

AFRL-IF-RS-TR-2005-353
Final Technical Report
October 2005

INTEGRATION INTO CYBER SECURITY
MANAGEMENT SYSTEM

Northrop Grumman Mission Systems

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-353 has been reviewed and is approved for publication

APPROVED: /s/

BRIAN T. SPINK
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
OCTOBER 2005

3. REPORT TYPE AND DATES COVERED
Final May 04 – May 05

4. TITLE AND SUBTITLE
INTEGRATION INTO CYBER SECURITY MANAGEMENT SYSTEM

6. AUTHOR(S)
Tom Daley

5. FUNDING NUMBERS
C - F30602-03-D-0026/0017
PE - 33140F
PR - WISE
TA - QP
WU - 17

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Northrop Grumman Mission Systems
Beeches Technical Campus
Route 26 North
Rome New York 13440

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGA
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-353

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Brian T. Spink/IFGA/(315) 330-7596/ Brian.Spink@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The purpose of this task was to integrate technology developed as part of the World Infrastructure Security Environment
(WISE) program by Orincon Information Assurance into the Air Force Research Laboratory (AFRL) Cyber Security
Management System (CSMS). The intended capabilities of WISE are to monitor host activity in real-time, alert analysts
about information attacks utilizing a cost-benefit model, and recommend information-based countermeasures. Collection
of WISE data into CSMS would enable quicker and more accurate response to threats against enterprise networks.
However, at the time that this system integration work was performed, WISE and CSMS were not available. Therefore,
since Orincon’s Distributed Agent Information Watch (DAIWatch) is the precursor to WISE and AFRL’s Air Force
Enterprise Defense system (AFED) is the forerunner to CSMS, it was decided to enhance the method of data transfer
from DAIWatch to AFED, which, at some future point in time, could be adapted for use by the WISE and CSMS
programs, with a modicum of effort.

15. NUMBER OF PAGES
31

14. SUBJECT TERMS
DAIWatch, eXtensible Markup Language, XML, Transmission Control Protocol/Internet
Control Protocol, TCP/IP 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

SUMMARY..1
1. INTRODUCTION..3
2. METHODS, ASSUMPTIONS, AND PROCEDURES..5
3. RESULTS AND DISCUSSION ..7
4. LESSONS LEARNED ...9
5. CONCLUSIONS ..10
6. RECOMMENDATIONS...11
APPENDIX A - INSTALLATION AND MAINTENANCE GUIDE..12
APPENDIX B - SOFTWARE USER’S MANUAL...16

1

SUMMARY

A Java and XML-based interface was developed which provides the means for integration of
host Intrusion Detection System (IDS) events from the Oracle database of the Distributed Agent
Information Watch (DAIWatch) into the Oracle database populated by the Air Force Enterprise
Defense system (AFED).

The data is sent from one system to another over a Transmission Control Protocol / Internet
Protocol (TCP/IP) socket in the form of eXtensible Markup Language (XML) objects that
conform to the Internet Engineering Task Force (IETF) Intrusion Detection Message Exchange
Format (IDMEF). Security of the data transmission is assured by a Java Cryptography Extension
(JCE) implementation of the triple Data Encryption Standard (DES) process.

Files in W3C XML Document Object Model (DOM) format are transformed into IDMEF XML
objects, and vice-versa, via specific eXtensible Style Language (XSL) files and are validated
against specific Document Type Definition (DTD) files. HIDS events are passed between the
interface and database, using Java Database Connectivity (JDBC), Structured Query Language
(SQL) statements and the Oracle XML SQL Utility (XSU) Application Programming Interface
(API).

The purpose of this task was to integrate technology developed as part of the World
Infrastructure Security Environment (WISE) program by Orincon Information Assurance into the
Air Force Research Laboratory (AFRL) Cyber Security Management System (CSMS). The
intended capabilities of WISE are to monitor host activity in real-time, alert analysts about
information attacks utilizing a cost-benefit model, and recommend information-based
countermeasures. Collection of WISE data into CSMS would enable quicker and more accurate
response to threats against enterprise networks. However, at the time that this system integration
work was performed, WISE and CSMS were not available. Therefore, since Orincon’s
DAIWatch is the precursor to WISE and AFRL’s AFED is the forerunner to CSMS, it was
decided to enhance the existing method of data transfer from DAIWatch to AFED, which, at
some future point in time, could be adapted for use by the WISE and CSMS programs, with a
modicum of effort.

During the early stages of a previous related development task, the foundation and framework of
the design of an interface between DAIWatch and AFED was verbalized in meetings and
through email correspondence between representatives of AFRL, Orincon, and Northrop
Grumman. This initial design was later written into a draft version of an overview Interface
Design Document (IDD), by Orincon. Non-applicable functionality was stripped out of the
previous task’s source code, to produce a stream-lined interface that transmits DAIWatch event
data to AFED, on a periodic basis.

The design approach taken by the sole interface developer was one of getting a code module to
perform a specific function, modify it and tweak it, then add more pieces of code in order to
handle additional functionality. Since both DAIWatch and AFED have Oracle databases and the
interface code was slated to be Java-based; it made sense to the interface developer to use Oracle
XML APIs for Java.

2

Utilization of XSL and DTD files, by the interface, allows for minimal source code updates,
when database tables and fields are modified or a new IDMEF version is issued, thereby
reducing the need for re-compilation. Also, implementing the XML-based IDMEF as the
common data transmission medium allows for inter-operation with other IDMEF-compliant
systems and provides for an easier transition into compatibility with XML databases. Most
importantly, the aggregate of the DAIWatch data integrated with the AFED data can be
correlated and consolidated to reduce the information overload of network security personnel.

 3

1. INTRODUCTION

Information Warfare (IW) attacks against complex distributed information systems have been
increasing steadily over the last several years. These hostile actions have become possible as a
result of evolving networks environments: advances in hardware, software, and communications
technology; as well as high accessibility to these environments and their technologies. However,
it has always remained imperative that system users can access and obtain information as needed
and that the information remains free from corruption and theft. To maintain user confidence in
this information, continuing upgrade and development has been necessary to ensure the integrity
and availability of information that resides on and is transmitted among these systems. Such
resulting technology integrates network security, adaptability, and survivability into existing and
evolving architectures and systems at minimal impact to system performance.

Deployed Department of Defense (DOD) systems are increasingly complex aggregates of
systems, networks, and infrastructure. Likewise, the DOD is increasing its dependence on
Information Technology (IT) in all aspects of its operations. It is also holding down costs by
relying on Government-Off-The-Shelf (GOTS) and Commercial-Off-The-Shelf (COTS)
products and services. These two key trends result in increased dependencies on operational
items the DOD does not own or develop which introduces additional vulnerabilities and risk to
programs it cannot control.

The Automated Intrusion Detection Environment (AIDE) Advanced Concepts Technology
Demonstration (ACTD) has developed a solution using current and maturing IW technology and
has developed a multi-tiered integration environment. This solution combined current IW
technology in an improved architecture for automated threat detection. Current capabilities
include: correlation and user display of sensor data over regions of deployed systems at local
agency, Commander-In-Chief (CINC), and global command levels. The automated warning
capability of the IW threat would then be available to not only the war fighter, but also the joint
commander of DOD operations, as well as Law Enforcement, Operations and Intelligence.
AFED builds on AIDE’s core intrusion detection capability and adds security policy
enforcement, network configuration management, and vulnerability assessment capabilities.
AFED is an integral piece of the IDS portion of the perimeter defense component of the AFRL
Cyber Security Management System.

DAIWatch is a program supported by AFRL that applies distributed intelligent software agents
to create mobile distributed intrusion detection and response systems to protect against
sophisticated information attacks. The intelligent software agents perform tasks assigned to them
to achieve specified goals. Intelligent agents are capable of modifying their behavior as dictated
by roles assigned to them in performing a given task. These agents can also communicate with
other agents to form communities of cooperating agents. Intelligent agents can be made mobile,
resulting in distributed communities of intelligent agents to solve a given problem. This
distributed intelligent agent construct employs automated reasoning technologies distributed over
computer networks locally or around the world. The intelligent agents can analyze message
context for network traffic, fuse diverse inputs, resolve conflicting information, detect

 4

coordinated distributed assaults, and adapt to new types of network incursions. The agents can
also provide information that determines when there is normal traffic that is triggering sensors,
which can help reduce the numerous false positives from these sensors.

WISE is a program supported by AFRL that attempts to protect resources by verification of the
integrity of transactions within the global infrastructure. Current systems attempt to provide
security by building “barriers” and monitoring the characteristics of network traffic which
actually prohibit transactions and limit interaction. WISE facilitates global interaction by
individually verifying all transactions at several levels. Only valid transactions are allowed.
WISE relies on advances in several technology areas including context interactive intelligent
sensors and intelligent context recognition (both of which are inherited from DAIWatch),
biometrics and participant recognition, fusion, transaction meta-data, data mining and decision
support, dynamic integration and control systems and secure network technologies that allow
independent collection, monitoring, and response management at the single transaction level.

One intention of Task 17 is for the intelligent agent software technology, developed as a part of
DAIWatch, to be integrated into AFED. This effort includes receiving data in AFED from either
DAIWatch agents independently, from a central management council, or from the systems
database depending on the technical and architectural requirements. Therefore, the main purpose
of this task is to create an interface between DAIWatch and AFED. This interface should allow
collaboration of specified event data, such as intelligent agent data and IDS data. AFED should
be able to query the DAIWatch database and insert the data into its database. The aggregate of
this data could be correlated and consolidated to reduce the information overload to network
security personnel.

The remaining body of this report will be portioned into four major sections. The first section
will be titled Methods, Assumptions, and Procedures, which will describe the design criteria and
development measures that were used in creating an interface between DAIWatch and AFED.
Results and Discussion will be the subject of the second section. Within this section, the author
will document all technical work accomplished and information gained, including processes
developed, pertinent observations made, nature of problems seen, positive and negative results
noted and lessons learned. Conclusions will be presented in the third section. At this point in the
report, substantial findings from the second section will be interpreted regarding their
implications, complete with the author’s opinion. The fourth major section of the report body
will be titled Recommendations. Here, a course of action for the intended audience - the
customer and other representatives of applicable government agencies, will be presented, by
identifying potential transition opportunities and vehicles. This final section also may include
additional areas for study and alternate design approaches.

 5

2. METHODS, ASSUMPTIONS, AND PROCEDURES

During the early stages of a previous related development task, the foundation and framework of
the design of an interface between DAIWatch and AFED was verbalized in meetings and
through email correspondence. The main individuals participating in these communications were
representatives from Orincon, the developer of DAIWatch; Northrop Grumman, the prime
contractor for the development of AIDE; and AFRL, the government customer. The initial high-
level design-by-consensus was later written into a draft version of an overview Interface Design
Document (IDD), by Orincon. From these meetings and emails and the IDD, the following
components of the interface design were chosen for implementation. It was decided that the
interface be developed using Java, since that is the language which currently is making the most
advances with XML, and because of code portability and reusability. Instead of just having
DAIWatch feed AFED, as stated in the Statement of Work (SOW), it was decided that the
exchange of data be bi-directional over a TCP/IP socket, with DAIWatch being the server. As
stated in the IDD, the IDS data would be exchanged, as the specified events occur, using a
common message format, IDMEF, which is XML-based. It was also decided that since the
IDMEF model includes a provision for a heartbeat message, this message should be sent from
AFED to DAIWatch. In addition to transmission of data due to event detection, it was decided
that a means of performing queries, with multiple optional parameters, on another system’s data,
should be implemented using a newly-defined XML-formatted request message, designed by
Orincon. In regard to data message security, the consensus was that JCE triple-DES encryption
would be an adequate implementation in Java, for the interface.

However, for this task, many of the capabilities stated in the previous paragraph were not
required by the Task 17 SOW. Therefore, the non-applicable functionality was stripped out of
the previous task’s source code, to essentially produce a stream-lined unidirectional interface that
transmits every new DAIWatch event table record in IDMEF XML format to AFED, on a
periodic basis. Some new code was added and changes were made, as needed, during this task,
such as: increasing the size of the IDMEF object socket, limiting the number of DAIWatch event
records returned per query, creation of a DAIWatch destination IP address lookup table, and
generation of a DAIWatch heartbeat, in order to increase the performance of the data throughput
and to supply additional, but critical, data points to AFED.

The design approach taken by the sole interface developer was one of researching on the internet
and in books for code to perform a specific function, modify it and tweak it, then add more code
modules in order to handle additional functionality. Thus, there was much trial-and-error coding
and testing during development. Since both of the DAIWatch and AFED systems have Oracle
databases; it made sense to the interface developer to use APIs such as the Oracle XML SQL
Utility for Java, Oracle XML Parser for Java and XSLT Processor, and the Oracle XML Class
Generator for Java. No effort was made to research or use generic APIs which could be used
with other databases. DOM Parser APIs were used instead of the Simple API for XML (SAX)
version because the Oracle XML Parser for Java documentation guidelines stated that the DOM
is recommended for performing (XSL) transformations, even though the DOM consumes a lot of
memory for large XML documents. In addition, most of the parsing and transforming examples

 6

in the documentation used DOM, which made the decision to use those APIs easier. At the time
of development, Sun Microsystems’s Java API for XML Processing (JAXP) was not supported
by the Oracle XML Parser for Java, therefore, that technology was not used. Another Sun
package, called Java API for XML Binding (JAXB), was not used since the Oracle XML Class
Generator APIs performed what was needed.

See the Appendix for information regarding the Development Environment and Test Bed Setup.

 7

3. RESULTS AND DISCUSSION

The end result of this task is a Java and XML-based interface which provides the means for
integration of host IDS events from the Oracle database of DAIWatch into the Oracle database
populated by AFED. The data is sent from one system to another over a TCP/IP socket in XML
objects that conform to the IETF Working Group IDMEF. Security of the data transmission is
assured by a JCE implementation of the triple-DES process. Events are selected into the interface
from a database, through JDBC, using SQL statements as inputs to the Oracle XSU API. The
DAIWatch database is queried on a pre-set periodic basis for every new event record that has
been stored since the last query was performed. The resultant sets of database records are stored
in W3C XML DOM format, and then transformed into IDMEF XML objects via specific XSL
files. Proper structure and content of the transformed XML files is validated against specific
DTD files. The maximum event identifier from the query resultant set is extracted and stored on
the hard drive for subsequent query reference. After the IDMEF XML objects are serialized and
encrypted, they are sent across the socket to the other system, where the entire process is
performed in reverse. The objects are decrypted, unserialized, validated against a DTD,
transformed via XSL into the current system’s database table schema, DTD-validated again, and
then SQL-inserted into the database, via an Oracle XSU API.

See the Operation Details section of the Appendix for a step-by-step, in-depth description of the
entire IDS data exchange process.

The sole developer, at AFRL, on this project, attempted to implement the design of an interface
between WISE and CSMS, as closely as possible to the intent of the Task 17 SOW. However, at
the time that this system integration work was performed, WISE and CSMS were not available.
Therefore, since DAIWatch is the precursor to WISE and AFED is the forerunner to CSMS, it
was decided to enhance the method of data transfer from DAIWatch to AFED, which, at some
future point in time, could be adapted for use by the WISE and CSMS programs, with a
modicum of effort. Other than that major discrepancy, the task objective was met, with just a
couple of minor variations.

One minor issue is that AFED was programmed to be the socket server in the actual interface,
instead of DAIWatch. There is no good reason that AFED must be the socket server, instead of
DAIWatch, other than the fact that development of the interface began with the socket server and
client both being on an AIDE box. However, according to the client/server concept, DAIWatch
should be the server, since the purpose of the interface is for DAIWatch to serve data to AFED,
which by definition would make AFED the client. On the other hand, an important point to bring
to light here, is that the interface is currently coded in a manner that the server socket must be
started first. Therefore, this condition could affect a site’s preferred startup sequence of its
systems.

Another minor issue related to insertion of data from one system’s database into another
systems’ database, that has not been addressed, is that of the DAIWatch NTA_Alert table, which
records the network IDS data observed by the four possible sensors: RealSecure, NFR, Snort,

 8

and Cybercop. IDS event data currently flows only from the DAIWatch Event table to the AFED
Event table. During the development phase of this task, there were no records available in the
NTA_Alert table of the database of the DAIWatch machine, on which to test. Therefore, by
default, all of the records stored in the DAIWatch Event table, during the testing phase of this
task, are host IDS events. Unfortunately, there were no DAIWatch agents assigned to monitor
any of the possible network sensors, in order to populate the NTA_Alert table. Therefore, there
was no code created by the interface developer, to transfer network-based IDS events from
DAIWatch to AFED. On July 2, 2003, a chart was received from Orincon that maps the data
between the AIDE Event table and various DAIWatch tables. This data map chart states that the
DAIWatch Event table has a one-to-many relationship with the DAIWatch NTA_Alert table,
with the Event_ID field of the NTA_Alert table being a foreign key to the Event_ID field of the
Event table. There are only three fields from the DAIWatch Event table that map directly to the
AIDE Event table. On the other hand, there are 11 fields from the DAIWatch NTA_Alert table
which map directly to the AIDE Event table. Apparently, the DAIWatch Event table provides a
Machine (or Destname), Event_Type (or Signature) and Description for both host-based and
network-based events, while the NTA_Alert table provides additional information only for
network-based events, which have been observed by as many as four different sensors. This
being so, leads to quite the complex and intricate coding situation for future development.

There were no performance metrics measured, per se; however, the interface was run over the
weekend. All of the new event records appearing in the DAIWatch database had been
transmitted to AFED and also appeared in its database, successfully. Although Java has a
reputation of being slow, as compared to C and C++, it seems to be able to handle the low
volume of data exchanges that were run during this weekend test and that are anticipated to be
seen during actual usage. However, a couple of times during the initial phases of operation of the
interface, the processing doesn’t just slow down, it actually comes to a stop. The first time that
the encryption method is called upon in the program to read the hard-coded secret key, there is a
delay of up to 10 seconds due to the many security checks performed by the JCE. Once again,
this delay occurs at the beginning stages of data exchange, just after startup, and therefore should
not be an issue. Another time, the program stopped when a lack of memory error occurred during
transfer of a very large IDMEF XML object containing multiple DAIWatch event records across
the socket connection. This error condition was eliminated by limiting the number of records
returned per query to 512 and by increasing the frequency of transactions from once every 5
minutes to every 30 seconds. Both of these parameters can be adjusted and set by the user in a
configuration (properties) file, prior to interface startup.

 9

4. LESSONS LEARNED

1) Using XML/XSL/DTD does not entirely prevent one from having to modify source code
and re-compile when database changes are made. This is true because, if the XML
element tag which is being searched for by the source code changes, then the source code
must be updated, also.

2) Since this interface only deals with the exchange of database records between two
databases, the server and client components of the interface are not bound to run on the
same machines of either database, because of the capability of JDBC with remote login.

3) A majority of the source code is the same for both the server and client components of
the interface. The only difference is the TCPServer and TCPClient modules, which
contain the socket server and socket client code, respectively. The use of Java property
files, functioning as configuration files, enabled the assignment of unique values at
startup, which allows the source code to be generic.

 10

5. CONCLUSIONS

Since WISE and CSMS were not available during performance of this task, and since Orincon
did not have the time or manpower to create WISE or DAIWatch agents for AFED, this interface
is essentially only half done. Therefore, one could label this interface as just a DAIWatch sensor
tap for AFED. Taking this line of thinking even further, one could state that this interface is
relegated to being a tap for host-based events only, since it has not been tested with any network-
based sensor data from the DAIWatch database.

Even though the interface is essentially only half operational, it still demonstrates the versatility
and power of the XML, XSL and DTD files that are built into it. Not only are two databases with
different schemas allowed to exchange data without utilizing complex hard-coded conversion
routines, the interface code also allows for minimal source code updates, when database tables
and fields are modified or a new IDMEF version is issued, thereby reducing the need for re-
compilation.

It is the author’s opinion that if WISE and CSMS had been made available during this task, it
would have been very interesting and beneficial to see the advanced technology capabilities of
WISE to be integrated into an all-encompassing information protection concept, such as CSMS.
Most importantly, since DAIWatch is the precursor to WISE and AFED is the forerunner to
CSMS, this robust Java/XML interface between DAIWatch and AFED will provide a good
foundation for the possibility of WISE integration into CSMS, in the future.

 11

6. RECOMMENDATIONS

Listed below are recommendations for the enhancement of the current design.

- Create DAIWatch agents for AFED, with assistance from Orincon.

- Modify code to allow either the client or server to be started first. Currently, the server
must be started first.

- Develop code to allow selection of Network IDS data from the DAIWatch NTA_Alert
table into the AFED Event table.

- Upgrade all XML DTD files into XML Schema files.

- Upgrade GUIs to use Swing components, which are independent of the X-window server,
instead of just AWT components, which are dependent.

- Incorporate Sun JAXP APIs into code to allow other XML parsers to be used, instead of
just Oracle’s, in case other databases are used.

- Incorporate more Oracle JAXB APIs into code to reduce/replace dependencies on
org.w3c.dom Node method calls; if possible.

- Research the use of SAX vs. DOM to parse XML documents, to lessen memory usage.

- Develop makefiles to enable creation of classes.jar on a Windows OS box.

Listed below are recommendations for alternate designs.

- Create additional code for AFED that will programmatically send requests to DAIWatch
in order to complete missing segments of a correlation scenario.

- Change tables in the conventional relational Oracle databases of AFED and DAIWatch to
contain IDMEF elements in combination with an upgrade to Oracle XML DB, which
provides specialized (hierarchical) indexing in order to support improved access to XML
data.

As stated previously in this report, since DAIWatch is the precursor to WISE and AFED is the
forerunner to CSMS, this robust Java/XML interface between DAIWatch and AFED will
provide a potential transition opportunity and vehicle for the possibility of WISE integration into
CSMS, in the future.

 12

APPENDIX A - INSTALLATION AND MAINTENANCE GUIDE

UNIX Source and Binaries

Host: Rock
Operating System: Solaris 5.8
Java: j2sdk-1_4_1_02-solaris-sparc.sh from http://java.sun.com/j2se/downloads.html
 installed in /usr directory

 java: /usr/j2sdk1.4.1_02/jre/bin/java with link to /bin/java
 javac: /usr/j2sdk1.4.1_02/bin/javac with link to /bin/javac
 jar: /usr/j2sdk1.4.1_02/bin/jar with link to /bin/jar

Oracle Database: /oracle/product/server/9i - Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production
Oracle Database: (Host: TryIt) - Oracle9i Enterprise Edition Release 9.0.1.0.0 - Production

OracleXDKforJava: xdk_java_9_2_0_5_0.tar.gz from
 http://otn.oracle.com/software/tech/xml/xdk_java/index.html
 saved in /oracle/product/server/9i directory, extracted from ./lib directory only

 classgen.jar, xdb.jar, xmlparserv2.jar, and xsu12.jar moved to
 …/Task_17/shared/Oracle_XDK_92050_lib/ directory

Oracle JDBC: classes12.zip from http://otn.oracle.com/software/tech/java/sqlj_jdbc/index.html
 saved in …/Task_17/shared/Oracle_JDBC_9203/ directory

IDMEF DTD: idmef-message.dtd from http://www.ietf.org/html.charters/idwg-charter.html
 saved in …/Task_17/shared/ directory

Integration Code: …/Task_17/server/AFED/ directory
 AFED-event-table.dtd , AFED-sensor-table.dtd, database_props.txt,
 IDMEF-alert_to_AFED-event.xsl, IDMEF-heartbeat_to_AFED_sensor.xsl,
 Makefile, query_index_props.txt, server_props.txt, start.sh

 …/Task_17/client/ directory
 client_props.txt, DAIW-alert-table.dtd, DAIW-destinationIPs.dtd,
 DAIW-destinationIPs.xsl, DAIW-event-table.dtd,
 DAIW-event_to_IDMEF-alert.xsl, DAIW-host_to_IDMEF-heartbeat.xsl,
 database_props.txt, Makefile, query_index_props.txt start.sh

Integration Code: …/Task_17/shared/
 DOM_API.java, idmef-message.dtd, keygen.sh, Makefile, OracleDatabase.java,
 PwdCollector.java, PwdTxtFldFrameDrawer.java, QueryIndex.java,
 ReturnXML.java, TCPClient.java, TCPServer.java, Tool.java, TripleDES.java

 …/Task_17/shared/Return_Classes/
 _ReturnClassGen.java, return.dtd, return.xsl, Makefile
Compiling Process: change directory to
 …/Task_17/client,
 …/Task_17/server/AFED, then
 type “make all”

 13

 The following actions will occur:

 1) directory location will change to: … Task_17/shared
 2) “make all” will be called in the shared directory
 3) all class files will be removed from the shared directory
 4) directory location will change to … Task_17/shared/Return_Classes
 5) “make all” will be called in the Return_Classes directory
 6) all class files will be removed from the Return_Classes directory
 7) shared/DOM_API.java will be compiled
 8) Return_Classes/_ReturnClassGen.java will be compiled
 9) ${JAVA} -classpath "$(MAKE_CLASSPATH)" _ReturnClassGen -root return return.dtd
 will be run, which produces java source files for each node and element in return.dtd
10) each java file, generated in step 9, will be compiled
11) each java file, generated in step 9, will be deleted
12) directory location will change to: … Task_17/shared
13) “make ReturnXML.class” will be called in the shared directory
14) ${JAVA} -classpath "$(MAKE_CLASSPATH)" ReturnXML output > return.xml
 will be run, which generates an XML document, return.xml that conforms to return.dtd
15) all java files in the shared directory will be compiled
16) all class files in the shared directory will be moved to the original directory, listed prior to step 1
17) all class files and Return_dtd.txt in Return_Classes directory will be moved to original directory
18) all class files and Return_dtd.txt in original directory will be archived into classes.jar
19) all class files and Return_dtd.txt in original directory will be deleted
20) keygen.sh and idmef-message.dtd in the shared directory will be copied to the original directory
21) return.dtd and return.xsl in the Return_Classes directory will be copied to the original directory

 14

Windows Source and Binaries

Host: d2101ra046234 (except for Oracle Database)

Operating System: Microsoft Windows XP Professional 5.1.2600 Service Pack 2

Java: jdk-1_5_0_04-nb-4_1-win.exe from http://java.sun.com/j2se/downloads.html
 installed in C:\ directory
 java: C:\Program Files\Java\jdk1.5.0_04\bin\java.exe
 javac: C:\Program Files\Java\jdk1.5.0_04\bin\javac.exe
 jar: C:\Program Files\Java\jdk1.5.0_04\bin\jar.exe

Oracle Database: Apex::C:\oracle - Personal Oracle9i Release 9.0.1.1.1 - Production

OracleXDKforJava: classgen.jar, xdb.jar, xmlparserv2.jar, and xsu12.jar copied from
 Rock:: .. /Task_17/shared/Oracle_XDK_92050_lib/ directory
 to … \Task_17\shared\Oracle_XDK_92050_lib directory

Oracle JDBC: classes12.zip copied from
 Rock:: .. /Task_17/shared/Oracle_JDBC_9203/ directory to
 … \Task_17\shared\Oracle_JDBC_9203 directory

Integration Code: same as Unix, except base directory structure is … \Task_17\ instead of … /Task_17/

Compiling Process: files in the client, server/AFED directory compiled on a Unix box
 can be copied to the corresponding directories on a Windows box

Develop. Environ.: JCreator LE version 2.5 build 6 from http://www.jcreator.com

 15

DAIWatch -> AFED testing/operation

 TCP socket server: resided on d2101ra046234 (Windows XP)
 TCP socket client: resided on d2101ra046234 (Windows XP)

 AFED Oracle JDBC settings: d2101ra046234:: … /Task_17/server/AFED/database_props.txt
 HOST_IP_ADDRESS=XXX.XXX.XXX.217
 SERVICE_NAME_OR_SID=SID=EPIC

 AFED Oracle JDBC Thin client: resided on d2101ra046234 (Windows XP)
 AFED Oracle database server: resided on TryIt (.216) (Solaris)

 DAIW Oracle JDBC settings: d2101ra046234:: … /Task_17/client/database_props.txt
 HOST_IP_ADDRESS=XXX.XXX.XXX.63
 SERVICE_NAME_OR_SID=SERVICE_NAME=IADB

 DAIW Oracle JDBC Thin client: resided on d2101ra046234 (Windows XP)
 DAIW Oracle database server: resided on Apex (.63) (Windows XP)

Oracle
Database

.class

TCP
Client
.class

TryIt (Solaris)

Client

d2101ra046234 (WinXP)

AFED
Oracle

Database
Server

DAIWatch
Oracle

Database
Server

JDBC
Client

Server

Integration Code

Oracle
Database

.class

TCP
Server
.class

JDBC
Client

Server
Socket

Client
Socket

Integration Code

Apex (WinXP)

Oracle
Database

.class

TCP
Client
.class

TryIt (Solaris)

Client

d2101ra046234 (WinXP)

AFED
Oracle

Database
Server

DAIWatch
Oracle

Database
Server

JDBC
Client

Server

Integration Code

Oracle
Database

.class

TCP
Server
.class

JDBC
Client

Server
Socket

Client
Socket

Integration Code

Apex (WinXP)

Figure 1: AFED <-> DAIWatch Testing Scenario

 16

APPENDIX B - SOFTWARE USER’S MANUAL

Overview

The integration code interface between DAIWatch and AFED consists of a TCP/IP socket, where
DAIWatch is configured as the client and AFED as the server. AFED establishes a server
socket on a specified communication port and listens for incoming socket connection requests
from the DAIWatch client. The interface is bi-directional with information flowing in both
directions between the DAIWatch client and the AFED server. Specifically, DAIWatch sends
heartbeat and alert messages in the common Intrusion Detection Message Exchange Format
(IDMEF) to AFED for database insertion and AFED sends database record insertion status and
query index data, in basic XML format, back to DAIWatch.

The DAIWatch component of the interface queries the database on a periodic interval for every
new record stored in the Event table since the last query. These query results are put into XML
format, then transformed into IDMEF for transmitting to the AFED component for processing.
Another message that employs the IDMEF is the “heartbeat”. To ensure that DAIWatch is still
active and requires an interface, a “heartbeat” signal is sent from DAIWatch to AFED every 2
minutes. Since data is transmitted externally from each of the systems, security of the interface
is an important issue. To establish security of the data, the communication between DAIWatch
and AFED utilizes JCE tripleDES encryption.

Pre-operation Setup

The first step to be performed before actually firing up the separate client and server components
of the interface is to ensure that the respective property files: client_props.txt, server_props.txt
and database_props.txt contain the correct settings.

Task_17/client/client_props.txt -> TCPClient.class in Task_17/client/classes.jar
Task_17/client/database_props.txt -> OracleDatabase.class in Task_17/client/classes.jar

Task_17/server/AFED/server_props.txt -> TCPServer.class in Task_17/server/AFED/classes.jar
Task_17/server/AFED/database_props.txt -> OracleDatabase.class in Task_17/server/AFED/classes.jar

For example, the server_props.txt file in the …/Task_17/server/AFED directory contains the settings for the
TCPServer class in the …/Task_17/server/AFED/classes.jar executable file.
Whereas, the database_props.txt file in the …/Task_17/server/AFED/ directory contains the settings for the
OracleDatabase class in the …/Task_17/server/AFED/classes.jar executable file.

Most of the settings need not be changed, such as the names of the *.dtd and *.xsl files. Two
settings that definitely need to be assigned are the HOST_IP_ADDRESS and
SERVICE_NAME_OR_SID properties in the database_props.txt file of each of the client and
server directories. These JDBC settings dictate to the server and client the location of its
associated database. The SITE_LOC and SITE_NAME properties in the database_props.txt file
of the client directory should also be checked prior to startup. These two settings are needed in
the AFED Event table for identifying the DAIWatch sensor. The QUERY_INTERVAL property
in the client_props.txt file, which controls how often events are searched in the DAIWatch

 17

database. This property should be set in conjunction with the NUMBER_OF_EVENTS property
in the database_props.txt file, which is also located in the client directory. Both of these
properties should be set to accommodate the rate of events being stored in the DAIWatch
database.

Server Property File - AFED server_props.txt file contents

type of system: AFED or DAIW
SYSTEM_TYPE=AFED

stylesheet to transform IDMEF Alerts to AFED Events
IDMEF_ALERT_TO_EVENT_TABLE=IDMEF-alert_to_AFED-event.xsl

dtd to validate IDMEF Alerts and Heartbeats
IDMEF_DTD=idmef-message.dtd
IDMEF_ROOT=IDMEF-Message

dtd to validate Return XML after SQL insert
RETURN_DTD=return.dtd
RETURN_ROOT=return

stylesheet to create Return XML after SQL insert
RETURN_XSL=return.xsl

dtd to validate Event records after queries and before inserts
EVENT_DTD=AFED-event-table.dtd
EVENT_ROOT=ROWSET

stylesheet to transform IDMEF Heartbeats to AFED Sensor records
IDMEF_HBEAT_TO_SENSOR_TABLE=IDMEF-heartbeat_to_AFED-sensor.xsl

dtd to validate Sensor records before heartbeat inserts
SENSOR_DTD=AFED-Sensor-table.dtd
SENSOR_ROOT=ROWSET

Database Property File - AFED database_props.txt contents

max. number of Event table records to be returned per query
NUMBER_OF_EVENTS=0

IP address of host of AFED database - Tryit: 216, Devel: 217
HOST_IP_ADDRESS=XXX.XXX.XXX.216

TCP connect data string of AFED database: SERVICE_NAME=? or SID=?
SERVICE_NAME_OR_SID=SID=EPIC

table name and field name used for event queries
EVENT_TABLE=event
EVENT_ID_FIELD=event_id

 18

stylesheet to transform DAIW destination IPs - used by client ONLY
DESTINATION_IP=

table name - field name used for destination IPs -used by client ONLY
EVENT_TABLE is already defined above
HOST_IP_TABLE=
MACHINE_TABLE=
NET_DEV_TABLE=
MACHINE_FIELD=
MACHINE_ID_FIELD=
HOSTID_FIELD=
HOSTIP_FIELD=
NETDEVID_FIELD=

stylesheet to transform host table data into IDMEF Heartbeat - used by client ONLY
HOST_TABLE_TO_IDMEF_HEARTBEAT=

table names and field names used for DAIW heartbeat queries - used by client ONLY
HOST_TABLE=
HOST_IP_FIELD=
HOST_NAME_FIELD=

Client Property File - DAIWatch client_props.txt file contents

type of system: AFED or DAIW
SYSTEM_TYPE=DAIW

2 minutes HeartBeat interval
PULSE_INTERVAL=120000

0.25 minute Query request interval
QUERY_INTERVAL=15000

dtd to validate IDMEF Alerts and Heartbeats
IDMEF_DTD=idmef-message.dtd
IDMEF_ROOT=IDMEF-Message

dtd to validate Return XML after SQL insert
RETURN_DTD=return.dtd
RETURN_ROOT=return

stylesheet to create Return XML after SQL insert
RETURN_XSL=return.xsl

dtd to validate Event records after queries and before inserts
EVENT_DTD=DAIW-event-table.dtd
EVENT_ROOT=ROWSET

dtd to validate Destination IP records
DEST_DTD=DAIW-destinationIPs.dtd
DEST_ROOT=Destination

 19

Database Property File - DAIWatch database_props.txt contents

max. number of Event table records to be returned per query
NUMBER_OF_EVENTS=500

IP address of host of DAIW database
HOST_IP_ADDRESS=XXX.XXX.XXX.63

TCP connect data string of DAIW database: SERVICE_NAME=? or SID=?
SERVICE_NAME_OR_SID=SERVICE_NAME=IADB

site location and site name used for AIDE/AFED Event table
SITE_LOC=DIW_LAB
SITE_NAME=AFRL

stylesheet to transform DAIW Events into IDMEF Alerts
EVENT_TABLE_TO_IDMEF_ALERT=DAIW-event_to_IDMEF-alert.xsl

stylesheet to transform site table data into IDMEF Heartbeat - NOT USED
SITE_TABLE_TO_IDMEF_HEARTBEAT=

table name and field name used for event queries
EVENT_TABLE=event
EVENT_ID_FIELD=event_id

stylesheet to transform DAIW destination IPs
DESTINATION_IP=DAIW-destinationIPs.xsl

table names and field names used for destination IPs
EVENT_TABLE is already defined above
HOST_IP_TABLE=host_IP
MACHINE_TABLE=machine
NET_DEV_TABLE=network_device
MACHINE_FIELD=machine
MACHINE_ID_FIELD=machine_ID
HOSTID_FIELD=hostID
HOSTIP_FIELD=hostIP
NETDEVID_FIELD=networkDeviceID

stylesheet to transform host table data into IDMEF Heartbeat
HOST_TABLE_TO_IDMEF_HEARTBEAT=DAIW-host_to_IDMEF-heartbeat.xsl

table names and field names used for DAIW heartbeat queries
HOST_TABLE=hostfileinfo
HOST_IP_FIELD=host_IP
HOST_NAME_FIELD=host_name

As previously mentioned in the overview, the communication between DAIWatch and AFED
utilizes Java Cryptography Extension (JCE) tripleDES (or DESede) encryption. Therefore, the
next step in the pre-start process is the generation of the secret shared keyfile. DESede is a

 20

symmetric key encryption algorithm, which means that the key for encryption and decryption are
identical. This is accomplished by changing directory to the client or server code and typing
“keygen.sh”. A 24-byte encrypted string will be generated and stored in a file named “keyfile.
For example, if the keyfile is generated in the DAIWatch/server/AIDE directory on the host
acting as the server, then the keyfile will have to be copied to the DAIWatch/client directory on
the host acting as the client, and vice-versa.

Key Generation Shell Script - DAIWatch/server/AIDE/keygen.sh

JAVA=/bin/java
${JAVA} -cp "./classes.jar" TripleDES -g

Once the property file values are set and the encryption key is generated and copied, then it is
time to start the server and client portions of the interface. The server code must be started first
in order for the server socket to listen for a connection attempt from the client code. NOTE: If
the client is started first, then the program will exit.

Start Server Shell Script – Task_17/server/AIDE/start.sh

SHARED= … Task_17/shared
ORACLE_JDBC=${SHARED}/Oracle_JDBC_92030
ORACLE_XDK=${SHARED}/Oracle_XDK_92050_lib

JAVA=/bin/java

${JAVA} -cp "./classes.jar:${ORACLE_JDBC}/classes12.zip:${ORACLE_XDK}/xsu12.jar:${ORACLE_XDK}
/xmlparserv2.jar:${ORACLE_XDK}/xdb.jar:${ORACLE_XDK}/classgen.jar" TCPServer $1

Start Client Shell Script – Task_17/client/start.sh

SHARED=… Task_17/shared
ORACLE_JDBC=${SHARED}/Oracle_JDBC_92030
ORACLE_XDK=${SHARED}/Oracle_XDK_92050_lib

JAVA=/aide/java/jre/bin/java

${JAVA} -cp "./classes.jar:${ORACLE_JDBC}/classes12.zip:${ORACLE_XDK}/xsu12.jar:${ORACLE_XDK}
/xmlparserv2.jar:${ORACLE_XDK}/xdb.jar:${ORACLE_XDK}/classgen.jar" TCPClient $1 $2

The one argument to “TCPServer” in server/AFED/start.sh is the port number on which the
socket server will be listening for attempted connections from the client. If no port number is
given, then it defaults to “55555”. The two arguments to “TCPClient” in client/start.sh are the
server host IP address and the socket server port number, in that order. Again, if no port number
is given, then it defaults to “55555” however, if no IP address is given then it defaults to
“localhost”. In total, four connections are made from four separate client ports to the one server
port. Each of the four connections handles a different type of data transmission: status strings,
IDMEF objects, request objects, and menu (signature) objects. Segregating the data in this

 21

manner, prevents a socket on the receiving end of a transmission from having to identify the data
and its content in order to determine where it should be sent for decryption, XSL transformation,
XML parsing and further processing, if any of these actions are at all applicable.

Operation Flow Description

LEGEND: Stars with numbers correspond to positions in the flowcharts on pages 24 - 26.

Upon startup of the client and server components, just prior to the socket connection process, the
values in the three property files, database_props.txt, query_index_props.txt, and client_props.txt
or server_props.txt are loaded into memory. The database_props.txt, client_props.txt and
server_props.txt files were briefly explained earlier in this Operation Details section, but not the
query_index_props.txt file. The purpose of the query_index_props.txt file is to keep track of the
ID of the last event record that was accessed from the DAIWatch database, in order to prevent
duplicate data retrieval. This entire process is handled programmatically, which is why
query_index_props.txt was not mentioned earlier in the property files preparation text.

A small window entitled “Oracle Database Login”, preceded by the system type, i.e., AFED or
DAIWatch, should appear on the screen. The TCPServer component of the interface will make a
JDBC connection to an AFED or AIDE database, while a TCPClient component will make a
JDBC connection to a DAIWatch database. Text inside the window prompts the user to enter a
username/password string that includes the forward slash, without any spaces, i.e.,
“Username/Password”. The database login window will reappear on the screen if an incorrect
username/password combination is entered and will continue to reappear, until the correct
combination is entered. The user submits the entered text, by pressing the Enter key or by
clicking on the OK button.

Once a connection is made to both of the databases associated with TCPServer and TCPClient,
SQL queries can be performed. The first action to take place is to assure that the maximum
record ID listed in the query_index_props.txt file is still relevant, in relation to the events stored
in the database. For instance, if the database had recently been cleared, then none of the new
events in the database will be accessed by the interface until their record IDs exceed the one
currently listed in the query_index_props.txt file. The checkMaxQueryID method assesses the
relevance of the query index property value by searching the database for a record containing
that event ID number. If the number does not exist, then the value of the property in the
query_index_props.txt file is reset to zero, in addition to the query index property value currently
stored in memory. However, if the record ID still exists in the database, then nothing is changed
nor updated.

The next group of actions in the interface, following establishment of JDBC connections to both
databases, deals with generation of a lookup table of available destination IP hostnames to
destination IP addresses in the DAIWatch database. The destination IP lookup table is stored in
memory by the DAIWatch client for future access during XSL transformation of event XML
objects to IDMEF. The first step in this process is for a four table SQL join to be performed on
the DAIWatch database. The resultant set of IP hostnames and IP addresses from the database

1

2

3

4

 22

query is stored in an XML document object model (DOM), is transformed by the DAIW-
destinationIPs XSL file, then is validated against a Document Type Definition (DTD) file, for
proper structure and content. The IP hostnames and IP addresses are extracted from the XML
object via DOM tree-traversal methods, and then deposited into a hash table map.

Another group of preliminary activities that must be performed prior to the exchange of data
between the client and server is the starting of thread processes and the scheduling of timer tasks.
The DAIWatch client first schedules the heartbeat task according to the PULSE_INTERVAL
property value and schedules the event query task according to the QUERY_INTERVAL
property value, then it starts the SQL insert status return receive thread. While these processes
are begun, the AFED server starts the IDMEF alert/heartbeat receive thread.

Every QUERY_INTERVAL period of time, the qryTask in the DAIWatch client is executed.
This entails envoking the “alert” portion of the method that creates Oracle SQL select
statements. Within this same method, the latest record ID (index) that has been accessed, during
prior queries, is obtained from the query_index_props.txt file. Once an index is obtained, it is
added to an SQL select statement which searches the DAIWatch database event table, via the
Oracle XML SQL Utility (XSU), for records that contain all events with an event ID greater than
the index. Zero or more records are returned, which are put into one XML file, validated against
the DTD pertaining to the database table from which the data was queried, transformed into
IDMEF according to the appropriate XSL file, then validated against the IDMEF DTD. Before
the IDMEF object is sent back to the server component, it must first be serialized and encrypted,
and then it is finally put on the client component idmefSocket for transmission.

Every PULSE_INTERVAL period of time, the hbTask in the DAIWatch client is executed. This
entails envoking the “heartbeat” portion of the method that creates Oracle SQL select statements.
Once the SQL select statement is executed and the data is returned, it is put into one XML file,
transformed into IDMEF according to the appropriate XSL file, then validated against the
IDMEF DTD. Before the IDMEF object is sent back to the server component, it is first serialized
and encrypted, and then it is finally put on the client component idmefSocket for transmission.

NOTE: The idmefReceive Thread loop, which is monitoring the idmefSocket of the server
component for objects received from the client component, will send the object containing the
DAIWatch event records or heartbeat data to the appropriate methods for decrypting,
unserializing, parsing and DTD-validation. After the object is changed into XML DOM form, the
data type is extracted.

If the XML DOM contains event data, then it will be transformed into an XML file that
conforms as much original DAIWatch event table data into the AFED event table format, as it
can. At this point, the XML DOM will be validated against the DTD pertaining to the database
table into which the data will be inserted. The next step in this process is for the Oracle XSU to
insert the entire set of DAIWatch event records in the XML file into the AFED database event
table in one batch. After the data is successfully inserted and committed, the count of the number
of rows returned from the Oracle XSU insertXML API is added to a return XML object. The
maximum event ID (or query index) is extracted from the XML file that was just inserted into
the database, and it is also added to the return XML object. The return XML object is created

5

6

7

8

9

13

14

 23

from the return DTD, transformed with the return XSL, validated against the return DTD, and
then put on the server component returnSocket for transmission to the client. The returnReceive
Thread loop, which is monitoring the returnSocket of the client component for objects received
from the server component, will send the object containing the AFED database event record
insertion status data to the appropriate methods for decrypting, unserializing, parsing and DTD-
validation. As a final step, the query index properties list in memory is updated with the
maximum event ID found in the return XML object and the query_index_props.txt file is
updated and saved.

If the XML DOM contains heartbeat data, then it will be transformed into an XML file that
conforms to the AFED Sensor table. At this point, the XML DOM will be validated against the
DTD pertaining to the database table into which the heartbeat data will be updated. The final step
in this process is for the Oracle XSU to update the set of DAIWatch host data in the XML file
into the AFED database sensor table.

10

11

12

15

16

 24

database_props

client_props

query_index_props

DAIW OracleDatabase Login

Username/Password

JDBC
Thin Client

DAIWatch Client
classes.jar

Tom’s PC

DAIWatch Client
classes.jar

Tom’s PC

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch Client
classes.jar

Tom’s PC

DAIWatch Client
classes.jar

Tom’s PC

Check
Max Query ID

SQL Statement
JDBC

Thin Client

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser
if

Max Query ID
found

True

False

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch
Oracle DB

Server

DAIWatch PC

reset
Query Index

props

SQL StatementgetDestinationIPs

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser

JDBC
Thin Client

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch
Oracle DB

Server

DAIWatch PC

Dest IPs
XSL

Dest IPs
DTD

DAIWatch
Destination

IPs
XML

Validated

Destination
IPs

XML
XML

Parser

3

4

1

2

XML
Parser

extract
IP addresses
IP hostnames

DAIWatch
Destination

IP
hashtable

Map

5

SQL Statement
get

Query Index

DAIWatch Client
classes.jar

qryTask @
QUERY_

INTERVAL

Tom’s PC

DAIWatch Client
classes.jar

qryTask @
QUERY_

INTERVAL

Tom’s PC

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser

JDBC
Thin Client

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch
Oracle DB

Server

DAIWatch PC

IDMEF
XSL

IDMEF
DTD

DAIWatch
Event table
record(s)

XML
Validated

IDMEF
Alert
XML

XML
Parser
XML

Parser

7

Event
table
DTD

Validated

DAIWatch
Event table
record(s)

XML

XML
Parser

6

6

DAIWatch
Destination

IP
hashtable

Map

Figure 2: DAIWatch to AFED Flowchart Steps 1 – 7

 25

11

11

10

XML
Parser

Serialized
Encrypted

IDMEF
Alert
XML

Decrypted
Unserialized

IDMEF
Alert
XML

IDMEF
Socket

IDEMF
Socket

Java Socket

Client

Java Socket

Server

Tom’s PC Tom’s PC

TripleDES
decrypt

7

8

Event
table
XSL

Event
table
DTD

Validated

AFED
Event table
record(s)

XML

IDMEF
DTD

Validated

IDMEF
Alert
XMLXML

Parser

8
JDBC

Thin Client

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser

AFED
Oracle DB

Server

TryIt

AFED
Oracle DB

Server

TryIt

TripleDES
encrypt

9

TripleDES
encrypt

Return
XSL

Return
DTD

Return
XML

Validated

Return
XMLXML

Parser

Serialized
Encrypted

Return
XML

Return
Socket

Java Socket

Server

Tom’s PC

Return
Socket

Java Socket

Server

Tom’s PC

Tom’s PC

Decrypted
Unserialized

Return
XML

Return
Socket

Java Socket

Client

TripleDES
decrypt

Return
DTD

Return
DTD

Validated

Return
XML XML

Parser

extract
max. Query ID

set
Query Index
From XML

12

XML
Parser

XML
Parser

extract
no. rows and

max. Query ID

DAIWatch Client
classes.jar

hbTask @
PULSE_

INTERVAL

Tom’s PC

DAIWatch Client
classes.jar

hbTask @
PULSE_

INTERVAL

Tom’s PC

10

SQL Statement 13

Figure 3: DAIWatch to AFED Flowchart Steps 7 – 13

 26

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser

JDBC
Thin Client

DAIWatch
Oracle DB

Server

DAIWatch PC

DAIWatch
Oracle DB

Server

DAIWatch PC

IDMEF
XSL

IDMEF
DTDDAIWatch

Heartbeat
XML

Validated

IDMEF
Heartbeat

XML
XML

Parser
XML

Parser

14

Validated

DAIWatch
Heartbeat

XML

XML
Parser

13

XML
Parser

Serialized
Encrypted

IDMEF
Heartbeat

XML

Decrypted
Unserialized

IDMEF
Heartbeat

XML

IDMEF
Socket

IDEMF
Socket

Java Socket

Client

Java Socket

Server

Tom’s PC Tom’s PC

TripleDES
decrypt

14

15

Sensor
table
XSL

Sensor
table
DTD

Validated
AFED

Sensor
table

record
XML

IDMEF
DTD

Validated

IDMEF
Heartbeat

XMLXML
Parser

15
JDBC

Thin Client

XML-SQL
Utility

XML Parser

XML-SQL
Utility

XML Parser

AFED
Oracle DB

Server

TryIt

AFED
Oracle DB

Server

TryIt

TripleDES
encrypt

16

Figure 4: DAIWatch to AFED Flowchart Steps 13 - 16

 27

DAIWatch Event table DAIW-event_to_IDMEF-alert.xsl Alert class IDMEF-alert_to_AFED-event.xsl ROW class
EVENT_ID ident

EVENT_TYPE Classification/name SIGNATURE

REPORT_TYPE AdditionalData type=string
meaning=REPORT_TYPE

MACHINE Source/Node/name SRCNAME

MACHINE Target/Node/name DESTNAME

MACHINE Source/Node/Address/address =
OracleDatabase.getNumericalDestIP(MACHINE
)

SRCIP = Tool.convertIpStringToDecimal(
address)

MACHINE Target/Node/Address/address =
OracleDatabase.getNumericalDestIP(MACHINE
)

DESTIP = Tool.convertIpStringToDecimal(
address)

AGENT_NAME AdditionalData type=string
meaning=AGENT_NAME

DESCRIPTION AdditionalData type=string
meaning=DESCRIPTION

DESCRIPTION

AGENT_TAHITI_ID

TIME_STAMP AdditionalData type=date-time
meaning=TIME_STAMP

RISK Assessment/Impact

ADDEDDT * CreateTime CREATE_SNSR_DT after removing 'T' and 'Z'

MODIFIEDDT * AdditionalData type=date-time
meaning=MODIFIEDDT

ACTIVE Assessment/Action STAT = "PI" if Action='1'

REPORTID AdditionalData type=string meaning=REPORTID

DATAOBSOLETEDBYFUSION AdditionalData type=boolean
meaning=DATAOBSOLETEDBYFUSION

CONFIDENCE Assessment/Confidence

DAIW-event_to_IDMEF-
alert.xsl

SENSOR_NAME Analyzer analyzerid SENSOR_NAME

client/database_props.txt

SITE_LOC Analyzer/Node/location =
OracleDatabase.getDataBaseProp(SITE_LOC)

SITE_LOC

SITE_NAME Analyzer/Node/name =
OracleDatabase.getDataBaseProp(SITE_NAME
)

SITE_NAME

 PARTITION_VAL =
Tool.getNumericalDayOfWeek()

 EVENT_ID is created by an Oracle sequence
trigger

 *OracleDatabase.createXSUqueryXML(
Connection conn, …) {

 qry.setDateFormat("yyyy-MM-
dd'T'HH:mm:ss'Z'");

Figure 5: DAIWatch to IDMEF to AFED data map

