visible and LWIR face
spaces. The corresponding normalized cumulative sums for
the first100 dimensions is shown in Figure 7. It is easy to
see that the vast majority of the variance of the data dis-
tribution is contained in a lower dimensional subspace for
the LWIR than for the visible imagery. For example, a6-
dimensional subspace is sufficient to capture over95% of
the variance of the LWIR data, whereas a36-dimensional
subspace is necessary to capture the same variance for
the visible imagery. This fact alone may be responsible
in large part for the higher performance of Eigenfaces on
LWIR imagery than visible one. Indeed, since Eigenfaces
is a nearest-neighbor classifier, it suffers from the standard
‘curse of dimensionality’ problems in pattern recognition.
It has been recently noted in the literature that the notion
of nearest neighbor becomes unstable, and eventually may
be meaningless for high dimensional search spaces [9, 10].
In fact, for many classification problems, as the dimension-
ality of the feature space grows, the distance from a given
probe to its nearest and farthest neighbors become indistin-
guishable, thus rendering the classifier unusable. It is not
known whether face recognition falls in this (large) cate-
gory of problems, but it can be safely assumed that data
which has a lower intrinsic dimensionality is better suited
for classification problems where the class conditional den-
sities must be inferred from a limited training set. In this
context, LWIR imagery of human faces may simply be ‘bet-
ter behaved’ than visible imagery, and thus better suited for
classification.

We further compared the performance of the two classi-
fiers on both modalities, specifically for training/testing set
pairs where each set had a different illumination condition.
That is we looked at pairs where, for example, the training
set had lateral illumination and the testing set had frontal
illumination. Average and minimum classifications perfor-
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LWIR eigenspectra.

mance are reported in Tables 6 and 7. Table 6 compares
variation in illumination without major expression varia-
tion, while Table 7 corresponds to pairs where both illu-
mination and expression are very different. We see that for
both algorithms, LWIR imagery yields much higher classi-
fication performance over visible imagery. Indeed, for the
variant illumination/expression experiment, LWIR Eigen-
faces outperform visible Eigenfaces by more than30 per-
centage points on average, and more than50 for the worst-
case scenario.

A combination of classifiers can often perform better
than any one of its individual component classifiers. In
fact there is a rich literature on combination of classi-
fiers for identity verification, mostly geared towards com-
bining voice and fingerprint, or voice and face biometrics
(e.g.[11]). The main problem is how to combine the outputs
of disparate classifier systems to produce a single decission.
The ARENA face classifier is very well-suited to ensemble
processing, since theL0

ε norm is bounded above by the di-
mension of the space, therefore making interpoint distances
from disparate distributions comparable to each other. To
test this scenario, we constructed testing and training sets
from the visible/LWIR image pairs. Now, an observation is
not a single image, but a bi-modal pair. The testing set is
composed of images where the subject is wearing glasses,
and the training set contains images of the same subject but
without glasses. This is a particularly challenging set, and
the classification performance is70.7% for visible ARENA,
and92.2% for LWIR ARENA. We can construct a distance
between bi-modal observations simply as a weighted sum
of the distances for visible and LWIR components, and then
perform1-NN classification on the new distance. By choos-
ing the weighting parameter to be twice as large for the
LWIR component as for the visible component, we can ob-
tain a classification performance of94.7%, an improvement
of 2.5 percentage points over the LWIR classifier alone.

1 2 3 4 5 6 7 8
1 0.986 0.557 0.514 0.741 0.717
2 0.970 0.528 0.542 0.694 0.720
3 1.000 0.988 0.988 0.226 0.182
4 0.953 1.000 0.953 0.136 0.173
5 1.000 0.986 0.334 0.276 0.986
6 0.979 1.000 0.312 0.308 0.979
7 1.000 0.990 0.604 0.532 0.733 0.729 0.969
8 0.992 1.000 0.552 0.564 0.692 0.716 0.985
9 0.998 1.000 0.556 0.526 0.692 0.686

Table 1: ARENA results on unprocessed visible imagery

1 2 3 4 5 6 7 8
1 0.954 0.934 0.824 0.985 0.919
2 0.944 0.830 0.914 0.903 0.970
3 1.000 0.953 0.942 0.956 0.858
4 0.946 1.000 0.922 0.833 0.913
5 1.000 0.954 0.900 0.765 0.949
6 0.943 1.000 0.783 0.870 0.938
7 1.000 0.976 0.969 0.884 0.990 0.939 0.969
8 0.978 1.000 0.905 0.937 0.951 0.983 0.973
9 0.995 0.961 0.904 0.858 0.971 0.935

Table 2: ARENA results on center-surround processed vis-
ible imagery

1 2 3 4 5 6 7 8
1 0.999 0.999 0.986 0.997 0.996
2 0.997 0.993 0.987 0.995 0.996
3 1.000 1.000 0.993 0.993 0.993
4 1.000 1.000 1.000 0.993 0.990
5 1.000 0.998 0.998 0.983 0.998
6 0.996 1.000 0.990 0.980 0.996
7 1.000 0.997 0.997 0.976 1.000 0.997 0.976
8 1.000 1.000 1.000 0.985 1.000 1.000 0.980
9 1.000 0.998 0.996 0.978 1.000 0.998

Table 3: ARENA results on LWIR imagery

1 2 3 4 5 6 7 8
1 0.782 0.927 0.675 0.908 0.689
2 0.701 0.598 0.909 0.601 0.867
3 1.000 0.689 0.685 0.726 0.432
4 0.593 1.000 0.591 0.319 0.607
5 1.000 0.828 0.890 0.671 0.819
6 0.756 1.000 0.602 0.863 0.745
7 1.000 0.854 0.951 0.750 0.916 0.743 0.865
8 0.794 1.000 0.682 0.929 0.675 0.864 0.782
9 0.920 0.856 0.846 0.760 0.826 0.768

Table 4: Eigenfaces results on visible imagery

1 2 3 4 5 6 7 8
1 0.973 0.981 0.922 0.995 0.962
2 0.941 0.895 0.957 0.916 0.984
3 1.000 0.974 0.942 0.986 0.949
4 0.922 1.000 0.896 0.868 0.953
5 1.000 0.973 0.972 0.912 0.969
6 0.951 1.000 0.894 0.935 0.941
7 1.000 0.976 0.997 0.967 1.000 0.972 0.956
8 0.956 1.000 0.929 0.983 0.936 0.987 0.966
9 0.981 0.983 0.969 0.933 0.971 0.965

Table 5: Eigenfaces results on LWIR imagery



Figure 5: First five visible eigenfaces.

Figure 6: First five LWIR eigenfaces.

ARENA Eigenfaces
Visible 0.874 / 0.783 0.663 / 0.432
LWIR 0.993 / 0.990 0.950 / 0.894

Table 6: Mean and minimum performance on experiments
where the training and testing sets have different illumina-
tion but similar expressions

ARENA Eigenfaces
Visible 0.860 / 0.765 0.639 / 0.319
LWIR 0.990 / 0.980 0.933 / 0.868

Table 7: Mean and minimum performance on experiments
where the training and testing sets have different illumina-
tions and expressions

6 Conclusions

We presented a systematic performance analysis of two
standard face recognition algorithms on visible and LWIR
imagery. In support of our analysis, we performed a com-
prehensive data collection with a novel sensor system ca-
pable of acquiring co-registered visible/LWIR image pairs
through a common aperture at video frame-rates. The data
collection effort was designed to test the hypothesis that
LWIR imagery would yield higher recognition performance
under variable illumination conditions. Intra-personal vari-
ability was induced in the data by requiring that the subjects
pronounce the vowels while being imaged, as well as hav-
ing them act out severely variant facial expressions.

Dividing the data into multiple training and testing sets
allowed us to gain some understanding of the shortcom-
ings of each modality. As expected, variation in illumina-
tion conditions between training sets and probes resulted in
markedly reduced performance for both classifiers on visi-
ble imagery. At the same time, such illumination variations
have no significant effect on the performance on LWIR im-
agery. The presence or absence of glasses has more influ-
ence for LWIR than visible imagery, since glass is com-
pletely opaque in the LWIR. However, a variance-based
classifier such as Eigenfaces can ignore their effect to a
large extent by lowering the relevance of the area around
the eyes within the face space.

Overall, classification performance on LWIR imagery
appears to be superior to that on visible imagery, even for



testing/training pairs where there is no apparent reason for
one to outperform the other. In the case of Eigenfaces, we
can offer a plausible explanation for the superior perfor-
mance in terms of the apparently lower intrinsic dimension-
ality of the data. Further experiments and data collections
will be necessary to substantiate this conjecture, especially
since the variance-based definition of ‘intrinsic dimension-
ality’ is a rather poor one. We intend to extend this in-
vestigation to the local dimensionality of LWIR face data
as compared to its visible counterpart. Lower-dimensional
face data would be a compelling reason for using LWIR
imagery in face recognition systems. In essence, if we
cannot beat the curse of dimensionality by statistical meth-
ods, we should perhaps be searching for alternative sources
of lower-dimensional data with rich classification potential.
LWIR face imagery may just be such a source.

It is possible that the high performance results we ob-
tained are due to nature of our database. While our data
may contain enough challenging cases for visible face clas-
sifiers, it may not cover the challenging situations for LWIR
face classifiers. We intend to expand our collection and
analysis effort in order to answer this question. One should
note, however, that the data on which this study is based is
very representative of common and important face recog-
nition scenarios. For instance, indoor visitor identifica-
tion and access to secure facilities and computer systems.
The subjects we imaged were not prepared in any special
way, and neither were the environmental conditions. Thus,
though it may be possible to collect data which is much
more challenging in the LWIR, it appears that this modality
holds great promise under reasonable operating conditions.
The main disadvantage of thermal-infrared-based biomet-
ric identification at the present time is the high price of the
sensors. While the cost of thermal infrared sensors is sig-
nificantly higher than that of visible ones, prices have been
steadily declining over the last few years, and as volume
increases they will continue to do so. This fact, in com-
bination with their high performance, provides compelling
reason for the deployment and continuing development of
thermal biometric identification systems.
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