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1. Introduction

The University of Massachusetts Experimental Knowledge Systems Laboratory (EKSL)
designed and implemented several parts of an integrated decision aid for Effects Based
Operations (EBO). These included extensive improvements to its Capture the Flag (CtF)
wargaming system, a new declarative executable action specification language (Tapir)
and simulation definition language (Krill), improved models of morale and defeat (Defeat
Mechanisms), and a semi-graphical Action Model language. Combined, these pieces
help to create models that can be used to evaluate Courses of Action (COAs) for EBO
and other military operations.

Effects based reasoning requires models of effects. These must distinguish physical from
behavioral effects and physical structures from mental ones. Many effects are hidden and
cannot be measured directly, especially effects on mental structures and behaviors.
While physical effects, such as dropping a bridge can be confirmed, effects on morale,
courage, and other intentional states can only be inferred from observable indicators, and
will generally be uncertain. The original Capture the Flag system modeled only physical
force on force conflict. The new Action Models and Defeat Mechanisms provide CtF
with a much broader range of measurable effects. Krill and Tapir make it possible to
describe plans and actions declaratively, while also supporting Monte Carlo simulation
for the measurement of uncertain, probabilistic and dynamical events.

2.0 Extensions to CtF: Steps towards a Component
Model

At the start of EKSL’s EBO work, the Capture the Flag war gaming system was a mature
force on force simulation of military tactics (see Appendix 2 for a description). Although
we had begun investigating Defeat Mechanisms, these were not part of CtF nor could
they be used for planning. Furthermore, actions in CtF were implemented as code. They
could not be understood, except by programmers, and they provided no semantic
information beyond their names. That is, there was nothing about an attack action that
indicated it would damage enemy units whereas a move action would not. These opaque
actions could not function as model building components. Like puzzle pieces that all
looked the same, it was impossible to tell which actions could go with other actions to
build a coherent plan. Nor was it possible to tell what an action was supposed to do or
how to grade the actual or supposed effects of an action.

We will first summarize our approach to solving this problem and then retrace our steps
in more detail in the succeeding sections. First, we developed Tapir, a robust action
description language that was both more declarative and more succinct than the existing
action code. Tapir actions are self-describing: they can be used by planners and executed
in simulation. Although Tapir actions were much closer to model components, they were
still missing three vital pieces. Firstly, Tapir actions still had to drop down into code to
alter the underlying simulation. Secondly, Tapir actions were still monolithic — each
action handled only particular circumstances and there were no mechanisms to correctly



sequence and choose related actions as circumstances changed. Lastly, Tapir actions still
had no sense of what they were meant to accomplish. In summary, they were syntax
without semantics. To address these three issues, we developed a more declarative
simulator substrate (Krill), added simple reactive planning to Tapir and created a
graphical language to describe desired effects (Action Models).

These language additions allow for the creation of CtF actions that can be readily
combined and evaluated. By themselves, however, they do not add the necessary mental
models into CtF. To do this, we extended our initial morale model and incorporated it
into CtF. Having units with morale allows commanders to plan to defeat the enemy by
reducing their will to fight rather than just by pure attrition.

Simultaneously with the changes being made to CtFs modeling ability, we also extended
it in numerous directions in order to make it a more flexible and general tool for military
simulation. These enhancements included:

e Terrain improvements including buildings, bridges and better roads
e Improved sensor models for fog of war

e Line of sight models

e Pluggable overlap detection system in 2 or 3 dimensions

e Network support for multi-user scenarios

e More unit types including civilians and militia

e Better firing models

e Completely new OpenGL based graphics framework including transparency,
texture mapping, etc.

Because many of these changes occurred simultaneously with the work on Tapir and
Krill, the CtF system is now an amalgam of multiple paradigms; not all of the changes
listed fit into the full frameworks used by Tapir and Krill (which will be described
below). First, however, we provide an overview of CtF extensions:

Terrain improvements

Capture the Flag has always been a 2.5-dimensional war game (i.e., two-dimensional
with varying surface terrain plus some air based units). Originally, the terrain was
represented using the same two-dimensional grid that served to increase the speed of
overlap detection. Unfortunately, the needs of overlap detection and those of terrain
representation are in conflict: the overlap detection grid wanted to be coarse whereas the
terrain representation wanted to be fine. Secondly, it was impossible to represent rivers
or roads well on a grid. We solved these problems by separating overlap detection from
terrain representation; overlap detection is discussed in more detail below. All terrain in
CtF is now represented using polygons (i.e., both surfaces such as forest or urban and



features such as rivers or roads). Polygons are not confined to a simple grid and therefore
are flexible enough to model interesting and realistic terrain at varying scales.

Improved sensor models for fog of war

CtF originally assumed that information about friendly units was immediately known. It
also assumed that all information learned about enemy units was immediately available to
all other units. These were reasonable assumptions for the large scale force on force
warfare that CtF modeled. As we entered smaller scale combat, we found the need to
rewrite our sensor models to better accommodate line of sight and to provide the potential
for communication delays between units. We also added additional realism by making
the amount of information a unit can obtain dependent on its type, terrain, fatigue, and
status (e.g., a unit under fire is much less likely to notice other enemy activity).

Line of sight models

When CtF was used to model large force on force simulations, line of sight was not a
significant concern. The level of detail was coarse, blobs represented large groups and
terrain features did not alter sighting. This all changed, however, when we began to
model small scale operations in urban settings. Here, the ability to hide behind a building
or peek around corners becomes central. It is easy to check if unit A can see unit B by
“ray-tracing” from the A to B. The difficulty is that ray-tracing takes time and, since we
must potentially know about every pair of interactions, we must ray trace on the order of
n® times every tick. To ameliorate the computation, we added a line-of-sight (LOS) grid
to cache the computations (see Figure 1).

Simple LOS algorithm

1. Find the closest LOS vertex to the target (the closest vertex)
2. Find the set of vertexes which can see the closest vertex (the
visible vertexes)

3. Find a visible vertex which is satisfies varlous constraints (the
attacker can reach It quickly, it is In friendly territory and so
forth).

® LOS veriexes o] o T C o
¥ Closest vertex ’

o
O Visible vertexes o a / o

This will be fast because all of the LOS Information can be
computed beforehand and cached.

Figure 1: LOS Implementation using ray tracing



A Problem with the Simple LOS algorithm

[ ] L]
& LOS vertexes ® * ¢
¥f Closest vertex -
O Visible vertexes (o] L »

The LOS vertexes may not accurately represent the LOS of the
‘real’' map. In the example above, the vertex closest 1o the blue
attacker can "see" the vertex closest to the red defender. But the
red unit cannot really be seen from that vertex. False negatives
are also possible.

We believe that heuristics exist to elther layout terrain or to
choose vertexes such that this problem Is minimized. Our current

plan, however, |s to use our simple layout algorithm as a good
first approximation.

Figure 2: Potential problems with fixed LOS grid

This reduces overall accuracy (since the grid is necessarily coarser than the simulated
world) but does allow us to model more complex actions and interactions (see Figure 2).

Pluggable overlap detection system in 2 or 3 dimensions

As mentioned above, the original CtF system used an overlap detection grid to help speed
overlap computations. Krill introduced a more abstract overlap detection layer as a new
API that was more flexible and allowed for “pluggable” models and experimentation.
We have implemented three-dimensional Voroni-based overlap detection and
experimented with other two-dimensional schemes based on both grids and spatial
coherence.

Network support for multi-user scenarios

Earlier CtF projects included rudimentary networking support. This included the ability
to connect CtF to commercial real time strategy games such as BattleZone and Dark
Reign and preliminary work on a browser based Java CtF client. Our more recent

'Spatial coherence simply means that things do not change very much in small amounts

of time so that it is possible to keep sorted lists of positions in roughly linear time.
Unfortunately, this technique did not improve upon our existing grid based overlap
detection code.



network support includes more scalable peer-to-peer multi-player support. This allows
several people to control each side (blue or red) and for observers who can see the action
but not control it. Because there is not one single server, the amount of network traffic is
greatly reduced and the computation load is shared among all playing machines.

More unit types including civilians and militia

We extended the unit types to include civilians and militia by adding to the class model.
These units have different firing models, different fatigue and defeat models, and
different planning models (See below for more information on the models we use).

Better firing models

The original CtF system employed three force models: force was applied through close
combat (overlap), direct combat (proximity) and in indirect contact (artillery). The first
two were based on the physical overlap and proximity of units; the last on an action at
distance model where artillery blobs could project force into distance regions. Indirect
force used an abstract “spotter” model which led to an initial dispersed and ineffective
attack that quickly became more focused as the “range” was determined.

As the scale of our models decreased, it no longer made sense for direct fire units (tanks,
infantry and the like) to be able to attack every other close by unit (as they did with the
overlap model). Thus we further abstracted our artillery model and used it for small scale
direct fire as well.

OpenGL based graphics framework

CtF graphics were based on the Macintosh QuickDraw architecture. We recreated the
graphics layer using OpenGL because Apple computer was deemphasizing QuickDraw
and emphasizing OpenGL, and because OpenGL is a portable graphics standard. Our
current implementation is still tied to the underlying OS X windowing layer but because
much of what we do is now OpenGL based, porting to other architectures will be
significantly simpler. Furthermore, OpenGL is a more mature graphics framework and
this lets us make use of transparency, alpha channel blending and other visual
enhancements.

2.0.1 Tapir: A better action language

Tapir is a general purpose, agent control language that extends and enhances the
Hierarchical Agent Control (HAC) architecture (see Appendix 2). Tapir incorporates the
lessons learned from developing HAC and makes it easier and faster to create reusable
and understandable actions. Tapir can be used for simple scripting and can easily handle
reactivity and more complex planning. Tapir has controlled units in a battalion level
wargame, simulated robots, and simulated rodents. The language is built around
constructs that define agents, sensors, actions, and messages. It has mechanisms for
handling multiple agents, a flexible resource model, and multiple means for structuring
concurrent actions.



The following example shows how the move-to-point action is described in Tapir.
Appendix 3 shows the same action as implemented before Tapir. Though still complex,
the Tapir action is significantly simpler and takes 4 times less code.

(defaction move-to-point ()
(:documentation ""Moves a blob so that it is within the target-geom.')
(:parameters ((target-geom nil :export :type (or null geom))
(terminal-velocity 0 :export)
(terminal-facing nil :zexport)))
(-estimated-cost (:time (move-to-point-estimation simulation action))
(:mass 0))
(:satisfies ((reconnaissance-goal :target-geom target-geom)))
(:sensor (path-planning-sensor
team (team blob)
:messages-to-generate " (path-planner-new-path-message)))
(:resources ((blob :count :all :part-type blob-motion-resources
:type basic-military-blob)))
(:locals ((path-edges nil)
(est-time-to-complete nil)))
(:on-message (failure :send-message-to-parent))
(:on-message (completion
(:debug "MTP: ~A reached ~A" (name blob) target-geom)
(:generate success)))
(:on-message (path-planner-new-path-message
(:debug "MTP: ~A, new path message.' (nhame action))
(setf path-edges (path the-message)
est-time-to-complete (path-cost the-message))
(stop-children)
:restart))
(:do
(:case (whole-resource-count blob)
@
;; single blob
(:debug "MTP: Sending ~a (~,2F, ~,2F) to ~a via ~a (ETA: ~,0F)"
(name blob) (x (location blob)) (y (location blob))
target-geom path-edges est-time-to-complete)
(move-with-waypoints
:blob blob
waypoint-list
(mapcar (lambda (edge)
(make-destination-geom (location (vertex-to edge))))
path-edges)
starget-geom target-geom)
(:when terminal-facing
(turn :blob blob :target-facing terminal-facing)))
(:otherwise
; multiple blobs
(formation-move-to-point
taxis axis
starget target-geom))))
zexport)

Without describing the Tapir language in detail (see Appendix 4 for a manual), we can
see that the action takes a blob as a resource and has a target-geom parameter.? In words,

’In the Abstract Force Simulator (AFS) and Tapir, geoms are abstract two-dimensional

regions, and resources are something that an action can use to get things done. Blobs are
the CtF units. They can be individuals or group blobs. The whole-resource-count
accessor is used to tell how many individual units compose the blob.



the move-to-point action should get the blob to move to the target-geom. The actions :do
clause describes how the action should accomplish this. The move-to-point action will
either call on formation-move-to-point if its blob resource is a group blob or it will call
on move-with-waypoints if it has an individual blob. The :on-message clauses send
success and failure messages up to the move-to-point’s parent action (if any) and deal
with changes in the current best path. These changes are monitored by the path-planning-
sensor.

Move-to-point shows how more complex actions can be composed from simpler ones.
By adding sensors and message handlers, Tapir actions can arbitrarily extend or override
the behavior of their parts.

Tapir provided a huge leap forward in action writing productivity. It became much easier
to build and debug complex actions because Tapir took care of so many of the details. As
the following actions show, however, all was not perfect. The primitive-move-to-point
action is the lowest level movement action. It is in charge of actually setting a blob’s
acceleration effectors so that it will turn and move.

(defaction primitive-move-to-point (move-to-point-mixin)
(:resources ((blob :count 1 :part-type blob-motion-resources
:type basic-krill-blob)))
(:parameters ((target-geom nil :export :type (or null geom))
(terminal-velocity 0 :export)
(terminal-facing nil :zexport)))
(-estimated-cost (:time (calculate-time-length
simulation blob
(location blob)
(location target-geom))))
(:wake-if (and blob target-geom
(at-destination-p the-action target-geom))
(:generate success))
(:do
(zin-parallel
(:in-sequence
(:debug "PMtP: turning to ~,2F" (geom-angle blob target-geom))
(turn :target-facing (geom-angle blob target-geom)))
(:repeat
(:code
;;; this sets an effector and therefore stops the action
;55 until the effector is "cleared” by advance-physical-processes
(speed-controller the-simulation the-action))))
(:when terminal-facing
(:debug "PMtP: turning to terminal facing of ~,2F" terminal-facing)
(turn :target-facing terminal-facing)))
(zon-resource-unbound
(set-acceleration-effector the-action blob (zero-vector 2)))
(:print "PMTP: ~A to ~A" (name blob) target-geom)
(:short-name "PMTP ~A"™ (name blob))
(:debug-superclasses move-to-point-actions)
zexport)

The most important part of primitive-move-to-point, however, is hidden in the call to the
speed-controller function. This function takes care of all the interactions with the
underlying simulator and actually sets the blob’s effectors. Thus the action does not



provide any declarative information about what it does that can be used by other
programs and agents.

Move-to-point is also problematic because it does not take the context of the movement
into account. For example, if the blob is moving in service of a screening action and it
comes across a small enemy force, then it should engage and destroy it. If the enemy
force is large, however, the blob should avoid it. If an enemy attempts to engage the
blob, it should fight back or flee (depending on its mission and the enemy’s strength).
None of these conditions are included in move-to-point — indeed; they should not be
because they have nothing to do with general movement. It is possible to write Tapir
actions that handle all of these contingencies and wrap calls to move-to-point within
them. The combinatorics of this quickly becomes unwieldy, however, and we knew that
a better solution was required.

Lastly, these actions still do not describe what they are meant to do and how one can tell
if their goal has been achieved or how well it has been achieved. We next describe three
tools we implemented in order to fix these three problems.

2.0.2 No More Code: Declarative Executive Simulation

Tapir actions had to drop down to code because the Abstract Force Simulator (AFS), the
simulation substrate upon which CtF is built, was not declarative. Like the original CtF
actions, AFS could be understood by programmers but did not expose its working in a
fashion that other computer programs could use. For example, although friction in AFS
controls how quickly units move. The implementation of friction was opaque; there was
no mechanism to express that friction and movement rates were related and the relation
itself was spread among multiple classes and objects.

Krill is a new simulation substrate that explicitly declares agent sensors, properties and
effectors. In Krill, we can express the following facts:

e Change in location arises from velocity

e Velocity arises from acceleration

e Acceleration arises from agent effectors and friction

e Friction arises from terrain, overlap, reduced morale and damage

These facts allow a planner to deduce that it can slow an agent by increasing its friction
and that it can increase friction by overlapping the unit, altering its terrain, damaging it or
reducing its morale.

Krill also takes on some other AFS responsibilities such as overlap detection (in 2 or 3
dimensions), generic display routines and some parts of scenario definition. AFS now
rests on top of Krill, adding the particular physics used in CtF.



2.0.3 Flexible Actions: Goals and the Tapir Reactive Planner

The second problem we addressed was the difficulty of making actions sensitive to
context. As discussed in the move-to-point example above, blobs need to react
intelligently to changes in terrain and other units (both friends and enemies). Writing
individual Tapir actions that correctly handle all contingencies is extremely difficult
because there are so many possibilities and new ones arise all the time. Instead, we
added explicit goals to Tapir and developed a simple reactive planner to let actions
flexibly react as circumstances dictate.
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Figure 3: Action Brower showing an Attack Blob with Artillery action

The action browser in Figure 3 displays one moment in the life of an Attack-blob-with-
artillery (ABwA) action. Since the actions: do clause posts goals, a mini-planner has
been created as a child. The mini-planner has AbwA as its parent and two goals as its
children: Attack-Geom and move-within-attack-range-goal (MWARG). The Attack-
Geom goal’s job is to determine the location of the enemy blob and to use the artillery
blob’s firing effectors to direct fire onto it. The MWARG’s job is to ensure that the
artillery blob is within range by using its movement effectors. Note that each goal can
independently use the different effectors of the artillery blob without conflicts arising.

In the diagram above, the artillery blob is out of range and it is therefore impossible for
the attack geom goal to activate. Instead, the move-within-attack-range-goal is active
(indicated by the bold type). This goal determines that the best plan to satisfy it, given
the current circumstances and the types of its resources and targets, is to move-within-
indirect-range-of-geom (MWIRG), the spatial area of its target. MWIRG starts a move-
to-point action which starts a turn action. All of this activity occurs during a single tick
of simulated time. As the situation unfolds, the mini-planner dynamically starts, pauses,
restarts and ends actions associated with its goals. Furthermore, the attack-blob-with-
artillery action continues to monitor its own success conditions and may add and remove
goals as necessary. Once the artillery blob comes within range, the Attack Geom goal



will also become active and the artillery blob will begin firing. The mix of firing and
moving will happen automatically and does not need to be scripting directly into the
actions because the mini-planner takes care of the details. This is significantly simpler
for the action writer.

(defaction attack-blob-with-artillery O
(:documentation "Attack a military blob with an indirect-force-capable
blob.")
(:resources ((blob :predicate (indirect-force-capable? blob) :count 1)))
(:parameters ((target-blob :required :type “military-blob
:predicate (not (or (flag-p target-blob)
(airborne target-blob))))
(mission :value :destroy)))
(:do
(:in-parallel
(:maintain (move-within-attack-range-goal :target target-blob))
(:maintain (attack-geom-goal :target target-blob :mission mission))))
(:wake-if (:nickname attack-complete)
(attack-termination-p)
(:generate completion)))

Two keys points about this snapshot are the dynamic / real-time nature of Tapir planning
and the declarative nature of Tapir action descriptions. The ABwWA description specifies
only what goals to maintain. The programmer does not need to consider sequencing or
which actions are more likely to achieve the goals. Nor do they need to worry about new
means of goal achievement — if, for example, a teleporting artillery unit was available,
MWARG could be achieved in a miraculous fashion but the ABwWA action would not
need to be re-written to take advantage of the new capability.

2.1 Capture the Flag in Action: operation Northampton

The improvement mentioned previously to the simulation engine, to Tapir and to Kirill
can be seen in the Figures 4 and 5.

The scenario pitted blue infantry and attack helicopters against a much larger but
disorganized force of red militia in a Somalia like situation. Tapir reactive plans
controlled the red militia causing it to swarm at blue units and especially at any downed
helicopters. Damaged red units would automatically retreat and attempt to regroup. Blue
units could be controlled by the human player, by the planner or in mixed initiative
fashion with the human controlling the infantry and the computer taking control of the
helicopters. The close up in Figure 5, shows that situations could rapidly get out of hand.

This scenario provided an excellent test bed for many of our new technologies including
Action Models and Defeat Mechanisms which we turn to next.
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Figure 4: Red militia against Blue infantry and helicopters in a Somalia
like scenario on the outskirts of Northampton, MA

Figure 5: Close up of Northampton scenario unfolding

2.2 Actions and Effects: Action Models

Building military simulations requires bridging the gap between the knowledge of
commanders and computer representations of that knowledge. A significant part of this
knowledge concerns military tasks, their interactions, and an understanding of how to
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grade their achievement. Action Models describe the complex spatial and temporal
dynamics of goal directed tasks with a graphical notation. Commanders can understand
the notation and Knowledge Engineers can convert it into declarative or procedural
forms. The conversion makes possible automated After Action Reviews of plans written
in terms of these tasks [10]. We now describe Action Models and grading scales.

Evaluating an action requires measuring and grading the performance of its sub-tasks.
An Action Model describes the sequence of an action's expected events and goals using a
simple graphical notation. Action Models idealize both the temporal and spatial aspects
of an action. In doing so, they provide a bridge between the language of Subject Matter
Experts (SMEs) and Knowledge Engineers.

Action Models consist of an abstract graphical depiction of an action's spatial
interactions, anchor points (indicating transitions between phases of the action) and
attribute timelines, specifying measurable attributes. For example, Figure 6 depicts the
Action Model for the defeat task from Army Field Manual FM3-90 [11].

Defeat

Maneuver Antack
A A

g N N\
Bepin Engage End

Time b : :

Full Strength Full strength Effective strength
Unit Mass b t {
Full strength Defeated

Enemy Mass b i

API AP2 AP3

Area of Engagement

-@

Begin_
ol

Figure 6: The Action Model for Defeat

The Action Model for defeat contains three anchor points, dividing the defeat action into
two phases: a maneuver phase and an attack phase. The anchor points define the
beginning of the defeat action (AP,), the transition from maneuver to attack when the
enemy unit is encountered (AP,), and the completion of the action (AP3) when the enemy
is defeated, retreats, or the attacking unit is destroyed. Measurable attributes are time, the
friendly unit(s) firepower, and the enemy's firepower. Time and friendly firepower can
be measured at all three anchor points, but enemy firepower is only measured at the
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beginning of engagement and at the completion of the defeat action (AP, and APs,
respectively).

Although Action Models are general and can be used to model any activity with well-
defined measurement criteria, we have concentrated our work in the military domain. In
particular, our Action Model examples are drawn from Army Field Manual FM3-90 and
have been used in Course of Action (COA) construction and evaluation.

Evaluating an action requires grading the performance of its sub-tasks. An Action Model
describes the sequence of these tasks and the desired values of key attributes at their
beginning and end. It also provides a spatial model of the task which represents
abstractly how the tasks and the attributes are related.

Attribute measurements are graded with the five-point scale (Figure 7) used in After
Action Reviews.

Figure 7: Five point grading scale

The Action Model for defeat (Figure 6) shows the desired attribute values at each anchor
point. For example, the unit's firepower should be at least effective and the enemy's
firepower should be defeated at the end of the action.

Different attributes require different kinds of grading scales. Two useful scales in the
military domain are mass and timing. Mass is an abstraction of all the characteristics of a
force that make it effective. It includes force size, weapon type, cohesion, morale,
training, experience and so on. Timing is the coordination of tasks relative to a single
action and to a plan as a whole.

Mass Grading Scales

Mass scales measure the effectiveness of military units relative to their initial strength.
The effectiveness of a unit depends both on its percentage of remaining mass and on how
well it can cope with the loss of that mass. For example, elite units will continue to
function effectively with much higher casualty levels than green troops. To account for
this, we use separate scales for unmotivated, veteran and elite troops. Figure 8 depicts
the scale for veteran troops.

Each scale maps the percentage of remaining mass to a military effectiveness level: full
strength, neutralized, defeated and so on.
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Figure 8: Mass scale for veteran troops

The labels on the mass attribute timelines (Figure 6) specify desired effectiveness. A unit
at this level would receive a grade of OK (Figure 7) -- if the unit is at another level, its
grade would depend on whether it is a friendly or enemy force. For example, if a friendly
blue unit is trying to defeat an unfriendly red one; then the final goal (AP in Figure 6) is
to have the blue unit at effective strength and the red unit at defeated. For veterans, the
5-point scale is calibrated so that a final mass between 80 and 95% of initial mass will
receive a score of OK. Mass ranges around this base take on other scores. For example,
because we are measuring friendly mass, levels higher than 95% will receive a score of +,
but if mass is in the neutralized range (60 to 80%), a score of - will be assigned. Even
lower masses will receive a --. On the other hand, if we are measuring desired negative
effects on an enemy unit, and the goal is to reduce its mass to defeated, then an OK
would be assigned if the final enemy unit mass is between 40 and 60%, a - if between 60
and 80% (neutralized), a -- if between 80 and 95% (effective strength), + if between 20
and 40% (destroyed), and ++ if between 0 and 20%.

A final note: mass could be measured two ways, unit-based or terrain-based. Unit-based
means, that the mass of one or more units is being measured. In the case of a target
group of units, the sum of masses of each unit at the beginning determines the initial full-
strength of the group, and the percentages are determined by the ratio of total remaining
mass to that initial full-strength. Terrain-based means, that all of the enemy mass within
a spatial region is summed and reported. Similar to the way groups of multiple units are
handled in unit-based measurement, the mass of the units remaining in the region at the
time of measurement is summed and compared to the sum of their initial masses.

[ : 1
2 Al 0

[

Time Grading Scales

Inter- and intra-action coordination is assessed using time scales. Time may be measured
on an absolute scale or relative to the timing of sub-tasks. As mentioned, Action Models
have internal structure based on transitions between sub-tasks. For example, the defeat
action has a beginning, an engage-event, and an end -- these are the events which a
commander can use to coordinate with other events or actions in a COA. A time grading
scale is a way of asserting and assessing coordination goals.

The scale provides an envelope of time intervals around some specific time t. Grades are
assigned to each interval according to the timing relationship the envelope represents.
With these grades, the envelope describes the commander's desire for how close to t some
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event should occur, keeping in mind that there are many variables that may affect
whether timing goals specified in a COA can be met in actual practice. Time t is a
general temporal marker: it may refer to absolute time (e.g., related to specific hour
times), to coordination times defined in a COA specification (e.g., by H-hour), or to other
events (e.g., the completion of action-b, the arrival of unit-2, or the crossing of phase-line
Lima, etc.).

Highly Synchronized Relaxed
+
0K 1
' +
AT ¢ = I i = OK 'I OK —
! t
_++
_|++
AFTER ¢ —— NSNS - -- : + | oK
f t
++
+1|' ++| _
BEFORE 1 - | OK o oK | *+ o

Figure 9: Various Time scales

Figure 9 depicts grading scales for three types of timing relationships between t and an
event, each with two settings. A seventh option is to assert that timing does not matter
for the event. The scales in Figure 9 indicate that the event should happen at t. The score
received depends on the tightness of the scale, how distant the event is from t, and
whether the event occurs before or after t. If it occurs at t, it will be scored as OK.

Abstract Spatial Representations

Action Models also include a depiction of the spatial relationships which the action ought
to maintain or which can be used to understand the relationship between sub-tasks. The
defeat action has a very simple model showing that the friendly unit must first travel to
the enemy and then engage it. Other models have more complex depictions.

2.2.1 Action Model Examples

The next few sub-sections provide examples of Action Models. Each example begins
with a short italicized paragraph describing the intent of the action. These are
paraphrased from Appendix B of Field Manual FM3-90. We have also codified Fix,
Block, Attrit, Destroy and several other FM3-90 actions.
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Screen

A unit performing a screen observes, identifies, and reports enemy
actions.  Generally, a screening force engages and destroys enemy
reconnaissance elements within its capabilities -- augmented by indirect
fires -- but otherwise fights only in self-defense. The screen has the
minimum combat power necessary to provide the desired early warning,
which allows the commander to retain the bulk of his combat power for
commitment at the decisive place and time. A screen provides the least
amount of protection of any security mission; it does not have the combat
power to develop the situation. The screen should allow no enemy ground
element to pass through the screen undetected and unreported.

As depicted in Figure 10, a screening force is associated with some larger force some
distance behind it, so a screen action must coordinate with the larger force.

Screen
Maneuver Maneuver/Screen
M A

£ N s
Begin Arriye End

Time I t !

) Full Strength Full Strength Effectivel Strength

Unit Mass I t |

API AP2 AP3
Full gtrength Defeated
Enemy Mass b |
AP2a AP2b
—mTTTES Screening

et
\\ Perimeter/Region

Figure 10: The Action Model for Screen

The screening force is small, and its primary mission is intelligence gathering and
counter-intelligence operations. It will only engage small forces being used for
intelligence purposes by an opponent -- for our purposes, we can assume that it will only
attack small forces for which it has a better than 1-1 combat power ratio. The large arrow
in the figure depicts the direction from the force that the screening unit is in service of.
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Throughout the screen, the screening unit may move within the screening perimeter as
necessary in order too maintain contact with any enemy units, while also keeping a safe
distance to avoid engaging a larger enemy force.

The two main attributes measured are the time for which the screen is to be in place
(absolute or relative to other events (e.g., completion of preparation of the force the
screen is in service of), and the mass of the screening unit). The screening action has two
phases, a travel phase which ends when the unit arrives at the screening location (APy),
and maneuvering to patrol the area. The screening unit should still be at effective
strength by the end of the screen. The enemy mass attribute scores how effectively the
screening unit managed counter-intelligence operations, if any.

Breach (Penetrate & Exploit)

Use all available means to break through or secure a passage through an
enemy defense, obstacle, minefield or fortification.

A breach (Figure 11) is an Action Model that involves explicit coordination between two
units: a penetrating force and an exploiting force.

Breach
Penetrating Force
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Time t f {
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Enemy Mass {
AP2-a
Exploiting Force s
po ETP Maneuver Wit Maneuver
e A,
I." '\rf
Begin Amfe Bredch Pass End
Time t + {
Full trength Full Stréngth Full §ungth Full $tength
Unit Mass + +— -
AP! AP2-b AP3 AP

Target Enemy Unit

Figure 11: The Action Model for Breech
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The penetrating force is tasked with engaging an enemy force in order to create an
opening through which the exploiting force may safely pass. The diagram at the bottom
sketches what this looks like. The penetrating force (indicated by P) overlaps the target
enemy unit(s) and creates an opening. Meanwhile, the exploiting force (E) maneuvers
into position and waits. When the enemy is breached, it moves through the opening. The
direction of the movement, indicated by the arrow, is assumed to be in the direction
opposite where the penetrating and exploiting force began their action.

A breach action has three phases for each unit (for four anchor points each). The
penetrating unit maneuvers to the enemy, engages it to create an opening, and continues
to engage to maintain the opening. The exploiting unit maneuvers into a waiting
position, waits and then maneuvers through the opening once it is created.

All of the anchor points for either friendly force are synchronized except for AP, and
AP, which may happen at different times (in the Figure AP is reached after AP,.,, but
this is not necessary); the only constraint is that the exploiting force achieve the best
position for exploitation before the penetrating force creates the opening. While the
opening is present, it is assumed the target enemy will not be able to affect the exploiting
unit, although it may still affect the penetrating force. The goal of the breach is the
exploitation of the opening by the exploiting force, not the destruction of the enemy, so
the goal is to just neutralize the enemy. The exploiting force should also be at full
strength by the end of the breach action.

Action Model Summary

In summary, Action Models are novel formulations of activity. They describe actions
with a spatial model, a set of anchor points (dividing sub-tasks) and a set of measurable
attribute timelines (describing goals). They help to bridge the gap between Knowledge
Engineers and Subject Matter Experts.

3.0 Defeat Mechanisms

In addition to the changes made in CtF’s modeling languages, we also investigated
several different Defeat Mechanisms and incorporated them into CtF.  Defeat
Mechanisms are ways of defeating an enemy other than by strict attrition. They function
primarily at the mental level. For example, we can defeat an adversary by reducing their
morale or by alienating them from the population supporting them.

3.1 Heeringa and Cohen Model

The first model we explored was due to Heeringa and Cohen and is inspired by Gen.
(ret.) Keith Holcomb and other literature. It is composed of two components: a Fatigue
Model and a Defeat Model. The Fatigue Model combines factors that affect emotional
and physical fatigue to produce an overall measure called effective fatigue. The Defeat
Model combines effective fatigue, along with an agent’s state, to produce probabilities of
surrender.
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The Fatigue Model. We do not simulate psychological or physiological processes in
individual warriors, but instead we model the collective fatigue of a unit (e.g., a battalion)
as a weighted sum of factors that influence fatigue. Fatigue does not refer exclusively to
physiological fatigue, but rather to physical, emotional, and personal components.
Physical fatigue can be thought of as a depletion of energy or mass, while emotional
fatigue summarizes the effects of fear, courage, aggression, and morale.

Figure 12: Feedback model for effective fatigue

A sketch of our model of effective fatigue is shown in Figure 12. Note that this is a
feedback model in which attributes such as morale both affect and are affected by
effective fatigue. The model also implements a mental-physical feedback loop. Notice
that attrition has two inputs, one from the external world and one from effective fatigue;
and one output, pointing to effective fatigue. This means attrition levels increase faster
with effective fatigue, and contribute to effective fatigue. Such a system is inherently
unstable. Under some conditions, physical effects (attrition) and mental effects (effective
fatigue) can increase faster and faster in a vicious cycle. In practice, parameters of our
model damp this acceleration, but it is there, albeit attenuated, and is a good example of
the nonlinearities that can occur in warfare.

The Defeat Model. The output of the Fatigue Model is one of the inputs to the Defeat
Model. The Defeat Model contains a base probability of surrender, a set of states, rules
for specifying when state transitions are made, and functions that specify how the current
probability of surrender is computed based on the time spent in the current state. Every
Defeat Model has an initial base probability of surrender. This is purely a function of
effective fatigue. We chose an exponential function, meaning that the probability of
surrender increases exponentially fast with level of effective fatigue. In addition,
modelers may define other states. These modify the initial probability to produce an
agent’s final probability of surrender.
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3.2 Searching for Simplicity: The Bucket Model

We evaluated the Heeringa and Cohen Model above and found that it could produce
interesting behavior with clear non-linear dynamics. However, we felt that the model
was too complex and that the large number of parameters made it unwieldy. We then
turned to a simpler model that viewed fatigue as a leaky bucket: an agent's fatigue rises
when it is damaged and especially when its enemies damage it more than it damages
them (see Figure 13).

My Loss Enemies Loss

o L

Increased Friction
Reduced Strength
Reduced Resilience

Breaking

Physical
Point(s)

Fffects

Slower Entrenchment

Recovery

Figure 13: Defeat as a leaky bucket

The fatigue also has a natural constant recovery rate. The fatigue has a linear effect on
the effectiveness of the agent where effectiveness is modeled by scaling the agent's key
properties away from their nominal values. Though it is not explicit, this model is non-
linear because as the fatigue rises, the effectiveness falls and as the effectiveness falls; the
agent is liable to take more damage (and dole out less) which will cause the fatigue to rise
more quickly. More explicitly, we model the fatigue at time t as a function of the fatigue
at the previous time plus some inflow f and minus an outflow g:

Fo=Fe + f(F) - 9(Fy)
Each effect at time t, E;;, is modeled as some function, h;, of the current fatigue level.
E.i = hi(Fy)

We choose simple functions for f, g, and h:

f(t) = AMs + AM, / (AM+AM,)
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g(t) =R
h; = P,(l + ki F; /B)

Where AM; is the change in a unit’s own mass, AM; is the total change in the mass of
any enemies it is attacking, R is a constant recovery factor, B is the bucket size, k is a
maximum effect size (e.g., 30%), and P; is a scaling factor. These equations mean that all
increases in fatigue are based entirely on attrition and that they are linear with the
proportion of total fatigue to total bucket size.

We evaluated the Bucket Model by implementing it in CtF and then seeing how blob
behaviors were altered. When the abilities of the blobs were affected by their morale, the
following changes were observed:

e Changes in the overall length of battles

0 These could be longer because, by analogy, weary boxers do less
damage...

0 They could also be shorter because the blobs sometimes gave up
e The total attrition suffered (by both sides) was reduced
e A small force can defeat a much larger one if the larger one is demoralized

e Coordinated attacks matter even more. Figure 14 and 15 show how an
uncoordinated attack fails to destroy the enemy because there is time for him to
recover between the attacks. A coordinated attack, on the other hand, does not
give the enemy time to recover and so destroys him. These Figures were created
using a CtF scenario where two smaller blobs attacked a much larger one. In the
first case the attacks occur directly after one another and cause the larger blob to
surrender (its fatigue goes about 100%). In Figure 15, the second attack is
delayed and the larger blob has time to recover.

The Bucket Model adds morale to CtF using few parameters and it produces behaviors
essential for EBO.
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3.3 Modeling Defeat as Disorganization

We also explored a different notion of defeat based on disorganization and entropy. All
organizations must adapt to their changing situation and environment. In a hierarchical
organization such as the military, this includes reacting to the immediate situation and
communicating changes both up and down and across the chain of command. If things
are going according to plan, then the communication needs will be small: “everything is
going as planned”. On the other hand, things can go wrong in all sorts of ways causing
re-planning at each level of the system and the need to communicate both changes in the
environment and changes in internal structure and goals. This notion is behind the idea
of maintaining the initiative and why surprise can be both so effective and so

demoralizing.
Motional II | I I

Actual " | | I

Attack means flipping a

bit Recovery means resetting a bit in the
actual state to its notional value with
probability proportional to the overlap
between actual and notional states

Figure 16: Modeling defeat information theoretically
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We explored these ideas in a very abstract simulation based on bit vectors. The goal of
the system is to maintain coherence between bit vectors at all levels. The goal of an
adversary is to disrupt these bit vectors causing disorganization and, eventually, defeat.

Each level of the system represents their own notional view of how things are, which
matches more or less with the actual situation. An attack means flipping a bit in the
vector that represents the state of the world and recovery means matching the notional
state back to the actual state. Recovery is not automatic: when a system attempts to
recover, it does so only probabilistically. The probability of recovery is proportional to
the overlap between the actual and notional states: recovery is more likely when the
system’s view of reality is correct.

Figure 17: Single level system under attack. As more bits flip out of
alignment, it becomes harder and harder to recover.

Figure 17 shows the proportion of bits set incorrectly over time in the single level system
of Figure 16 as an enemy randomly flips bits in the actual state. The initial slow loss of
coordination accelerates as the notional situation differentiates further and further from
the actual situation.

Things become more interesting if we place systems within an organization of their own.
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Figure 18: A small system of inter-related systems

Figure 18 shows a small system made up of one super-ordinate individual with two
subordinates. Some of the bits in the super-ordinates actual vector are functions of bits in
its subordinates. The super-ordinate and its subordinates also need to communicate
changes to one another. In our simulation, attacks are made only on the subordinate
levels. The super-ordinate is not attacked directly but still must cope with the changes in
its subordinates. Interestingly, enemies now have two strategies: they can attack
randomly or (assuming that it is known) they can attack the bits of the subordinates that

directly affect the super-ordinate.
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Figure 19: The results of two attack strategies on a multi-level system
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Our work in information theoretic models of defeat is only at its early stages but it none-
the-less shows how simple models can provide and represent complex non-linear
dynamical behaviors. We believe that models such as these are deserving of further
study.

4.0 Summary

EBO requires reasoning about the effects of action. To do this, we need models of
effects. These must distinguish the physical from the behavioral and physical structures
from mental ones. The original Capture the Flag system modeled only physical force on
force conflict. The changes we made to CtF under this program greatly enhance the
kinds of conflict that can be modeled: from large-scale military engagement on open
terrain to squad level scenarios in an urban environment. Action Models and Defeat
Mechanisms provide CtF with a much broader range of measurable effects. Krill and
Tapir make it possible to describe plans and actions declaratively, while also supporting
Monte Carlo simulation for the measurement of uncertain, probabilistic and dynamical
events. Together these changes bring effects based models to CtF.
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Appendix A — Operational Description of Capture the
Flag (as of September 2000)

Research in real-time, adversarial planning has reached the stage that intelligent agents can now
play plausibly in simulated war games. At the University of Massachusetts we have developed a
wargaming environment called Capture the Flag, and a planner called GRASP which regularly
beats human adversaries. This note describes operational features of Capture the Flag — how the
system appears and what it provides to operational users. The underlying ideas in planning and
simulation are presented in [1, 7, and 8].

War games in Capture the Flag are played in a virtual world of “nearly three dimensions”: In
addition to latitude and longitude we have elevation, although all hills are the same height.
Opposing land and air units attempt to capture each other’s flags. They can exploit or be
hindered by terrain features such as hills, rivers, and terrain types such as forest and swamp.
When units engage, either directly or at a distance, attrition is modeled by modified Lanchester
equations. In addition, the dynamics of engagements are influenced by models of psychological
factors — fear, morale, fatigue and the like.

Opposing units can be controlled by humans or by the GRASP planner, and a common
configuration is for humans to play against GRASP. A natural interface allows human players to
direct their units on the battlefield, and the units themselves are capable of intelligent reactive
behavior to carry out directives without constant supervision (e.g., one can direct a unit to attack
another and it will figure out how best to get there, which formations to adopt, and so on).
Tempo strongly influences the outcomes of these games. When human players lose the tempo,
GRASP presses its advantage, and a tactical disadvantage quickly spreads to a scenario-wide loss
of initiative. The human becomes reactive and eventually loses the game.

How Capture the Flag appears to players

The setup of a Capture the Flag scenario is shown in Figure 1. One panel of the display is a map
with units arrayed in a starting configuration. (Configurations are selected by the system but may
be changed before the game begins, to model prepositioning.) The other panel shows the
parameters of the game. For instance, one can select the number of flags for each side (Red and
Blue); the number of brigades of each of six kinds (Armored, Mech., Light, Medium, Airborne
and Air Assault); and the number of battalions in each brigade. One can also take shortcuts and
add entire divisions of various kinds, then modify their brigade and battalion structure as desired;
or, as shown in the left-hand panel of Figure 2, one can specify each scenario unit individually.
The other panel in Figure 2 shows a menu to select map views. The most common kind of view
presents the military icons, terrain, roads and rivers, control measures, and other “bird’s eye
view” features of the map, but one can see many other visualizations of the scenario, as we will
discuss, shortly.

Floating in the right-hand panel of Figure 1 is the Control Engine menu. It is used to run and stop
the simulation and planner; single-step them; take a snapshot so one can replay a game from that
situation; restore a situation; and zoom in or out on the map. Generally, humans cannot think fast
enough to win a Capture the Flag game in real time, so they usually let the game run for a while
and then stop it for a while.
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Figure 1. The map of a Capture the Flag scenario, a menu for specifying the
parameters of scenarios, and the “control engine” that runs the simulation and
planner.

Figure 2. Menus for specifying the units in a Capture the Flag scenario and for configuring
the visualizations presented in the map.
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The Major Components of Capture the Flag

The Capture the Flag system comprises a simulator (AFS), a control architecture (HAC), and a
planner (GRASP). In addition, the system provides GUIs for humans to observe and participate
in war games, a variety of visualizations, and instrumentation and other software support to
conduct and analyze experiments. One recent GUI is a three-dimensional display shown in
Figure 3. When the user clicks on a unit, the display automatically rotates to show the avenues of
approach, goals, and threats to the unit.

Figure 3. A 3-dimensional visualization. Clicking on a unit causes the display to
rotate to an angle that best shows avenues of approach, the chosen trajectory, and
targets and threats relevant to the unit.

Playing against the system. A typical experience with Capture the Flag begins with the user
designing a scenario, then directing his units (Blue, say) against those of the system. The game
plays out in the Abstract Force Simulator (AFS), the dynamical analog of a chessboard. The
simulator implements the models that make Capture the Flag realistic; models of movement;
terrain; visibility, reconnaissance and sighting; attrition; and mental attributes such as fatigue and
morale.

Monte Carlo analysis of COAs. Alternatively, a human may supply a course of action (COA)
and direct Capture the Flag to use it to direct, say, Blue units in war games against the GRASP
planner. Monte Carlo experiments involve fighting numerous games with roughly the same
COA.

When a human player directs a unit to, say, attack another, the Hierarchical Control Architecture
(HAC) takes care of the details:

* HAC finds the best route for the unit to follow,

* It avoids obstacles on the route and reroutes units dynamically

* It manages attacks and maneuvers

« It transforms units into different formations as the tactical situation and the terrain require.

* HAC also implements the “eyes and ears” of units, and passes information among units.
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The movements of opposing forces (Red, say) are determined by the GRASP planner, which
coordinates the efforts of its units, directs them against Blue units and flags, and defends terrain
features and flags. Just as human directives are managed by HAC and play out in AFS, the same
occurs with GRASP’s directives.

Types and Attributes of Units

Capture the Flag provides land and air combat units of the following types: Tank, Mechanized
Infantry, Light Infantry, Cavalry, Artillery, and Aviation. The smallest units in Capture the Flag
are battalions, the largest, divisions. Unlike MODSAF, for example, our Abstract Force
Simulator does not model the movements of individual vehicles, but rather, treats entire units as
deformable “blobs.” The shapes of blobs change in response to terrain and tactical requirements.

We take Clausewitz’s physical metaphors very seriously, so the most primitive attributes of units
are physical attribute: mass, density, shape, velocity, resilience, and elasticity. The Abstract
Force Simulator (AFS) determines how these attributes change over time in such a way as to
model warfare. For example,

»  One effect of attrition is to reduce the mass of a unit; attrition can also change the density
of the unit (the distribution of its mass within its boundary), or its shape.

» Formations and to some extent maneuvers involve changing shape. Units can adopt
columnar and frontal formations, as well as wedge (one up, two back) and “V” (two-up,
one back) formations. They can change formation while moving, and while engaged,
though in the latter case the process may be slower.

» The velocity of a unit depends on its shape (formation), the kind of terrain it must
traverse, what kind of unit it is (e.g., infantry are faster than tank units in wooded terrain),
whether it is in combat, and which tactical maneuver it is following (e.g., units move
more slowly when they share an avenue of approach).

»  When units “dig in,” their resilience increases; resilience is resistance to attrition.

» The elasticity of a unit is the propensity for another unit to “bounce off” it. Some tactical
situations require units to “absorb” others; for example, a favorite of Sun Tsu’s involves
absorbing an assault, allowing it to penetrate, then collapsing in on the incoming units.

In addition to these physical attributes of units, we model mental attributes such as morale,
fatigue, and uncertainty. Crucially, AFS implements mutual dependencies between physical and
mental attributes. Thus, attrition reduces morale, and low morale reduces the ability of a unit to
inflict attrition on other units. This particular mutual dependency can lead to a downward spiral
in which a unit becomes progressively more damaged, demoralized and unable to fight back.

Visibility. Units have limited sensors, and limited knowledge of the battlefield. A unit becomes
visible to another only when air reconnaissance spots it, or when the units make visual contact.
Units may hide in woods or behind hills. When humans play against the system, they may select
an omniscient view of all units (we call this cheating) or they see only those opposing units that
have been sighted.

Tactics and other behaviors

The behaviors of units range from low-level physical adjustments (e.g., changing formation) to
movement and bringing fire, to tactical plans such as passage of lines, to emergent behaviors such
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as the downward spiral of demoralization mentioned earlier. We have implemented several
tactical plans:

» For ground units: Move to a location, occupy (defend) a location, retain a flag, block,
follow and assume, follow and support, forward passage of line, direct attack, indirect
attack (e.g., by artillery).

» For aviation units, reconnaissance, interdiction, close air support, and establishment of
air superiority.
We are constantly implementing other tactical plans; those on the agenda include flank attack,
envelopment and double envelopment; and hasty and moving defenses.

Many factors affect behavior, and thus the outcomes of tactical plans. For example, suppose unit
A attacks unit B, what will happen? It depends on these and other factors:

* The relative masses of A and B (big units tend to win), and the types of the units;

» The terrain on which they engage and the types of the units (e.g., tanks do poorly against
infantry in wooded terrain);

» B’s degree of entrenchment;

» The time it takes A to move to B (this affects B’s entrenchment and A’s level of fatigue),
which depends on terrain and the type of unit A;

*  Whether or not A surprises B (surprise acts as a multiplier on attrition), which itself
depends on whether A is visible to B;

e The morale and fatigue levels of A and B
e The formations of A and B

Blobology. Many tactical plans exploit geometry, for example, flank attacks require exposed
flanks. Originally, all units in Capture the Flag were circles, and they maintained this shape in all
conditions, making it difficult to implement tactical plans. Now, however, units change shape in
response to terrain features (e.g., squeezing through a pass), tactical requirements (e.g., moving in
column), and combat situations (e.g., a wedge formation may be deformed by contact with the
enemy). Some examples are shown in Figure 4.

Q
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Figure 4. Effects on the morphology of units. From left: A unit compressed by a
lake; a unit squeezing through a narrow defile between a lake and an impassable
area; a wedge formation moving east, deformed by the lake and impassable area; a
unit moving in column,
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Appendix B — Original CtF move-to-point code

Though each implementation provides slightly different functionality, the code presented
below is roughly equivalent to the Tapir code shown in the section 2.0.1 Tapir: A better
action language. This code is196 lines; the Tapir code is only 50.

(define-debugging-class move-to-point (move-to-point-actions))

(define-action move-to-point (level-n-action move-to-point-mixin)

;5 arguments

((overcome-block-mode :move-through) ;how should it deal with obstacles
on path (:wait :-move-through)

;; storage

(sub-move-failed? nil)

(avoid? t) ;try to avoid blobs you encounter?

(n-sub-moves-failed 0)

(original-target-geom nil)

(path-edges nil)

(est-time-to-complete nil)

(temp-delay 0)

(first-call? t)) ;for simulate

zautomatic-accessors

automatic-initargs

zcopy-slots

(export-p t))

(defparameter *mtp-retries* 1)
(defun mtp-deal-with-failure-from-children (game-state action)
(incf (n-sub-moves-failed action))

(if (> (n-sub-moves-failed action) *mtp-retries*)
(progn
(when-debugging-format
move-to-point
“MTP: *** Switched ~a to "don"t avoid"'" action)
(setf (n-sub-moves-failed action) 0
(temp-delay action) (uniform-random game-state 5 10))
(when (eq (overcome-block-mode action) :move-through)
(setf (avoid? action) nil)))
;; else:
(setf (sub-move-failed? action) t)))

(defmethod handle-message ((game-state game-state) (action move-to-point)
(message change-speed))
(when-debugging-format move-to-point
"MTP: (~A) Change speed to ~A / ~A-%."
(name (blob action))
(speed message)
(speed-percent message)))

(defmethod handle-message ((game-state game-state) (action move-to-point)
(message all-resources-gone))
(when-debugging-format move-to-point
"MTP: ~a: Received all-resources-gone."
action))

(defmethod handle-message ((game-state game-state) (action move-to-point)
(message failure))
(when-debugging-format move-to-point
“"MTP: ~a: Received failure."
action)
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(mtp-deal-with-failure-from-children game-state action)
(interrupt-children game-state action))

(defmethod handle-message ((game-state game-state) (action move-to-point)
(message no-progress-in-movement))
(when-debugging-format move-to-point
"MTP: ~a: Received no-progress."
action)
(mtp-deal-with-failure-from-children game-state action)
(interrupt-children game-state action))

(defmethod handle-message ((game-state game-state) (action move-to-point)

(message success))

(unless (original-target-geom action)

(when-debugging-format move-to-point

"MTP: ~a reached ~al!"
(blob action)
(target-geom action)))

(complete-action game-state action))

;:?? Do we really need this?
(defmethod check-and-generate-message
((game-state game-state) (action move-to-point)
(type (eql "all-resources-gone)) (qualifier (eql :BEFORE)))
(if (not (exists-p (blob action)))
(progn
(when-debugging-format move-to-point
"MTP: (~a) Blob Died."
(name (blob action)))
(complete-action game-state action "all-resources-gone)
(values t))
(progn
(values nil))))

(defmethod path-planning-enabled? (game-state blob)
(if (path-planning-p (scenario game-state))
(progn
(afs::ensure-passes-initialized game-state)
(it (path-profile (path-i (scenario game-state)) (friction-profile
blob))
(values t)
(values nil)))
(values nil)))

(defmethod realize ((game-state game-state) (action move-to-point))
(if (> (temp-delay action) 0)
(progn
(restart-action game-state action (+ (current-time action)
(temp-delay action)))
(setf (temp-delay action) 0))
(let* ((movers (extract-simulatable-members (blob action))))
(when movers
(cond ((not (cdr movers))
(move-to-point-single-blob-internal game-state action))
(t
(move-to-point-multiple-blobs-internal movers game-state

action)))))))

(defun move-to-point-multiple-blobs-internal (movers game-state action)
(start-new-child action game-state "formation-move-to-point
blob (Ffirst movers)
-followers (rest movers)
starget (target-geom action)
resources movers))

(defun move-to-point-single-blob-internal (game-state action)
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;5 hack to deal with singleton group blobs
(assert (not (cdr (extract-simulatable-members (blob action))))
() "should not be a group blob™)
(setf (blob action) (Ffirst (extract-simulatable-members (blob action))))

(let ((avoid-fn (if (eq (overcome-block-mode action) :wait)
#"false-fn
(if (avoid? action) (blob-avoid-fn action) #"false-

L))
(tempy nil))
(when (eq (overcome-block-mode action) :wait)
(when (setq tempy
(grid-overlap

(grid game-state)

(make-circle (location-add-vect
(location (blob action))
(vect-mult (velocity (blob action)) 2.0))
5

stest #"(lambda (x)
(and (slot-exists-p x "team)
(eql (team X) (enemy-team (team
action)))))))
(when-debugging-format
move-to-point
"MPT: Found obstacle ~A!l Restarting ~a~%" tempy (blob action))
(awhen (hac::pending-children action)
(interrupt-children game-state action))
(restart-action
game-state action (+ (current-time game-state) 10)) ;retry again
in 10 ticks
(return-from move-to-point-single-blob-internal))
(restart-action game-state action))

(cond ((path-planning-enabled? game-state (blob action))
(multiple-value-bind

(path-edges est-time-to-complete)

(find-best-path-with-passes game-state (blob action)
(location (blob action))
(location (target-geom action)))

(setf (path-edges action) path-edges

(est-time-to-complete action) est-time-to-complete)

(when-debugging-format move-to-point
“MTP: Sending ~a to -~a via -~a (ETA:
~, 0"
(blob action)
(target-geom action)
path-edges
est-time-to-complete)

(let* ((waypoints (mapcar
(lambda (edge)
(if (location-equal (location (target-
geom action))
(vertex-loc (vertex-
to edge)))
(target-geom action)
(make-destination-geom (vertex-loc
(vertex-to edge)))))
path-edges)))
;; Use MWW even for single point paths
(start-new-child action game-state "move-with-waypoints
:blob (blob action)
resources (extract-blob-resources (blob
action))
waypoint-list waypoints
starget-geom (target-geom action)
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gone completion)))))
(t

:blob-avoid-fn avoid-fn

:speed (speed action)

:speed-percent (speed-percent action)
:messages-to-generate "(all-resources-

(start-new-child action game-state "move-to-point-criteria

action))

completion))))))

:blob (blob action)
resources (extract-blob-resources (blob

:target-geom (target-geom action)
:blob-avoid-fn avoid-fn

:speed (speed action)

:speed-percent (speed-percent action)
:messages-to-generate " (all-resources-gone
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Appendix C - Tapir

June 17, 2005

1 Overview

Tapir is a semi-declarative action language specification. This section presents
the Tapir language at two levels. The first provides a bird’s eye view of the lan-
guage: its main constructs are defined and a brief description of their clauses and
options is given. The second returns to each language element and describes its
function in detail with numerous examples. To set the rest of the language in con-
text, we begin with a brief overview: Tapir actions are defined with the defaction
command. Actions use sensors, resources and child actions to get things done.
Resources connect actions to effectors in the world. Particular kinds of resouces
are defined with defresource-type. Actual resources in the world are defined with
defresource. Sensors connect actions to a representation of the world and are de-
fined with defsensor. Finally, actions often need to commicate with one another
and sensors need to communicate with actions. Communication in Tapir occurs
via message passing. Messages are defined with defmessage.

2 Key ldeas

2.1 Overview

Actions are connected to the world by sensors and resources. Sensors let them
know what is happening. Resources are the effectors that let them act. Actions ac-
complish their ends either by using resources directly or by starting child actions.
This section touches on the highpoints of Tapir's ontology. Following sections
then discuss each of these in detail.
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2.2 Control

Actions build a control hierarchy by starting children to do their work for them.
The hierarchy bottoms up in “primitive” actions that use resources (effectors) to
achieve their ends. Actions can create children and structure their control in a mul-
titude of ways. However, there are some control mechanisms that are so typical
that they have been canonicalized in actions of their own.

2.3 Resources

Resources are the effectors of an action and come in many types. For example, re-
sources can be serializably reusable, sharable, primitive, compound, consumable
and so on. Resources form a hierarchy of their own. For example, a robot is a
resource consisting of motor resources, camera resources and so on.

2.4 Sensors

Sensors tie actions to the world. They can be “primitive”, connecting to the world
more or less directly, or they can be abstract, amalgamating and processing data
from multiple sources. Sensors can be shared by multiple actions.

2.5 Messaging

Actions, sensors, and resources communicate via messages. The following are
typical message passing scenarios:

e sensors send actions messages when some event in the world occurs.

¢ child actions send their parent messages when they complete or when some-
thing "unexpected” occurs.

e parents send their children messages when they wish to redirect their activ-
ities mid-stream.

e resources send the actions using them messages when the resource is de-
stroyed.

Messages are used in two complementary roles: to pass information and to direct
control. As examples, child actions use informational messages to keep their par-
ents informed of their progress (or lack thereof!) and they use control messages
to tell their parents that they are completing.
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3 Process and Control

Figure 1 displays a schematic of an action’s life cycle. In brief: an action is cre-
ated, enters its do phase (perhaps many times) and then completes. The details
of this simplified description are filled in by special initialization and finalization

Created
slot initialization (initial values)

'

Scheduled
resource binding (:resources)

Fi start sensors (:sensors)
@start monitors (:wake-if)
;initially
Run Phase
Tests d

i :do-send-if from any stage} Interrupted

Run  gyecute the main action (:do or :code)
:period
/ Actions can be rescheduled
if someone calls restart-action
"7 S
Rescheduled . \
N

Actions are rescheduled Completing

when they handle a message n
unless they :sleep '
.

Actions wake up
when they get a message
Handle Message ’,"
:on-message Cleaning finally

free resources
\ notify sensors

interrupt children
unschedule

messages from
outside sources Completed
(:wake-if, :sensors, children,

parents and so on)

Figure 1. Process Flow

code, sensors, process monitors, child actions, resource utilization and more. Fig-



ure 1 also shows the Tapir language constructs that can be used to influence and
describe what an action should do. All of these constructs will be discussed in
detail below but first, we will describe the action life cycle in more detail.

Actions maintain internal state in their slots; they also may require resources
to do their job. When an action is created, its slots are initialized and any required
resources are found and bound. Created actions do not do anything until they
are actually scheduled to be run and the time for their activation arrives. When
this happens, the action enters its do phase. Actions may execute special code
at the beginning of the very first do phase; any sensors required by the action
are also run at this time. The do phase itself consists of pre-checks to see if any
messages should be sent to the action’s parent (these may possibly complete the
action without it ever having really executed); the actual execution; and then post-
checks to see if any messages should be sent. Once an action executes, it will go
to sleep unless it has been rescheduled. A sleeping action remains asleep until
it is explicitly rescheduled (perhaps by a parent) or until it receives a message.
Actions specify what they would like to do for each different kind of message.
Typical responses include: running code, re-entering the do phase, sending the
message on up to the action’s parent, and ignoring the message completely. When
an action is sleeping and it has no sensors or children that can wake it up, the
action will automatically complete. Actions can also be interrupted at any time.

In both cases, the action enters a cleaning phase where resources are unbound,
finalization code is run, children are interrupted and so on.

As mentioned above, messages are used to control the flow of execution be-
tween parents and their child actions. Children can complete themselves explic-
itly by sending a message of type completion (e.g., success or failure) to their
parents. If a child completes for some other reason (e.g., a required resource is
destroyed) then they will automatically send a completion message during their
clean-up phase. Message passing is the only means of control transfer.
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Seeing Things: defsensor
Changing Things: defresource-type and defresource

Saying Things: defmessage

N~ oo o1 B

Doing Things: defaction

Actions in Tapir (and HAC) are classes. Action definitions expand into CLOS
class specifications and the set of methods that implement the action. Syntaxically,
an action specification looks like:

(defAction ([action-superclasses]*)
clause*
option*)

Action-superclasses are mixins that add specific behavior to an action. DefAc-
tion’s clauses are summarized here and described in more detail below:

:parameters Describes the parameters of the action. Parameters can be initial-
ized when an action is created. Each parameter becomes a slot in the ac-
tion’s class.

:locals Describes additional local state variables of the action. Locals becomes
slots in the action’s class.

:documentation An string describing the action.

:resources A specification of the resources required by the action. The resources
named in the specification become slots of the action’s class.

:sensors Describes an abstract sensor used by the action. Sensors can be named
in which case the name of the sensor is added to the slots of the action.

:wake-if Describes monitors for the action and what the action should do when
the monitor sends it a message. Monitors can be named in which case the
name of the monitor is added to the slots of the action.

sinitially Describes what the action should do before it starts. Initially can be
code or a child action specification.
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‘finally Describes what the action should do before it completes.
:code Code that is executed whenever this action runs.

:do A specification of the action’s children and how they are to run (e.g., in se-
guence or repeatedly). Children can be named in which case the name of
the child is added to the slots of the action.

:do-send-if-before Describes a test that should occur before the action enters its
do phase. It consists of a message specification and code to run. If the
parent action requests the message, then the code will be run before each
:do phase. If the code evaluates to true, then the message will be sent to the
parent.

:do-send-if-after Like :do-send-if-before, only this check is performed after the
:do clause runs.

:on-messageDescribes what the action should do when it receives a message.
;instrument Creates instrumentation to be used by CLIP.
:period Specifies how often this action should be rescheduled.

:debug-name Specifies the name used for the debugging switch associated with
this action. See below for more details on debugging.

:debug-superclassesSpecifies debugging switches that subsume this action’s de-
bug switch. See below for more details on debugging.

:debug Adds debugging code or print statements to the do phase of the action.

7.1 Parameters and Locals

Parameters and locals correspond to slots. Parameters may be passed into an
action when it is created. Locals maintain local state. Both specifications may
consist of a name (in the form of a symbol) or a list of the form:

(name initial-value [{CLOS slot specification} |
{;read-only | :read-write} |
{:required | :optional} |
:export | :copy | :copy-set | :unbound |
sinstrument]*)
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The initial-value is the value to which the slot is initialized when the action is
created. It may be set to :unbound to create actions with slots that are initially
not bound to any value. CLOS slot specifications can be used to specify :type,
:allocation, :documentation and so on for the slots. The :read-only option creates
slots that can only be read. The :required option is only valid for parameters (not
locals). If specified, it generates code that ensures that some value is actually
supplied for the slot. (Note: in practice, the main difference between parameters
and locals is that the former have an :initarg). You can specify that slot names
be exported from their package using the :export keyword. You can control the
copying behavior of the action’s class using the :copy and :copy-set keywords.
The :instrument keyword is covered in detail below.

7.2 Message Handling

Here is the new (improved?) proposed syntax for the :handle clause in Tapir.
This clause is used to describe how an action should handle the messages that it
receives. The clause must be in one of two forms:

(:on-message (<type> :ignore)
(:on-message (<type> [code]
[(:generate <other-type> args)]
[:sleep]
[:restart])

The first type indicates that the message should be ignored. l.e., that no code
should be run, that no further message should be sent and that the action should
not be run.

The second type is more flexible. It includes optional code (anything that can
be in a :code clause, i.e., no action specification), an optional message to generate
and the optional :sleep clause. The order does not matter. When a message is
received, any code will be run. If there is a :generate clause, a message will be
generated. If the :sleep option is present, then the action will not be run. If :sleep
is not present, then the action will be run.

7.3 Documentation

The :documentation clause exists to provide a place for people not to use when
they fail to write documentation.

42



7.4 Resources

The resources clause is used to specify what the action needs to accomplish its
activities. It consists of a list of names and resource specifications. For example:

‘resources

(Iw (left-wheel-resource Iw))

(rw (right-wheel-resource rw))

‘resources

(blob (and (indirect-force-capable? blob)
(> (mass blob) 200)))

When the child action is initialized, its parent will hand it the unused resouces.
The child will then attempt to match these resources with its resource bindings.
If all goes well, the resources will be found and each name will by linked to the

specified resource. Resource names become slots in the action’s class.

7.5 Sensors

?? Sensor specs look like action specs but start with a sensor.

7.6 Wake-if

The :wake-if clause canonicalizes the standard practice of creating monitors or

guardians to ensure that an action is doing what it is supposed to be doing. Wake-
if checks a predicate periodically. If the predicate becomes false, any code asso-
ciated with the wake clause is executed and the action wakes up and enters its run
phase.

7.7 Initially

Initialization specifies what should occur the first time that the action is run. You
can execute code using the :code keyword and you can start child actions using
the :do keyword. You must specify either :do or :code.

7.8 Finally

The :finally clause is meant to help with recovery after something has gone wrong.
It may contain any Lisp code.
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7.9 Code

The :code clause is code that will be run when the action is scheduled (all else
being equal). Actions may have :code or :do but not both.

7.10 Do

The :do clause specifies the potential sub-tasks of an action. It describes both
the sub-tasks and how they will be executed. Sub-tasks are the leaves of the :do
specification. They can either be Lisp code (using the :code construct) or an action
specification consisting of the child action’s name and any of its parameters. The

sub-tasks can be joined together using the following constructs:

:code Lisp code evaluated as is.
:case Case is Tapir version of Lisp’s case statement.

:foreach Dynamically creates a list of children and runs then. The children may
be run using any of the child combination types (e.g., in parallel, in sequence
and so on).

:generate Though not really a child specification, a :generate clause can be used
to send a message to the action’s parent from within the :do clause.

sin-parallel Runs a list of children in parallel. Each child in the list is started at
the same time and runs independently.

sin-sequenceRuns a list of children in sequence. Only one child at a time is
active.

‘repeat Runs a child action repeatedly for a count or until some predicate be-
comes true.

:one-of One-of is Tapir’s version of a the Lisp cond form. It takes a list of pred-
icates and action specifications. One-of runs the first action specification
whose predicate evaluates to true.

:unordered Runs a list of children in some arbitary sequence. Only one child is
active at a time but the order of activation is unknown.
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‘when Each when clause consists of a predicate and an action-specification. If the
predicate evaluates to true, the action-specification is run. Multiple when
clauses can be used to start several children simultaneously.

Action-specs can nest arbitrarily deep although it is typically more understanable
to create complex structure with multiple children rather than building it all into a
single action. The following are a few examples:

(:do
(crepeat (:in-sequence
(:code (let* ((element ...)
(complement (dna->rna ...)))
(append-element product complement)))
(move-sub-sequence :sequence sequence))))

(:do
(:repeat (:in-sequence
((add-nucleotide :sequence sequence
‘product product
.offset offset)
(move-sub-sequence :sequence sequence)))))

The syntax and use of children and action specifications are detailed below.

7.11 :do-send-if-before, :do-send-if-after

The :do-send-if clause’s are used to send messages only when certain conditions
are true. They are evaluated each time an action is scheduled and run. They
consist of a message specification and code to evaluate. For example:

(:do-send-if-before (success)
(when (not (null sequence))
(occupy pool sequence)))

In this example, the message specification is simple “success”. If the parent action

is interested in success messages, then the “(whghwill be evaluated each

time the action is about to run. If it returns true (i.e., if the sequence is not null)
then the success message will be generated (note that because success is a kind of
completion message, the action will complete after it sends the message).
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7.12 On-Message

The :on-message clauses describe how an action should react to the messages it
receives. Responses can include running code, sending messages to parents and
re-running the action.

7.13 Instrument

Instrument specifications are used to build complex CLIPs.

7.14 Debug-name

The debug-name specifies the name used as the debugging switch for this action.
If not specified, the debug-name of this action will be the same as the action’s
name.

7.15 Debug-superclasses

The debug-superclasses clause specifies the names of any debugging switches that
should subsume this actions debugging switch. In other words, if debugging su-
perclasses are specified, then they will turn on debugging for this action when they
are turned on.

7.16 Debug

This syntax sets the name of the debugging switch for this action. Unless other-
wise specified, debugging names are inherited from super-actions. If no debug-
ging name is specified in either the action or its super-actions, then the name of
the action itself becomes the debugging name.

8 Debugging

Many clauses can contain a :debug sub-clause. This should look like one of the
following:

:debug [debug-switch-name] format-string [arguments*]
:debug [debug-switch-name] form*
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In the former case, the format-string and arguments will be used to print a message
when this action has debugging turned on. In the later, the forms will be executed.
In both cases, all of the slots of the action will be available. Clauses may have
multiple :debug clauses which will be evaluated in the order that they are found.
The following clauses can include the :debug switch: :initially, :finally, :wake-if,
:on-message, :code, :do, :do-send-if-before, :do-send-if-after. If unspecified, the
optional debug-switch-name defaults to the debug-name of the action. You can use
this to specify alternate debug switches for more complex debugging behavior.

9 Do: Get someone else to do the work

An action uses its :do clause to specify its subtasks and how these subtasks should
be run. Subtasks are either Lisp code (embedded in a :code clause) or task speci-
fications. A task specification is a list consisting of the name of the task and any
arguments that are needed. For example:

(:code (setf next-location (find-next-location)))

(move-to-point :blob self
‘target-geom destination-circle)

Task specifications can be arranged and sequenced in a wide variety of ways. They
can run sequentially or in parallel; they can run only under certain conditions and
then can be run once or multiple times.

9.1 :case - choose an action to run depending on some value

The :case clause has the following syntax:

(:case value-form
(key action-spec)*
[(:otherwise action-spec)])

During action execution, the value-form is evaluated. Then each of the (key
action-spec) forms are examined. If the value of the value-form is the same as
that of the key, the action-spec is executed. If the value matches no keys and there
is an :otherwise form, then the :otherwise form’s action-spec is executed. If there
is no :otherwise clause, then no action-spec is executed.
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9.2 :code

Any code may be included in a :code section.

9.3 :debug

The :debug clause makes it easy to insert debugging code and messages into the
context of an action specification.

9.4 foreach - do the same thing different ways

Sometimes the number of children is not known until run time. For example, a
swarm action will not know how many blobs to swarm until it actually runs and

a move-with-waypoints action will not know how many waypoints it will move
through until the actual path is planned. The :foreach clause exists to handle these
cases. Its syntax is

(:foreach variable [in|:in] list mode [mode-specifier]
action-spec)

(:foreach binding-specification :in list mode [mode-specifier]
action-spec)

The second form is a generalization of the first. In either case, the list is evaluated

at run-time. Then the action sets the variable to each item in the list and creates

an action based on the action-spec and the current value of the variable. Finally,

these actions are :executed either sequentially, in-parallel or unordered, depending
on the mode. Here are some examples.

;; swarm
(defaction move-em-all-around ()
(:resources ((blobs t :count :all)))
(:do
(:foreach b in blobs :in-parallel
(move-to-random-point :blob b)))
signore-messages)

;; a simple move with waypoints action
(defaction move-with-waypoints ()
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(:parameters (waypoint-list))
(:do
(:foreach point in waypoint-list :in-sequence
:until-one-fails
(move-to-location :blob blob
:location point))))

9.5 :in-parallel - all together now

When several actions need to be run at the same time (i.e., as separate processes),
the :in-parallel clause is indispensable. It has the following syntax:

(:in-parallel [mode]
action-spec*)

The optional mode specifies how to deal with completion. It can be one of :until-
one-completes or :until-all-complete (the default). When :until-one-completes is
used, the entire set of parallel actions will be interrupted as soon as one of them
completes and the parent action will then continue its own processing. If :until-
all-complete is specified, the parent will not be notified until all of the parallel
actions are finished. Here is how it looks in a simplified envelopment action:

(defaction simple-envelopment ()
(:parameters ((target-blob :required)
(flank :right-side)))
(:resources ((holder
(and (direct-fire-capable? holder)
(> (mass holder) (mass target-blob))))
(mover
(and (direct-fire-capable? mover)
(> (mass holder) (/ (mass target-blob) 3.0))))))
(:do
(Cin-parallel :until-one-completes
(fix :blob holder
‘target-blob target-blob)
(flank :blob mover
‘target-blob target-blob))))
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Envelopment consists of one blob holding (fixing) the target in place while another
attempts to flank it. The fixing and the flanking happen at the same time and the
envelopment should end when either of its children completes.

9.6 :in-sequence - line up and wait your turn

The :in-sequence specifier runs several actions one after the other in order. Its
syntax is similar to the :in-parallel clause:

(:in-sequence [mode]
action-spec¥*)

The mode argument can be :until-one-fails or :until-one-succeeds. The first will
run each action in the specification until one of them fails; the second will run
each action until one of them succeeds. For example, suppose there are several
ways to accomplish a goal. One could use :in-sequence :until-one-succeeds to
try each method sequentially and stop as soon as one of them succeeded. On the
other hand, if some multistep process can only be achieved if every step works,
then :until-one-fails will prevent the action from continuing on to a fruitless end

9.7 :one-of - keep trying until one fits

(:one-of (predicate action-spec)*
[(:otherwise action-spec))

9.8 :repeat - one good turn deserves another

(:repeat [count]
[:when predicate]
[:unless predicate]
[:times {expression | number}]
action-spec*)

9.9 :unordered - one at a time but who knows which?

An :unordered action runs each of its steps exactly as :in-sequence except that the
ordering of the steps is not known (it is randomly choosen at run-time).
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9.10 :when - do this on condition

(:when predicate
action-spec¥)

10 Instrumentation

Tapir supports writing instrumentation for actions using EKSL's CLIP package.
Clips are functions that return some useful value of a software system. For ex-
ample, clips for an action might include the number of times it was run, the value
of some slot of the action, how often the action succeeds, and so forth. Clips are
assembled into experiments: the CLIP package will record the output values of
clips when varying some experimental variables which you specify. The same clip
can be used in many experiments. Experiments generate data that can be used in
any standard statistical analysis package, such as CLASP.

Tapir contains directives for automatically generating clips for actions if you
say when the clip should run and what it should output. In order to generate data,
the user must tell CLIP how to run the experiment usinglésfene-simulator
anddefine-experiment macros (see the CLIP manual). Alternatively, you
can useDEFINE-TAPIR-EXPERIMENT (q.v.).

In addition, you can write clips directly witGLIP:DEFCLIP and freely use
them in the same experiments as Tapir-defined clips. This allows you to use Tapir
to write clips that are action-specific, and to use CLIP directly to write clips that
apply more globally.

In general, there are two kinds of clips: simple clips and time-series clips.
Simple clips are called only once, when the data file is generated, and generate
only one row of data. Time-series clips generate mulitple rows of data in the
output file whenever some condition occurs. If you define a clip using Tapir, we
presume that you'd like to know the clip’s value whenever an instance of that
action runs. Therefore, every clip generated by Tapir is a time-series clip.

Clips can be defined using Tapir in two ways: during a slot definition, or using
the:instrument Tapir directive. Within a slot definition usingarameters
or:locals ,youcanaddthe flagnstrument  to automatically define a time-
series clip which runs when the action completes and returns the value of that slot.
To change when the clip runs or other clip options, you can specify the flag like
(cinstrument optiong, whereoptionscan be any options allowable for the
sinstrument directive.
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Here is how theinstrument directive works.
Tapir directive:instrument (name options body

Defines a clip for this action.
The listoptionsmay be any options allowable f@LIP:DEFCLIP , with the
following additions:

e (:columns column-list) States that the values returned by the clip should
be namedcolumn-list This is exactly equivalent to theomponents
option in CLIP.

e (:trigger <:start| :completd :message) Specifies when the clip should
output its data. :start means when the action starts, :complete means when
the action finishes, and :message means whenever the action receives a mes-
sage.

e (:period <n>) Specifies when the clip should output its data. This means
that the clip should output eveny-th time the action’s realize method is
run. Of coursen must be a positive integer. Only one igeriod and
;trigger should be specified.

The body of the instrumentation, as in CLIP, is simply arbitrary Lisp code
that should return one value for each experimental variable that you want the
clip to return. Within the body of instrumentation, similarly to inO direc-
tive, the variableACTION is bound to the current action object. The variable
THE-SIMULATION is bound to the current game-state, i.e., the datastructure that
contains all of the simulation state.

FunctionACTION-INSTRUMENTATIONaction)

Returns a list of symbols that denote all the clips defined by Tapir for ACTION.
Clips defined outside of Tapir—i.e., usi@.IP:DEFCLIP directly—will not be
included.

Macro DEFINE-TAPIR-EXPERIMENT (name args optiorns
Defines an experiment for use with CLIP. This macro has exactly the same syn-

tax as CLIP:DEFINE-EXPERIMENT (in fact, it expands into a call to DEFINE-
EXPERIMENT) except that it accepts one additional option.
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e :actions  ACTION-LIST Adds all the clips defined by Tapir for ACTION-
LIST to the list of instrumentation for the experiment. This may be freely
mixed with the:instrumentation keyword.

53





