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1. Introduction and Motivation 

1.1 INFERD Mission 
The Information Fusion Engine for Real-time Decision Making (INFERD)’s 

objective is to provide real-time situational assessment of a domain of interest to facilitate 
decision making of an analyst by detecting the current state and future threat of situations 
within the environment through a hierarchical fusion of sensory data. 

1.2 Summer Objective 
The objective of this summer’s work was to take lessons learned from the testing of 

INFERD v1, and apply research methods to overcome the deficiencies found.  These 
deficiencies and an overview of the old methodology of INFERD are discussed in the 
Section 1.3.  The results of this research and a description of the new methodology are 
given in the Section 2.  At the conclusion of the summer program an event was held at 
AFRL called “Hackfest 2005”, in which our team was lucky enough to have an 
opportunity to test the new system developed over the course of the summer.  Our team’s 
experiences taken away from this initial test of the system will be given in the Section 
2.1.  INFERD, both its old and current version, was designed and developed in such a 
way as to make it portable across multiple domains.  For the sake of this report, and the 
program it was developed under, its application will be in the context of the cyber domain 
in which it is a part of a larger system called the Event Correlation for Cyber Attack 
Recognition System (ECCARS). Figure 1 summarizes the different major research areas 
and which members of the team worked on each of the areas, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Work Breakdown Structure 
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Team 
 
• Dr. Moises Sudit (Team Manager) 

Managing Director  
Center for Multisource Information Fusion – University at Buffalo 
Expertise: Optimization,  Graph Theory and Heuristics 

• Dr. Shanchieh Yang 
Assistant Professor 
Computer Engineering- Rochester Institute of Technology 
Expertise: Information Theory, Visualization and Sensors 

• Dr. Michael Kuhl 
Associate Professor 
Industrial and Systems Engineering – Rochester Institute  of Technology 
Expertise: Simulation and Optimization 

• Ph.D. Students 
o Adam Stotz (Industrial Engineering, University at Buffalo) 
o Michael Holender (Industrial Engineering, University at Buffalo) 

• Bachelor and Masters Students 
o Jared Holsopple (Computer Engineering, Rochester Institute of Technology) 
o Eric Bohannon (Computer Engineering, Rochester Institute of Technology) 
o Jason Kistner (Industrial Engineering, Rochester Institute of Technology) 

• David Sudit (Computer Engineering, Northwestern University) 

1.3 Introduction of  INFERD v1 

The main idea of INFERD v1 in the ECCARS system is to fuse a stream of incoming 
heterogeneous IDS alerts to a database of Attack Templates and rank them according to 
how likely they are taking place.  These Attack Templates are developed a priori and 
represent the possible complex multistage attacks which may take place within the 
environment.  This ranking of Attack Templates is presented to the user in a method 
which gives them a situational awareness of their network and aids them in their decision 
process of how to mitigate the threat.  The decoupled architecture along with the 
standardized XML interfaces allows for facilitated plug-and-play integration with 
external applications and allows us to leverage research being performed by other teams 
such as a graph matching application developed by 21st Century Technologies. 

Attack Templates, shown in Figure 2 define the cyber attacks monitored in the alert 
stream.  These structures are created a priori in a hierarchical top-down fashion manually 
by a subject matter expert (SME).  These attack graphs are specified in and loaded from 
an XML file when the system is started.  It is implausible to expect a human operator to 
generate all possible cyber attacks manually which makes the system dependent upon the 
success of a related future research effort to automatically generate the exhaustive set of 
possible attacks for a given network. 

In v1 these templates are very rigid in the sense that specific IP addresses and alert 
information must be encoded into the template set making the number of templates 
exponential with respect to the number of machines in a given network. 
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Figure 2: Attack Templates 

 

Fusion is performed on the templates themselves in a bottom-up fashion as shown in 
Figure 3.  L0 fusion is defined to be the correlation of alerts to Feature Nodes in which 
the results are the assertion of the Feature Nodes which appropriately characterize the 
alert which was fused.  Once a Feature Node is asserted, L1 fusion takes over and 
calculates a credibility value for the Template Node containing the Feature Tree which 
contained the newly asserted Feature Node.  After the L1 credibility value is calculated 
for the Template Node, any Attack Template containing that node then performs an L2 
fusion process which calculates an overall credibility for the Attack Template.  These 
Attack Template credibilities are then used as a mechanism on which to rank the 
complete a-priori set of Attack Templates.  Focus for the rest of this section will now 
shift to the problems inherent in this aforementioned methodology as discovered in the 
blind test held at CUBRC last May. 

The major deficiency found during the blind test, and it was not a surprise, was the 
necessity for automatic template generation.  When not knowing the scenario that will be 
played out, an exhaustive set of possibilities must be generated to ensure the successful 
capturing of that scenario and thus results in an unmanageable number of a-priori 
templates for a large network. 

The other major deficiency found was not being able to distinguish between attacking 
parties.  Since the templates only characterized what was happening and not who was 
doing it, a major request of the customer was not able to be met. 
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Figure 3: Multi-tier Fusion Framework 

 

2 Summer work and creation of  INFERD v2 

INFERD v2 is the result of the summer research focusing on the mitigation of these 
problems within the INFERD framework.  The most significant change made, requiring 
an almost complete rewrite of the existing INFERD code, was instead of ranking an 
exhaustive set of a-priori templates, we allow an a-priori attack model (or small set of 
models), which we call a Guidance Template, guide the dynamic instantiation and 
evolution of Attack Tracks.  Each of these Attack Tracks is associated with a single 
attacking party and is an accumulation of events triggered by their actions.  In this new 
methodology the old notion of Attack Templates like the one shown in Figure 2, can now 
be considered an Attack Track whose instantiation is of the Guidance Template shown in 
Figure 4. 

Guidance Templates consist of nodes and arcs, where nodes consist of a Feature Tree 
as in the old methodology and represent attack steps in the aggregate Multi-stage attack 
model.  Arcs represent feasible transitions between attack steps and help define for 
Attack Tracks whether new sensor information coming into the system should be fused to 
which Attack Tracks.  Both the nodes and arcs are attributed with Template Variables 
which take on values when those components are instantiated within an Attack Track.  
Through this dynamic process of instantiation, we can now track attacking parties 
throughout their attack evolution and we no longer need an exhaustive set of attack step / 
target machine combinations. 
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Figure 4: Multistage Cyber Attack Model 

 

Attack Tracks from a traditional Information Fusion perspective are hypotheses about 
the situation of the environment and the aggregation of the evaluation of these hypotheses 
can be thought of the situational assessment (L2 fusion).  Since we are now performing 
fusion on dynamic attack tracks instead of a-priori templates, new SA algorithms were 
also researched this summer and are implemented in a modular plug-and-play fashion 
within the new INFERD framework.  This is necessary because there is a low probability 
that two different environments will require exactly the same situational assessment, even 
if their models follow a common schema. 

In the new methodology it is very possible for a single alert to be fused to multiple 
Attack Tracks and in the cyber context this is a problem.  Since Attack Tracks represent 
the steps of a single attacking party, how can a single event detected by an IDS sensor be 
triggered by multiple attackers?  To overcome this problem, the new version of INFERD 
introduces a notion of Hyper Attack Tracks (HATs). 

As shown in Figure 5 when a single event is fused to multiple attack tracks, that event 
then becomes a Hyper Node and a Hyper Attack Track is created whose root is the Hyper 
Node.  This introduces a problem of fragmentation because in reality it was a single party 
who executed the attack, even though it was fused to multiple attacking parties during 
INFERD’s processing. 

 

 

 

 

 

 
 
 

Figure 5: Hyper Attack Tracks 
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Just as plug-and-play algorithms for SA were researched over the summer, de-
fragmentation algorithms were also researched.  Because it is likely that no single metric 
will perform best in all situations, the de-fragmentation process built into INFERD v2 
leverages from concepts introduced by Multiple Managed Algorithms (MMAs).  Here, 
the plug-and-play algorithms can be loaded and executed on Hyper Attack Tracks and 
any one decision will not be finalized until the combined estimations from all managed 
algorithms cross some configurable threshold of confidence. 

2.1 Hackfest 2005 

Hackfest this past year, consisted of four teams each containing a red and blue group.  
The red groups of each team were responsible for breaking into the other teams’ networks 
and modifying a special file called a “flag”, while the blue teams were responsible for 
defending their own flags.  This is a very attack rich environment which can provide a 
good stress test to the installed systems. 

Since ground truth is not yet known for the events of Hackfest, the accuracy of 
INFERD v2 cannot yet be determined.  The new system did, however, perform well from 
a computational efficiency perspective.  Over the 13 hour period of activity 
approximately 1.5 million alerts were produced.  This alert volume dwarfs that of even 
current large scale networks and INFERD kept up with the pace being able to process 
approximately 500 alerts per second. 

 

3 Level 2 Fusion Measurements 

3.1 Measurements at the Feature Tree Level (Level 1 Fusion) 
 

When data is input to INFERD, it is linked to Feature Nodes based on the type of 
alert that is sensed.  In this particular domain an alert occurs or it does not, hence the 
given values are binary.  Feature Nodes can have an “importance weight (u)” assigned to 
them.  Upon completion of the aforementioned process, INFERD obtains an aggregated 
value of the Feature Nodes (w) for the Template Node at the top of the Feature Tree 
which then becomes a node on an Attack Track.  The Credibility Factor (CF) decays with 
time according to Equation 1.  This time decay is calculated based on the entire Attack 
Track.  For instance, once a new node is attached to a current Attack Track, its time is 
“restarted” (t = 0) and the decay commences from there. 
 

 
          (1) 

 
 
 
For Template Node k of Attack Track i of Guidance Template j 
  wk = aggregated value of the Feature Nodes 
  Li = lifetime of Attack Track i 
  t = elapsed time since the most recent attack on Attack Track i 
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  αi = decay rate of Attack Track i 
 
The lifetime and decay rate of each Attack Track is chosen by the user.  Figure 6 shows 
the effect of different decay rates using the example Feature Tree in Figure 3 assuming a 
lifetime Li = 20. 
 

 
Figure 6: Effects of decay rate – as α increases, decay becomes more linear 

3.2 Measurements of the Attack Tracks (Level 2 Fusion) 
  

The Level 2 measures use the time-decayed Credibility Factors obtained above to 
help the user assess the current situation of his/her network.  The following defines the 
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3.2.1 Depth 
 

The Depth of an attack measurement gives an indication of how close your adversary 
is to his/her possible target.  It helps answer the question; how far into the attack is this 
particular hacker?  Equation 2 describes the calculation. 

 
(2) 

 

3.2.2 Breadth 
 

The Breadth of an attack measures how much of the entire possible scope of the 
attack has already taken place or how “full” the attack is in comparison to the entire 
Guidance Template.  The denominator of Equation 3 (Bt

max) calculates the total possible 
Credibility assuming all nodes of the Guidance Template are instantiated, it is a 
normalization factor.  The numerator sums up the Credibilities of the Attack Track. 
 
 
 

          (3) 
          
 
 
It can be argued that a hacker is more knowledgeable if the depth is large and the breadth 
is small implying that they have taken a direct route toward their goal.  The converse may 
be true as well; if the breadth is large and the depth is small, one could infer the hacker 
may not be as advanced.  This notion is still up for debate, but if true can be used for 
behavioral modeling to help answer questions on Impact Assessment (Level 3 fusion) or 
the Fragmentation problem as introduced in Section 2 and discussed in detail in Section 
4. 

3.2.3 Reliability 
 

Reliability is an entropy-based function that calculates how sure we are that this 
particular attack is continuing to take place.  Tsallis [17, 18] formulates a general form of 
entropy (Equation 4) containing a parameter q that can be optimized for any specific 
domain.  For most Optimization and Information Theoretical problems, q  1 thus 
giving Shannon’s [15] Entropy function (Equation 5). 
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Assume we have K equi-probable states such that H = log K, we want the overall number 

of states represented by a decreasing function of the variable ∑
=

=
||

1

N

k

j
kiCFx .  We obtain the 

following extremes using the above method for calculating entropy (H): 
 
 
 

          (6) 
 
 
Since a single value of entropy has little interpretive value, we borrow the notion of 
Relative Entropy from Pierce and Shannon [13] to obtain our Reliability measure as seen 
in equation 7. 
           

 
(7) 

 
 

3.3 Example of the Situational Assessment Measures 
 

Assume we have the following Guidance Template (Figure 7) with four Attack 
Tracks instantiated upon it. 

 
Figure 7: There are four active Attack Tracks upon the same Guidance Template 
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Using Equation 2 we can calculate the Depth of Attack Track 1 (upper left).  

Assuming that there are a total of eight stages in the given Guidance Template and the 
furthest point of the attack is at stage 4, half way through toward the goal, then the depth 
would be 0.489.   
 

Using Equation 3 we calculate the Breadth of Attack Track 1.  We show all Attack 
Tracks in Figure 7 because the Breadth calculation is reliant on each of the active Attack 
Tracks.  B = 0.424.  This also makes sense since this Attack Track appears to be rather 
“full” in comparison to the rest. 
 

Finally we calculate the Reliability of Attack Track 1 using Equation 7.  R = 0.312; 
this suggests that there is about a 31% chance that this particular attack is continuing to 
take place, thus it may not be a major concern in respect to others. 
 

4 Handling Fragmentation  
 

The purpose of the Fragmentation Handler is to be able to assist security personnel 
determine who is attacking a computer network in a multi-stage attack.  Hackers can use 
other’s computer identities to attack a different computer and this makes it hard for 
security to correctly determine who the original attacker is (generally referred to as a 
stepping stone).  Through research and discussion with Subject Matter Experts (SME’s) 
we have found that hackers can be characterized using indicators to determine their 
behavior.  We hope to use this characterization to assist analysts using this system to 
make the decision rather than providing them with one. 

4.1 Fragmentation 
 

Fragmentation is when two or more attack tracks end up attacking the same computer.  
Then from that computer another attack is detected.  The question is “Who is responsible 
for the attacks?” We use this fragmentation handler to give the user some numbers to 
maybe help them determine where the attacker is located.  Figure 8 shows an example of 
the fragmentation problem. 

 
Figure 8: Example of Fragmentation Problem 
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Let’s say you have one to n attackers.  We denote each attack track as AT1 to ATn, where 
n must be at least two.  All of the attackers attack computer X.  In turn one of them uses 
the identity of computer X to attack computer Y.  The problem now is that when you see 
the attack at computer Y you have n possibilities of who is continuing their attack to Y.  
We will call X the Hypernode.  The track after and including X will be called HAT or 
Hypernode Attack Track.  Our definition of a Hypernode is a Template node in two or 
more active AT’s from which the Guidance Template has correlated a new attack.  That 
is, it is a node representing a subset of AT’s that cannot be differentiated or are 
ambiguous as attacks progressing from that point forward.  There are some interesting 
cases that happen when we implement Hypernodes.  First, if a Hypernode does occur 
then we only need to add one more attack track.  So the above example would turn into 
Figure 9.  Secondly, if another Hypernode occurs after X then we again only need to add 
one more AT to the end with the starting node being the Hypernode.  These rules will 
help keep the number of AT’s we have to a minimum. 
 

Figure 9: Example of Analysis 
 

To decipher which of the n AT’s is continuing his or her attack we will use three 
different methods.  First we will do deletion or discarding of attack tracks.  The second 
step will be the merging of the attack tracks in the set that are left over.  Lastly we will 
take the remaining attack tracks and rank them using indicators.  We believe these 
indicators can be used to compare the characteristics of the AT’s to the HAT and tell the 
user which AT we believe might have continued the attack to Y. 

4.2 Deletion/Discarding 
 

There are situations where we have found that certain attack tracks can be discarded.  
By removing these attack tracks first it will help keep calculation time as quick as 
possible.   

4.2.1 Temporal Discarding 
 

 
The first discarding method is temporal discarding.  Temporal discarding happens 

when the time an attack track happens is after that when the HAT already exists.  For 
example, let’s look at Figure 8 again.  Let’s say the attack to X in attack track two (AT2) 
happened one hour ago.  The attack from X to Y in the HAT was seen three hours ago.  
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We can say that since the HAT attack already happened before attacker two even reached 
point X that AT2 can be discarded out of the possibilities. 
 

4.2.2 Decay Discarding 
 

Our second deletion method is decay discarding.  Decay discarding deals with time as 
did temporal discarding.  The difference between the two is that decay discarding looks at 
how long ago the attack to the Hypernode occurred.  For example, if AT2 happened 4 
months ago and we set our threshold to be 3 months.  Then at this moment the attack 
from X to Y occurs.  We assume that since the AT2 happened such a long time ago and 
the attack on Y just happened that it is very likely that it is not attacker two continuing 
the attack. Other methods are being looked into as we feel that eliminating attack tracks 
before the computation stage will help us give more accurate results and in a quicker 
time. 

4.3 Merging 
 

The Deletion/Discarding rules are absolute and will work consistently, Merging and 
Indicators, have no guarantees as to them working right every time.  These are just 
methods that will aide the user in deciding who is more likely to have continued the 
attack past the Hypernode.  Three merging techniques are Temporal, Signature and 
Commonality merging. 

4.3.1 Temporal Merging 
 

Temporal merging occurs when one and only one of the attack tracks has the most 
recent attack time and the other AT’s in the set have happened a considerable time ago.  
For example, in Figure 10 we see there are three ATs and the HAT, which has just 
occurred.  If AT1 and AT3 happened one month ago and AT2 occurred one day ago then 
we are claiming that AT2 is more probable to be the culprit to have continued the attack. 

 
Figure 10: Example of Temporal Merging 
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4.3.2 Signature Merging 
 

The second type of merging is Signature.  Signature relates to the personality of an 
attacker.  The system looks at what the attacker has done up to the point of the 
Hypernode.  Then it looks at what has been going on after the Hypernode.  Those two 
personalities are then compared to each other and we claim that if one is much more 
similar than the others that it will most likely be the one continuing the attack. 

4.3.3 Commonality Merging 
 

Commonality merging is the third type of merging we have discovered.  Figure 11 
shows an example where at some point in AT2 there is a node called W.  From that node 
W the attacker had attacked computer Y.  The attacker of AT2 still went ahead and 
attacked X at some point in time.  Two situations arise if this occurs.  First if the attack 
from W to Y happened before the attack from X to Y then we claim that AT2 most likely 
was not the one continuing the attack because he or she already had access to Y and did 
not need to go through X to get access to Y.  The second situation is if the W to Y attack 
happened after the X to Y attack then we claim it is likely AT2.  We say this because if 
AT2 went from X to Y he or she would already know how to infiltrate the system and 
could do so easily from a different computer like W. 

Figure 11: Example of Signature Merging 

4.4 Indicators 
 

After using the deletion and merging techniques to lower the number of attack tracks 
to a minimum we start to use indicators to give us probabilities of who is the attacker. 
After many discussions with subject matter experts we came across three indicators 
which they believe can be used to characterize traits of hackers.  The three indicators are: 
Operating system usages and patterns, inter-event times between attacks and signatures. 

4.4.1 Operating systems 
 

Every attack registered by the sensors is connected with a specific Operating system 
(OS).  A non-experienced hacker might only know how to use certain operating systems 
and might use the same one through out the attack.  An experienced hacker would know 
how to use many operating systems and to try to avoid being tracked down would jump 
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around operating systems.  These two statements helped us come to find two 
measurements, total percentage and randomness, which we feel show the user who is the 
more likely attacker. 
 

Total percentage (TP) is a measurement used to see how much of the same OS is 
being used in each AT to the HAT.  It is measured using Equation 8. 

 
 

 
(8) 

 
 
 
where N is the number of nodes in the HAT not including the Hypernode, sN  is the 
number of nodes that contain OS type s, jN  is the number if nodes in ATj, j

sN  is the 
number of nodes that contain OS type s in ATj and S is just the number of different OS 
types.  We exclude the Hypernode because after testing we saw that it artificially 
increased the results. 
 

OS 
type 

 
HAT 

 
AT1 

 
AT2 

 
AT3 

1- 
(HAT-AT1) 

1- 
(HAT-AT2) 

1- 
(HAT-AT3)

A 3/5 3/5 1/5 2/7 1 0.6 0.69 
B 2/5 1/5 0 1/7 0.8 0.6 0.74 
C 0 1/5  1/7 0.8  0.86 
D 0  4/5   0.2  
E 0   1/7   0.86 
F 0       
G 0   1/7   0.86 
H 0       
I 0       
J 0   1/7   0.86 
Avg.     0.867 0.467 0.812 

Table 1: Example Matches 
 
Here is an example to explain how the math shows us who is attacking.  Let’s say that 

we find there are ten OS types, S = {A,B,C,…,J}.  The HAT and AT’s look as follows:  
HAT:A-A-A-A-B-B, AT1:A-A-A-B-C-A, AT2:D-D-D-D-A-A, AT3:E-G-J-A-B-C-A-A.  
The bold letter ‘A’ represents the Hypernode.  The value for A in the HAT is 3/5 because 
we have a total of five nodes not including the Hypernode and we have three of OS type 
A.  Then you take that value and subtract it from the total percent of A in AT1 and then 
take the difference to get the similarity.  Next we take an average to get the average 
similarity over all the OS types.  We continue this process and find that AT1 is 86.7 
percent similar to the HAT and AT3 is very similar as well at 81.2 percent.   
 

This measurement will show us a lot about the hackers but we came across a situation 
that caused this measurement to fail.  Total percent failed when the OS in both attack 
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tracks were completely different from that of the HAT.  For example, if we use the same 
set of OS types as above and the tracks look like, HAT: E-F-G-H-I, AT1: A-A-A-A-E and 
AT2: A-B-C-D-E, then both values come out to be zero similarity.  By looking at this 
situation we found that AT2 would be more likely to have continued his attack as AT1 
seems to just know how to use OS A.  So we came up with a randomness measurement 
using entropy.  The entropy (E) measurement is done by taking the entropy of each AT 
and subtracting it from the entropy of the HAT.  We divide that value by the max entropy 
with is –log(1/S), where S is the number of OS types.  This keeps the value normalized.  
After normalizing and subtracting the value from one to get the similarity of the 
randomness of each AT compared to the HAT. 

 
(9) 

 
So in the example we gave above AT1 would end up having very little similarity in 

this value and AT2 would have a substantial amount of similarity, which is the desired 
result. 

4.4.2 Inter-event Time 
 

Inter-event time is the time between each attack.  The attackers sometimes have 
patterns of how much time it takes them to do each attack and this could be seen as a 
continuation into the HAT which could point us to the correct attacker.  The way we have 
decided to use inter-event times is to form regressions and calculate the error.  For each 
AT a regression will be formed.  It can be a line, exponential or power regression.  We 
decide what kind of regression it will be by looking at the correlation coefficients until 
we either find one that is ninety-five percent correlated or we take the kind that is the 
most correlated out of the three.  Then the HAT inter-event times are plotted onto the 
regressions.  Whichever regression produces the least amount of error is the AT we 
associate with the HAT.  To find these regressions we just use the normal regression 
formulas as shown on equation 10 and 11. 

∑−= ss ppH log  
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(10) 
 
 
 

(11) 
 
 
 
where m is the slope of the line, b is the intercept and R2 is the correlation coefficient.  
The x values are just the node number in each attack track and the y values are the inter-
event times.  Here is an example of how we use regression.  Let’s say that the attack 
tracks and inter-event times are shown in Figure12. 
 

Figure 12: Example Attack Track/Inter-Event Times 
 
Given these times we find that AT1 is 99.2 percent correlated with the exponential 
regression and that AT2 is 99.5 correlated with the linear regression.  Next we calculate 
what the predicted inter-event times should be for the HAT.  Take the averages of the 
error found between the actual and predicted inter-event time for both the attack tracks.  
In this case AT1 has an average error of 10.605 and AT2 has an average of 0.275.  To get 
the similarity value we evaluate the following: 
 
  Similarity value for AT1 = 1 – (10.605/(10.605 + 0.275)) =0 .025 
 
Similarly for AT2 we replace the numerator with 0.275 and get 0.975.  So we find that 
AT2 is 97.5 percent correlated to the HAT and AT1 is only 2.5 percent correlated and we 
say that AT2 is probably the hacker that continued the attack. 

4.4.3 Signatures 
 
We believe that signatures will be the most important part in fragmentation.  We think 
that the concept of Conceptual Spaces could be used to give the user a very accurate 
comparison of traits of hackers.  We think that if you set the HAT to be the object and 
then take each AT and compare that to the HAT using concept spaces that the value given 
will be the most accurate way to help the user decide between hackers. 
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5 Impact and Threat Assessment 
 

Since many commercial tools focus primarily on assessing the threat of individual 
alerts and alerts occurring on the same machine, a new approach is needed to assess the 
impact and the threat of incoming attacks spanning multiple machines.  The follow 
sections discuss how cyber attacks fit into level 3 of JDL data fusion model, the 
applicability of stochastic models, and a proposed novel algorithm for multi-stage cyber 
attack threat assessment. 

5.1 Application to Level 3 Fusion 
 

In the JDL model, level 3 fusion is characterized by the following three attributes -- 
capability, opportunity, and intent [2].  The combination of these three attributes can lead 
to estimates of what the attacker plans to do and what the impact of such an action would 
be. 
 
The following analyzes each of the three attributes of level 3 fusion, and discusses how 
they could be applied to cyber attacks. 

5.1.1 Capability 
 

Capability is what the attacker is able to do.  The capability of an attacker depends on 
its educational level and physical resources.  There are many different levels of hackers.  
They range from normal computer users who simply download hacking scripts to a very 
advanced hacker who has extensive knowledge of vulnerabilities in networking and 
operating systems.  An advanced hacker will be able to perform more complex attacks 
than a hacker who is simply running a script.  Therefore, the type of attack could indicate 
the level of the hacker.  If a complex attack is detected, the hacker is likely to be more 
advanced and thus a higher threat level could be associated with that attack.  However, if 
a common script attack occurs, the attacker could be a novice hacker running a script – it 
could still, however, be an advanced hacker.  Therefore, the complexity of the attack can 
only establish a lower bound on the educational level of the hacker. 
 

A hacker must have access to a computer capable of connecting to the network to be 
hacked.  In most cases, the computer is one connected to the internet; however it may be 
possible that the hacker has access to a workstation in the internal network. 

5.1.2 Opportunity  
 

Opportunity is what the attacker can do next.  Opportunity can be determined by the 
vulnerabilities of the system being attacked and what information the attacker currently 
has access to.  In cyber attacks, opportunity applies to what the hacker is able to do next.  
Consider a case where a hacker knows how to exploit a service on a server to obtain 
administrative rights. While the hacker has the capability of exploiting that service, he 
cannot exploit that service until he knows that it is running on the server.  If he 
determines that the service is running on the server, then he has the opportunity to exploit 
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that service.  Now, if the hacker is unaware of how to exploit a particular service, then the 
opportunity to exploit the service still exists, but the likelihood of it occurring is small 
because of the limited capability. 

5.1.3 Intent  
 

Intent is what the attacker plans to do and is very difficult to identify in the cyber 
attack domain.  Some hackers are known as ethical hackers, where they hack into a 
network without any malicious intentions.  However, other hackers hack into a system to 
steal, delete, or modify critical data.  Unfortunately, the intentions of the hackers cannot 
be identified until a malicious act has occurred.  Once a hacker gains the privileges he 
needs to accomplish his goal, to our knowledge there is no model that predicts whether 
the hacker will modify critical files or just simply leave the system. 
 
If a hacker has already performed a malicious act, it is probably safe to assume that the 
hacker has malicious intentions.  However, if the hacker has not done any malicious 
attacks, it is almost impossible to determine the intentions of the hacker. 

5.2 Stochastic Modeling 
 

The use of stochastic models such as Bayesian networks and hidden Markov models 
were motivated in [14].  While [14], focused on terrorist attacks, this idea could be 
extended to cyber attacks.  This section will discuss how stochastic models have been or 
could be developed for cyber attacks.  Potential drawbacks of using such models are also 
discussed. 

5.2.1 Bayesian Networks 
 

Bayesian networks are a technique to model uncertainty, and thus could be used to 
predict the future if the past evidence is indicative of what could happen in the future.  
The states of such a network have a certain probability of occurring.  Bayesian networks 
are characterized by the fact that the probability of being in one possible state of the 
network is dependent upon the previous states.  The probability of being in one state, X, 
depends on the set of previous states, Y, i.e. P(X|Y).  For a more rigorous definition and 
mathematical formulation of Bayesian Networks, please see [6]. 
 

Bayesian networks can be applied to cyber attacks by defining a course of action in 
which the hacker can penetrate the network.  This course of action could be defined by 
the types of attacks the hacker could perform or the information the hacker has 
compromised during his attack.  Phillips and Swiler suggest in [12], that this course of 
action can be generated based on the topology of the network, the services running on 
each machine, configuration, user groups, attacker profile and other network 
characteristics.  Each edge would be assigned a probability of transition, so the most 
likely path (or the n most likely paths) could be computed using well-known algorithms.  
This can be used to estimate the opportunity and intent.  They also mention that different 
attacker profiles can be created to estimate the capability. 



 

 

 

19

 
While this is a very comprehensive idea, it may not be realistic for enterprise 

networks.  Even if the course of action was generated for a complex network, the 
assignment of probabilities is not a trivial task.  The probabilities could be assigned by 
subject matter experts, but due to complexity, this could be very time consuming and 
inaccurate.  The probabilities could also be trained, but cyber attack data is very limited.  
With the set of all possible cyber attacks constantly increasing, which makes the course 
of action non-stationary, this training data may not be useful to predict the future. 
 

The authors admit that this idea may not be scalable if the levels of aggregation are 
not chosen properly (i.e. machine vs. subnet level).  However, they do suggest ideas to 
increase the scalability, such as using building blocks to automatically generate portions 
of the course of action. 

5.2.2 Hidden Markov Models 
 

A hidden Markov model (HMM) is a Bayesian network where the current state is 
dependent upon only the previous state.  Each edge in an HMM is modeled by a 
transition probability.  They are assigned in the same way discussed in the previous 
section.  Using the ideas from [24], we apply them to cyber attacks.  Figure 133 shows a 
potential course of action.  This course of action is converted to an HMM in 14.  Note 
that there are 9 states in the HMM which was generated from a model with only 5.  As 
the course of action complexity increases, the HMM will exponentially increase in size, 
thus creating a significantly larger number of transition probabilities. 

 
Figure 13: Example Guidance Template 

 

 
Figure 14: Example HMM derived from Figure 1 
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5.2.3 Potential Drawbacks 
 

The correctness of stochastic models heavily depends on the accuracy of the 
probabilities.  The following is a list of reasons why it may not be possible to model the 
probabilities accurately enough to perform a worthwhile impact assessment. 

 
• Complexity 

As evidenced by the HMM example, the number of states grows at a very fast rate 
as new states in the course of action are added.  This creates a large number of 
edges in which to assign probabilities. An increased complexity could lead to a 
high variance among probabilities from different subject matter experts. 

 
• High Variance 

Subject matter experts are usually asked to assign the probabilities.  However, it 
could be likely that if a number of different experts are asked to assign these 
probabilities, there could be a large variance of probabilities among the experts, 
thus making the average probabilities inaccurate.  The wide variance could be due 
to the aforementioned complexity of the model.  It is also possible that the 
probabilities will widely vary among different networks. 
 

• Incomplete Training Data 
While training data could be used to train the transition probabilities, the training 
data must be representative of the set of all possible data.  Due to the minimal 
data available for cyber attacks, the training data will be incomplete, thus making 
the model inaccurate. 
 

• Dynamically Changing Probabilities 
New vulnerabilities and exploits will potentially alter the probabilities.  This 
implies that the model needs to dynamically change.  However, if there is a 
dynamic model, it is possible that hackers could artificially inflate some 
probabilities by performing a large number of decoy attacks.  The inflation of 
these probabilities could bias the model in such a way that a likely attack will not 
be interpreted as a likely attack. 

5.3 Threat Assessment of Network Data and Information 
 

Because of the drawbacks to stochastic techniques, we propose a deterministic 
approach to assess the impact and threat of a cyber attack.  Any probabilities that may be 
associated with any transitions are ignored, so it is assumed that all transitions are equally 
likely.  The proposed model assumes the worst case capability and intent of the hacker – 
an advanced malicious hacker.  Modeling and estimating the capability of the hacker is 
outside of the scope of this project, as it would require extensive studies involving the 
behavior of a hacker.  The intent of the hacker was also determined to be too 
unpredictable to accurately model.  The primary focus of this model is the opportunity of 
the hacker.  This model is a good building block that could eventually be extended to 
incorporate probabilities, multiple hacker capabilities and intent. 
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5.4 Inputs 
 

The following inputs are necessary for this framework (the details of the inputs will 
be discussed as the algorithm is presented): 

 
• Information hierarchy and associated criticalities 
• Guidance template of possible attacks independent of targets 
• Logical network topology 
• Mapping of attacks/privileges to information nodes 
• Mapping of targets to information nodes 
• Set weights (λ1, λ2, λ3, λ4) 

5.5 Information Hierarchy 
 

The information hierarchy is a directed graph where each node represents a piece of 
information that a hacker needs to obtain even more information.  The edges represent 
the order in which information needs to be compromised.  For example, if an edge is 
defined from node A to node B, it implies that the information node A represents must be 
compromised before the information represented by node B can be compromised. 
 

Each piece of information is mapped to all of the targets that can be used to access the 
information as well as all of the attacks that could be used to obtain the information.  
Each node is also assigned a criticality representative of the impact of that information 
being compromised.  The targets are related by the logical topology and the attacks are 
related by a guidance template.  The logical topology is defined by the order in which 
machines must be compromised (this will be a very dense graph for the internal network).  
The guidance template is simply a relation of attack types to define a potential course of 
action for the hacker. 
 

Figure 15 shows the information hierarchy and how it relates to the logical topology 
and guidance template.  To reduce the number of arrows shown, each box in the 
information hierarchy indicates that each node is mapped to the machine (the nodes 
defined in the logical topology) pointing to the box.  The color of the information node 
illustrates what attack it maps to.   
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Figure 15: Simple example of our framework 

 
Each machine has a minimum of three levels in the information hierarchy.  The first 

level indicates that the hacker must know that the machine exists and potentially other 
machine attributes.  The second level represents the privilege levels.  Any user account 
could potentially be escalated to root privileges by the hacker.  The third level is the 
actual data stored on the machine.  Note that user or root access to a machine allows 
access an adjacent machine based on the logical topology.  This may not be true in all 
cases, but edges could always be added or removed as necessary.  This is just a simple 
example to illustrate the relationship between the guidance template, information 
hierarchy and logical topology.   

5.6 Impact Assessment 
 

Before describing the mathematical formulation of the impact assessment, we first 
define notation.  Let G define the total number of attacks that have occurred.  Let Ai

* 
denote the type of attack of the ith attack.  Let Mi

* denote the target of the ith attack.  From 
this A* (the set of attacks that have occurred) is defined as: 
 

*
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i

A
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=*A U      (12) 

 
Similarly, M* is the set of machines that have been attacked: 
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Let A(X), I(X), and M(X) denote the attacks, information, and machines, respectively, 
adjacent to the set X based on the mappings previously described. 
 
Let the estimate of the set of currently compromised information be denoted by I*.  It is 
defined as: 

( )* *

1
( ) ( )

G

i i
i

A M
=

= ∩*I I IU              (14) 

 
Information is considered compromised if an attack type is mapped to a piece of 
information and the target contains that information. 

5.7 Threat Assessment 
 

The threat of a node i is denoted as t(i).  The impact assessment indicated an estimate 
of the pieces of information that the hacker currently has.  Therefore, the threat of each 
piece of information in I* can be considered to be one, i.e: 

 
*( ) 1,1 | |it I i= ≤ ≤ *I      (15) 

 
It is now of interest to calculate the threat of the next possible pieces of information to be 
compromised.  Recall that the information hierarchy is defined such that the parent nodes 
must be compromised before the children nodes.  Therefore, the threat only needs to be 
assessed for the set I(I*).  There are four different sets used to assess the threat using this 
algorithm: 

( )= *
1S I M       (16) 

( ( ))= *
2S I M M      (17) 

( )= *
3S I A       (18) 

( ( ))= *
4S I A A      (19) 

 
S1 is the set of information associated with all machines that have been attacked.  Since 
those machines have been attacked, they are at risk of being attacked again.  S2 is the set 
of information associated with machines adjacent to the ones that have been attacked.  
These machines are at a lower risk since they have not been attacked, but they can be 
attacked next because of the logical topology.  S3 is the information that could be 
compromised by the set of attacks that already have occurred.  Since the attack has 
already occurred, this type of attack can possibly occur again.  S4 is the information that 
could be compromised by the set of next attacks that the hacker could perform. 
 

An attack is more likely to occur on a machine in M* than a machine in M(M*) so a 
higher weight is assigned to S1 than to S2.  The similar case is true for S3 and S4.  The 
weight of Si will be λ where the λ's are defined such that: 



 

 

 

24

 

10,
4

1
≤≤=∑

=

ββλ
k

k      (20) 

 
where β is defined as the maximum threat of a non-compromised node. 
 
To assess the threat of a piece of information, the following indicator function is defined 
to denote if node i is contained within set S: 
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S
     (21) 

 
The threat for a node, i, contained within I(I*) is defined as: 
 

( )
1

( ) ,
N

k
k

t i m iλ
=

= ∑ kS      (22) 

 
In other words, the threat of the node is the sum of the weights corresponding to the sets 
that the node is contained in.  The maximum value of the function is incurred when the 
node is contained within all four sets, so the threat level will be β.  For completeness: 
 

( )( ) 0, ( )t i i= ∉ ∪* *I I I     (23) 
 

Equations 15, 22, and 23 can be combined to create an equation for the threat of any node 
in the information hierarchy: 
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( ) max ( , ), ( , ( )) ,
N
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=
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∑ kI* I I* S    (24) 

5.8  Generalization of Framework 
 

The framework just presented could be generalized to other domains.  The type of 
attack and machine are two attributes of an attack.  Other domains may have more than 
two attributes.  Our approach will now be generalized to other domains by expanding the 
number of possible attributes.  Let K be the number of categories of attack attributes.  Let 
each category be denoted by Ck where 1 ≤ k ≤ K.  C*

(k,i) denotes the attack attribute(s) in 
the kth category of the ith attack.  Based on the C*'s, we now define J sets, each identified 
by Sj where 1 ≤ j ≤ J.  Every Sj has a corresponding λj which is the weight of the set.  The 
λj 's are defined similar to Equation 20: 
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5.9 Impact Assessment 
 

We define the impact assessment similar to  Equation 14: 
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5.10 Threat Assessment 
 

We define the threat assessment similar to Equation 24: 
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5.11 Future Extensions 
 

This approach can lead to a very large information hierarchy, thus making it unwieldy 
for large networks.  However, this information hierarchy could be created defining 
generic templates for workstations and servers and generating only a portion of the 
information hierarchy dynamically.  This will reduce the spatial complexity of our 
approach and will filter out the portions of the information hierarchy that are not being 
threatened.  We plan to implement this change soon. 
 

We also plan to modify the approach slightly to use INFERD to not only generate the 
information hierarchy, but to also assess the threat.  The impact and threat equations we 
used could be converted to INFERD’s architecture.  Another extension includes factoring 
in multiple attack tracks to analyze the threat.  If more than one attack occurs on the same 
node, the neighboring nodes should be at a higher threat since there are more avenues in 
which to compromise the data.  Finally, we plan to simulate this algorithm with realistic 
data to analyze the effectiveness of the proposed algorithm. 
 

6 Simulation Environment 
 

Information fusion is the process of associating, correlating, and combining data and 
information from single or multiple sources to estimate parameters, characteristics, and 
behaviors of a system for the purposes of analysis or decision support [4]. Figure 16 
illustrates the application of information fusion to a system. The ground truth is the actual 
status of the system. From the ground truth, a set of data or information can be sensed 
and passed to an information fusion process. The fused information is passed to a 
decision maker that may take some action on the system in attempt to change the system 
status.  
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Some of the most difficult aspects of developing information fusion methods are 

validation and evaluation. The validation and evaluation processes both require data for 
testing and experimentation. In some cases, the systems to which the information fusion 
process is to be used are readily available so direct experimentation can take place. 
However, in many applications the systems for which the information fusion processes 
are being designed do not exist, may be destructive, or may be cost prohibitive to set up. 
In these cases, simulation provides a good alternative. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 16: Information Fusion Applied to a System 
 

For example, in the context of cyber security, situational awareness and threat assessment 
tools including information fusion techniques are being developed to aid systems 
administrators in identifying and analyzing cyber attacks on computer networks [14]. 
These tools work by primarily processing alerts produced by intrusion detection systems 
(sensors) on the computer network. To test and evaluate these tools, physical computer 
networks have been set up to perform experiments from which data is collected. As an 
alternative, a simulation modeling method and software is developed to generate 
synthetic data. 
 

Simulation is often used to model systems with complex behavior and subsequently 
used as a basis for testing algorithms and methods including information fusion methods. 
For example, Lee et al. [9] and Nicol et al. [11] present simulation modeling methods for 
simulating computer network traffic at the packet level. Although simulating the flow and 
processing of packets in the computer network is possible (potentially billions of packets 
per day), only a small fraction of the packets cause alerts to be produced by the intrusion 
detection system which in turn would be used by the information fusion tools. 
Furthermore, modeling a system at this level of detail requires great amounts of time and 
effort for modeling as well as requiring large amounts of computer processing time for 
simulating “good” packets. As an alternative to modeling the details of packet flow in a 
network, this work presents a simulation model for simulating the behavior of the 
intrusion detection system by producing simulated alerts representative of malicious 
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cyber attacks and non-malicious network activity based on the user’s specification. 
Consequently, the user can efficiently construct scenarios of various computer networks 
and cyber attacks and generate the corresponding alerts. 

6.1 Problem Statement 
 

Data analysis and decision support systems, such as information fusion tools, require 
experimental situations and data to be tested during development and for qualification. In 
many domains, obtaining experimental data from physical systems could be dangerous, 
destructive, or expensive. The goal of this work is to create a simulation framework for 
generating synthetic data for the purposes of experimentation and testing.  In particular, 
the objective is to create a Cyber Attack Simulator that will take as input the network 
configuration and information about cyber attacks on a network and create data sets 
representative of alerts produced by intrusion detection systems as well as a description 
of the ground truth.  

6.2 Background and Related Work 
 

This work is based in the need for testing situational awareness tools that are being 
developed to detect and analyze attacks on computer networks. Since conducting cyber 
attack experiments on computer systems that contain critical data is very undesirable, 
several alternatives have been used. One alternative consists of setting up a physical 
computer network absent of any critical data, performing cyber attacks on the network, 
and collecting data from intrusion detection systems. A second alternative consists of 
generating synthetic data through the use of simulation.  
 

These two approaches have varying degrees of requirements, capabilities, and 
limitations. The physical computer network requires the physical machines, networking, 
and IDS components. Consequently, conducting experiments on various network 
configurations involving different machines, servers, routing systems, IDS sensors, etc. 
requires reconfiguration of the network and setting up the network to produce the desired 
network activity and cyber attacks. The advantage of using the physical network is that 
the data produced is from a real network as opposed to an abstract representation. This 
also has some disadvantages in that it is impossible to replicate the experiment exactly (if 
so desired) and the data produced is difficult to validate to ensure all desired information 
is accounted for in the ground truth. Since physical networks are not perfectly reliable, 
data can be missed, processed incorrectly, etc.  
 

The simulation approach requires knowledge of the operation of the desired network 
and its operation. This information must be captured by the simulation model to represent 
the behavior of the network. However, as discussed briefly in the introduction, the level 
of detail included in the model will depend on the goal of the simulation. In this case, the 
packet level information and computer network traffic details are not needed, so the 
simulation can be constructed at a higher level to produce alerts caused by cyber attacks 
and harmless network traffic. Once the framework of the model has been established, 
various network configurations can be efficiently created and experiments can be 
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conducted with various attack scenarios. Since the simulation experiments are controlled, 
they can be repeated exactly and all ground truth information is known.  

6.3 General Overview of the Simulation Model for Cyber Attack Data Generation 
 

A simulation model for generating cyber attack data is developed which is to be used 
for testing cyber situational awareness and analysis tools. To keep the focus on accurately 
modeling cyber attacks and the resulting alert messages, a commercial simulation 
package, ARENA, was used.  
 

The capabilities of the simulation model allow a user to construct a computer network 
consisting of machines that can be grouped in subnets though switches that are modeled 
as connectors. The subnets can be connected to form a complete network. The machines 
can also be categorized in terms of their accessibility from outside the network. In 
addition, IDS sensors can be placed on the connectors to model network IDS sensors and 
on the machines to model host based IDS sensors. Each IDS sensor produces an output 
file containing the alerts produced during the simulation run.  
 

The user can create attack scenarios that include the ability to specify a sequence of 
attack actions over a period of time. A scenario can currently consist of up to 10 attacks 
with up to 30 steps (actions) for each attack. The user can specify a constant time 
between steps in the attack, the mean time between steps in the attack, or the mean time 
for the entire attack. If the mean times are specified the resulting time is generated 
randomly form the exponential distribution during the simulation. For each attack step, 
the user can specify the attacker IP address to be one of the computers in the network or 
the simulation can generate an IP for a computer outside the network. Once the attacker 
IP is specified, the user can select a target IP from a subset of computers within the 
network with which the attacking IP can communicate. The user can then specify the 
action for each step of the attack. The 2,237 current attack actions are categorized into 5 
major groups and 23 subgroups. The user can specify a specific action; or the simulation 
will randomly sample from the actions within a group or subgroup depending on the level 
specified by the user. Also, the user can specify the probability of success of each attack 
step. The simulation will then randomly sample to determine whether the step is 
successful during the simulation run. If the attack step fails, the step will be repeated until 
success is achieved.  
 

In addition to attacks, the user can specify, the rate at which non-malicious alerts 
(noise) is generated, as well as the probability of noise alerts corresponding to each of the 
action categories.  
 

Once the scenario has been created, the information is saved in a file for future use. 
The simulation is then run, and the attack scenario is executed. The output of the 
simulation includes a file representative of the ground truth that contains the actions 
generated for each attack and the time the action occurred. In addition, an output file 
containing IDS alerts is produced for each IDS specified in the model. These files 



 

 

 

29

containing IDS alerts are intended to be used to test the situational awareness and 
analysis tools.  
  

An interface has been created to enable the user to easily interact with the simulation 
models. For additional information, please see the software user’s guide in Appendix A. 

6.4 Simulation Methodology 
 

Although the commercial simulation software, ARENA, is used to develop the 
synthetic data set generator for cyber attacks, a significant amount of customization was 
required to obtain the completed simulation tool. In this section, the general modeling 
approach is discussed with the use of standard ARENA constructs followed by a 
discussion of the customization.  

6.4.1 General Modeling Approach 
 

The general modeling approach for representing the computer network and cyber 
attacks is to model the individual cyber attacks as entities, and the locations of the 
machines within the network are modeled as stations. Figure 17 shows the model logic 
for entity creation and initialization. One entity is created at the beginning of the 
simulation to represent each attack. Each entity is assigned a unique attack identification 
number. Then the entity executes the VBA block that samples the necessary attack 
information which depends on the user specifications. The assign block following the 
VBA block is used to assign the information for the first attack step to entity attributes. 
The FindJ block is used to determine the station that corresponds to the IP address of the 
target machine in the first attack step, and the station number is assigned to an attribute. 
Then the entity is delayed until the first step in the attack is specified to start. This delay 
can be constant or can be sampled randomly from an exponential distribution depending 
on the user’s input. Finally, the entity is routed to the station corresponding to the target 
IP address for the first attack step. 
 

Create FindJ

Route

Assign Assign

Create Attacks and Assign Properties

DelayAssign

VBA

 
 

Figure 17: Simulation Model Logic for Creating Entities Representative of Cyber Attacks 
 

Figure 18 shows the generic station submodel that represents each of the machine 
locations in the computer network. When entities (attacks) are routed to the station 
module, they enter the branch block to send the entity to the next appropriate blocks for 
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processing. The first two branches route the entity to the module logic shown in Figure 
18 to print the corresponding IDS alerts. The third branch sends the entity to another 
branch block where the success of the attack step is evaluated by sampling from a 
uniform distribution on (0,1) and comparing this number with the probability of success 
specified by the user. If the step fails, the necessary attack step information is sampled 
via the VBA block, the attack information is assigned to attributes, the target IP station is 
determined, the entity is delayed, and the entity is then routed to the appropriate station 
similar to the sequence of action executed in Figure 17. If the attack step succeeds, the 
attack step number is incremented by one, and the next step in the attack is executed. This 
process is repeated until the last step in the attack is executed successfully. At this point, 
the number of completed attacks is tallied, and the entity is disposed.  
 

Station Branch
Route

Route

Branch

Dispose

Route

FindJAssign

Computer Network

Delay

Assign

AssignVBABranch

Assign

VBA

VBA

VBA

 
 

Figure 18: Generic Station Submodel Representing Network Computers 
 

Figure 19 shows the simulation model logic used to write the ground truth and IDS 
alerts to output files. The Ground Truth logic produces records in files that contain all of 
the IDS alerts that would be produced if the IDS sensors covered the entire network. The 
IDS Alerts logic produces records in files that contain only the IDS alerts that are 
produced by the IDSs which are dependent on the location of the IDS in the network.  
 

Figure 20 shows the simulation model logic for modeling the creation, execution, and 
recording of noise alerts. The occurrence rate of noise alerts are specified by the user, and 
generated via a Poisson arrival process. The VBA blocks are used to record the ground 
truth and IDS alert files. 
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Dispose
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DisposeStation

VBA

Write Ground Truth and Snort Alerts
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IDS Alerts

VBA
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.

 
 

Figure 19: Simulation Model Logic for Writing Ground Truth and IDS Alert Files 
 
  

Create
Dispose

Noise Creation

VBA

Branch

Delay Branch
VBA

.  
Figure 20: Simulation Model Logic for Producing Noise Alerts 

 

6.4.2 Customization of the Simulation Software 
 

Significant customization of the ARENA simulation software was required to model 
computer networks and cyber attacks. The reasons for the need to customize the software 
include the fact that a simulation framework was being designed where the user could 
efficiently set up a network and specify the desired attacks. One of the major aspects of 
the customization was to create a template containing icons that represented machines 
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and connectors to represent the machines and switches in computer network, 
respectively. Figure 21 shows the template that was created (see Kelton et al. 2004 for 
information on customization of ARENA). From this template, the user can drag and 
drop icons into the ARENA simulation environment to create a representation of the 
computer network. Using the connection tool in ARENA, the user can specify the 
connections of machines to connectors to model subnets and network connectivity. 
Figure 22 shows a sample computer network created using the Network template.  
 

Within the icon modules, the user can specify network information including the IP 
address of each machine, whether the machine can be accessed from an external source, 
and the user can specify whether the machine is to be monitored by a host based IDS. The 
user can also specify their own descriptive name to distinguish between machines in the 
network. Within the connector icon module, the user can specify the connectivity to 
among subnets as well as specify whether a network IDS should be turned on.   
 

In addition to the template, custom forms were created in visual basic to serve as 
input screens for the user to specify details about the attacks and noise that are to be 
simulated. Furthermore, many custom features were placed in the input menus to allow 
for ease of modeling and reuse of input parameters.  Finally, a user interface was created 
to view the output files created for the attack alert and ground truth during the simulation.  
For additional details about the user interfaces, please see the user manual in Appendix 
A. 
 

 
 

Figure 21: Network Template 
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Figure 22: Sample Computer Network Consisting of Four Subnets 

6.5 Example 
 

In this section, an example attack scenario on a computer network is presented. 
 
Attack Description 
 
The goal of this attack is to create a denial of service on a machine on the internal 
network. The network diagram is shown in Figure 23. Information is gathered about the 
external network, and then the VPN server is penetrated.  The server is then used as a 
stepping stone to reach the target machine.  The following are the steps of the attack: 
 

1. Enumeration on VPN server from outside of the network attempting to get user 
passwords.  Succeeded on first attempt.  Step was encoded. 

2. Intrusion at the user level on the VPN server from outside of network.  Succeeded 
on first attempt and attacker gained access to server.  Step was encoded. 

3. Backdoor left on the VPN server for future access if necessary.  Succeeded on 
first attempt.  Step was encoded. 

4. Reconnaissance on machine in subnet with snort sensor, specifically ICMP Ping 
from VPN server.  Succeeded on first attempt. 

5. Intrusion at the user level on machine 100.10.20.1 from VPN server.  Succeeded 
on first attempt. 



 

 

 

34

6. Denial of service enacted on 100.10.20.1 from VPN server.  Succeeded on first 
attempt.  Step was encoded. 

 
The computer network created using the Cyber Attack Simulator is shown in Figure 23. 
A summary of the network is as follows: 
 

• 1 main web-server; 
• 4 main subnet domains; 
• 3 subnet domains have further subnets attached; 
• Only one external machine; and  
• Red dots indicate snort sensor presence 
 

 
Figure 23: Sample Network 

 
Figures 24 and 25 illustrate the user interface and specifications entered for the attack. 
These specifications include the following details: 
 

• The name of the scenario is Sample Network Test; 
• Delay distribution is exponential, total time for attack is broken up between steps; 
• There are 80 noise alerts per hour on average.  96.5% of the noise is 

reconnaissance, 3% is escalation and 0.5% is miscellaneous; 
• There is one attack called Attack 1; and 
• The simulation will run for two minutes after the last attack is complete. 
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Figure 24: Scenario Specification Dialog Box for Example 
 

 
 

Figure 25: Attack Dialog Box for Example 
 

The simulation results in the output files shown in Figures 26, 27, and 28 being 
produced. The file in Figure 26 describes the attacks in a format similar to the way it was 
created.  The first three items displayed are the action group, subgroup and the specific 
action performed.  If the action was encoded, it is indicated after the action.  Next are the 
source and target IP address, followed by the probability of success. Finally, the file 
indicates whether the action succeeded or failed. 
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Figure 26: Ground Truth Actions 
 
The file in Figure 27 displays the alert messages for each action in the ground truth 
actions file including all successes and failures. 
 

 
 

Figure 27: Ground Truth Alerts 
 
The file in Figure 28 shows all alerts created by noise and attack actions which the 
SnortNetwork_1 IDS sensor would be able to detect given its location in the network. 

 

 
 

Figure 28: Alert File for IDS SnortNetwork_1 

6.6 Conclusions and Future Work 
 

The Cyber Attack Simulator presented in this paper is capable of generating IDS alert 
and ground truth files based on the specification of a computer network and attacks. The 
simulator is built with a user interface to allow the creation of various computer network 
configurations and attack actions. Although the current capabilities of the software are 
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limited to producing Snort alerts, the software is set up to easily incorporate other types 
of IDS alerts. In order to do this, a mapping of the IDS alerts (such a Dragon, etc.) to the 
attack actions is needed.  
 

There are a number of advancements and improvements that could be made to the 
current version of the simulation tool including the following: 
 
• Develop a method to enable the automatic generation of multi-stage cyber attacks 

based on network vulnerabilities; 
• Develop and integrate a probabilistic model for simulating hacker behavior including 

hacker capabilities based on the progress of the attacks, timing of attack actions, and 
deception tactics; 

• Develop a commercial quality software for the Cyber Attack Simulator including 
mechanisms for efficiently updating the simulator to incorporate new network 
hardware and software, new vulnerabilities, and new hacker behaviors; and 

• Investigate the extension of the Cyber Attack Simulator concept to other domains. 
 

7 Visualization Cyber Attacks 
 
Visualizing cyber attacks created by the INFERD engine requires a high level view and a 
low level view.  The high level view allows for situation awareness of each attack track at 
the same time.  The low level view presents specific information relative to each attack 
track and provides for impact assessment. 

7.1 Related Work: VisAlert  
 

The University of Utah has created a graphical tool, called VisAlert that periodically 
captures IDS alerts and associates them with the machines (where) and the time (when) 
the alerts happened.  This tool allows visualizing the what, when, and where of IDS alerts 
(Figure 29). 
 

    
Figure 29: VisAlert (University of Utah) 
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The “what” provided by the tool are the IDS alerts, they are shown on the outside of 
the large outer circle.  The “when” is displayed via bands inside the outer circle.  Each 
band represents a time period and contains a colored rectangle displaying the number of 
times a specific IDS alert occurred.  The “where” is the computer network displayed in 
the middle.  Lines are drawn from the inner most band to the computer network to give 
the user an idea of what alerts are occurring where. 
 

This tool is effective at presenting how often IDS alerts occur but requires the user to 
have expert knowledge on alert types.  It is almost impossible to monitor a complex cyber 
attack through pure alert level information.  When alerts are numerous, the display can 
become congested, as shown in Figure 29.  It doesn’t matter what type of information is 
placed on the “what” axis; if that entity becomes large, the display will cause confusion 
and make it difficult to provide accurate situation awareness.   

7.2  Views for Visualizing Cyber Attacks 

7.2.1  High Level View 
 

The high level is designed to allow the user to grasp how the network is performing 
as a whole based on the notion of INFERD attack track generation.  If there are numerous 
attack tracks on the network, the tool presents the user with key information without 
cluttering the display (Figure 30).  A sortable and resizable spreadsheet is used to list 
each attack track and their associated datum (ID, Depth Level, Breadth Level, Attack 
type etc).  A network graph, associated with the spreadsheet, presents a graphical view of 
each attack track and their current situation.  The graph has zooming and dragging 
capabilities.  The large gray nodes represent organizations, which are defined by the user.  
Organizations can be IP classes, office locations, or any other containment that the user 
needs to visualize their network.  Nodes extending from the organizations are the 
machines or subnets and are linked to the attack tracks contained in the spreadsheet.  
When no tracks are selected in the spreadsheet, all tracks are represented in the network 
graph by a red node.  The red node is connected to the current organization of the track.  
Located in the middle of the red node is the unique ID of its associated track. The smaller 
nodes that extend off of the organizations represent previous or predicted attacks in the 
attack tracks.    
 



 

 

 

39

 
Figure 30: High Level Overall SituationView 

 
If the user selects a single track or multiple tracks, the network graph changes its 

display to specifically represent the previous, current, and predicted situations of the 
selected track(s) (Figure 31). The small yellow nodes are the previous attacks and the 
green node is the predicted attack.  Each node has the unique ID of the track in its center.  
When a track is removed from the spreadsheet, the nodes related to it on the network 
view are also removed.  This prevents the display from becoming cluttered with nodes 
that are providing no information for the current overall situation awareness.  The 
historical information will be stored in the database of INFERD for future analysis.       
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Figure 31: High level view when an individual attack is selected 

 
The high level view is effective at providing overall situation awareness because the 

user can assess all attack tracks simultaneously.  The user knows where the current 
attacks are occurring (red node), what the current attacks are (spreadsheet), and when the 
attacks occurred (by selecting tracks in the spreadsheet). 

7.2.2 Low Level View 
 

This view provides specific information for the attack tracks.  It has four associated 
displays.  The first provides situation awareness and contains the complete history of the 
selected track(s) by showing how they have traversed the network in time and displays 
the organization, IP address, and attack type (Figure 32).  Each node in the graph contains 
this information and the colors correlate the same to the high level view (yellow = past 
attacks, red = current attacks, green = predicted attacks).  Up to four tracks can be 
compared at once.   
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Figure 32: Track History 

 
The second display contains the guidance template being used by INFERD (Figure 

33).  This display responds to selected tracks by showing how tracks have traversed the 
template.  Because the template provides a path from beginning reconnaissance stages to 
ending goals, it is helpful to know the possible paths the track can take.  

 
The third display will show impact assessment based on the work on threat 

assessment.  It will be shown as a graph that displays which type of information could be 
compromised due to a specific attack.  The fourth display will be a spreadsheet 
containing all of the alerts associated with each attack track.  This will allow an interested 
user to drill down and get a low level idea of how INFERD is classifying tracks. 
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Figure 33: Guidance Template 

7.3  Conclusion 
 

The correct visualization for INFERD has to provide a means to view the entire 
situation at once with the ability to drill down to IDS alert level information.  The two 
views introduced in this paper provide these functionalities.  The high level view allows 
for situation awareness of the entire network while the low level view permits the 
specifics of attack tracks to be compared. 
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APPENDIX A: Cyber Attack Simulator (Version 1.0): User’s Guide 
 

The Cyber Attack Simulator is designed to model cyber attacks in a computer 
network for the purposes of generating alerts produced by host-based and network 
intrusion detection systems such as Snort. The simulator is written using a commercially 
available simulation software called ARENA (version 7.0) produced by Rockwell 
Software (http://www.arenasimulation.com). This software must be installed on the 
computer to use the simulator. This User’s Guide is primarily focused on the use of the 
Cyber Attack Simulator. For additional information on the use of ARENA, please refer to 
the ARENA help menu or [8]. 
 

Software Setup 
 

Before you begin, you will need to download the files described in Table A1 to a new 
folder on your computer. A CD containing the Cyber Attack Simulator files has been 
submitted to the Air Force Research Lab - IFEA 
 

Table 2: Files Required to Use the Cyber Attack Simulator 
File Name Description 
Cyber Attack Simulator v1.doe Cyber Attack Simulator Template File 
ListofActions.txt Attack Actions User Can Select From 
SnortAlertDefs.txt Definition of Snort Alerts Mapped to Attack Actions 
SnortPriorityDefs.txt Defined Priorities of Snort Alerts 
HttpInspectDefs.txt Definition of Classified Snort http Inspect Messages 
DragonAlertDefs.txt Definition of Dragon Alerts Mapped to Attack Actions
Network.tpo ARENA Module Template File 

 
To use the software, begin by opening the template file “Cyber Attack Simulator 

v1.doe” using the ARENA simulation software. Upon opening, the ARENA window 
should display, a simulation logic diagram like the diagram displayed in Figure 34. DO 
NOT EDIT THIS LOGIC. This model logic is required for the Cyber Attack Simulator 
to function properly.   
 

On the left side of the ARENA interface are template panels that contain modules 
represented by icons. If the “Network” template is not already attached, using the mouse, 
right-click in the template area and select attach. Then browse to the location of the file 
“Network.tpo” and attach it. 
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Figure 34: Simulation Logic for the Cyber Attack Simulator 

Constructing the Computer Network 
 

To begin constructing a computer network, scroll to a blank area of the modeling 
window. Using the mouse, left click on the “Machine” or “Connector” icons in the 
“Network” template. Drag and drop the icon onto the modeling window. Once the 
machines and connectors have been added, the connector icon on the ARENA tool bar, 

, can be used to connect make connections among the machines and connectors.  
Figure 35 displays an example of a subnet consisting of a connector and two machines. 
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Figure 35: Network Example 

 
To specify the detailed information about the machines, double-click on the box labeled 
“My Machine #”. The “Machine” dialog box (Figure 36) will appear with the following 
input: 

• The “Machine Name” is used internally in the software an cannot be changed by 
the user.  

• The “Machine ID” is a user specified, descriptive name for the machine. A default 
machine ID is generated. 

• The “IP” is a user specified IP address for the network. A default IP address is 
generated. 

• “External Access”  - “Yes” specifies that the machine can be accessed from 
outside the network (e.g. the Internet); “No” specifies that the machine can only 
be accessed by machines within the network (further access limitations may be 
stipulated based on the setup of the subnets and connectors. 

• “IDS” – Check the boxes for the host-based IDSs that should be operational 
during the simulation on this machine. A separate report file will be created for 
each IDS specified.  

 

 
Figure 36: Machine Dialog Box 
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To specify the detailed information about the connectors, double-click on the box labeled 
“Connector #”. The “Connector” dialog box (Figure 37) will appear with the following 
input: 

• The “Connector Name” is used internally in the software an cannot be changed by 
the user.  

• “IDS” – Check the box for the network IDS that should be operational during the 
simulation on this connector. A separate report file will be created for each IDS 
specified.  

• “No. of Connections” is used to specify the number of connectors/subnets that 
this connector/subnet connects to. 

 

 
Figure 37: Connector Dialog Box 

 
Specifying Attacks and Running the Cyber Attack Simulator 
 

Before proceeding to the attack specifications, the user can update the starting time 
for the attacks by selecting RUN  SETUP from the ARENA menu bar and changing 
the “Start Date and Time”. 
 

To specify the attacks and run the Cyber Attack Simulator, click on the “Go” button 
in the ARENA toolbar. The “Input Type” specification dialog box (Figure 38) will 
appear.  The user can specify to use the attack specification interface to create an attack 
scenario or if a scenario has already been defined previously, the user can specify the file 
name for the scenario. Upon creating a new scenario, an input file is automatically 
created that saves all of the user input with regard to the attack scenario. The file name 
has the form “InputFile_<Name of Scenario>”. 
 

 
Figure 38: Input Type Specification Dialog Box 
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If “User Attack Scenario Creation Interface” is selected, the scenario specification 
dialog box (Figure 39) will appear. In this form you can specify the following aspects of 
the attack scenario: 
 

• “Scenario Name”  - Enter a name for the scenario, this name will be used in 
naming the files that are created when the simulator is run. 

• “Delay Distribution” – Select whether the delay times between steps in the attack 
should be user specified constants or if the delay time should be sampled from an 
exponential distribution with a user specified mean value. 

• “Delay Method” – Select whether the user will specify the average total time for 
the attack or if the user would like to specify the average delay time between each 
attack step. 

• “Noise” – Specify the rate that noise alerts should generated during the 
simulation. By default, 100% of the alerts will be generated from the 
Reconnaissance category of attack actions. The user can specify by checking the 
box associated with the categories of noise alerts to generate. Then the user can 
specify the percentage of alerts of each category. These noise alerts will be 
randomly generated. 

• “Attacks”  - The user can add, edit, or delete any of the attacks in the list. If “Add 
Attack” is selected the attack specification dialog box (Figure A7) appears (see 
below). Also the user can specify the average length of time the simulation should 
run after the last attack has ended.  

 

 
Figure 39: Scenario Specification Dialog Box 
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To specify the details of the attack, when the “Attack Specifications” dialog box 
(Figure 40) appears, the following information can be specified: 

• “Attack Name” – Enter a descriptive name for the attack 
• “How many steps would you like for this attack?” – Enter the number of steps in 

the attack and click “Reset Form”. The form will display a multiform with one tab 
for each attack step. 

• For each step, the user can specify the following information for the attack: 
o “Source IP” – Select the attacking machine IP address or External from 

the drop-down menu. If “External” a random IP address for a computer 
outside the network will be generated. 

o “Target IP” – Select an IP for the target machine for this step of the attack 
from the drop-down menu. This list will be limited to the computer with 
which the “Source IP” can communicate. 

o “Probability of Success”  - Specify the probability that this attack step will 
be successful. If a value strictly between 0 and 1 is specified, the success 
of the step will be determined randomly and the step will be repeated until 
it is successful. If 0 or 1 is specified, the step will be executed only once. 

o “Encode This Step?” – Specify whether the action for this step has been 
encoded by the user. 

o “Action” – Select a group from which an action should be selected. Then 
click “Update Subgroups”. At this point, the user can specify a subgroup. 
If no subgroup is selected, the action will be generated randomly from the 
group specified. If a subgroup is selected, click “Update Actions”. At this 
point, the user can specify an action for this step. If no action is selected, 
the action will be generated randomly for the subgroup specied. 

o If the user specified, “Input Specific Delays Between Steps of the Attacks” 
in the scenario specification dialog box, a box will appear on the tab for 
each attack step where the user can specify the average time until the next 
step of the attack. If not, a box specifying the average total time for the 
attack will appear on the tab for Step 1 of the attack. 

• “Delay This Attack By” – Specify the average amount of time the start of the 
attack should be delayed from the beginning of the simulation. 
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Figure 40: Attack Specification Dialog Box 

Simulation Output 
 
After entering the all of the information about the attack scenario, click “Run Simulation” 
on the Scenario Specification dialog box. When the simulation is complete, a dialog box 
(Figure 41) will appear listing the simulation output files. From this dialog box, the 
output files can be viewed, the file names can be edited, or the files can be deleted.  
Unless the files are deleted, they will be saved in a folder with the name of the scenario. 
 

 
Figure 41: Output File Dialog Box 

 


