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1. Introduction 

The use of advanced lightweight materials to improve combat survivability has been of crucial 
interest to the U.S. Army for a number of years.  Specifically, hybrid organic/inorganic polymer 
matrix nanocomposites show promise in providing many of the physical properties required (i.e., 
lightweight structure, rugged abrasion resistance, and high ballistic impact strength).  However, 
as with any polymer system, these materials are susceptible to degradation over time when 
exposed to various environmental (i.e., sunlight, moisture, temperature, etc.) conditions.  This 
structural degradation (1–4) will eventually comprise the original integrity of the materials’ 
desired properties. 

Polycarbonate (PC) has outstanding ballistic impact strength, good optical clarity, and high  
heat-distortion resistance.  The Army has a continuous interest in research on PC for better 
chemical resistance and enhanced resistance to abrasion.  The focus of our research is to exploit 
nanotechnology through incorporation of layered silicates for property enhancement.  Typical 
mica-like clays consist of stacked platelets with the thickness of each individual platelet on the 
order of 1 nm (5). 

In this study, the effect of accelerated weathering upon newly developed PC-layered silicate 
nanocomposite materials was investigated.  The silicate loading varied from 0–3.5% by weight.  
A fluorescent ultraviolet (UV)/condensation weatherometer was selected for the exposure study.  
The materials were characterized by UV/Visible (VIS) spectroscopy and FTIR spectroscopy. 

2. Technical Background 

Polymer layered-silicate (PLS) nanocomposites are an emerging class of polymer-ceramic 
hybrids with an engineered nanostructure controlled through the manipulation of interactions 
between the silicate and the organic species.  Due to synergism between the polymer and ceramic 
phases, these materials exhibit an astounding combination of properties, which include enhanced 
mechanical performance, flame resistance, barrier properties, solvent resistance, and thermal 
stability in comparison to conventional filled polymers (5–8).  By virtue of their primarily 
polymeric nature, these materials also exhibit ultra-lightweight, processability, and low cost.  
Futhermore, due to the unique physical characteristics of the dispersed silicate reinforcement 
particles, it is possible to achieve property enhancements while retaining transparency in the 
polymer-ceramic hybrids.  Preliminary studies have indicated that PLS nanocomposites have 
potential in applications such as ablative materials (9) and transparent coatings, but exploitation 
in military systems is still in its infancy. 
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PLS nanocomposites are characterized by a molecular dispersion of polymeric molecules and 
high aspect ratio silicate platelets.  The key to achieving synergistic property enhancements is in 
the proper design and tailoring of the nanostructure.  If the organic species fully penetrates the 
galleries, swelling the structure without causing loss of registry between the layers, the system is 
referred to as an intercalated PLS nanocomposite.  If the penetration of the organic results in a 
disruption of the registry between the silicate layers and dispersion of the silicate platelets within 
the polymer matrix, the system is referred to as an exfoliated PLS nanocomposite.  The potential 
morphologies are illustrated in figure 1.  The formation of intercalated and exfoliated structures 
may be achieved by control of thermodynamic interactions between the organic modifiers used 
to control silicate surface chemistry within the galleries and the matrix. 

 
 

Exfoliation 
Intercalation 

Phase  
Separation Modification 

 

Figure 1.  Schematic of polycarbonate/clay nanocomposite structure. 

 

3. Experimental 

3.1 Materials 

PC nanocomposites used in this study were prepared through a small business innovative 
research program funded to Triton Systems, Inc., by the Army.  The clays were incorporated into 
the polymer by using a twin-screw extruder at about 290 °C.  Then, these nanocomposite 
compounds were compression molded into sheet at 290 °C.  The PC structure can be found in 
figure 2.
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Figure 2.  Polycarbonate structure. 

3.2 Weathering 

The specimens were weathered using accelerated weathering Q-UV testers (Q-Panel Laboratory 
Products, Cleveland, OH) conforming to the requirements as set forth in ASTM G 53 (10).  The 
exposure cycle was established at 8 hr of UV radiation at 60 °C followed by 4 hr of dark 
condensation at 40 °C.  The testers were equipped UV lamps emitting a spectral irradiance of 
0.77 W/m2 at 340 nm.  The lamp output was checked and calibrated after every 40 hr of 
operation.  The study was conducted following an interval time schedule, with the exposure 
durations set for ~500, 750, and 1000 hr.  After each exposure interval, the samples were wiped 
clean before spectroscopic analysis. 

3.3 Spectroscopic Measurements 

Infrared measurements were recorded on a Nicolet model 560 Magna FTIR.  Spectra consisted 
of 64 coadded scans with a resolution of 4 cm–1.  An Analect attenuated total reflectance 
accessory equipped with a 45° KRS-5 crystal was used as the sampling accessory.  The UV/VIS 
spectra were recorded using a Cary 5G UV/VIS/near-infrared (NIR) spectrometer set to scan in 
the 190–2500 nm range.  A holminium oxide-glass filter was used to calibrate the instrument. 

4. Results and Discussion 

Figure 3 shows the 380–500 nm portion of the UV/VIS spectrum for the exposed PC plastic.  
The unexposed or “control” sample is shown in the bottom spectra for comparison.  As 
displayed, it is quite apparent that as the material is “aged,” there is a corresponding increase in 
the UV/VIS absorbance.  Overall band broadening and intensity changes between 400 and  
430 nm can clearly be observed.  These spectral differences represent the changes in the 
appearance (yellowing) of the material, over time, as it photochemically degrades under the 
accelerated exposure conditions. 
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420 nm 

 

Figure 3.  Polycarbonate UV/VIS absorption spectra for the various Q-UV exposure intervals.  
Control = 0 hr.  Advanced exposure time is represented by the upper curves. 

Figure 4 graphically represents the changes in the UV/VIS spectra at 420 nm over exposure time.  
These data are generated from figure 3.  The 420-nm wavelength corresponds to the yellow part 
of the visible spectrum.  A trend toward yellowing can be detected upon UV exposure of the PC.  
In the control specimen, no appreciable yellowing is observed until ~1000 hr have passed.  Both 
silicate-filled specimens show identical behavior; in fact, the rate of yellowing can be 
superimposed upon one another.  In each of the filled specimens, a much faster rate of 
degradation is observed when compared to the control specimen.  In addition to the increased 
rate of weathering, the final absorbance values for the silicate filled samples are larger.  The 
control shows a leveling off at ~0.64-abs units, while the control sample level off at 0.30-abs 
units.  This would suggest that the filled specimens degrade to a much larger overall extent. 
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Figure 4.  Absorbance of 420-nm band intensity with exposure time for silicate filled and 
unfilled polycarbonate. 
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The faster weathering rates of the filled PLS are most likely due to coloring effect of the clay 
particles.  The darker clay particles have a tendency to absorb more UV radiation, likely 
producing an abundance of free radicals that apparently serve to initiate chain scission reactions.  
The net effect is that a more dramatic effect in the photolytic reaction rate. 

In an attempt to determine if any changes to the chemical structure were occurring during the 
weathering cycles of these PCs, FTIR experiments were performed.  FTIR allows one to follow 
changes occurring in the structure of the polymer. 

The FTIR spectra for the unexposed PC PLS with 2.5% clay and after 750 hr of exposure are 
shown in figure 5.  The bottom spectrum is the unexposed material and the upper curves 
represent the PC after 500, 1000, and 1500 hr of exposure.  Changes in the infrared spectra can 
be seen at 1766 cm–1 and 1222 cm–1.  These absorbances relate to infrared bands in the C=O and 
a C-O regions of the spectra, respectfully.  These losses are believed to be due to scission of the 
carbonate linkages.  Additionally, several new, broad absorbance bands appear.  The two most 
significant are at 1713 cm–1, and at 1101 cm–1 that represents a new carbonyl C=O functional 
group and a new C-O.  This corresponds to the formation of by-products as a result of the chain 
cleavage. 

0 Hr 

500 Hr 

1000 Hr 

1500 Hr 

1766 cm-1

1722 cm-1

 

Figure 5.  FTIR spectra for polycarbonate nanocomposite – Q-UV exposure times of 0, 500, 
1000, and 1500 hr. 

One suggested mechanism for the structural changes observed in the FTIR spectra is shown in 
figure 6.  In this mechanism, the UV photon is preferentially absorbed by the “impurity.”  This 
would be the silicate filler.  A free radical is then formed to initiate a rearrangement followed by 
a chain cleavage reaction.  This mechanism appears valid for the PC resin under investigation. 
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Figure 6.  Proposed mechanism for photolytic degradation of polycarbonate resins. 

Figure 7 demonstrates that a correlation exists between the monitored changes in the physical 
discoloration (i.e., increased yellowness) and the chemical structure (i.e., decreased carbonyl 
intensity) for these materials.  It is important to remember that this correlation is valid for this 
specific polycarbonate aged under the accelerated weathering conditions previously outlined.  
Figure 7 shows that there is an excellent correlation between the monitored changes in the 
physical (i.e., increased yellowness) vs. the chemical (i.e., decreased carbonyl intensity) 
properties for this material. 
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Figure 7.  Relationship between UV yellowing and breakdown of carbonate 
linkages.
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5. Conclusions 

The effect of accelerated weathering upon an unmodified PC resin and PC nanocomposites 
developed for transparent armor applications was studied.  The spectroscopic data show clear 
evidence that the both filled and unfilled polymer resins undergo a chain scission reaction where 
the carbonate structural linkages rupture when exposed to UV radiation.  These UV radiation 
conditions are similar to that found in natural sunlight.  A significant amount of yellowing was 
observed in both the standard PC as well as the PC nanocomposites during the exposure.  In our 
experiments, it was determined that the PC nanocomposites demonstrated a much faster rate of 
yellowing than the PC control specimen.  Furthermore, a reasonable correlation was established 
between the carbonate scissions and the increase in the material’s yellowing.  This correlation 
could be used as a predicative parameter in material selection for other transparent armor items 
(i.e., goggles, visors, windshields, etc.) where optical clarity is crucial. 
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