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PREFACE

Optimization and uncertainty analysis considering multiple design criteria

involves seamless integration of often conflicting disciplines. Over the last three years,

Wright State University applied analysis tools to predict the behavior of critical

disciplines using multidisciplinary design optimization to produce highly robust torpedo

designs.

During the first year of the grant period, finite element models of supercavitating

and lightweight torpedoes were developed and analyzed for hydrostatic depth pressure,

buckling, and dynamic response. Also, the cavity shape for any given cavitator was

determined using efficient optimization techniques. Using these tools, the optimum

cavitator required to achieve a pre-determined cavity length needed to enclose the entire

torpedo was obtained. This extensive research continued during the second year of the

grant period, and multidisciplinary optimization problems were solved to obtain variable

cavitator shapes that would result in minimum drag at various operating speeds. Detailed

reliability analysis of a composite lightweight torpedo was also performed. During the

third year, the lightweight torpedo was analyzed to determine its response to an

UNDerwater EXplosion (UNDEX) as a starting point for future work in multi-

disciplinary design of torpedoes.

Multidisciplinary optimization and system reliability analysis were emphasized

during the third year of the grant period, and reliable torpedo designs were obtained for

all the different disciplines. This final report, which summarizes the accomplishments, is

divided into six chapters that explain the different features of the work.
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Chapter 1 addresses obtaining the optimal configuration of a supercavitating

torpedo model that will fit in a cavity generated by the cavitator. An algorithm was

developed to obtain the required torpedo shape that satisfies the various performance

criteria. Also, an optimal configuration of stiffeners supporting the torpedo shell was

obtained.

Chapter 2 presents the detailed optimization and reliability design of the cavitator

for a supercavitating torpedo. As the data required for design of a supercavitating torpedo

is obtained from experts, an evidence theory based method to determine the reliability of

the system is presented.

Chapter 3 explains the detailed reliability based optimization of the composite

lightweight torpedo using system reliability constraints. Reliability analysis techniques

developed in this research make possible modeling of the various uncertainties associated

with composite materials. The huge computational cost involved in obtaining system

reliability for multiple failure criteria is reduced by using high-quality function

approximations.

Structural optimization of the lightweight torpedo subjected to an underwater

explosion is presented in Chapters 4 and 5. In Chapter 4, a robust torpedo configuration

design methodology is presented that uses multiple stiffener configurations and load

cases. Using the model obtained in Chapter 4, a multidisciplinary optimization of the

metallic torpedo was performed, and these results are discussed in Chapter 5. The

composite torpedo model subjected to UNDEX was also optimized.

Chapter 6 addresses the methodology used for reducing the acoustic signature of

the lightweight torpedo. An optimization-based methodology that identifies a
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computational noise source that can mimic the navy experimental data is presented. Once

the source was modeled, a multidisciplinary optimization of the torpedo was performed

to obtain a minimum weight design with reduced acoustic noise. The developed

methodology can be applied to any noise source data available through experimentation.
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CHAPTER 1

Optimum Design of a Supercavitating
Torpedo Considering Overall Size, Shape

and Structural Configuration
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1. Optimum Design of a Supercavitating Torpedo Considering Over-

all Size, Shape, and Structural Configuration

Edward Alyanak', Ramana Grandhi2 , Ravi Penmetsa3

Dept. of Mechanical and Materials Engineering

Wright State University, Dayton, OH 45435

Email: ealyanak@cs.wright.edu

Abstract

A supercavitating torpedo is a complex high speed undersea weapon that is exposed to ex-

treme operating conditions due to the weapon's speed. To successfully design a torpedo

that can survive in this environment, it is necessary to consider the torpedo shell as a criti-

cal component. The shell of a supercavitating torpedo must be designed to survive extreme

loading conditions (depth pressure and thrust loading), meet frequency constraints, and fit

inside the cavity generated by the cavitator. In this research, an algorithm to determine the

optimal configuration of the torpedo is presented. This method formulates an optimization

problem that determines the general shape of the torpedo in order to satisfy the required

performance criteria. Simultaneously, a method to determine the optimal stiffener config-

uration in the torpedo structure is also presented. A torpedo configuration for a desired

speed is obtained and the details of the process are thoroughly discussed.

Keywords: Cavitator, Cavity, Supercavitation, Shape Optimization

1 Graduate Research Assistant
2 Distinguished Professor
3 Assistant Professor
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1.1 Introduction

A supercavitating torpedo is a complex system that experiences extreme operating condi-

tions. The name "supercavitating torpedo" is derived from the cavity of water vapor that is

generated at the nose of the torpedo or cavitator4 and engulfs the complete structure. This

cavity separates the torpedo hull from the water, thereby eliminating much of the viscous

drag. This allows tremendous speeds to be achieved that are on the order of five to ten

times the speed of conventional underwater weapons. The development of this weapon for

a submarine commanders arsenal could enable a high-speed quick reaction option or a first

strike option in different mission scenarios. In either case, a tactical edge would be gained

that is currently not available.

While the theoretical mission scenarios of a supercavitating torpedo provide interest-

ing insight into its use, the engineering challenges in its development are monumental. In

this development, there are three main challenges to consider: cavity modeling, torpedo

control, and structural survivability. In the research presented, a prototype supercavitat-

ing torpedo will be developed based on structural survivability using previously developed

cavity modeling techniques [3].

At this point, it is understood that the forces generated to propel a supercavitating tor-

pedo through the water at high speed are not insignificant. The thrust force and corre-

sponding drag force are on the order of thousands of pounds. Also, as with any underwater

device, the ability to handle depth pressure cannot be ignored, even when a cavity is sur-

rounding the vehicle.

There has been recent work done by Alyanak, et al [5] and Ruzzene, et al [8] in regards

to designing the torpedo structure. In Alyanak's work [5], the optimal structural config-

uration was determined for a supercavitating torpedo using both radial and longitudinal

stiffeners. The optimal stiffener dimensions were presented along with the optimal number

of each kind. However, the overall torpedo dimensions were constant and the model was

4 The cavitator initiates the super-cavity surrounding the torpedo
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a simple cylinder with a conical nose. Ruzzene, et al did an extensive analysis of both the

static and dynamic buckling stabilities of a cylindrical torpedo shell. The affect of varying

the number of ring stiffeners was considered in terms of buckling stability. This is done

because of the opposing drag and thrust forces applied to the torpedo structure. In this

paper, a supercavitating torpedo design is developed. Neither size nor shape is assumed for

the final design. The only assumptions made are that the torpedo is axisymmetric, but not

necessarily the simple cylinder that has been used thus far in the literature. The torpedo

dimensions are found based on the system performance criteria. Within this paper, a set

of performance criteria are given and a torpedo structure is determined using MDO that

satisfies these criteria.

To accomplish this task, techniques for modeling two-phase supercavitating flows must

be utilized. The properties of the flow, such as cavity shape and corresponding drag, must

be known. Many techniques have been developed for modeling the cavity shape, and par-

ticularly research into the use of computational fluid dynamics has been done by many

researchers such as Kunz, et al [6]. At this conceptual design stage, the time and com-

plexity of the CFD solution is not required for the goals of this research. At the next level,

potential flow theory has been utilized to represent cavity dynamics by a significant number

of researchers including Kirschner, et al [10, 9] and Choi, et al [7]. While these techniques

provide very reliable solutions for different shape cavitators or cavity piercing fins, the re-

search in this paper is based on a flat disk cavitator. For this case, many algebraic equations

representing supercavitation that are developed from experimental data can be used. These

equations have been developed by many researchers over many years and compiled into

one document by May [3]. Because these analytical equations are historicaly well repected

they are utalized in the preliminary design stage to determine a criteria for finding the over-

all length or size of the torpedo. Furthermore, a method for optimal determination of the

torpedo shell shape is presented, allowing the final design to deviate from a simple cylinder.

Finally, the methods that were presented by Alyanak, et al [5] are applied to determine the

13



optimal structural configuration of the design.

1.2 Modeling of Supercavitating Flow

Cavitation is described by the cavitation number. The supercavitating phenomenon is char-

acterized by very low cavitation numbers. The cavitation number is a non-dimensional

quantity that represents the extent of cavitation. The formulation is given as

P - Pcavity (1)
- PV 2

as found in May [3].

In this equation, P represents the pressure outside of the cavity. This is equivalent

to the depth pressure. Furthermore, Pcavity represents the pressure inside the cavity, p is

the water density, and V is the torpedo speed. For supercavitation to occur, the cavitation

number must approach zero. Thus, Pcavity approaches P. There for if the torpedo is at a

given depth the pressure P is equivolent to the depth pressure P = pgd. A result of this is

that depth pressure must be considered for supercavitating torpedo structural survivability.

Even at high dynamic pressures this argument still holds. For example at a velocity of 120

•, P,,,vity is within 98% of P for a cavitation number of 0.01 and a depth of 600 m.

The flow can be characterized by the torpedo speed V, the cavitation number o, defined

in Equation 1, and the cavitator diameter d. The drag coefficient can be determined for a

flat disk cavitator by the relation

CD = 0.815(1 + o) (2)

where the drag coefficient is defined by

D
CD DPV2A (3)
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where D is the drag force and A is the cavitator area, in this case it is 4d2 .

From Equations 2 and 3 it is easy to see how the drag on the torpedo can be defined by

V, u, and d.

D = -CDp(Vd)' (4)

8

Furthermore, the maximum cavity diameter dm can be defined by a,

1

D 12
a - 0.1327 (5)

from which the cavity length L, can be determined by Equation 6.

Lc = dm [1.067a-' 618 - 0.52a 0 465] (6)

The cavity shape can be determined using Equations 5 and 6. This is accomplished by

utilizing the Logvinovich principle for stationary cavities as presented by Vasin [4].

S-SO t( 2  ) (7)Sk--S--- --O --tk 2 -•(7

where S is the cavity cross-sectional area at time t, So is the initial cavity area, Sk is the

maximum cavity area, and tk is the time taken for the area to grow from So to Sk. These

quantities can be defined as

So = -d (8)
4

and

7r 2

Sk = 7-d2 (9)4 m

Assuming the x axis runs down the longitudinal axis of the cavity and is zero at the cavita-
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tor, then

t -(10)
V

and

tk- (11)
2V

yielding

t 2x
tk L(

This allows us to write the cavity radius R, as a function of distance x from the cavitator

as

R, (x) = [1KQ (2 _ 2) (d2, -d 2) +d 2)] (13)

Equation 13 gives a full approximation of the cavity shape when Equations 5 and 6 are

used to define dm and L, respectively.

1.3 Torpedo Sizing Information

In order to develop a structure for a conceptual supercavitating torpedo, it is first necessary

to determine the ideal overall dimensions suited to a specific set of performance criteria.

The size of the torpedo greatly depends on the ability to generate a certain cavity size,

which in tum depends on the propulsion system guidelines. The propulsion system can be

expected to increase in size and weight as its thrust increases. Therefore, it is important to

generate the largest cavity possible, or to maximize the cavity volume, for a given thrust

output. This cavity volume maximization is also critical because the complete torpedo

structure must fit inside these boundaries.
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The optimal torpedo size can be optimized for a desired design speed. The first con-

sideration is that the torpedo should be able to fit in the current torpedo tubes used in

submarines. Thus, the overall dimensions should be smaller than the current heavyweight

torpedoes (5.8m long and .54m in diameter).

The second consideration is that the torpedo operate inside the most stable portion of

the cavity. It is acknowledged that the cavity stability is not stationary or steady-state. For

non-ventilated cavities there are different types of cavity closures, such as twin vortices

behind the cavity or a re-entrant jet. It is important that the cavity be as stable as possible

at the intended operating condition of the torpedo. A re-entrant jet is characterized by the

following condition

1 < Fr x a < 3 (14)

where

V
Fr - (15)

and 9 is the acceleration due to gravity.

Even though the supercavitating torpedo will be naturally ventilated by the rocket ex-

haust or other means and the re-entrant jet closure will not be present, satisfying Equation

14 will further ensure stability at the desired torpedo velocity.

Finally, it is assumed that the torpedo will be half the length of the cavity. This ensures

that the torpedo will be operating in the most stable region of the cavitation bubble and not

be affected by the very unstable region in the back half of the cavity.

The optimal torpedo size can be found with this information. It is natural to desire the

largest cavity possible with the least amount of work needed to create the cavity. Therefore,

the optimaly sized torpedo will operate in the largest cavity volume with minimal thrust.

For a desired design velocity a large cavity volume with minimal trust is represented math-
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ematically by

minD VCl (16)D VC{

such that

1 <_Fr x a < 3

Lc
-- < 5.8m
2

dm < .54m

where Do is nominal drag; VC and VCo are cavity volume and nominal cavity volume,

respectively; and /3 is a weight factor.

VC 7r{R (x)} 2 dx (17)
,Le

The nominal values are determined using a cavitator diameter of d = 5cm and a cavita-

tion number of a = 0.01 along with Equations 4 and 17. The weight factor will affect the

optimal solution based on the propulsion system parameters.

For a desired design velocity of V = 120m, the optimal solutions are presented in

Figures 1, 2, and 3. The discontinuous nature of the solution is caused by the different

constrains becoming active in the optimization problem posed by Equation 16. In Figure

1 it can be see that drag is the least when it is heavily weighted in the multi-objective

problem posed in Equation 16. As the weighting becomes more even and then favors a

larger volume the drag increases for a given speed however the cavity volume increases as

a pay off. Thus, the drag vs. cavity volume pay off is represented in this figure. In Figure

2 a similar phenomenon is seen. However, the cavity length is constant and jumps up as

18



problem constraints change to create a longer cavity when cavity volume is considered in

the multi-objective problem. In Figure 3 the optimal cavitator diameter is found for each

weighting possibility given in Equation 16. It is noted that the diameter increases as volume

becomes weighted in the problem. This increase in diameter at the fixed speed of 120• is
S

associated with an increase in drag as shown in Figure 1 but also increases cavity volume

as a pay off.

At this point, the design engineer can determine the optimal solution based on propul-

sion system specifications. The original intent was to use the specification for an AIM-9

missile solid fuel rocket engine; however, the thrust specifications are classified. Thus, we

will assume that a power plant capable of T = 8000N - 1800lbs of thrust T will be used

in the torpedo. Then from our optimal solutions, we find the torpedo size specifications and

operating conditions given in Table 1.

1.4 Torpedo Design

The structural design and shape of the torpedo based on the gathered information now

become the focus of this research effort. The performance criteria for the torpedo are given

below The material used will be a Titanium-Aluminum alloy. It is important to realize

that the design criteria affect the final torpedo design and thus can be adjusted as new

information becomes available to improve the presented prototype.

1. max {fiaVo Miises} < 900 MPa for a depth pressure load equivalent to 600m depth

and a compression load of 8000 N.

2. Thrust Buckling Factor = 1.25.

3. Collapse Buckling Factor = 1.25.

4. No natural frequency around 30 Hz.

5. The torpedo body must fit within the bounds of the cavity shape and in the torpedo

tube.

The depth of 600m comes from the maximum operational depth of the Russian nuclear-
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powered K-141 Kursk submarine. Because operational depth of US NAVY submarines are

classified, the Russian version is utilized. Furthermore, the natural frequency in the vicin-

ity of 30Hz is avoided because the control actuators being examined for supercavitating

torpedoes operate close to this frequency. The frequency constraints are estimated with a

cantilever boundary condition applied at the cavitator, or torpedo nose. The reason is the

torpedo is only supported at very small locations at the cavitator and possible control fins

in the rear, by the surrounding water. Thus, the cantilever boundary condition is a close

approximation to the operational natural frequency of the structure. Of course as internal

components are created and fit into the torpedo they can be represented as non-structural

mass and included in the frequency analysis. The structure is considered empty in the case

of this research.

With the criteria stated, it is now desired to develop an optimal torpedo structure that

satisfies all of the stated requirements. For research into the optimal design, an objective

function was chosen that would minimize the structural weight of the torpedo, but would

also maximize the internal volume. This is much like the volume maximization required

in the previous problem with respect to the cavity size. The reason for structural volume

maximization is to include as much space as possible for various torpedo components, such

as the propulsion system, guidance system, fuel, warhead, etc. This can be represented

mathematically as

min M Q VT(18)

where m is the torpedo mass, VT is the torpedo volume, and m0 and VTo are the nominal

values equal to those of a 4.15cm cylinder torpedo body with a length of 5.8m and a

skin thickness of 2.5mm made of titanium alloy. Therefore, m0 = 8.3413kg and VTo =

0.0078m3 . The weight factor Q is used to addjust the bias of the multi-objective function

towards mass or volume.
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1.5 Finite Element Modeling

The torpedo models in this research are constructed using finite elements. The use of finite

elements allows the analysis of several different design configurations with a minimal cost.

The models developed make extensive use of three basic element types. The main element

used is a four-node plate element with five degrees of freedom at each node. The second

element is the three-node triangle version of the four node element. Finally, two-node beam

elements are utilized to represent the ning and longitudinal stiffeners that are used in some

of the models.

A mathematical representation of the expected response of different torpedo designs

can be determined with these finite element models. The structural responses of interest

are those present in the objective function or constrains of the optimization problem. Thus,

mass, stress, natural frequency, and an estimation of buckling stability are required to solve

this problem.

Mass is simply determined by summing the product of the volume and density of each

finite element over the entire model. Mass will change as the sizing of the structural com-

ponents varies, as well as when the torpedo body shape changes.

The stresses present in the torpedo model are based on the presence of applied loads.

In this case, these loads are depth pressure and thrust force. These loads are contained in

the vector {f}. The structural stiffness of the model is mathematically contained in the

stiffness matrix [K]. With these two pieces of information, the structural displacements,

{d}, can be found from

[K]{d} = {f} (19)

An eigenvalue problem must be solved to determine the natural modes of the structure.

In Equation 20, the free vibration problem is given:
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[K]{q5} =wa2[M]{5} (20)

Here, [K] is the same global stiffness matrix of the torpedo model, [M] is the global

mass matrix of the torpedo model, {q$} is an orthogonal eigenvector, and w is the cor-

responding natural frequency. This information is needed to determine if the frequency

constraint is violated by the torpedo design.

Finally, the bifurcation buckling load was considered to determine an estimation of

buckling stability. A bifurcation buckling load is the load at which the system may be in

equilibrium both in the static sense, but also infinitesimally close to being in equilibrium

in a buckled configuration. A static reference load is utilized to calculate this load. This

is simply a static analysis done with respect to the depth pressure loading condition at 600

m or the thrust loading, as seen in Equation 19. This is referred to as the reference load

{ f} eJ and the resulting stresses in the elements from this load are contained in [Ko]ref,

where [Kg] is the level of stress in the structure known as the geometric matrix. By linear

superposition:

[K,] = A[K,]ef (21)

for

{f} = A{f}ref (22)

where A is simply a scalar multiplier. To determine the load at which the structure buckles, a

critical value for A must be found. This can be determined by solving the arising eigenvalue

problem, the formulation of which is given in Equation 23.

([K] + Ac,[Ka],ef){Ob} {0} (23)
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In this equation, Ar is the critical multiplier, and qOb is the eigenvector or buckling

mode shape. Thus, by finding Ac we can determine how close the structure is to buckling

due to the applied pressure or thrust loads. A value of one or less would imply failure.

That is why the constraint is set such that the buckling factor for both loading conditions

considered must be greater than 1.25 in magnitude, which results in a safety factor of 25%.

1.6 Structural Configuration

To build the model, it is first necessary to determine the types of configurations that will

be analyzed. In the design presented, the torpedo body shape, skin thickness, number

of ring stiffeners and longitudinal stiffeners, ring stiffener height and width, along with

longitudinal stiffener height and width are design variables. The orientation of both types

of stiffeners are better defined in Figure 4.

Figure 4 demonstrates that ring stiffeners will increase resistance to radial loading, such

as depth pressure. Conversely, longitudinal stiffeners will increase transverse bending stiff-

ness. The number of stiffeners included, if any, will be determined during the development

of the torpedo structure.

As previously stated, it is desired to determine the optimal shape of the torpedo body.

Traditionally, the literature has used cylindrical shells for analysis (not even cylindrical

torpedo models!). Cylindrical torpedo models will at least include the effects of the nose

and tail of the torpedo. Thus, the results are only useful in a St. Venant sense. To achieve

this objective, the shape of the torpedo body is defined by five radius values along the

length. The radius at the front of the torpedo is equal to the cavitator radius (2.075 cm)

determined previously. The other four radius values are defined evenly along the length of

the torpedo body, including the aft radius. A cubic spline is fit through these radius points

to define the torpedo body shape, as shown in Figure 5. From this curve a series of points

along the spline can be found to place the nodes that make up the finite element model

geometry.
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Finally, by employing all the described techniques, a finite element model can be con-

structed. As stated, the skin is represented with a quadrilateral surface element. There are

60 elements along the length of the torpedo and 16 elements in the radial direction, which

yield 960 surface elements defining the torpedo body. The ends of the torpedo are closed

with 16 triangular surface elements on each end.

When stiffeners are included in the model, they are represented with beam elements.

Each longitudinal stiffener contains 60 beam elements and each ring stiffener contains 16

beam elements. The height and width orientation of these elements is given in Figure 4.

The thrust force is applied to the aft section of the model by applying point forces at

each node in the rear, while the front of the model is constrained. The depth pressure force

is applied to the model by applying radial pressure loads. These loads are interpolated into

point loads on the nodes with respect to the elemental shape functions. The torpedo model

is then constrained from rigid body translation but free to expand and contract due to the

applied pressure forces.

The finite element model is created in MATLAB [1] by selecting the desired values for

the variables discussed. The design is then analyzed by using the finite element analysis

capabilities of GENESIS [2]. Using the MATLAB code to generate each prototype design

greatly increases the ease of analyzing many configurations, thus allowing a better final

design to be determined.

1.7 Results and Discussion

The optimal torpedo shape and structural configuration was determined using the math-

ematical tools to analyze many torpedo configurations. Equation 18 is multi-objective;

therefore, it is likely that the optimal solution will vary for different values of Q. Because

exploring this surface of possible multi-objective optimums known as a pareto surface is

very expensive, a reduced-order model was used with no stiffeners. Initially a simplified

model made up of 180 elements was used to explore the pareto space defined by Q in Equa-
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tion 18. It was found that variations in Q from 0.01 to 3.0 had no effect on the solution. For

small values of Q the optimization is mass driven. It happens that the optimal mass is also

the largest volume. Obviously for larger values of Q, we would expect the shape variables

to be maximum. This happens to be the optimal solution in both cases. The values for

the shape variables are given in Table 3 and Figure 6 for all cases. The maximum shape

variable size is defined as 95% of the cavity size at a given location.

Thirty different configurations of stiffeners were optimized using the refined model

with 960 elements with the optimal shape determined from the pareto space. The stiffeners

were given dimensions of 1.0cm x 1.0cm so that they would have some effect on the model.

The numbers or ring stiffeners tested were 0, 2, 3, 5, 6, 7, 11, 13, 16, and 21. The numbers

of longitudinal stiffeners were 0, 4, and 16. When optimizing each case to find the optimal

skin thickness, it was found that the optimal solution increased in mass as stiffeners were

added. This can be seen in Figure 7. The interpretation is that the added mass of the

stiffeners is more than the decrease in mass from a reduction in skin thickness for the

optimal solution. Therefore, the optimal configuration has no stiffeners in the model for

constant skin thickness construction and size (1.0cm x 1.0cm) stiffeners.

This investigation is not complete because the stiffener size was not considered as a de-

sign variable. To truly investigate the optimal structure, it is necessary to disregard potential

construction difficulties and cost. This allows the investigation of variable skin thickness

as well as allows every potential stiffener in the model to become a design variable. Be-

cause the shape is known from our investigation of Equation 18, the problem has a single

objective.

min{ Mass(stiffener hight, skinthickness)} (24)

subject to stress, frequency and buckling constraints already specified.

The problem posed in Equation 24 considers every stiffener height as a design variable.

The width of each stiffener is set at 0.5cm to reduce the total number of design variables
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from 210 to 139. The minimum design value for height is 0.001 cm so that it will be obvious

if a stiffener is not required in the model. Furthermore, each ring of surface elements, 60

in total, making up the torpedo body are given a different design variable for thickness

to allow variable skin thickness throughout the design. With these design variables, the

developed structural design is general, and efficient use of material is guaranteed.

The frequency constraint posed the most demanding convergance problems. The opti-

mal solution with no frequency constraint placed has natural frequencies near 30Hz, which

indicates a failed design. The optimization results included the frequency values shown in

Table 2. The two available solutions were to apply the following options to move the third

and fourth modes farther from 30Hz are:

37.5Hz <-w3  (25)

or

w3 < 22.5Hz (26)

37.5Hz < w4

It was found that Equation 25 caused more difficulties than Equation 26. This is because the

initial values, of various starting points, typically violated the constraint given in Equation

25 more so than those specified by Equation 26.

The minimum skin thickness was set to 4.0mm to avoid unstable pressure buckling

problems with lower skin thickness values. At lower skin thicknesses, the stress constraint

could be satisfied; however, buckling due to pressure forces became critically low in a

highly nonlinear fashion, and the optimizer failed to obtain a feasible solution.

The skin thickness results for the 139 variable problem can be seen in Figure 8. For

the front portion of the model, the skin is at the minimum thickness. However, as the

torpedo diameter increases, the skin thickness also increases. Due to the presence of a
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1.5cm end cap at the end, the skin thickness reduces again as the cap is approached. With

the inclusion of a given rocket engine and its corresponding dimensions, the end conditions

can be modified to fit around the engine and replace the end cap. This will likely change

the skin thickness results; however, the solution procedure is unaffected.

The ring height results for the 139 variable problem include 61 rings along the length of

the torpedo. These are found in Figure 9. Again, in the rear of the torpedo the rings respond

for the same reason that the skin responds. The maximum stress occurs at the front of the

torpedo. The rings respond to this stress by increasing in height. Also, because the third

frequency and fourth frequency are constrained by Equation 26, the torpedo structure will

"maneuver" to satisfy these conditions. The third frequency is an expansion mode, thus

increasing the stiffeners will drive this up. This is why the rings tend to disappear in Figure

9 near the middle of the torpedo. The fourth mode is a bending mode. To increase the

frequency this mode occurs at the torpedo must increase its longitudinal stiffness without

increasing the radial stiffness that affects the third frequency, thus satisfying Equation 26.

The optimal place to do this is the front of the model.

The longitudinal stiffeners found in Figure 10 are all under 6mm in height. Because all

16 are active it is likely that the manufacturing difficulties outweigh the potential gain by

including them in the model.

A final problem was run in an effort to have a more manufacturable design. The prob-

lem included ring numbers 4, 6, 8, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, and 57. These

rings are in the locations that maximum response was found from Figure 9. Also, all 60

design variables for skin thickness were included. Furthermore, the longitudinal stiffeners

were taken out of the model. The final results can be seen in Figure 11 for the skin thickness

and Figure 12 for the reduced ring response.

It is evidant that the skin is now taking more load because of the absence of the lon-

gitudinal stiffeners. Also, because less rings are included in the front, the skin is also

responding to take more load from the reduced number of rings in the front of the model.
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Also, the skin is responding at the front of the model to tune the frequency constraints and

satisfy Equation 26. The rear of the model responds in the same manner as before. This

model, with only 15 rings and no longitudinal stiffeners is significantly less costly to build;

however, its main drawback is a weight increase from 163kg to 184kg. This increase in

21kg is significant and represents the penalty for savings cost in manufacturing. At this

point the best approach for a supercavitating torpedo prototype will depend on funding and

the design team building the structure.

1.8 Conclusion

A supercavitating torpedo was optimized for overall size, shape, and structural configura-

tion. This was done by taking into account limitations in size that were determined by the

torpedo tube size in a submarine. The supercavitating flow was approximated by equa-

tions developed and presented in [3]. These equations are based on experimental evidence

and their accuracy is well documented. Using these equations, the optimal torpedo size

was found with respect to its length and maximum diameter. By introducing the structural

model of the torpedo its optimal shape was found and a simple cylinder shape was no longer

used for structural modeling. With the new shape, a high fidelity structural modeling and

optimization was carried out to determine the best possible configuration of stiffeners for

the torpedo. Because the "best" option would obviously increase manufacturing time and

cost, a "less" optimal design was presented and the penalty in torpedo weight was noted.
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Tab. 1: Optimal Torpedo Size and Operating Conditions
Torpedo Size for: I V = 120,, T = 8000N

Ltorpedo 5.8m
d 0.0415

Operating Conditions
U 0.0077
L, 11.6
dm, 0.4433m

39



Tab. 2: Optimal Results with no Frequency Constraints
Mode/tI Hzk

1 1.48
2 1.48
3 24.49
4 34.01

Tab. 3: Optimal Shape Variables
Shape Variable I (cm)

R2 12.73
R3 16.89
R4 20.64
R5 21.06
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CHAPTER 2

Cavitator Design for a Supercavitating
Torpedo using Evidence Theory for

Reliability Estimation
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Abstract

Recently the U.S. Navy has invested in supercavitating torpedo research and

development. The supercavitating torpedo is a new technology to the United States and

many challenges are associated with its design. One such challenge is the uncertainties

involved. Furthermore, there are no full data sets to create probability distributions for

classical reliability based analysis. Most information is in the form of expert opinion

from the designers. Thus, Evidence Theory is a natural choice to determine reliability of

the system. In this paper a cavitator structure is presented and optimized for shape and

structural thickness with respect to stress, buckling and weight. Finally, evidence theory

is used to handle the limited data situation as an alternative to classical probability theory

for reliability assessment.

Keyivords: Reliability, Evidence Theory, Supercavitating, Cavitator, Multi-Point

Approximation
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2.1 Introduction

A supercavitating torpedo is a high speed underwater vehicle that is completely

surrounded by a cavitation bubble or cavity. This cavity eliminates the viscous drag

associated with underwater motion and enables the torpedo to obtain high speeds. The

cavitator, located at the front of the torpedo, initiates the cavity and is thus very important.

Currently the U.S. Navy is in the developmental stages of designing a supercavitating

torpedo. To explore new design ideas many researchers have developed mathematical

models for computer simulation. Much work has been done with regard to the structural

design by Ruzzene [6] and Alyanak et al [1]. Further work has been done with regard to

the cavitator shape design by Alyanak et al [2]. However, in all cases no uncertainty

information was incorporated. Likely this is because no clear data sets are available to

apply classical probability theory without making gross assumptions. To overcome this

recent work by Oberkampf and Helton [5] is utilized. They have categorized uncertainty

into two distinct types; aleatory and epistemic uncertainty. Aleatory uncertainty is

known as irreducible or inherent uncertainty and can be handled with classical probability

theory. However, epistemic uncertainty is subjective and comes from lack of knowledge

or incomplete data sets. Evidence theory has been applied to structural design problems

by Bae et al [3], and shown to be able to handle both epistemic and aleatory uncertainty.

In this paper evidence theory is utilized to estimate reliability for a cavitator structure that

is optimized for shape and structural thickness with respect to stress, buckling and weight

requirements.
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2.2 Evidence Theory

Evidence Theory (ET) was developed by Shafer [7] from Dampster's work. Due

to this ET is also known Dampster-Shafer theory. ET is characterized by two distinct

measures that bound the uncertainty: belief (BEL) and plausibility (PL). These are

formulated from the Basic Belief Assignment (BBA) which is developed from expert

opinion for each uncertain parameter in question. The BBA information is contained in

the function m(A), where A is a possible event. Thus, BBA is a mathematical

representation of partial belief for a set of possible events. From the BBA, belief and

plausibility can be defined by:

BEL(A)= Zm(B) (1)
BcA

PL(A) = Z•m(B) (2)
BnA*¢•

where A and B are events, and BEL and PL can be interpreted as upper and lower bounds

of probability. Because no assumptions were made to obtain these quantities, they are

consistent with the given partial evidence.

2.3 Cavitator Problem

The cavitator is subjected to extreme forces during operation. It is desired to

design a cavitator for a supercavitating torpedo considering shape, structure, buckling

performance, stress limitations and weight. The optimal structure must be thin walled

because the U.S. Navy wishes to include radar arrays inside the cavitator.

To accomplish this task, a supercavitating flow prediction method, based on

potential flow theory, developed by Kirschner et al [4], is utilized to determine the fluid

characteristics for a given cavitator shape. Using this fluid flow analysis capability the
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pressure profile along the cavitator and the overall coefficient of drag can be determined.

A finite element (FE) model, composed of plate elements, is then constructed of the

required shape and the calculated pressure is applied. Using this FE model a stress

distribution can be predicted for the given load. This stress distribution can then be

utilized to determine the buckling stability based on the bifurcation buckling problem

defined in Equation (3).

([K] +2A. [K, ) to) = {0} (3)

Here [K] is the global stiffness matrix, [K ],re is the global stress stiffness matrix with

respect to the pressure load, 2 is the first eigenvalue of the problem or critical multiplier,

and {(} is the eigenvector associated with A2. The value of 2A, is used to define a state

of stress at which the system becomes unstable, 2Ar < 1.0.

2.4 Optimization Problem

The objective of the problem is to minimize the drag due to fluid flow and

structural weight associated with the cavitator shape. Mathematically this is done by:

min C + M (4)
LCDO M 0 j

where CD is the drag coefficient and M is the cavitator mass. The nominal values CDo

and M0 are defined such that the weighting of each ratio are equal to each other. The

design variables considered in the problem become: two variables to define the

axisymmetric cavitator shape shown in Figure 1 and nine variables that defined different

skin thicknesses within the cavitator structure. The skin thickness variables define the

skin thickness for each ring of elements shown in the deterministic optimal solution in
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Figure 2. The constraints on the problem are developed to avoid unrealistic cavitator

shapes, ensure 2A, > 1.1, and have a maximum Von-Mises stress less than 15 ksi in every

element.

2.5 Proposed Evidence Theory Methodology

The problem depicted is computationally extensive. To perform evidence theory

reliability analysis it is necessary to reduce the computational expense of the problem.

The proposed algorithm begins at the deterministic optimum shown and explores the

design space defined by the BBA for each variable and constraint. To accomplish this,

the cavitator problem can be reduced to the function:

{Y} =f({X(Gi)}) (5)

For each value in the output vector {Y} a Multi-Point Approximation (MPA) can be

developed with respect to the design variables {X}, that are functions of the random

parameters 4i, to approximate the design space of interest. This approximation is

developed by combining local two point approximations, TANA2 [3], with a weighted

sum technique

The epistemic uncertainty defined in the BBA is expressed by intervals (upper

and lower bounds). These intervals can be scattered, nested or overlapped. The

assignment value given to each interval represents the imprecise statistics of the

parameter. As the dimension of the problem increases, the computational expense for

calculating BEL and PL from the BBA increases substantially. The proposed method

utilizes the MIPA to reduce the cost. It then solves sub-optimization problems to identify

the failure surface boundaries, which may be highly nonlinear. These boundaries become

the bounds of integration or numerical summation as defined in Equations (1) and (2).
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BBA for this problem are simplified by considering the variability in skin

thickness as one design variable: the percent change for each of the previously defined 9

variables is equivalent. BBA for the three remaining variables is defined in Figure 3.

Notice, the defined intervals may partially overlap each other and the overlapping parts

are completely independent of each other. The complete results are contained in Table 1.

The main active constraint becomes the minimum stress constraint while the weight and

drag are minimized. The reliability assessment was carried out at the deterministic

optimum (i.e. the point in question was directly on failure boundaries) yielding a very

high PL value. The BEL is significantly less than the PL because of the very broad BBA

for each variable. As the BBA becomes more defined the BEL and PL converge to the

true probabilistic value.

2.6 Summary

A supercavitating torpedo cavitator was designed. Reliability assessment was

determined for a given set of BBA using ET. Because of the flexibility of ET the very

limited information case given in Figure 3 can be handled without making assumptions.

The computational expense of solving the reliability problem was reduced by developing

global approximations of the required portion of the design space by combining local

TANA2 approximations.
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Figure 3: BBA for Three Design Variables

Table 1: Results of Cavitator Problem

Deterministic Design Point Constraint Vaiues at Optimum
Shape Variable 1: -0.8903 1c: 70.8
Shape Variable 2: -0.6676 Max Von-Mises Stress (ksi) : 14.96

T var: 1.000 J Wt (Ibs) : 3.80
Variable Thickness Values (inches) : , Cd: 0.1547

T1 T2 T3 T4 T5 T6 T7 T8 T9
0.0313 0.0313 0.1093 0.0387 0.0335 0.4980 0.4743 0.3925 0.0651

leliabillity Analysis i
With MPA 120 f(x) calls No MPA 544 f(x) calls

BEL 0.0064 BEL 0.0064
PL 0.8898 PL 0.8950
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Abstract:

The static and dynamic characteristics of a composite torpedo shell are

investigated in this research. The torpedo shell is modeled using laminated composite

layers that form the top and bottom plates around a honeycomb core. An optimization

problem was formulated to obtain a minimum weight composite structure that has the

same characteristics as a metallic torpedo. Since there are numerous uncertainties

associated with composites, a robust design was obtained by using reliability-based

optimization techniques. A system reliability constraint is used in the probabilistic

optimization rather than individual constraints on each of the failure modes. The accurate

estimation of system reliability for multiple, implicit limit-state functions is a complex

task and involves a significant amount of computational cost. Therefore, a methodology

that uses high quality function approximations for each of the limit-states and the joint

failure surface is used to estimate the system reliability efficiently and accurately. Results

from the system level design constraint are compared with the results from the individual

reliability constraints
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3.1 Introduction:

A composite is a material that is made up of two or more constituent materials.

Based on the application, these materials can be manufactured to achieve good material

properties in very specific directions. In a laminated composite, a matrix is reinforced

with fibers of a different material to achieve better properties in the direction of the fibers.

Layers with different fiber orientations can be stacked in sequence to achieve a suitable

design for a particular application. While modeling a structure using composite materials,

there are a number of uncertain parameters that need to be taken into consideration in the

process of designing the structure. One of the uncertain parameters in the design process

is the thickness of each laminate. Each manufactured laminate has some degree of

tolerance on its thickness, which will induce a certain amount of variation in the overall

thickness of the shell. Moreover, these thicknesses have a considerable effect on the

overall performance of the torpedo. So, it is vital that the thicknesses be modeled as

uncertain parameters. The elastic properties of the material will also vary from one

specimen to the other. Moreover, the variation in the orientation angles can be captured

by modeling the moduli of elasticity in the longitudinal and transverse directions of the

fibers. The density must also be modeled as an uncertain parameter, as it affects the

vibration characteristics of the structure. These uncertainties are propagated through the

structure to determine its reliability. In the presented optimization problem, a constraint is

applied on the reliability of the structure to attain a prescribed reliability limit.

A structure usually consists of many individual components that have the

potential to fail due to the variations in system parameters. Failure of any of these

individual components might lead to structural failure. The reliability analysis of
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structural systems involves the simultaneous consideration of multiple limit-states from

different disciplines, which might be correlated. Each limit-state is an implicit function

and requires expensive computations to evaluate the function value and the gradients that

are needed for reliability analysis. Therefore in the presence of multiple limit-states, the

computational effort involved in estimating the failure probability increases tremendously.

The failure probability of the system is the integration of the joint probability

density function over the entire failure region obtained by the intersection of all of the

limit-states, as shown in Eq. (1).

Pf = ,Jf(X)dX (1)

where, pf is the probability of structural failure and f, (X) denotes the joint probability

density function of the vector of basic random variables representing uncertain quantities

such as loads, geometry, material properties, and boundary conditions. And, 0 is the

failure region modeled by the limit-state functions. Monte Carlo simulation can be used

to estimate the joint probability density function numerically. However, this simulation

involves tremendous computational cost as a large number of exact function evaluations

are required. Therefore, alternate methods that make use of approximations are required

for the estimation of structural failure probability.

Structural systems are classified as series systems and parallel systems [1]. A

series system is one in which even if one component fails, the whole system fails. In the

case of parallel systems, the system fails to function satisfactorily only when every

component has failed. Cornell [2] has developed bounds on the system failure probability

for a system subjected to multiple failure modes that have been used extensively in the

literature. For a series system, the bounds are given by

54



Max [Component P• ] < Pf of system _ ] [Component P] (2)

Bennett and Ang [3] developed the bounds for a parallel system that are given by

Max[• [1-(Component Pr)], 0] _< P• of system _< Min [Component Pf] (3)

where n is the number of failure modes. Yet, the component Pf has to be quantified

accurately in order to obtain an accurate system reliability bound. The failure probability

of the components is typically estimated using either FORM or SORM. However, these

methodologies represent the limit-state inaccurately for highly nonlinear problems. This

error in the component failure probability is propagated into the bounds of the system

failure probability, making them inaccurate.

Melchers and Ahammed [4] proposed a methodology to estimate the failure

probability of a parallel system. In this method, the closest intersection point is estimated

by using successive approximations. As this is the point of maximum likelihood within

the zone of interest, a first-order approximation is constructed at this point for each of the

limit-states and the failure probability is estimated based on these approximations. Using

this method, the intersection point that is closest to the origin in the standard normal

space can be estimated accurately, but a first-order approximation at this intersection

point would result in an erroneous approximation of a nonlinear limit-state function.

However, when dealing with a series system, the estimation of the probability of failure is

not as straightforward as that of a parallel system. This is because the Most Probable

failure Point (MPP) for each of the limit-state functions, as well as the intersection points,

make a significant contribution to the failure probability integral. So, the joint failure
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region should be modeled accurately for estimating the failure probability of a series

system.

Importance sampling techniques can also be used to handle the multifold

integration, but an appropriate sampling function should be used to take full advantage of

this method. Mori and Kato [5] proposed an importance sampling function for

performing the integration for a series system. Based on the fact that an optimal

importance sampling function can be determined for a linear limit-state function in a

standard normal space, an importance sampling function for the system was modeled as a

linear combination of the optimal sampling functions for each of the limit-states. This

sampling technique produces accurate results for linear limit-state functions. Due to the

overlapping domains of the sampling functions for each of the limit-states, their linear

combination differs from the optimal sampling function. This decreases the accuracy of

the sampling function; thus, the number of simulations needed for the convergence of the

failure probability increases.

In this work, the reliability of the structural system is estimated by using the

algorithm presented in [6]. This methodology estimates the system reliability accurately

by modeling the joint failure surface. To reduce the computational effort involved, high

quality approximations are used to model the limit-states as well as the joint failure

region. The design space is divided into several regions and the failure surface is modeled

with an approximation that is accurate in that region. These approximate models are used

in conjunction with Fast Fourier Transforms (FFT) to solve the convolution integral and

to estimate the reliability of the structure. This algorithm estimates the reliability of the
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structure with minimal computational effort. The details of the algorithm are presented

later in this paper.

While designing a structure, the uncertainties, which might arise in the design

process due to the operating conditions, boundary conditions, material properties, etc,

need to be taken into consideration. These uncertainties contribute to the probability that

the structure does not perform as intended. Therefore, when dealing with uncertain

parameters in the design process, additional constraints are placed on the optimization

problem to satisfy a prescribed reliability level. These constraints facilitate the optimal

design to be both economical as well as reliable. The coupling between reliability

analyses and optimization methods leads to high computational cost due to the iterative

nature of both methods. So, methodologies that make use of function approximations

have been developed to improve their efficiency [7-9].

As the calculation of the failure probability requires the solving of the convolution

integral, different approximation techniques have been proposed to compute the

reliability index. In the optimization problem, this reliability index is constrained to

achieve the target reliability. In the case of multiple performance functions, each of the

reliability indices can be constrained, leading to the same number of reliability

constraints as the performance functions. So the optimization formulation is given by

Minimize f(x,b)

subject to ,6[gj(x,b)<_]>0]ŽPi, i =1I .... n

b b<b ,<bu j-=1...m

where f(x,b) is the objective function, and fl[gi(x,b) •0O] is the safety index of the

limit-state function g.(xb)<_ 0. The objective function and the limit-state might depend
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on both the design variables, b, and the uncertain random variables, x. _ i are the target

reliability indices.

The safety index is defined as the distance of the MPP from the origin in the

normalized space of the random variables. So, the safety index is independent of the

nonlinearity of the failure surface at the MPP. As shown in Figure 1, for the given value

of the safety index, the linear failure surface at the MPP differs from the actual surface

based on the nonlinearity of the limit-state function. To overcome this difficulty, the

same optimization problem can also be formulated with a failure probability constraint

for each limit-state. The reliability constraints in the optimization problem can now be

formulated as the probability of failure of each of the components to be less than a

predetermined probability level. So, the optimization problem based on one probability

constraint for each failure mode can be generally defined as

Minimize f (x,b)

subject to P[g,(x,b) <_ 0] _pi, i = 1 .... n

bL <bi <•b, j=I...m

where pi are the target probability of failures. This formulation needs an efficient

algorithm to estimate the failure probability accurately. Moreover, when dealing with

multiple limit-states, the definition of failure of the structural system cannot be taken into

consideration in the design process because each failure probability or reliability index is

constrained. So in this work, the structure is designed based on one system reliability

constraint, which is estimated based on the joint failure surface comprising all the limit-

state functions. Using the system reliability constraint, there will be an improvement in
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the design because a combination of the constraints has to be satisfied rather than each

individual constraint. This is demonstrated in the example provided in this paper.

3.2 Modeling with Composites:

The finite element model used to analyze the structure of a lightweight torpedo is

shown in Figure 2 [10]. Since the torpedo must fit into the torpedo tube on an existing

submarine, the external dimensions were taken based on the data available in the public

literature about a lightweight torpedo. The structure was modeled using 1176

quadrilateral and 48 triangular shell elements. The stiffeners in the longitudinal and radial

direction, which provide structural strength, were not modeled to determine whether the

composite structure without the stiffeners could achieve the same performance

characteristics as a metallic lightweight torpedo. To represent the mass of the various

subsystems in the structure, concentrated masses were added at the nodes.

The conceptual design was to model the shell of the structure with a sandwich

honeycomb panel, as shown in Figure 3. This panel is composed of a honeycomb core

with fiber-reinforced laminates that form the top and bottom plates of the shell. The

advantage of using a honeycomb model is that it increases the strength and rigidity of the

structure without considerable increase in weight. This facilitates the torpedo to be lighter

while maintaining the strength and rigidity of a metallic torpedo. Moreover, the direction

of the fibers in the composite laminates above and below the honeycomb could be

controlled to achieve higher strength in particular directions. These features of the

composites help the designer to achieve the required strength and performance with less

weight.
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The modeling of the structure with composites is done in GENESIS [11], which

facilitates the modeling of the overall shell by defining each individual layer of the shell.

Each layer is defined by its thickness, orientation angle, and the material properties. The

composite laminates of the shell are defined with the thickness of the laminate and the

angle of orientation of the fibers. For a honeycomb panel, the thickness of the panel is

defined with an orientation angle of zero degrees. A carbon/epoxy unidirectional

composite was chosen to model the laminates, and a commercial grade aluminum

honeycomb was used to model the honeycomb. The material properties of AS/3501

carbon/epoxy are given in Table 1.

As a honeycomb can only handle transverse shear, only the transverse shear

moduli and the transverse shear strength are defined for the material properties of the

aluminum honeycomb. These properties are shown in Eq. (4):

G13 =1 IOMPa, G23 = 55MPa, S13 = 0.65MPa, S23 = 0.40MPa (4)

One performance characteristic that is considered in designing the shell of the

torpedo is the strength of the structure to withstand pressure at crush depth. Therefore, the

failure of the composite laminates at crush depth is one of the failure criteria. Moreover,

the structure should not buckle due to hydrostatic pressure loading. Also, the first natural

frequency of the structure was constrained to match that of a metallic structure.

Failure of an isotropic material is usually associated with the maximum principal

stress, the calculation of which is subject to a given load, exceeding the yield stress of the

material. This is not the case in composite materials, which are not isotropic. These

materials exhibit different properties in different directions and under different kinds of

loading. So, the failure of composite materials does not only depend on the principal



stress, but on a complete stress field. In the literature, there are four theories to define the

failure of composites, which are described below [ 12].

Maximum Stress and Maximum Strain Criteria: This criterion verifies if the maximum

stress or strain exceeds the allowable values of the stresses or strains in a particular

direction. This criterion is similar to the failure criterion for isotropic materials.

Tsai-Hill Criterion: This is an extension of the von Mises yield criterion to anisotropic

materials with equal strengths in tension and compression. The failure index is calculated

using Eq. (5) and the failure occurs when the inequality is violated:

2 2 .112

FI= ( 10 2  a 2  $2 1.0 (5)
x2 x 2  Y2  s2

T T T

where 01 and "2 are the stresses along the longitudinal and transverse directions of the

fiber, r12 is the shear stresses developed, XT and YT are the allowable tensile stresses

along the longitudinal and transverse directions of the fiber, and S is the allowable shear

stress.

Hoffnan Criterion: This criterion is based on Hill's criterion with a generalization that

allows for different tensile and compressive strengths. The failure index is calculated

based on Eq. (6):

2 2 21 1 1 1 + 1 +(C 2 +T 2 _ 2 < 1.0 (6)

XT XC YT YC XTXC y 2X

where Xc and Yc are the allowable compressive stresses along and transverse to the

fiber direction.

Tsai-Wu Criterion: This is the most generalized criterion for orthotropic materials and the

failure index is calculated based on Eq. (7):
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FI=0-T )_ + -2F 12- 1- 2 (7)

TY YC XCXC YTYC XTXC

where F,2 is the coefficient that reflects the interaction of the two normal stresses on the

failure. This is often determined experimentally.

In this work, Hill's criterion was not considered for the calculation of failure

indices as it assumes the same strengths in tension and compression, which is not relevant

to the materials used. The Tsai-Wu criterion considers the difference in the strengths of

tension and compression but requires the evaluation of the coefficient of interaction of

the normal stresses, making it inapplicable for this study. Maximum stress and strain

criteria were not considered because this theory only considers the stresses or strains in

the longitudinal and transverse directions of the fiber. Therefore, out of the four criteria,

the Hoffman criterion was chosen to calculate the failure index of the element. In the

optimization problem, the integrity of the structure was taken into consideration by

verifying the constraints on the failure indices in every element.

3.3 Deterministic Optimization Problem:

The objective was minimization of the weight of the structure with the various

subsystems. The constraints were to match the fundamental natural frequency with that of

a metallic torpedo and also to ensure integrity of the structure under pressure loading.

The deterministic optimization problem is given in Eq. (8):

Minimize W(X)

subject to co1(X) >22.2Hz ,Per(X) >1.1, FI(X) • 0.9 (8)
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where W(X) is the weight of the structure, co, (X) is the fundamental natural frequency,

Pcr(X) is the critical buckling load factor, and FI(X) are the failure indices of each layer

in each element.

The total thickness of the shell could not be considered as a single design variable

because the shell was composed of laminates and a honeycomb. For maintaining

symmetry of the shell about the mid-axis, the thickness and orientation of the laminates

on the top and bottom of the honeycomb were assumed to be the same. The orientation

angles were chosen such that the material was quasi-isotropic, that is, the angles of

orientation were fixed to be 0, +45, -45, or 90 degrees. For balancing the composite, the

thickness of the layer with an orientation angle of +45 was set the same as the thickness

of the layer with an angle of -45. The thicknesses of the laminates in the three different

orientations along with the honeycomb thickness were chosen as the design variables.

The optimization was performed in GENESIS, which uses the modified method of

feasible directions to solve the optimization problem. To check the dependency of the

stacking sequence on the final design, six different stacking sequences were considered,

and each stacking sequence was optimized. The results for the various stacking sequences

are given in Table 2.

The final design of the structure in terms of the thicknesses of laminates in each

direction was almost the same regardless of the stacking sequence used. Because the

thickness of the honeycomb was large compared to the total thickness of the laminates in

all of the cases, the stacking sequence did not make much of a difference in the final

design. For greater strength and stiffness along the direction of the length of the torpedo,

a higher value of laminate thickness in the orientation angle of 00 is needed. This strength
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and stiffness are needed to satisfy the fundamental frequency and buckling constraints.

So in each of the six cases, the layer thickness with 00 orientation is higher compared to

the layer thicknesses with orientations of 450 and 900.

A stacking sequence of [Ot 1/±45t2/90t3]s was chosen for further study because of

the higher value of laminate thickness in the 900 orientation compared with the other

stacking sequences. The layers in 900 orientations provide the structure with strength

along the radial direction, which will be needed when other constraints are applied in the

design process.

3.4 Algorithm for System Reliability Estimation:

System reliability is estimated using the methodology presented in [6]. This

algorithm models the joint failure surface accurately using multiple response surface

models. For modeling the joint failure region using an approximation, the limit-state

functions should be available in closed-form so that the points on the joint failure region

can be sampled. In the case of an implicit function, several local approximations can be

constructed with design points around the MPP for each limit-state function and then

blended into a Multi-Point Approximation (MPA) [13]. The MPA can be regarded as a

weighted sum of several local approximations and can be written as
K

Z(X) = I. Wk(X)FA(X) (9)
k=1

where Pk(X) is a two-point local approximation, k is the number of local

approximations, and Wk is a weighting function that adjusts the contribution of Fk(X) to

F (X) in Eq. (9). The evaluation of this weighting function involves the selection of a
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blending function and a power index "mi" [ 13]. As the accuracy of the MPA is based on

the accuracy of the local approximations, Two-point Adaptive Nonlinear Approximations

(TANA2) [14] are used as local approximations to construct the MPA for each limit-state

function. TANA2 can capture the information of the limit-state function around the

vicinity of the points used, and MPA can retain this information for each of the failure

surfaces without increasing the computational effort. Since each of the limit-state

functions are modeled using high-quality approximations, these approximations can be

used as closed-form expressions for sampling the points on the joint failure surface.

Reliability analysis methods begin with the prediction of the MPP. This was

efficiently estimated using the algorithm presented by Wang and Grandhi [15]. This

algorithm uses TANA2 in the search procedure to reduce computational cost and time.

This method is efficient for highly nonlinear problems with a large number of random

variables. Once the MPPs were obtained for each of the limit-states, a Latin hypercube

sampling technique was used to obtain the design points around each MPP. Local

approximations were constructed with points that were sampled to within two standard

deviations of either side of the MPP for each of the limit-state functions. Based on these

local approximations, an MPA was constructed for each of the limit-state functions.

Using these MPAs, several points were sampled on the joint failure region to construct

response surface models. The design space was sub-divided into regions based on the

accuracy of the response surface models. The convolution integral was then solved in

intervals to obtain the failure probability of the structural system. The various steps

involved in estimating the system reliability are discussed below.

1. Find the MPP of each of the limit-state functions.
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2. Design points are sampled within the vicinity of each MPP using a Latin hypercube

sampling technique. The bounds on the random variables are taken to be two standard

deviations on either side of each MPP.

3. Local TANA2 approximations are constructed for the set of design points sampled

around each MPP. These local TANA2 approximations are blended into a multi-point

approximation, which captures the behavior of the limit-state function around the

MPP. Using this same procedure, an MPA is constructed for each of the limit-state

functions.

4. Points are sampled on the joint failure surface using surrogate representations for

each of the limit-states. Multiple response surface models are constructed using these

sampled points on the joint failure surface. Based on the accuracy of the response

surface models, the design space is sub-divided into regions and one model is

constructed for each region.

5. The convolution integral is solved using FFT, based on the response surface models,

to estimate the probability of failure of the structural system.

The accuracy in the estimation of the failure probability greatly depends on the

accuracy of the approximations constructed. Therefore, all the TANA2s that are used in

the construction of the MPAs for the limit-state functions should be accurate. Moreover,

the response surface models that are approximated from the points on the joint failure

region should also be accurate. The R2 criterion was chosen to check the accuracy of the

response surface model constructed. The R2 accounts for the amount of variation in the

response explained by the set of inputs in the response surface model. It is defined as
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n

R2 SSR (10)n

SST ly2
i=l

where SSR is the Sum of Squares of Regression, SST is the Sum of Squares Total,

.Y, are the values predicted by the surrogate model, and yi are the exact values of the

responses used for constructing the model. An R2 value of 1.0 indicates that all the

variability of the response is explained by the response surface model. Therefore, a high

R2 is preferred. The design space was divided so that the R2 value was always greater

than 0.99 for all of the response surfaces. Figure 4 illustrates the methodology discussed

above.

3.5 Reliability-Based Optimization with System Reliability Constraint:

Traditionally, the optimization problem with reliability constraints is formulated

using either safety index or failure probability constraints. But in the presence of multiple

limit-states, all the limit-states can be taken into consideration for estimating and

constraining their reliability. If the reliability of the structure is estimated based on all the

failure modes, i.e. system reliability, then only one reliability constraint can be used in

the optimization routine as opposed to multiple constraints. A general optimization

problem with system reliability can be defined as

Minimize f(x,b)

subject to PP,,,e [gi(xb)<- 0]_Pstei, i =1.... n

bý < b. <-by, I... m
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This system-reliability constrained optimization problem cannot be formulated in

terms of a safety index. This is because the whole failure surface should be modeled

accurately for a precise estimate of the system reliability, rather than just the MPP.

An advantage of using a system reliability formulation is that the system

reliability estimation algorithm takes into account the definition of the failure of the

structure. Based on whether it is a series or parallel system, the joint failure surface can

be modeled and the failure probability can be imposed as constraint. Moreover, if there

exists an intersection region of the limit-states in the design space of the joint probability

density function of the random variables, the system reliability formulation captures this

intersection region accurately, leading to a better reliability estimate of the structure.

Therefore, an optimization problem formulated using a system reliability constraint

yields a more robust optimal design than one obtained by using individual safety index or

failure probability constraints.

3.6 Results and Discussion:

A robust design must satisfy constraints such as weight, performance, cost, etc.,

as well as the reliability of the design due to the uncertainties in the system. To

demonstrate the advantage of using a system reliability constraint in the design process

rather than using failure probability or safety index constraints for each of the limit-states,

the reliability-based optimization problem was formulated and solved with each of these

constraints examined in three different cases.

The objective of the optimization problem was to minimize the total weight of the

torpedo structure. The design variables were taken as the thicknesses of the laminates in

68



the three orientation directions considered, i.e., 00, +450, and 90', along with the thickness

of the honeycomb core. These variables were also modeled as normally-distributed

random variables with a coefficient of variation of 5%. The mean values of these

variables were taken as the design variables in the optimization problem. In addition to

these random variables, the material properties of the composite laminate, i.e., the moduli

of elasticity in the longitudinal and transverse directions along with the density of the

laminates were also modeled as random variables with a normal distribution. The

coefficient of variation for these variables was also taken to be 5%.

Two deterministic constraints were used to ensure that the performance of the

composite model match that of the metallic model of the lightweight torpedo. These

deterministic constraints are given in Eq. (9) and Eq. (10)

Fundamental Natural Frequency C o> 22.0Hz (9)

Buckling Load Factor (at 1000 m) Pr Ž1.0 (10)

In addition to these deterministic constraints, the structure was constrained to

attain a prescribed reliability level of Pf - 0.001. The failure criteria for determining the

reliability was that the fundamental natural frequency must be greater than 22.0 Hz and

the buckling load factor must be greater than 1.0. Three different optimization problems

were solved with the three different reliability constraints. In the first case, the failure

probability of the system was constrained to be less than 0.001. In the second case, the

failure probability of each of the limit-state functions was constrained to be less than

0.001. In the final case, the constraints were applied on the safety index of each of the

limit-state functions. A failure probability of 0.001 corresponds to a safety index value of

3.09. So in this case, the safety index of each of the limit-states was constrained to be
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greater than 3.09. The optimization formulation for each of these cases is given below in

Eq. (11)-Eq. (13).

Mvinimize W(X)

subject to Pf[col _< 22.0uPC _<1.0]_< 0.001, (11)

C1o _ 22.OHz, Pr >- 1.0

Minimize W(X)

subject to Pf[col <22.0]<0.001, Pf[Pcr<_1.0]<0.001, (12)

Co1 > 22. OHz, P_,- >1.0

Minimize W(X)

subject to,81 [co1 <22.0]>3.09, 832[Pcr• 1.0]>3.09, (13)

Col > 22.OHz, P, > 1.0

The above three optimization problems were solved by the Design Optimization

Tool (DOT) [16] using the modified method of feasible directions algorithm. The

structural analysis was performed using GENESIS. The failure probability of the system

was estimated using the algorithm presented in Ref. [6]. The failure probabilities of each

limit-state were calculated using the algorithm presented in Ref. [17]. The safety indices

of the limit-states were estimated using the methodology presented in Ref. [15]. A

stacking sequence of [0tl/± 4 5 t2/ 9 0t3]s was considered for this study. In all three cases, the

starting point of the probabilistic optimization routine was the optimal solution from the

deterministic optimization.

Table 3 shows a comparison of the optimum results obtained by the three

different cases mentioned above. When compared to the deterministic optimization
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results, the weight of the structure obtained by probabilistic optimization was higher

because the failure probability of the structure at the deterministic optimum was very

high. This was because the optimizer tried to satisfy the constraint on the failure

probability by increasing the thicknesses of the laminates. The increase in the thickness

of the laminates increased the fundamental natural frequency and buckling load factor of

the structure, thereby decreasing the failure probability. The system failure probability at

the optimum design obtained was 0.0007, as opposed to 0.53 at the deterministic

optimum. In the case of failure probability constraints on each limit-state, the weight of

the obtained design was less than the weight obtained with a system reliability constraint,

as can be seen from Table 3. But the system failure probability at the optimum was

0.00105, which violated the system reliability constraint. When the optimization problem

was solved using safety index constraints, it produced an even lighter design, but the

system failure probability was 0.0014. The calculation of the safety index did not take

into account the nonlinearity of the failure surface, thereby resulting in an inaccurate

estimation of the failure probability. In the system reliability formulation, the failure

surface was modeled accurately, which resulted in an accurate estimate of the failure

probability. These results indicate that the optimization problems with individual failure

probability or safety index constraints can produce lighter designs but cannot meet the

design requirement of the system reliability.

3.7 Summary:

The modeling, analysis, and design of a lightweight composite torpedo were

performed in this research. The shell was modeled using laminated composite layers on
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the top and bottom with a honeycomb core. Optimization techniques were used to

estimate the thicknesses of the laminates and the honeycomb core so that its performance

characteristics match that of a metallic model. The performance criteria chosen for the

design were the vibration characteristics and the ability of the structure to withstand

hydrostatic pressure loads. Different stacking sequences were optimized to match the

performance criteria. Because the thickness of the honeycomb core was large compared

to the thickness of the laminates, the stacking sequence did affect the final design

significantly.

The uncertainties in the design process were taken into consideration and the

deterministic optimal solution was improved so that the design was more reliable and

robust. Three different studies were conducted on imposing the reliability constraints on

the optimization problem. In the case of a system reliability constraint, the weight of the

structure was higher when compared to the other cases, but this design had a lower

probability of failure than the other two designs. Moreover, by using the system

reliability constraint, the definition of the structural failure (series or parallel) can be

taken into account.
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Property Carbon/Epoxy
Longitudinal Modulus, Enl 138 GPa
Transverse Modulus, E22  8.96 GPa
In-plane Shear Modulus, G12  7.1 GPa
Poisson's Ratio, v12  0.3
Laminate Density, p 1600 kg/m3

Longitudinal Tensile Strength, Fit 1447 MPa
Longitudinal Compressive Strength, Fl, 1447 MPa
Transverse Tensile Strength, F 2t 51.6 MPa
Transverse Compressive Strength, F 2 , 206 MPa
In-plane Shear Strength, F6  93 MPa

Table 1: Material Properties of Carbon/Epoxy

Stacking Weight 00 tI 450- t2 900- t3 Honeycomb Total Buckling
Sequence (kg) (m) (m) (mi) (m) hickness (Hz) Factor

[0tl/±45t2/90t3]s 224.27 0.0012 0.0008 0.0004 0.0306 0.0370 22.4 1.1181

[0tl/90t3/±45t2]s 222.75 0.0014 0.0007 0.0002 0.0330 0.0390 22.7 1.1218

[±45t2/0t1/90t3] 222.00 0.0014 0.0007 0.0001 0.0340 0.0398 22.4 1.1092

[±45t2/90t3/0t1]s 222.75 0.0014 0.0007 0.0002 0.0283 0.0342 22.6 1.1134

[90t/0t±/+45t2]s 222.00 0.0014 0.0007 0.0001 0.0339 0.0396 22.4 1.1042

[90t3/±45t2/0tlI] 222.75 0.0014 0.0007 0.0002 0.0323 0.0382 22.6 1.1181

Table 2: Deterministic Optimization Results
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With System Pf With Individual Pf With Individual 03

Objective Weight (kg) 229.20 228.67 227.98

00 0.00143 0.00141 0.00144
Design 450 0.00089 0.00087 0.00090

Variables -
Thickness (in) 900 0.00062 0.00061 0.00045

Honeycomb 0.03067 0.03067 0.03065

Frequency 24.18 23.98 23.93(H-z)
Buckling 1.21 1.20 1.19

Constraints Factor
Pn=O.01, 31=3.11,

System Pfl=0.0000 01=3.61
Reliability Pf=0.0007 Pn= 0 .00 0 05  02 =3.63

1 System PfO.O0105 System PrO.0014

Table 3: Comparison of Reliability-Based Optimization Results
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Figure 1: Failure Surface Based on Safety Index

Figure 2: Finite Element Model
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Figure 4: Proposed Algorithm Details
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Abstract

The response of a lightweight torpedo when subjected to an underwater explosion

(UNDEX) is an important criterion for multidisciplinary design. This paper investigates

the effect of structural stiffeners on the performance of a lightweight torpedo. The finite

element package ABAQUS was used to model the UNDEX and the fluid-structure

interaction (FSI) phenomena, which are critical for accurate evaluation of torpedo stress

levels. The pressure wave resulting from an underwater explosion was modeled using

similitude relations and it was assumed to be a spherical wave. Various explosive weights

and explosion distances were explored to determine the critical distance both for an

unstiffened and a stiffened torpedo. Once it was established that the stiffened torpedo

performed better under explosive pressure loads, various configurations were studied to

determine the optimal number of ring and longitudinal stiffeners. A final configuration

was obtained for the torpedo that had minimum weight and was least sensitive to small

manufacturing variations in the dimensions of the stiffeners. This paper presents details

of the torpedo and fluid models and the finite element analysis method for FSI.

Key words: Lightweight torpedo, Underwater Explosion, Fluid Structure interaction,

HBX-1 explosive.
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4.1 Introduction:

Physical testing of a torpedo to determine its response to an UNDerwater

EXplosion (UNDEX) is an expensive process that can cause damage to the surrounding

environment. Therefore, the literature [1-3] shows the data collected from expensive

experimental tests on simple cylindrical shells and plate structures. The cost involved and

the environmental effects require exploration of numerical solution techniques that can

analyze the response of a torpedo subject to various explosions. Computational modeling

and response, if perfected, can effectively and accurately replace the experimental

procedures used to obtain the UNDEX response. Over the years, numerical simulations

have been developed to accurately capture the fluid structure interaction phenomenon

involved during an UNDEX event between the structure and the surrounding fluid

medium [4, 5].

An UNDEX simulation consists of obtaining the response of a finite-sized

structure (torpedo) subjected to a blast load when immersed in an infinite fluid medium

(sea or ocean). Due to the fact that UNDEX simulations use an infinite fluid medium,

researchers [6-9] have developed techniques that combine the benefits of both boundary

element and finite element methods. In this method, the structure was discritized into

finite elements and the surrounding fluid medium was divided into boundary elements.

An approximate boundary integral technique named "Doubly Asymptotic

Approximation" (DAA) was used in this kind of incident wave problems and the

boundary integral program was developed.
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Kwon and Cunningham [6] coupled an explicit finite element analysis code,

DYNA3D, and a boundary element code based on DAA, Underwater Shock Analysis

(USA), to obtain the dynamic responses of stiffened cylinder and beam elements. Also,

during the early 90's Kwon and Fox [7] studied the nonlinear dynamic response of a

cylinder subjected to side-on underwater explosion using both the experimental and

numerical techniques. Sun and McCoy [8] combined the finite element package

ABAQUS and a fluid-structure interaction code based on the DAA to solve an UNDEX

analysis of a composite cylinder. Similarly, there have been other researchers [9, 10] that

coupled a finite element code with a boundary element code such as DAA to capture the

fluid-structure interaction effect. Moreover, Cichocki, Adamczyk, and Ruchwa [11, 12]

have performed extensive research to obtain an UNDEX response of simple structures,

and have implemented entire fluid-structure interaction phenomenon, pressure wave

distribution, and the radiation boundary conditions into the commercial finite element

package ABAQUS. In this paper, the UNDEX response of a lightweight torpedo subject

to a side-on underwater explosion is analyzed using ABAQUS.

Current research focuses on analyzing an un-stiffened and a stiffened torpedo to

determine their safe operating distances given an explosion of a certain-sized charge.

After verifying the hypothesis that the stiffened torpedo would perform better, an optimal

configuration of the torpedo was determined. This configuration resulted in the minimum

weight for a torpedo while satisfying the constraints on safe operating distance. This

design would also be relatively insensitive to small variations in the stiffener dimensions

of the torpedo. Robustness was an important criterion for the torpedo design because, as
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mentioned by Penmetsa, et. al. [13], the variations in dimensions can reduce the

reliability of the torpedo.

A parametric study was performed to obtain the stress response of the torpedo

model at different standoff distances in order to determine a safe distance for operation.

The safe distance calculations can be used to program the optimal path for interception.

For all of these standoff distances, the explosion was assumed to occur near the mid

section on the starboard side of the torpedo. This study was also extended to a stiffened

torpedo in order to compare its performance characteristics to that of an un-stiffened

torpedo. Since the stress distribution was dependent on the location of the explosion, the

position of the explosion was moved to the aft and forward sections of the torpedo. Once

all of these configurations were explored, an optimal configuration that minimized the

weight of the torpedo and maximized its survivability for all these cases was selected. All

the configurations were verified for a maximum von Mises stress constraint of 413 MPa,

which is the yield strength of aluminum. For all of the combinations that satisfy the stress

constraint, a 3% variation was assigned to the dimensions (width & breadth) of the

stiffeners to model manufacturing tolerances. This ensured that the sensitivity of the

stiffener dimensions to the stress was accounted for and that the final combination of ring

and longitudinal stiffeners was robust.

4.2 Modeling of the Torpedo and the Surrounding Fluid:

4.2.1 Structure:

A lightweight torpedo similar to a MK-44 configuration was used to analyze and perform

a parametric study to obtain the safe operating distance. The total mass of the torpedo
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model was considered to be 243 kg, with a length of 2.42 m and a diameter of 0.32 m.

The material chosen for the torpedo structure was aluminum-2024. The torpedo was

modeled using the shell elements, and stiffeners were added in the longitudinal and the

radial directions to provide structural integrity. The shell thickness of the torpedo was

0.00635 m. The width and breadth of longitudinal and ring stiffeners were taken to be

0.015 m and 0.01 m, respectively. In order to model the-mass of the components stored

within the compartments of the torpedo, concentrated masses were added to the torpedo

model. The structural mass of the torpedo model was about 43 kg, whereas the total mass

of an actual lightweight torpedo is around 243 kg. Therefore, the difference of 200 kg

was modeled as the mass of the internal components in each section and was distributed

equally along the length of the torpedo. The dimensions of the lightweight torpedo model

and the ring and longitudinal stiffeners can be seen in Figure 1.

The above-mentioned configuration was used to construct a finite element model

to perform the underwater explosion analysis. By performing the transient analysis, the

maximum von Mises stress for all of the time steps was obtained, which determined the

safe distance for the lightweight torpedo from the explosion.

4.2.2 Fluid:

The infinite fluid was modeled using fluid tetrahedral elements. The fact that the

fluid is infinite was accommodated in the boundary conditions applied at the outer

surface of the fluid. The total horizontal length of the fluid model with the spherical ends

was 4 m. The vertical length of the fluid domain was 2 m. The finite element model of

the structure surrounded by the fluid can be seen in the Figure 2. The fluid elements were

given the properties of water. The bulk modulus of water was specified using the
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formula p * C' , where p is the density of water and C is is the speed of sound in water.

This formulation allowed for solving the fluid pressure equation using finite elements.

The fluid-structure interaction phenomenon, discussed in detail in the following

sections, was applied at the common surface of the structural and the fluid finite element

mesh. An impedance-type radiation boundary condition was applied at the outer surface

of the fluid mesh to model the motion of fluid waves outside of the mesh. The size of the

fluid mesh depended on these conditions. The radiation boundary condition converges to

the exact condition in the limit as they become infinitely distant from the structure.

Therefore, these boundary conditions theoretically provided accurate results if the

distance between the structure and the radiating surface was one half of the longest

characteristic wave length. Based on the minimum distance requirements published in ref

[14] the existing model was adequate to obtain accurate results for the applied boundary

conditions.

4.3 Underwater Explosion & Pressure Wave Distribution:

An underwater explosion produces a great amount of gas and energy, resulting in

a shock wave [16]. This compression shock wave produced by the sudden increase of

pressure in the surrounding water travels radially away from the explosion with a velocity

approximately equal to the velocity of sound in water. The gases from the explosive form

a bubble that expands, reducing the gas pressure almost to zero. Due to the hydrostatic

pressure around the fully expanded bubble, it begins to collapse. Once the bubble is

compressed to a minimum radius, the high pressure causes the gases to detonate once

again, emitting a second shock wave. This second shock wave is called a "bubble pulse."
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Figure 3 shows the different events occurring during the UNDEX event in a pressure vs.

time history plot. The under-pressure condition, as seen in the figure, is caused by the

back flow of the water toward the explosive due to contraction of the bubble. Reflection

of the shock wave off the bottom of the ocean is a compression wave that adds additional

load to the structure, and the reflection of the shock wave from the free ocean surface

causes a reduction in the pressure produced by the shock wave. In this research, both the

bubble pulse phenomenon and the reflection of the shock wave from the bottom or the

surface were not considered because they are less severe compared to the initial shock

wave. The initial shock wave was modeled as a spherical wave front, which decays

exponentially with time. The distribution of this shock wave onto the torpedo was

obtained using the incident pressure wave equations [14]. A detailed explanation of the

pressure wave distribution equations is given in Appendix A.

4.4 Similitude Relations (Pressure vs. Time):

To determine the safe distance for a torpedo beyond which it does not fail, the

pressure vs. time history of an explosive was required for different standoff distances

(distance between the structure and the explosive). The pressure vs. time history at a

particular standoff distance from the structure was obtained using the similitude relations

[15, 16].

The "similitude relations" accurately represent the far-field pressure profiles of an

explosive:

r 7+A

P (R,) = P, [R f(T)()
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= B * vC t (2)

R ac

f (r) e e-,r < 1, (3)

f(r) = 0.825 le-13381 + 0.1749e-"O°O , r _< 7 (4)

In the above equations, P(R, t) is the pressure vs. time history, R is the distance from

the center of the explosive, a, is the radius of the spherical charge, f(r) is an

exponential decay term, and P, , V , A, and B are the constants that are associated with

the material of the charge. Some recommended values for these constants are obtained

from Ref [15].

Once the far-field pressure data was obtained from the above relations for a

particular charge, it was applied as a transient load on the torpedo model. Figure 4 shows

the pressure vs. time history that was applied on the torpedo model for a side-on

explosion in this research.

4.5 Modeling Fluid-Structure Interaction Phenomenon:

Obtaining the response of a torpedo to an underwater explosion involves

integration of the structural behavior and its effects on the surrounding fluid and vice-

versa. When the torpedo is exposed to a shock wave produced by an explosion, the

structure deforms and displaces fluid around it. The pressure distribution surrounding the

torpedo structure is also affected by the motion of the torpedo due to the shock wave.

This interaction between the fluid and the structure that exists until the vibration of the

system has decayed has to be modeled using coupled fluid-structure equations. A surface-
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based procedure was used to enforce a coupling between the structural surface nodes and

the fluid surface nodes. The interaction was defined between the fluid and the torpedo

surface meshes. A detailed explanation of the surface-based interaction procedure is

given in Appendix B.

The reflections of the pressure wave after striking the structure are called

scattered waves, which needed to be taken into account while solving the finite element

equations. Therefore, the applied load used for solving the finite element equations

consisted of the sum of known incident and unknown scattered pressure wave

components. The incident wave field was the pressure vs. time history obtained for the

explosive.

The equations of motion used in this analysis are of the form:

Mjii + Cfi + Kyu = -[S ]T p (5)

MfP + Cfp + Kfp = [Sfs ]T (6)

P=Pi +Ps (7)

where Ms is the structural mass, C, is the structural damping matrix, K, is the

structural stiffness matrix, p, is the incident shock pressure wave, and Ps is the

scattered pressure wave. In the above equations, u is the structural displacements, Mf is

the mass of fluid, Cf is the fluid damping matrix, Kf is the fluid stiffness matrix, and the

transformation matrix Sjs integrates the fluid and structural degrees of freedoms and was

defined on all of the interacting fluid and structural surfaces. The fluid traction T in

Equation (6) is the quantity that describes the mechanism by which the fluid drives the

solid. By substituting equation (7) in (5) & (6), we obtain the fluid equation in terms of
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the unknown scattered pressure term. The resulting equation was solved together with

Equation (5) to obtain the response of the torpedo structure.

4.6 Results and Discussion:

Obtaining the UNDEX response of the lightweight torpedo model was a complex

analysis, as it required integrating all of the above-described theories. By using the

commercial finite element package ABAQUS, which enables a seamless integration of

the above-discussed theories, the stress distribution on the torpedo was estimated. Before

obtaining the stress response of the torpedo, a simple structure, such as a flat plate, was

analyzed to verify the pressure distribution formulae applied in ABAQUS. After this

verification process, a torpedo model without stiffeners was analyzed for its stress

response when it was subjected to an underwater explosion. This analysis was performed

for different standoff distances and explosive weights in order to determine a safe

operating distance for each of the explosive configurations.

This initial weight vs. distance data was used to select a particular weight of depth

charge, 70 kg of HBX-1, and to extend the study to variation in the location of the

explosion. Once the torpedo was designed to survive a 70 kg HBX-1 from a particular

operating distance, a heavier charge could be used and the safe operating distance would

be moved back farther based on the distance vs. weight study performed earlier. Using

this information about the safe distance, the effect of adding stiffeners to the torpedo was

investigated. The configuration of stiffeners to be added to the torpedo to improve its

performance was obtained by considering its weight, robustness, and safety features. The

following section provides a detailed explanation of the results of different cases

explained above.
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4.6.1 Flat Plate:

UNDEX response of a simple structure, such as flat plate, was investigated in order to

verify the validity of the pressure distribution equations used [14]. A flat plate was

chosen to clearly visualize the propagation of the pressure wave with respect to time on

the nodal points .of the plate, as given in the pressure distribution equations shown in

Appendix A. The length of the plate was the same as the length of the torpedo with the

same thickness as the torpedo shell. The propagation of the pressure on the nodes can be

clearly depicted from the time vs number of nodes (experiencing pressure) plot in Figure

5. The tip of the shock wave hitting the structure at the centre first with maximum

amplitude and then advancing on'to the other points on the structure with a decreased

magnitude of pressure comprised the sequence of events following the explosion wave

hitting the structure side-on.

Once the distribution of pressure on the structure was verified, the UNDEX

response of the flat plate was obtained. The plate was simply supported at the ends and

the fluid was modeled around the plate, similar to the fluid model discussed earlier. The

total time step was considered to be a little more than the total time required by the wave

to travel from the point of explosion to the end of the plate. The contour plots for the von

Mises stress distribution at the final step can be seen in Figure 6. From the figure, it can

be seen that the maximum von Mises stress occurred at the ends of the plate, as it was

simply supported at the ends. The bending deformation of the flat plate can also be seen
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in the same figure, which was as expected because the shock wave hit in the center first

and then spreads to the ends.

4.6.2 Lightweight Torpedo:

Once the flat plate model was analyzed and the pressure vs. time data was verified,

a lightweight torpedo subjected to an underwater explosion was analyzed. The von Mises

stress distribution for the torpedo at various time steps was obtained. Two kinds of

approaches have been explored for determining the safety of the torpedo: the "safe

distance approach" and the "safe weight approach." In the first approach, the safe

distance from the explosive as a function of explosive weights was obtained and the

second approach was to obtain the weight of an explosive that a torpedo can survive with

respect to the standoff distances. A known pressure vs time history for a given amount of

explosive at a particular standoff distance was applied as a transient load onto the

structure.

Similitude relations provided the pressure vs. time history data given the

explosive constants. In this paper, three kinds of explosives, HBX-1, Pentolite, and TNT,

were considered to obtain the maximum von Mises stress produced by the explosion.

When the maximum von Mises stress exceeded the yield strength of aluminum, the

structure was considered to fail. The standoff distance, just below the safe distance, at

which the structure fails was called the critical distance of the torpedo for that particular

charge. Table 1 shows the maximum von Mises stress at different standoff distances for

70 kg of HBX-1, Pentolite, and TNT charges. From the table, it can be seen that at a

distance of 35 m, HBX-1 had a maximum von Mises stress value of 440 Mpa, which is
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more than the yield strength of aluminum. For TNT and Pentolite, failure occured at a 30

m standoff distance. The safe distance as estimated by this method was 40 m for HBX-1,

and 35 m for TNT and Pentolite. The critical distance for a torpedo without any stiffeners

was around 35.0 m. That is, the torpedo failed if it was closer than 35.0 m from the

explosive. This critical distance was for 70 kg of charge, and it was sensitive to the

amount of charge used for the explosion.

The plot in Figures 7 shows the variation of the maximum von Mises with respect

to the standoff distance and the amount of HBX-1 charge. Any point on the above plot

gives the maximum von Mises stress produced due to a certain amount of explosive at a

specific distance. It is possible to obtain the safe distance for the torpedo for a given

explosive charge using the above plot. As expected, the maximum stress occured at the

minimum standoff distance and for a maximum weight of the explosive. As the standoff

distance was increased, it was observed that the maximum stress was reduced for all three

different types of explosive charges. Similarly at each distance, as the explosive weight

was increased, the amount of stress on the torpedo model was increased. The figure

clearly shows that the stress values are more sensitive to the standoff distances than to the

explosive weight. For a 70 kg HBX-1 charge the safe standoff distance was found to be

lying between 36 to 40 m.

The further analyses were done by considering this combination of explosive at

the critical distance of 35 m. These analyses can be repeated for any kind of explosive as

long as various constants required to model the pressure-time history are available. An

analysis of a stiffened lightweight torpedo is discussed in the following section.

4.6.3 Stiffened Lightweight Torpedo:
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The lightweight torpedo was modeled with stiffeners in both the longitudinal and

radial directions. The stiffeners provided additional structural integrity to the torpedo and

enabled reduction in the thickness of the outer shell. Moreover, a stiffened torpedo has a

shorter safe operating distance than an un-stiffened torpedo, thereby giving more

flexibility for interception path optimization. Hence, the distance at which the unstiffened

torpedo failed became the safe distance by adding the longitudinal and ring stiffeners.

Even though the weight of the torpedo model was increased by the addition of stiffeners,

optimization can reduce the thickness of the outer shell to maintain the required level of

safety and robustness.

UNDEX response at the critical distance for different configurations of stiffeners

was highly nonlinear. The maximum von Mises stress in the torpedo model was expected

to decrease as the number of stiffeners increases, but the stress actually increased in the

current study for the lower number of stiffeners. This was due to the fact that maximum

stress not only depended on the number of stiffeners, but it also depended on the position

of these stiffeners. Hence, in order to determine the optimal number of stiffeners, the

configuration of stiffeners, the position of stiffeners, the mass of the torpedo model with

stiffeners, the position of the explosive, and the robustness of the design were taken into

account. By considering all these five different aspects, the final combination of ring and

longitudinal stiffeners obtained provided the required structural integrity for the torpedo

subjected to an underwater explosion.

The different stiffener configurations selected to observe their effect on the

response of the torpedo are 2, 4, 6, 8, 12, and 24 longitudinal stiffeners and 3, 4, 5, 6, 7, 8,

10, 14, 20, and 40 ring stiffeners. These combinations were used to perform the
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parametric study when 70 kg of HBX-1 exploded at a distance of 35 m. Three different

cases were considered for the position of stiffeners. Because the explosion resulted in a

side-on load hitting the center of the torpedo, there were two kinds of deformations

occurring: one was the compression or crushing of the torpedo in the radial direction and

the other was the bending of the torpedo in the longitudinal direction. The ring stiffeners

provided strength to the radial compression, whereas the longitudinal stiffeners provided

bending strength. The ring stiffeners were divided equally along the length of the torpedo

and their positions depended only on the number of stiffeners. However the longitudinal

stiffeners (when placed in fewer numbers, depending on their position) may not provide

enough stiffness in the required direction, resulting in high stresses. Hence, the position

of the longitudinal stiffener was more critical than the position of the rings. The three

different positions considered for the longitudinal stiffeners can be seen in Figure 8. For

the first case of just two longitudinal stiffeners, the zero degrees Case 1 in which one of

the stiffeners was located exactly at the point of initial contact between the structure and

shock wave. For Case 2, the stiffeners were placed on the torpedo at an angle of 45

degrees from the point of explosion. Similarly in Case 3, the stiffeners were placed at an

angle of 90 degrees from the point of explosion. Furthermore, the stiffeners were placed

such that they had the same plane of symmetry in the cross-sectional view.

The 3-D plot in Figure 9 corresponds to the Case 1. The surface in this figure

shows the highly nonlinear behavior of the maximum von Mises stress response. Among

all the combinations the maximum von Mises stress was around 470 Mpa. For many of

the cases, the maximum stress was reduced below the yield stress of aluminum by the

adding the stiffeners. From the above plot it can be seen that there was a variation in the
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maximum stress as the stiffeners were increased. For the lower stiffener configurations,

the maximum stress was highly nonlinear and oscillated due to the stiffener placement.

Once the number of rings __ 7 and number of longitudinal stiffeners > 5, the stress

response behaved as expected.

All the above-mentioned maximum stress response patterns show that obtaining

the optimal configuration of the stiffeners was not a trivial task. Therefore, the five

different aspects mentioned above became significant in the design of a stiffened torpedo.

The maximum stress response of the torpedo model with different stiffener combinations

for Cases 2 and 3 was also observed. The plots for these cases also followed the same

pattern as the one from Figure 9. Due to their placement, the maximum stress did not

follow a decreasing pattern as the stiffeners were increased for the lower stiffener

configurations. The best combination of ring and longitudinal stiffeners was selected by

performing all five case studies and picking the combination that was safe and had the

minimum mass.

Clearly, the position of the explosive (center, aft, forward) would influence the

response of the torpedo due to changes in the stiffener locations with respect to the

explosion. Therefore, the torpedo was analyzed by changing the position of the source

point. Three different positions were selected in this research to obtain the maximum

stress of the torpedo. Along with the above-considered case of a wave hitting the center

of the torpedo first, the other two cases included the standoff points at the aft and the

forward sections of the torpedo. Figure 10 shows all three different positions considered.

Therefore, the response was obtained for three different longitudinal stiffener positions at
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all three different source point positions, making a total of nine cases. Even though the

results for all stiffener positions are not presented, they have been explored.

From all nine cases the combinations of stiffeners that resulted in a maximum von

Mises stress below the yield strength of aluminum were selected. Some of the

combinations of stiffeners selected had the maximum stress just below the yield stress.

These active constraints have a tendency to fail due to slight changes in the dimensional

tolerances. Therefore, sensitivity of the stress with respect to the geometric dimensions

was performed and the least sensitive designs were selected as candidate designs. For this

study, a 3% tolerance was assigned to the dimensions of the stiffened lightweight torpedo.

Finally, the ones left were the combination of stiffeners whose max stress was still below

the yield stress of aluminum after a change in the dimensions of the stiffeners.

Since the maximum stress value for the configurations that had a greater number

of stiffeners was well below the yield stress limit, it was assumed that they would be safe

even with a 3% variation in the stiffener dimensions. Since a lower number of stiffeners

satisfy the stress constraint, exploring the design space spanned by higher numbers of

stiffeners was not required. The maximum stress produced was obtained for the stiffener

combinations of 7-2, 8-2, 7-8, 8-8, 10-8, 14-8, ring-longitudinal stiffeners, respectively.

Figure 11 shows the maximum values of the von Mises stress for a 3% change in the

dimensions of the stiffeners. From this plot, the stiffener combinations whose maximum

von Mises stress exceeded the yield stress of aluminum were eliminated. The

configuration of ring & longitudinal stiffeners that were safe even after a 3% variation in

the stiffeners were 7-8, 8-8, 14-8, and all the higher configurations.
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Figure 12 shows the mass of the torpedo model for all of the different

combinations of the stiffeners. The mass was higher for the model with a greater number

of stiffener combinations. Of all the different stiffener configurations that resulted in a

safe and robust torpedo, the model that had the least weight was selected. This

configuration suggests the need for 7 ring and 8 longitudinal stiffeners to provide the

required safety for the torpedo at the distance of 35 m for a 70 kg of HBX-1 charge.

4.7 Conclusions:

A torpedo configurational design was performed to determine the lightest and

safest structure to satisfy the blast response criterion. In order to avoid complex and

expensive physical testing to determine the structural response to an underwater

explosion, a numerical technique was explored. This technique integrated the fluid and

structural behavior and solved a transient fluid-structure interaction problem. A

conventional unstiffened torpedo was analyzed to determine its response to an explosion

and to compare it with a stiffened torpedo. Various configurations of the torpedo were

explored where the stiffener position and the explosion position was altered. This study

accounts for all explosions due to a fixed amount of charge in the vicinity of the torpedo,

except the one right along the path of the torpedo. The safe distance obtained from this

research can be used as one of the constraints in performing the multidisciplinary

optimization of the lightweight torpedo model. Along with the weight and stress

constraints, robustness of the selected design was also explored.
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Appendix A: Pressure Wave Distribution on the Structure

The pressure load acting on the torpedo due to an underwater explosion changes

with respect to both time and space. The pressure vs. time history of an explosive is the

relation between pressure acting on the torpedo, as a spherical or plane wave, at the

standoff point (the point where the wave hits the structure first), and time. If the UNDEX

wave is considered as a spherical wave, the spatial distribution of a pressure wave on the

structure can be considered as a spherical distribution. This spherical distribution is

obtained using the "incident pressure wave equations" Ref [14]. The incident pressure

equation can be written as a separable solution to the scalar wave equation of the form

P (xj,t) P(t)p. (xi) (8)

where p, (t) is specified through the pressure vs. time history at the standoff point X,, and

p, (x1 ) is the spatial variation at a point xy and is given as

pX (x ) -x5 - x°I (for spherical waves) (9)xs -Xi

1 (for plane waves)

(10)

where x, is the specified source point (point of explosion).
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By considering the time delay required for the wave to travel from the standoff point to

the point xj , it is found that

P1 (xj,t) = P (Q - )px(xj) (11)
Co

p,(rj)p (xi) (12)

R =- x - x.1 (for spherical waves)

R.x-

(13)

Ri (Xj- xS)(x - x (for plane waves) (14)

In Equation 11, co is the wave speed in the fluid, and rj is known as the "retarded time"

because it includes a shift corresponding to the time required for the wave to move from

the standoff point to x.

Appendix B: Surface-based Interaction

The fluid-structure interaction capabilities of ABAQUS [14], such as solving for

the scattered term obtained due to reflection of the pressure wave and inclusion of the

coupling term in the structural and fluid equations, are used in this research work. In this

kind of coupled fluid-solid analysis, the fluid fields are strongly dependant on conditions

at the boundary of the fluid medium. The fluid medium consists of different sub-regions

where different conditions are specified, such as the radiation boundary condition to

model infinite fluid medium and fluid-structure interaction conditions.

102



The fluid-structure interface is the region where the fluid medium is directly

coupled to the motion of the solid.. The procedure uses a surface-based fluid-structure

medium interaction procedure, which is discussed below. The coupling is obtained by

designating the fluid and the structural surface nodes at the interface as the master and the

slave nodes, respectively. The slave side receives point tractions based on interpolation

with the shape functions from the master side. If the solid medium is designated as slave,

the values on this surface are constrained to equal values interpolated from the master

surface. Figure 13 illustrates the above theory.

The projections of slave nodes XN onto the master surface are found, and the

areas and the normals associated with the slave nodes are computed. The projections of

ihese points p(XN) are used to identify the master nodes in the vicinity of this projection.

Variables at the slave nodes XN are then interpolated from the variables at the identified

master surface nodes near the projection.

The point-wise fluid-solid coupling condition is enforced at the slave nodes,

resulting in fluid pressure degrees of freedom added to the structural slave surface. The

contribution of a single slave node XN to the coupling term in the acoustic equation is

approximated by the following equation:

f &p n , iidS ; [ANn(XN) iiN Hl[ H (p(XN))]
int efface i

where ii, is structural acceleration at the slave node, A.N and n(XN) are areas and

normals associated with the slave nodes, and H (p(XN)) are the interpolants on the

fluid master surface evaluated at projections p(XN). The summation is for all master
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nodes "i", in the vicinity of the slave node projection. The entire coupling matrix is

computed by repeating this step for all the slave nodes.

The contribution to the coupling term in the structural equation is approximated by

f n . padS : A ,H'(p(Xv ))pi,

where pi is the pressure at master node "i" and the summation is for all the master nodes

in the vicinity of the slave node projection. By including the above terms into the fluid

and structural equations (5) & (6), the interaction between the fluid and structure is

modeled and these equations are solved together to obtain the response.
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Standoff HBX-1, Pentolite, TNT,
Distance, MPa MPa MPa

m

5.0 2755.5 2751.7 2705.8

10.0 1401.8 1366.8 1316.2

15.0 937.0 904.4 862.4

20.0 732.5 693.4 662.0

25.0 596.4 563.6 532.3

30.0 504.3 471.8 443.9

35.0 439.5 405.4 379.1

40.0 390.0 357.3 332.7

45.0 348.6 318.5 295.7

50.0 315.5 288.7 266.4

55.0 287.3 263.0 242.4

60.0 263.7 242.5 222.3

65.0 243.5 224.0 205.2

70.0 226.0 208.3 190.8

Table 1: Maximum von Mises stress at different standoff distances for

70 kg of charge
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Figure 1: Dimensions of lightweight torpedo model with stiffeners
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Figure 2: Torpedo model surrounded by the fluid mesh

Shock waveZ

Surface cut-off

Botlbm reflection

Under pressure Bubble pulse

0Q

Time

Figure 3: UNDEX phenomenon
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Figure 4: Pressure vs. time history for 70.Okg of HBX-1 charge,
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Figure 5: Number of nodal points where pressure is applied
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CHAPTER 5

Multidisciplinary Optimization of a
Lightweight Torpedo Subjected to an

Underwater Explosion

5. Multidisciplinary Optimization of a Lightweight Torpedo

Subjected to an Underwater Explosion

Rajesh Kalavalapally', Ravi Penmetsa2 , and Ramana Grandhi 3

Abstract:
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Undersea weapons, including torpedoes need to be designed to survive extreme loading

conditions such as underwater explosions (UNDEX). In this work, a multidisciplinary

optimization problem is solved for a lightweight torpedo model subjected to UNDEX. A

torpedo configuration with least possible weight for a given level of safety from an

explosion at a critical distance is obtained. The torpedo is modeled using both metallic

and composite material models. The similitude relations are used to model the pressure

wave resulting from an explosive, which is assumed as a spherical wave. The response of

the composite flat plate is obtained prior to the torpedo for validating the analysis routine

and determining the stress levels in each of the layers. The response of a composite

lightweight torpedo model is also obtained and structural optimization is performed to

achieve the minimum weight subject to the required safety levels. Similar analysis and

optimization was performed for a stiffened metallic torpedo. The optimal designs for both

models are compared and it is observed that the composite torpedo model is stronger and

lighter than the metallic design when subjected to an UNDEX at a given standoff distance.

Keywords: Lightweight Torpedo, Underwater Explosion, Composite Modeling

1 Graduate Research Assistant
2 Assistant Professor
3 Distinguished Professor
5.1 Introduction:

In many industrial applications, reducing the weight of a structure without

compromising its strength and stiffness is considered one of the most important design

criteria. By virtue of their nature, composite materials provide exactly the above-

mentioned design criteria. In military applications, the use of composites allows for

enhancement in the stealth and survivability characteristics. Fiber-reinforced composite
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materials are considered to have great potential in marine applications. The properties

that make them more advantageous over conventional materials such as steel, aluminum,

etc., for underwater applications are the high strength and stiffness combined with their

light weight, high corrosion resistance, stealth, low observability to radiation, and less

transmission of mechanical noise from the structure to surrounding water.

The achievements in integrating the laminated composite plates into the

construction of naval ships and submarines are outlined in the review paper by Mouritz et

al. [1]. Seemingly, there has been extensive research work done on laminated composite

plate and cylindrical structures subject to the most important and damaging loading

underwater, UNDEX [2-7]. Mouritz [2] observed the changes in the fatigue behavior of

glass-reinforced polymer (GRP) laminates when subjected to UNDEX loading. The

shock response used in Ref[2] was obtained experimentally using an UNDEX testing

facility. Turkmen et al. [3] compared the experimental results with the finite element

results for a stiffened laminated composite plate under blast loading in air. The effects of

stiffener and loading conditions on the dynamic response were observed in this paper.

Similarly, Aslan et al. [4] obtained the response of the fiber-reinforced laminated

composite plates under low-velocity impact through an experimental impact test and a

dynamic finite element analysis code. The results from the above papers suggest that

when blast load is applied in the transverse direction, the composite structures produce

intemal delamination. Dyka and Badaliance [5] observed the damage in marine

composites caused due to both the air impact loading and UNDEX loading. The fluid

structure interaction (FSI) effect, which is critical while obtaining the UNDEX response,

was considered in this paper.
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Lam et al. [6] obtained the UNDEX response for a simply supported laminated

pipeline on the seabed. A fluid-structure interaction model was considered and the

response in the radial direction was found to be weaker. Also, parametric studies were

performed, including the standoff distance, charge weight, and length of the pipe. McCoy

and Sun [7] used the Doubly Asymptotic Approximation (DAA) in their research to

model the fluid structure interaction between the surrounding water and the composite

cylinder. The DAA was used to model the FSI to obtain the UNDEX response for various

other metallic structures [8-11]. Cichocki, Adamczyk, and Ruchwa [12, 13] have

performed extensive research for obtaining an UNDEX response of simple structures

using the commercial finite element package ABAQUS.

In all the above-cited references the UNDEX response was studied for different

kinds of structures, either composite or metallic. This research aims at applying the

phenomenon of UNDEX analysis to obtain the safe distance for the torpedo model to

survive an explosion that is modeled using similitude relations. The main aim of this

research is to perform the structural optimization of the torpedo model for reducing the

overall weight of the structure. The configuration design for a torpedo subject to UNDEX

has already been performed in Ref [14]. This paper compares the optimum metallic

torpedo characteristics with that of a composite laminated torpedo subjected to UNDEX

loading. A multidisciplinary optimization is performed by constraining the fundamental

natural frequency of the structure and the safety of the torpedo subject to UNDEX

loading. In this research work, before the response of the lightweight torpedo was

obtained, the UNDEX response of a simple structure, such as a laminated flat plate, was
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determined. This has enabled the validation of the pressure distribution due to the

explosion, and the layer-by-layer response of the composite structure was also available.

5.2 Composite Failure Measures:

To obtain the distance at which a laminated composite torpedo is safe for a

particular amount of charge, a failure criterion for the composite structure needs to be

known. This failure criterion has to take into account all types of deformations occurring

inside the composite. From the above literature, one of the important types of failure

occurring when the composite structure is subjected to transverse dynamic loading is

delamination, which decreases the buckling and compressive strength of the composite

structure. Delmaination can be caused by the UNDEX loading normal to the direction of

the fibers.

Failure of a composite is characterized by, the first ply failure criterion and the

progressive failure of composites Ref [15]. In a laminate, stresses in the layers with

different orientations or different material properties are generally different because the

stiffness and strength of the lamina are different, depending on the direction in which the

fibers are oriented. Hence, some layers are likely to fail prior to the rest of the layers.

This is known as the first-ply failure criteria. But in some cases, the initiation of damage

in one layer does not mean the failure of the entire structure; the structure might still be

able to withstand additional load even after the occurrence of the initial damage. In such

cases, the effect the initial damage on the other layers in the laminates needs to be

considered. The number of failures keeps increasing progressively until the failure of an
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additional laminate causes the the failure of all the layers. This is known as progressive

failure.

In most of the cases, it is not desirable to have local damage, since a small form of

damage, such as a transverse matrix crack, changes the elastic properties. Therefore, it is

assumed that the failure of the first ply is the failure of the composite. Estimating the

failure of the composite by the first ply criterion is conservative, but serves the purpose

because the initial matrix crack does not lead to the failure of the entire composite

structure.

Also, the failure of composite materials cannot be studied by simply considering

the principal stresses exceeding the yield stresses, as in the case of the isotropic materials.

Therefore, different failure theories that are based not just on principal normal stresses

and maximum shear stresses, but on the stresses in the material axes are considered. In

the case of unidirectional lamina, there are two material axes: direction one, which is

parallel to; the fibers and direction two, which is perpendicular to the fibers. The strength

parameters used in the failure theories, XT and XC,, are the ultimate tensile and

compressive strengths along the longitudinal (Direction 1), YT and YC are the ultimate

tensile and compressive strengths along the transverse (Direction 2) direction of the fiber,

and S is the ultimate in-plane shear strength. The different failure theories that define the

failure of a composite layer are as follows.

Tsai-Hill Criterion: This theory is based on the distortion energy failure theory of von

Mises yield criterion to anisotropic materials with equal strengths in tension and

compression. The failure index is calculated using Eq. (1) and the failure occurs when the

inequality is violated.
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a- al2 0.2 r 2
F =I I +__2 2 < 1.0_2_2

FI-2 12 2 ±12 <10 (1)

where a-1 and a-2 are the stresses along the longitudinal and transverse directions of the

fiber, r12 is the shear stresses developed. The Tsai-Hill failure theory does not

distinguish between the compressive and tensile strength. Therefore, it is modified to

include the corresponding strengths, tensile or compressive, in the failure theory as

follows:

a-2  -- 2  T 2

FI- = .102 + 2 + 12 <10 (2),
X 2  X 2  •2  <2

where a >OX=X elseX=X anda >O,Y=Y elseY=Y

1 T C 2 ' T C

In the current research work, the stand-off distance at which the maximum

failure criteria defined by the modified Tsai-Hill criterion is just below 1 is considered as

the safe distance, and the distance at which it is just above is known as the critical

distance.

5.3 Optimization Problem Formulation:

5.3.1 Composite lightweight torpedo model:
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An optimization problem is formulated to minimize weight of the structure

subject to various constraints. The constraints are to match the fundamental natural

frequency and also to ensure the safety of the torpedo model under UNDEX loading. The

UNDEX loading applied is at the critical distance where the structure fails. And, the

thicknesses of each layer are considered to be the design variables. The constraints for the

optimization are given in the equation below.

Co1 > 22.2H., FI < 0.9 (3)

where co1 is the fundamental natural frequency, and FI are the failure indices of each

layer in the element due to the UNDEX loading. The constant parameters are the standoff

distance, the source point, the orientation angle, and the ply sequence.

5.3.2 Metallic lightweight torpedo model:

Similarly, an optimization problem was formulated to obtain an optimum stiffened

metallic torpedo model. As mentioned above, a configuration design was presented by

Kalavalapally et al. [14] for a stiffened torpedo model by performing different load case

studies when subjected to an underwater explosion. Hence, the optimization is performed

only using the safe combinations of stiffeners obtained in Ref [14]. The main objective

here is to minimize the weight of the structure. The constraints for the optimization are

given in the equation below.

al > 22.2Hz, }
Maximum vonMises stress•< 0.9
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where co1 is the fundamental natural frequency, and the maximum vonMises stress is the

stress produced due to the explosion. The constant parameters are the standoff distance,

the source point, and the orientation of the stiffeners.

5.4 Results and Discussion:

By using all the above-described theories, the UNDEX response of the torpedo

model was obtained. The objective in this research is to obtain a safe distance for the

composite torpedo model from an UNDEX event and to perform a multi-disciplinary

optimization of the torpedo model to reduce its weight. Because the UNDEX analysis is a

complex phenomenon, it is critical to check the distribution of the pressure shock wave

onto the model. For this purpose, a simpler model (the flat plate) is considered and the

response of the composite laminated flat plate is obtained. The sections below explain the

UNDEX response of the flat plate and the torpedo model.

5. 4.1 Flat Plate Response:

A flat plate that has the same length as the torpedo model was analyzed in this research.

The stacking sequence, thickness of each layer, thickness of the honeycomb, and the

material properties of the laminates and the honeycomb core are given the same as that of

the torpedo model. The plate model was simply supported at the four comers, and the

loading was applied perpendicular to its surface. Since the plate is simply supported at

the ends and the shock wave hits the center of plate first and travels away from the centre

towards the ends, the bending deformation occurs along the length and width of the plate.

The maximum failure for the layers occurs at the comers of the plate, which are pinned.

As the standoff distance selected is closer (35 m) and the charge weight higher (70 kg),

the composite plate failed due to the UNDEX loading. However, considering a simple
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structure such as a plate instead of a torpedo model enabled us to look at the distribution

of pressure on the structure and to obtain the layer- by-layer response.

Figure 1 shows the distribution of the failure criterion values on different layers in

the composite. For a 0 and 90 degrees laminates, the maximum values are cornered at the

four ends as the fibers are placed in the directions along the length and width of the plate,

respectively. The 0' fibers resist the lengthwise bending of the plate, which is similar to

the effect that the longitudinal stiffeners had on the metallic structure. The 90' fibers

resist the widthwise bending of the plate which is similar to the effect that the ring

stiffeners have on the metallic structure. Since the composite materials are much stronger

in the fiber direction (0°) than in the direction perpendicular to the fiber (900), the 90'

layer (even though they are not in direct contact with the shock wave as is the 00 layer)

has a much higher value of failure criteria. The contour plots of the 450 laminates show a

different pattern to the 0' and 90' laminates. For the lamina whose fiber was oriented at

± 450 direction, the maximum failure was found at only two comers of plate, which are in

the direction opposite to the orientation of the fiber. These kind of lamina are present to

provide greater shear rigidity to the composite structure. For the current case of a side-on

explosion in which the shock wave hits the center first and dissipates along the length and

width of the torpedo, the 0' and 90' are the longitudinal and transverse directions of the

fiber. Hence, these are the maximum-load bearing lamina for the current explosion

considered. However, for explosions at other locations the angular lamina, become

important. Hence, the significance of the laminas whose fibers are at an angle cannot be

neglected.
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5.4.2 Lightweight Torpedo Response:

Once the response of the flat plate is obtained and the effect and importance of the

different layers is studied, the response of the lightweight torpedo model is obtained. In

this paper, the UNDEX analysis of the lightweight torpedo was conducted at different

stand-off distances and for different charge weights using the similitude relations. The

standoff distances and charge weights considered are 5, 10, 15, 20,....70 m and 5,10, 15,

20,....70 kg, respectively. The 3-D plot in Figure 2 shows the maximum failure criteria of

the composite structure produced due to a certain charge at a certain stand-off distance.

From the surface of the plot we can see that as the standoff distance is increased, the

value of the failure criterion decreases. Similarly, as the charge weight increases, the

value of the failure criterion increases as expected. From the plot we can say that for a 70

kg of HBX-1 charge the safe distance is between 30 to 25m and the critical distance is 25

to 20 m. The figure clearly shows that the response of the composite torpedo is more

sensitive to the standoff distance than the explosive weight. These results are in

accordance with Ref [8], in which a similar kind of behavior was obtained, where the

displacement of the structure was considered with respect to standoff distance and the

charge weight. In this case too, it is observed that decreasing the stand-off distance has

more effect than increasing the charge weight.

The change in the UNDEX response of the composite torpedo changes with the

change in the thickness of each layer, because for a side-on explosion (acting as a

transverse dynamic loading on the torpedo) the 0' and 90' layers are the load-bearing

laminates. Hence, the thickness of these load-bearing laminates needs to be more than the

angular layers. Therefore, the thickness of the different layers can be different based upon
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the amount of load the layers experience. The thickness of the each layer cannot be

determined just by looking at the response. A multidisciplinary optimization problem

needs to be solved in order to come up with the optimal thickness of each layer, which is

formulated in the sections before and the results are presented below.

5.5 Optimization Results:

5. 5.1 Composite Lightveight Torpedo:

The optimization problem is solved to obtain the torpedo design with the least

weight that is safe at a 20 m standoff distance for a 70 kg HBX-1 charge. The results of

the optimization can be seen in Table 2. The weight of the model is reduced to 228.77 kg,

as observed in the response; the 00 and 900 layers are the maximum load bearing

laminates, hence, they have the maximum thickness. The +45' and -45' laminates that

support the composite model in shear have a thickness of 0.2 and 0.3 mm, respectively.

5.5.2 Metallic Lightweight Torpedo:

For the case of the metallic torpedo, the optimization was performed at a standoff

distance of 35m for a 70 kg HIBX-1 charge. This standoff distance was chosen because it

was the critical distance at which an unstiffened lightweight torpedo failed, as predicted

in Ref.[14] . Table 3 shows the optimized results for the 7&8, 8&8 and 14&8 ring and

longitudinal stiffener combinations. From the table we can observe that the least weight

design is the torpedo with 8 ring and 8 longitudinal stiffeners.

Also, the surface in Figure 3 shows the optimum weight values obtained for

different combinations of ring and longitudinal stiffeners. We can observe that the plot

varies nonlinearly and we can pick the least weight design from the plot. As proved in

Ref [14] the response of the torpedo to UNDEX also depends on the position of the
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stiffeners and the position of the explosive. The optimized results presented in this paper

are for a certain placement of stiffener and for a side-on explosion.

5.6 Conclusion:

An optimization problem is formulated and solved to obtain the least weight design of a

torpedo model when subjected to an UNDEX. A stiffened lightweight metallic torpedo

and a composite torpedo were designed. The composite structure was modeled as a quasi-

isotropic symmetric laminate. The UNDEX response of a laminated flat plate was

obtained by taking into consideration the fluid structure interaction effect. The safe

distance of a composite lightweight torpedo was obtained.

The optimized results of the composite and the metallic model are compared. It is

observed that the composite model was lighter and safer than the stiffened metallic

torpedo.
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Fig. 1. Contour distribution of the tsai-hill failure criterion on different layers
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Property Carbon/Epoxy

Longitudinal Modulus, Ell 138 GPa

Transverse Modulus, E 22  8.96 GPa

In-plane Shear Modulus, G12  7.1 GPa

Poisson's Ratio, v12  0.3

Laminate Density, p 1600 kg/m3

Longitudinal Tensile Strength, Fit 1447 MPa

Longitudinal Compressive Strength, Fl, 1447 MPa

Transverse Tensile Strength, F2t 51.6 MPa

Transverse Compressive Strength, F2c 206 MPa

In-plane Shear Strength, F6  93 MPa

Table 1: Material properties of carbon/epoxy

Objective Design Variables Constraints

Thicknesses, mmn

Weight (kg) 0) 4450  -450 9W I-bney Frequency UNDEX
co )

228.77 1.5 0.2 0.3 1.5 4.0 22.11 0.9

Table 2: Optimized results for the composite lightweight torpedo
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Stiffener Initial Optimum
combination torpedo torpedo

mass, kg mass, kg

7 ring & 8 long 251.27 247.94

8 ring & 8 long 251.69 247.36

7 ring & 12 long 254.52 247.54

Table 3: Optimized results for the metallic lightweight torpedo for 3 different stiffener

combinations
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CHAPTER 6

Acoustic Optimization of an Underwater
Vehicle Involving Fluid-Structure

Interaction
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6. Acoustic Optimization of an Underwater Vehicle Involving Fluid-

Structure Interaction

Rahul Khambaswadkar*, Ravi Penmetsat, Ramana Grandhil, Vipperla Venkayya§

Abstract

A torpedo is a guided missile that travels underwater and detonates when it comes in

proximity of the target. Its speed and accuracy make it one of the most lethal weapons in

navy munitions. The torpedo is a complex system comprising various subsystems:

propulsion, weapon, guidance and control, and many other complicated auxiliary

equipment important for its proper operation. The structural design and optimization of a

lightweight torpedo involves multiple disciplines, such as structures, fluids, and controls,

of which acoustic analysis is one of the critical criterions.

Since sophisticated SONAR (SOund NAvigation and Ranging) techniques are used in

underwater warfare to detect approaching torpedoes, it is very important for a torpedo to

be acoustically silent in order to increase its effectiveness. Each torpedo emits a specific

acoustic signature depending on its propulsion, hydrodynamics, and other auxiliary noise-

producing sources. In this research, experimental data available for the gear noise was

simulated using computational sound sources that were then used to determine the

acoustic signature of a torpedo. Furthermore, the Finite Element Method (FEM) was used

to quantify acoustic behavior of the computational model of a lightweight torpedo. A

framework for computational modeling of experimental data from various sources and

. Graduate Research Assistant

t Assistant Professor

Distinguished Professor
Research Professor
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incorporation of this information into the acoustic analysis and multidisciplinary

optimization of a lightweight torpedo is the main focus of this research.

6.1 Introduction

A torpedo is an underwater missile which can be launched from a submarine, a ship, or

an aircraft. It is a highly sophisticated weapon whose optimal design requires satisfying

multiple conflicting criteria that are equally important. Since every torpedo has numerous

subsystems that produce easily detectable noise, the acoustic signature of a torpedo

becomes one of the critical design criteria. The early detection of a torpedo gives the

target time to take the necessary countermeasures to avoid the assault and reduces the

effectiveness of the torpedo as a weapon. Therefore, when performing design

optimization of a torpedo, it is important to ensure that the torpedo's sound characteristics

are below the detectable range of certain SONAR systems. A self-generated noise

typically increases with the speed of the torpedo and is extremely undesirable. Noise

produced by the torpedo can have other detrimental implications as well: It may damage

or interfere with the smooth operation of different electronic sensors inside the torpedo

itself, which in turn will have an effect on the guidance and control of the torpedo.

Furthermore, the amplification of structural vibrations due to this sound might result in

fatigue of the panels, which can lead to local failure. Finally, noise produced by

torpedoes that is within a specific frequency can be of concern to the sea life. Due to all

of these reasons, the structural design of a torpedo subject to acoustic constraints is

required for improved stealth characteristics.
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In this research, a computational finite element model of a lightweight torpedo is

developed that has longitudinal and radial stiffeners to provide additional strength to the

shell. Since these components are absent in most of the conventional torpedoes the

current model needs to be analyzed and optimized to meet various design requirements.

Due to these structural modifications, it is also important to investigate how structure-

born noise is transmitted to the fluid, which involves solving a fluid-structure interaction

problem.

The problem involving the interaction of an elastic structure with fluid has been of

primary interest to many researchers due to its wide applicability in many areas of

research. The problems that can be associated with this phenomenon can be categorized

into exterior and interior applications. The exterior problems are those in which the sound

propagation is exterior to the structure, such as the sound produced by a vibrating

cylinder placed in fluid, which involves the determination of radiated and scattered noise.

The interior problems are associated with acoustic cavities, piping systems, and other

applications in which the sound is propagated within the structure. These problems have

applications in ship noise reduction, acoustic analysis of a car interior, vibration response

of underwater structures, blast analysis, etc.

Many different formulations were proposed to solve these problems and studies have

been conducted to see the relative trade-offs between these formulations by many

researchers. The methods available in the literature are: boundary element [1-2], finite

element [3-14], coupled boundary-finite elements [2], energy finite elements [15-16], and

various decoupling approximations [17-18] to name a few. The numerical modeling

schemes used to model the fluid differentiate these methods from one another. The
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usefulness of each of these formulations is highly problem-dependent, and their

availability or the user's experience with a particular kind of tool become significant

factors. Methods involving boundary elements generally use the dynamic response of the

structure as input to a boundary element code which is used to obtain the far field

acoustic response in the fluid domain [1]. The decoupling approximation methods

decouple the structural response from fluid response and can reduce computational

complications involved with solving coupled equations [18]. Many researchers like

Zienkiewicz, Newton [3] were instrumental in initiating efforts towards the successful

use of finite elements to solve structural acoustic problems. Everstine, Marcus et al, [4,

6], continued with the same research and formulated methods that use the capabilities of

finite element code NASTRAN to solve the fluid-structure interaction problems.

Everstine summarized different finite element-based formulations to solve structural

acoustics problems in Ref. [7].

Finite element-based methods have the advantage that they can use matrix capabilities of

sophisticated commercial codes, which are easily accessible and are robust for large scale

problems. In the current version of NASTRAN, the pressure analog method developed by

Everstine [4, 9] is implemented in the acoustic module. This method uses solid finite

elements to represent scalar fluid fields by modifying the material properties so that they

represent fluid. This method uses an analogy between equations of elasticity for structure

and acoustic wave equations.
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6.2 Project Approach

The main objective of this study is to minimize this structure-born noise in a lightweight

torpedo through the modification of structural parameters. In order to study the sound

radiation from the lightweight torpedo structure, a noise source needs to be modeled that

has the same characteristics as the experimental data available for the gear noise.

The design methodology is divided into different units that are identified in Figure 1. The

first step in the process is the modeling phase. The proposed computational model of the

torpedo has a shell structure that is supported with ring and longitudinal stiffeners. These

stiffeners provide additional stiffness to the structure with a minimal increase in weight.

The fluid surrounding the structure is also modeled using finite elements by using an

analogy between equations of elasticity and the acoustic wave equation. In the fluid-

structure interaction, structural displacements cause variations in fluid pressure and these

variations in turn affect the structural behavior. The coupling effect becomes more

significant when modal frequencies for the structure and fluid are similar. Frequency

analysis is performed to ensure that the structure-borne noise is not amplified due to

matching of the fluid and structural frequencies. The results of this modal analysis

provide information about which structural frequencies to avoid while redesigning the

torpedo.

The next task is the modeling of the source that produces structural vibrations, which

results in pressure variations in the fluid. This pressure distribution around the torpedo is

its acoustic signature, which is subject to the noise that is modeled. There are many

sources of noise that excite the torpedo; however, the current research effort is targeted

towards modeling noise due to speed reduction machinery, such as gears, in the torpedo.
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Even though this is not the most critical noise source, it was selected because only its

experimental data was available in the public literature [22]. The goal of this research is

to develop a methodology to obtain computational noise sources that produce similar

characteristics as the experimental data.

An optimization-based problem formulation is used to generate a computational model of

the experimental noise data for gears. The fluid model represents the sea, which is

modeled as an infinite domain. To represent the infinite nature of the water model, the

finite element model of the fluid is truncated at a certain distance from the structure, and

a doubly asymptotic approximations-based radiation boundary condition is applied on the

outer surface of the fluid to ensure that there are no reflections back into the fluid from

the boundaries.

Once the modeling of the structure, fluid, and source is completed, the frequency

response analysis with the modeled source as excitation is performed. Finally, a

multidisciplinary design optimization problem is formulated to reduce structural mass

with the frequency and acoustics response as constraints. A constraint that reduces noise

generated by the torpedo will result in increased weight. And the amount of this

increment depends on the desired reduction of sound. Therefore, a multi-objective

optimization problem is solved to obtain the Pareto frontier that clearly shows the

tradeoff between the weight and sound produced.

6.3 Modeling of Lightweight Torpedo

The torpedo configuration used in this research is based on the data available in the

public literature about the lightweight torpedo. The total mass of the torpedo (with all the
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sub-systems) is considered to be 254 kg, with a diameter of 0.32 m and a length of 2.42

m. The material chosen for the torpedo structure is aluminum-2024. In order to provide

additional stiffness, the torpedo is modeled with both radial and longitudinal stiffeners.

These stiffeners provide additional structural integrity when the shell thickness is reduced

during the design process. The initial shell thickness of the torpedo is 0.635 cm and the

width and breadth of both longitudinal and radial stiffeners are 1 cm and 1.5 cm,

respectively. These features can clearly be seen in Figure 2.

6.4 Modeling of Fluid

Three-dimensional fluid is modeled using conventional solid finite elements available in

NASTRAN. These solid finite elements are used to represent the fluid using an analogy

between the equations of elasticity, which are generally used for solving structural

problems, and the wave equation, which represents fluid acoustics [11, 25]. The solid

elements are assigned the properties of fluid. There are certain assumptions made in this

modeling: compressibility, no viscous effects, and irrotational flow. The acoustic wave

equation involves speed of sound, which directly depends upon the bulk modulus of the

fluid [20]. For incompressible fluids, the bulk modulus is infinite, so the compressibility

assumption is required. The small motion theory is required for using the analogy

between the equations, so rotational effects are not applicable, which justifies the

assumption. Also, when deriving the wave equation, the viscous terms are neglected from

Navier-Stokes equations [23].

Fluid is modeled as a cylinder surrounding the torpedo structure. The spherical diameter

of the cylinder is taken as 2m and the overall length of the fluid domain is taken as 4m;

from the preliminary investigation it was determined that this size is suitable for
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capturing the Fluid-Structure Interaction (FSI) effect accurately. The interface between

the fluid and structure may be modeled so that the grid points of the fluid are coincident

with those of the structure. This is called a matching grid. But, because of the large size

of the fluid domain and the irregular shape of the structure, it is difficult to obtain the

matching grid. So, free meshing is used to create the non-matching fluid mesh around the

structure. The wetted structural elements are determined by comparing grid point

locations corresponding to structural elements that are within the specified tolerance.

Figure 3 shows the torpedo structure completely embedded in the fluid elements.

6.5 Noise Source Modeling:

To determine the acoustic signature of a torpedo, a frequency response analysis is

performed in which a frequency-dependent force is used to excite the structure, which, in

turn, interacts with the fluid surrounding it to produce noise. In the literature, one can find

numerous acoustic simulations in which the noise is modeled as a simple pulsating force

with a wide range of frequencies. Using this forcing function, the sound produced by the

torpedo is analyzed and minimized using structural sizing algorithms. The drawback of

all of these techniques is the failure to realize that the response is entirely dependent on

the spatial distribution of the forcing function and the frequency of excitation that is

determined by the noise source used.

In the literature, no emphasis is placed on computational modeling of experimental noise

data. In this research, an optimization-based formulation is used to model the noise

source that will mimic the experimental data available through the literature, for the
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lightweight torpedoes. The noise source thus modeled will be placed inside the torpedo

structure for the multidisciplinary optimization of the torpedo.

Among all the noise sources for torpedo, the propulsor is the most critical source that is

of interest to the U.S. Navy. However, due to lack of experimental data available in the

public literature, a less significant but important noise source, which is engine assembly

noise, is selected in this research. Experimental data for this noise source is available

along with the details of the experimental setup. This comprehensive information about

the data enabled the modeling of a computational setup that would mimic the

experimental setup.

In a torpedo, the transmission gears or the engine assembly is used in the speed reduction

machinery to control the propeller angular velocity. These gears produce significant

noise despite their high precision manufacturing [22].

A program of experimental research was undertaken at the U. S. Naval Ordnance Test

Station (NOTS) to improve the basic knowledge of gear noise transmission in torpedoes.

The gears were considered as non-uniform point sources radiating into a sphere, and the

total noise output was obtained by integrating data obtained at numerous locations. The

results of these experiments give the noise profile generated by the transmission gears of

a MK-40 lightweight torpedo. This MK-40 torpedo is the precursor to the currently

operating lightweight torpedoes. In this research, an optimization-based problem

formulation is used for designing a computational noise source model that will represent

experimental data.
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6.5.1 Experimental Setup and Noise Profile
The experimental test setup involves a gear assembly placed in an acoustically quiet

chamber and sensitive microphones placed at fixed radial distances from the transmission

[22]. Figure 4 shows the details of the experimental setup.

A steam turbine is used to rotate the transmission gears and is connected by long shafts so

that the turbine noise does not influence the experimental results. The dynamometer is

used to absorb the load and to measure the torque and speed. Here, the concept of

spherical measurement is used to measure noise. Sensitive microphones placed at a

distance of 0.32 m from the transmission are used as measuring points to collect

information about the sound produced by the gear mechanism. The transmission-noise

profile generated by the MK-40 lightweight torpedo captured by the above-mentioned

experimental setup is shown in Figure 5 [22]. Figure 5 clearly shows the nonlinear nature

of the sound generated by the machinery noise. This indicates that the previous attempts

by researchers to model the noise as a pulsating force at varying frequencies is inaccurate

because of the spatial nonlinearity exhibited by the experimental data. This data is used to

model a source on the axis of the torpedo model that can result in a pressure distribution

similar to the experimental acoustic data.

6.5.2 Optimization Formulation for Noise Modeling
A finite element model of the air representing the hemisphere on which sensors are

placed is modeled using solid finite elements. The use of these solid finite elements to

represent air is possible because of an acoustic-elastic analogy. An acoustic load is

applied at the center of the cavity to act as a simple noise generating source. This simple

noise source can be imagined to generate a pulsating sphere in infinite space. This source
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will emit noise in a spherical direction, the magnitude of which will depend on the

strength and frequency of the source. This noise source is used as excitation in a

frequency response analysis. The noise emission at certain key locations (Figure 6) in the

air model that match the sensor locations in the experimental setup is monitored.

Therefore, this analysis identifies the source strength that will give the exact same sound

profile as the experimental result. Figure 6 shows the air model with the source placed at

its centre. The current air model has a diameter of 0.64 m, whereas the torpedo has a

diameter of 0.32 m. This difference occurs because the sensor locations in the

experimental are at 0.64 m. Therefore, once the source strength and frequency that would

match the sound levels of the experimental setup are determined, this source would be

placed in a similar air model within the torpedo internal cavity.

The objective of the noise source optimization problem is to minimize the squared error

between the noise levels at particular locations in the air model and the experimental

values. The design variables in the problem are the source strength of the acoustic load

and the frequency of the source. The upper and lower bounds on the source strength and

frequency are also applied as side bound constraints in the optimization problem. The

optimization problem can be summarized as follows.

Minimize:

/(A, - B1 )2  (1)

Where

A. = Noise value obtained from acoustic analysis at location i

Bi = Noise value from the literature at location i
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Subject to:

0.001 • S • 100.0 (2)

10 < f •1000 (3)

where S is the source strength that is the design variable for the problem and f is the

frequency of the source. The flowchart in Figure 7 explains the flow of the optimization

algorithm. The Design Optimization Tool (DOT) is used for optimization [24].

Since gradient-based search methods are used in the optimization iterations, sensitivity of

the objective to the source strength and frequency are required in this algorithm [24].

These sensitivities are calculated using the finite difference method executed using a

series of function calls between MATLAB and a C++ program that is used to generate

the NASTRAN model.

6.5.3 Analytical Verification

Before optimizing the torpedo for a minimum acoustic signature, it is important to verify

the accuracy of the finite element simulation results for the noise levels in the air model.

For the noise emitted at a certain distance by a simple noise source such as a pulsating

sphere, approximate equations are available that give the source strength needed for a

particular decibel level at a specified location [21]. Since this analytical equation is

applicable for a constant sound profile at a distance from the source, a constant noise

level was selected at all the key locations. Once the NASTRAN and analytical results are

verified, the experimental data can be matched using a similar approach.
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The NASTRAN acoustic source is a simple monopole source; therefore, acoustic

intensity radiated from this simple point source is given by the following equation:

II4I 2 (4)

where r is radius of sphere in which the source radiates energy and W is source strength

in watts. From the available experimental profile, it can be seen that 116 dB is the

maximum sound emitted by the gear assembly. These decibels can be converted into

intensity by using the following relation:

I = Io x (10) (/1ll) (5)

And, by substituting this intensity into the above equation, the analytical source strength

needed to produce 116 dB at 0.32 m from the source is obtained as follows:

Watts = II x 4nr 2  (6)

For 116 dB,

I = 3.981E- 5 W/cm 2

Watts = 0.5122 W

This source strength, 0.5122W, is given as input to NASTRAN and the noise generated

by this source is measured at 0.32 m from the center. The finite element model results are

compared to these approximate equations, and the deviation is 4% from the expected

values. This validated the finite element setup to within the required accuracy. In this

case, the optimization problem is solved such that the noise levels at all the desired

locations are expected to be 116 dB. Figure 8 shows the difference between the analytical

and the NASTRAN results at various key locations. These key locations are the same as

the sensor locations in the experimental setup.
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6.5.4 Matching the Exact Sound Profile

In this case, the goal is to match the nonlinear profile as close as possible and then to use

the obtained sources to determine the acoustic signature of the torpedo. Initial attempts to

match the experimental data showed that it is not possible to match the nonlinear profile

with only one design variable; i. e., only one acoustic source. Therefore, in order to match

the profile exactly, more sources are distributed in the transmission section, which

increases the number of design variables for the problem. Using many different

combinations of source distributions in the transmission area and varying the frequency

of the sources, the best fit for the data is obtained. From the optimization results it is clear

that we need two sources with source strengths 0.9 watts and 0.15 watts at 77.85 Hz.

Figure 9 shows the deviation between NASTRAN and the experimental results. The

maximum deviation at a given key location is 4%. The current noise source model with a

4% deviation from the experimental data is more realistic than the traditional approaches

that use pulsating forces to model the noise source.

The optimization formulation that is used in this research is generic and can be used for

any experimental data that is available in the future. The general idea behind this effort is

to use the source obtained from the optimization problem as a load in the proposed

computational model of the lightweight torpedo for acoustic analysis. This will ensure

that realistic data is used to model the source instead of applying random forces to excite

the structure.
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6.6 Multidisciplinary Design Optimization (MDO) of Lightweight Torpedo

The torpedo body can be broadly divided in three sections: transmission, fuel and

warhead, guidance and control. The modeled noise source will be placed in the

transmission section of the torpedo body and will act as an excitation force to determine

the frequency response of the torpedo. Figure 10 shows the source placed in the

transmission section. The air chamber is modeled inside the transmission section using

solid elements and material properties that reflect air density and bulk modulus. The

source determined from earlier analysis is placed in the appropriate location. The

boundaries of the air model transverse to the axis of the torpedo are left free. This

condition assumes no transmission of noise along the torpedo length through the rest of

the cavity. The only transmission is through the structure. Therefore, fluid-structure

interaction conditions are critical in the air-torpedo interface and in the torpedo-water

interface.

The source inside the air cavity produces pressure variation in the transmission section of

the torpedo that will result in the displacement of the torpedo structure. This displacement

will be transmitted into the water model, resulting in a pressure distribution which is the

acoustic response of the torpedo. The fluid-structure model is analyzed to verify the

effect of the fluid-structure interaction on the results obtained. If the fluid-structure

interaction effect is turned off in the analysis, then the sound intensity in the water is

found to be zero, which indicates that the structural displacements were not transferred to

the fluid model. This signifies the importance of Fluid-Structure Interaction for the

analysis.
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As discussed in the modeling section, the outer surface of the fluid has a radiation

boundary condition that simulates the infinite nature of the fluid. In order to verify the

validity of this boundary condition, two analyses, one with the radiation boundary

condition and one without are performed. The results from the two analyses can be seen

in Table 1, and the locations can be seen in Figure 11. It can be seen from the table that

the sound was reflecting back from the surface in the case in which there was no

absorbing boundary condition. Also with an increase in the distance from the source, the

noise should reduce, which is clearly seen from the radiation boundary condition case,

but this trend is not very evident without a radiation boundary condition. Therefore, the

infinite boundary condition is a critical component of any underwater acoustic analysis.

6.6.1 Optimization Formulation:

The final objective of this project is to determine the optimum configuration of the

torpedo that would have minimum noise propagated into the surrounding water. To

achieve this, an optimization problem is formulated as follows:

Minimize:

Mass of the structure

Subjected to:

Sound level at certain location < = 70 dB

Natural frequency of the torpedo > = 23 Hz

The structural parameters such as the thickness of different sections of the shell, the

cross-sectional width, and the height of the ring and longitudinal stiffeners are used as

design variables for the optimization problem. Figure 12 shows these design variables.
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The optimum design is one that has minimum mass; however, this means that the sound

signatures from the structure are increased to meet the requirements. This is obvious,

because as the mass is reduced, the shell thickness and dimensions of the stiffeners

decrease, which results in increased noise. Therefore, a realistic solution for this problem

will provide a trade-off analysis between the weight and sound levels produced by the

source.

6.6.2 Optimization Results and Discussion

This trade-off analysis can be seen in the Pareto frontier shown in Figure 13. This figure

shows how the reduction in sound level increases the weight of the structure. Based on

the weight requirements of the torpedo, an appropriate sound level can be determined

from this plot along with the corresponding configuration for the thickness and cross-

section of the stiffeners, which are available from previous optimization solutions.

Figures 14, 15, and 16 show the iteration histories for the objective and constraints as the

optimization iteration progresses. The initial values for ring and longitudinal stiffener

widths are given as 0.015 m and their thicknesses are taken as 0.01 m, respectively. The

initial shell thickness is taken as 0.0635 m. The inverse relation between sound and mass

of the structure is evident from these plots. Figure 17 shows the variation in all of the

design variables with optimization iterations. From this figure it is clear that the optimizer

is driving the ring stiffener dimensions to lower limits, and that the shell thickness and

longitudinal stiffener dimensions are increased to reduce noise. From Figure 17, it can be

observed that shell thickness is the most important design variable. Table 2 shows the

optimal configuration of the torpedo structure from one of the several optimization runs
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required to get the Pareto frontier. The table also shows the weight of the structure and

the corresponding sound level at a critical location. This critical location is determined

for one particular configuration and kept constant in order to have a continuous function

definition for all of the iterations in the optimization problem. In reality, as the structural

model changes the location of maximum sound intensity changes. However, it is assumed

in this research that if the intensity at the fixed critical location is reduced, then the

intensity at other locations is also reduced.

6.7 Concluding Remarks

In this research, an acoustic optimization methodology is presented for computational

modeling of a lightweight torpedo using the finite element method to model both the fluid

and the structure. Fluid and structural models are coupled to incorporate the effect of

fluid-structure interaction. As it can be seen from the numerical results, the fluid-structure

interaction and the infinite boundary conditions are critical for the acoustic analysis of

underwater structures. This research has shown that the noise profile generated by the

gear machinery demonstrates spatial nonlinearity, which cannot be represented by the

pulsating force models used by many researchers. Therefore, experimental results and the

corresponding computational noise source models are very important for determining the

acoustic signature of torpedo structures. The optimization problem solved in this work

gives the relative trade-off between the mass of the structure and the sound emitted by it

due to gear noise as the source. Furthermore, this research outlines steps involved in the

acoustic design of an underwater vehicle with a realistically modeled noise source to

excite the structure.
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Sound in dB

Node Node Node Co-ordinates in m

Location Number With Infinite Without linfinite

x Y z Boundary Boundary

1 1514 -1.09 0 0 38.47 88.91

2 5158 -0.82 0.09 0 49.39 88.99

3 4592 -0.37 0 0 59.38 89.23

4 5095 2.23 0 0 74.81 81.41

5 4716 2.77 0 0 64.15 81.37

6 1501 2.91 0 0 53.02 81.38

7 5771 0.32 -0.621 0 66.56 87.36

8 5018 0.32 -0.735 0 65.05 87.22

9 4642 0.32 -0.86 0 61.44 87.13

10 1808 0.32 -0.995 0 50.77 87.09

11 5786 0.32 0.621 0 66.94 88.941

12 5101 0.32 0.735 0 64.54 88.944

13 4741 0.32 0.86 0 60.25 88.945

14 1763 0.32 0.995 0 49.36 88.945

Table 1. Noise levels with and without Infinite Boundary Condition

Shell RLongitudinal Longitudinal
Thickness Ring Ring Height Stiffener Stiffener
(m)Width (i) (i) Width (in) Height (in)

0.0091 0.005 0.005 0.022 0.013

Mass (Kg) Sound (dB) Frequency (Hz)

274.47 70.00 25.76
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Table 2. Torpedo Optimal Configuration

Fluid Experimental Data

FEA Modeling

Strutur Optimization BasedISruSourre Modeling

Modal AnalNoise Modeling

Acoustic Analysis

Minimize: M :iiFrequency

t4 Subject to: Constraints
Sound

I Deig Yes

Figure 1. Research Approach
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Longitudinal Stiffeners

Ring Stiffeners

Figure 2. Finite Element Model of Lightweight Torpedo

Tetrahedral Solid Elements

S2.42

Torpedo Structure

Figure 3. Fluid and Structural Finite Element Models
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Figure 4. Experimental Setup Used for Gear Noise

116 dB

113 dB

110dB 1Z 14 dB

109 dB 110dB

106 dB 110dB

103 dB
-Al 110dB

--- -.. qr, tt 2. .

Figure 5. Noise Levels on the Meridian of Hemisphere about MK-40 Torpedo
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Figure 6. Noise Recovery Points in the Air Chamber
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Figure 7. Optimization Algorithm to Determine Source Strength
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Figure 9. Results for a Nonlinear Profile Case
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Figure 10. Air Mesh inside Torpedo's Transmission Section.

14 'T

13
12 Vibrating Top d

• •81 Water Mdu

9~

Figure 10. Torpedo and Node Locations for Radiation Boundary
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Figure 12. Design Variables for the Problem
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Figure 13. Pareto Optimization Curve
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Figure 17. Iteration History for Design Variables

165



7. SUMMARY

During the three years of the grant period the computational design and

optimization center (CDOC) at Wright State University has made a great progress in

performing multidisciplinary optimization and reliability analysis to come up with robust

torpedo designs. Numerous disciplines such as cavitator drag reduction, system reliability

estimation, UNDEX resistance and acoustic signature reduction were considered.

A supercavitating torpedo was modeled by taking into consideration the over-all

size, shape, and structural configuration. An optimal configuration of the torpedo was

obtained that fits in the cavity generated by the cavitator. For the cavitator design

uncertainties involved in the design process of a supercavitating torpedo were considered

by applying evidence theory to determine reliability of the system.

Furthermore, an optimized model of the composite lightweight torpedo was

developed taking into consideration system reliability. Uncertainties involved in the

composite model were considered and a robust lightweight torpedo design was obtained.

The above mentioned lightweight torpedo was also designed such that it could resist an

underwater explosion. Multidisciplinary optimization was performed to obtain an

efficient torpedo design while meeting multiple performance requirements. The acoustic

signature of the torpedo was also reduced by 4 db for the lightweight torpedo model for a

realistic noise source. The noise source was modeled using an optimization based

methodology to match experimental noise data.

The accomplishments during the three years of this contract were exciting. Using

multi-disciplinary optimization techniques coupled with new and innovative reliability
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analysis tools robust torpedo designs have been developed in both the high speed and

light weight torpedo configurations.
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