Award Number: DAMD17-02-1-0119

TITLE: Sodium Iodide Symporter Gene Transfer for Imaging and Ablation of Prostate Cancer

PRINCIPAL INVESTIGATOR: Sissy M. Jhiang, Ph.D.

CONTRACTING ORGANIZATION: The Ohio State University Research Foundation
Columbus, Ohio 43210-1063

REPORT DATE: January 2005

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. **AGENCY USE ONLY**
 (Leave blank)

2. **REPORT DATE**
 January 2005

3. **REPORT TYPE AND DATES COVERED**
 Final (15 Dec 2001 - 14 Dec 2004)

4. **TITLE AND SUBTITLE**
 Sodium Iodide Symporter Gene Transfer for Imaging and Ablation of Prostate Cancer

5. **FUNDING NUMBERS**
 DAMD17-02-1-0119

6. **AUTHOR(S)**
 Sissy M. Jhiang, Ph.D.

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 The Ohio State University Research Foundation
 Columbus, Ohio 43210-1063

 E-Mail: Jhiang.1@osu.edu

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

10. **SPONSORING / MONITORING AGENCY REPORT NUMBER**

11. **SUPPLEMENTARY NOTES**

12a. **DISTRIBUTION / AVAILABILITY STATEMENT**
 Approved for Public Release; Distribution Unlimited

12b. **DISTRIBUTION CODE**

13. **ABSTRACT (Maximum 200 Words)**
 The sodium iodide symporter (NIS) mediates iodide uptake in thyroid follicular cells and provides a mechanism for effective radioiodide treatment of residual, recurrent, and metastatic thyroid cancers. The objective of the proposed research is to test the hypothesis that expression of exogenous hNIS in prostatic tissue will enable radioiodide to localize and ablate residual prostate cancer following prostatectomy, such that recurrence and metastasis of the disease can be prevented. The specific aims of this project are to: (1) confirm metastatic progression to distant lymph nodes and lungs following subcutaneous inoculation of rats with MATLyLu prostatic adenocarcinoma cells expressing hNIS; (2) investigate whether radioiodide therapy will prevent metastases and/or prolong survival in rats bearing subcutaneous MATLyLu tumors that express hNIS; (3) determine the expression level of hNIS required to elicit selective radioiodide-mediated killing of MATLyLu-hNIS prostatic adenocarcinoma cells in vivo; and, (4) restrict hNIS expression in prostatic tissue under transcriptional regulation of prostate-specific promoter.

14. **SUBJECT TERMS**
 Prostate cancer, sodium iodide symporter, gene transfer, radioiodine

15. **NUMBER OF PAGES**
 31

16. **PRICE CODE**
 Unlimited

17. **SECURITY CLASSIFICATION OF REPORT**
 Unclassified

18. **SECURITY CLASSIFICATION OF THIS PAGE**
 Unclassified

19. **SECURITY CLASSIFICATION OF ABSTRACT**
 Unclassified

20. **LIMITATION OF ABSTRACT**
 Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
Table of Contents

Cover .. 1
SF 298 ... 2
Table of Contents .. 3
Introduction ... 4
Body .. 4
Key Research Accomplishments ... 6
Reportable Outcomes ... 6
Conclusions ... 6
Appendices ... 6
INTRODUCTION

The sodium iodide symporter (NIS) mediates iodide uptake in thyroid follicular cells and provides a mechanism for effective radioiodide treatment of residual, recurrent, and metastatic thyroid cancers. The objective of the proposed research is to test the hypothesis that expression of exogenous hNIS in prostatic tissue will enable radioiodide to localize and ablate residual prostate cancer following prostatectomy, such that recurrence and metastasis of the disease can be prevented. The specific aims of this project are to: (1) confirm metastatic progression to distant lymph nodes and lungs following subcutaneous inoculation of rats with MATLyLu prostatic adenocarcinoma cells expressing hNIS; (2) investigate whether radiiodide therapy will prevent metastases and/or prolong survival in rats bearing subcutaneous MATLyLu tumors that express hNIS; (3) determine the expression level of hNIS required to elicit selective radiiodide-mediated killing of MATLyLu-hNIS prostatic adenocarcinoma cells in vivo; and, (4) restrict hNIS expression in prostatic tissue under transcriptional regulation of prostate-specific promoter.

BODY

Task 1. Confirm metastatic progression to distant lymph nodes and lungs following subcutaneous inoculation of rats with MATLyLu prostatic adenocarcinoma cells expressing hNIS (completed in Year 1 with one published paper)

Task 2. Investigate whether radiiodide therapy will prevent metastases and/or prolong survival in rats bearing subcutaneous MATLyLu tumors that express hNIS (Months 12-24, completed with 2 published papers)

Task 3. Determine the expression level of hNIS required to elicit selective radiiodide-mediated killing of MatLyLu-hNIS prostatic adenocarcinoma cells *in vivo* (not completed, modified study with 1 published paper)

We hypothesize that radioiodide uptake *in vivo* correlates with NIS expression levels within a certain range. Unfortunately, we failed to acquire doxycycline-inducible prostate cancer cell lines despite several attempts. We then choose to study breast cancer cells which have hormone inducible endogenous NIS. We aim to identify the factors that could modulate NIS expression levels in breast cancer cell line, and then determine the expression level of NIS required eliciting selective radioiodide-mediated killing. Our studies showed that cAMP and PI3K signaling pathways are associated with increased NIS expression in mouse mammary gland tumors (appendix 1).

Task 4. Restrict hNIS expression in prostatic tissue under transcriptional regulation of prostate-specific promoters (not completed, modified studies with 3 published papers)

In order to better investigate the transcriptional regulation of the NIS gene, we cloned and characterized the 3.2 kb 5'-flanking region of the mouse NIS (mNIS) gene. We identified the minimal promoter region as well as a thyroid-specific and TSH-responsive enhancer (Appendix 1). Since all advanced cancer are most likely to loss the ability to express tissue specific proteins. We investigated the application of the Cre/loxP system to enhance thyroid-targeted hNIS expression driven by thyroglobulin (Tg) promoter. We showed that for tumors with weak tissue specific promoter activity, Cre/loxP system induced higher hNIS expression (appendix 3)
KEY RESEARCH ACCOMPLISHMENTS

- Show that signaling through 3′,5′-cyclic adenosine monophosphate and phosphoinositide-3 kinase induces sodium/iodide symporter expression in breast cancer
- Cloned and characterized the 5′-flanking region of the mouse NIS gene
- Demonstrate that Cre/loxp system is effective in tumors with weak tissue specific promoter activity

REPORTABLE OUTCOMES

CONCLUSIONS

- NIS-mediated radionuclide imaging and therapy can be applied to prostate cancer provided that gene delivery efficacy and specificity could be achieved.
- NIS can serve as an imaging reporter gene to optimize vector delivery for prostate cancer gene therapy.

APPENDICES

Three manuscripts are appended.
Signaling through 3',5'-Cyclic Adenosine Monophosphate and Phosphoinositide-3 Kinase Induces Sodium/Iodide Symporter Expression in Breast Cancer

KATHERINE A. B. KNOSTMAN, JE-YOEL CHO, KWON-YUL RYU, XIAOQIN LIN, JAMES A. MCCUBREY, TIMOTHY HLA, CATHERINE H. LIU, EMMA DI CARLO, RUTH KERI, MING ZHANG, DAE Y. HWANG, WILLIAM C. KISSEBERTH, CHARLES C. CAPEN, AND SISSY M. JHIANG

Departments of Veterinary Biosciences (K.A.B.K., C.C.C.), Veterinary Clinical Sciences (W.C.K.), and Physiology and Cell Biology (S.M.J.), The Ohio State University, Columbus, Ohio 43210; Department of Biochemistry (J.-Y.C.), School of Dentistry, Kyungpook National University, Daegu 700-42, Republic of Korea; Department of Biological Sciences (K.-Y.R.), Stanford University, Stanford, California 94305; Department of Biological Chemistry (R.K.), Case School of Medicine, Cleveland, Ohio 44106; Department of Molecular Genetics, Microbiology, and Immunology (J.A.M.), East Carolina University School of Medicine, Greenville, North Carolina 27858; Center for Vascular Biology (T.H.), University of Connecticut Health Center, Farmington, Connecticut 06030; Department of Molecular Genetics, Microbiology, and Immunology (C.H.L.), University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854; Department of Oncology and Neurosciences (E.D.C.), "G. d'Annunzio" University, 66100 Chieti, Italy; Department of Pharmacology (R.K.), Case School of Medicine, Cleveland, Ohio 44106; Department of Molecular and Cellular Biology (M.Z.), Baylor College of Medicine, Houston, Texas 77030; and Division of Laboratory Animal Resources (D.Y.H.), National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul 122-704, Republic of Korea

The sodium/iodide symporter (NIS) is a membrane transport glycoprotein normally expressed in the thyroid gland and lactating mammary gland. NIS is a target for radiodiode imaging and therapeutic ablation of thyroid carcinomas and has the potential for similar use in breast cancer treatment. To facilitate NIS-mediated radionuclide therapy, it is necessary to identify signaling pathways that lead to increased NIS expression and function in breast cancer. We examined NIS expression in mammary tumors of 14 genetically engineered mouse models to identify genetic manipulations associated with NIS induction. The cAMP and phosphoinositide-3 kinase (PI3K) signaling pathways are associated with NIS up-regulation. We showed that activation of PI3K alone is sufficient to increase NIS expression and radiiodide uptake in MCF-7 human breast cancer cells, whereas cAMP stimulation increases NIS promoter activity and NIS mRNA levels but is not sufficient to increase radiiodide uptake. This study is the first to demonstrate that NIS expression is induced by cAMP and/or PI3K in breast cancer both in vivo and in vitro. (J Clin Endocrinol Metab 89: 5196–5203, 2004)

Breast cancer is one of the leading causes of cancer in women in the United States, with more than 181,000 newly diagnosed cases and in excess of 44,000 cancer-related deaths annually (1). Several specific genetic mutations and environmental factors leading to an increased risk of breast cancer have been elucidated in recent years. Conventional treatment modalities for breast cancer include radical mastectomy, lumpectomy with radiotherapy, systemic hormone therapy (tamoxifen and raloxifene), and chemotherapy (1,2). Diagnosis is currently made at an earlier stage of the disease due to increased use of mammography and routine clinical examination, which together have decreased mortality by 25–30% in women over 50 yr old. However, monitoring recurrence and metastases by frequent physical examination in breast cancer patients has not been successful in changing the clinical course, and most women with metastatic carcinoma will eventually die from the disease. Therefore, detection and treatment of recurrent and metastatic breast cancer is of high clinical importance.

The sodium/iodide symporter (NIS) is a transmembrane glycoprotein most commonly studied in the context of the thyroid gland, in which it mediates active transport of iodide (I-) from the systemic circulation into thyroid follicular cells. NIS forms the basis of radiodiode treatment for thyroid cancer by facilitating targeted radiodiode uptake and subsequent destruction of residual and/or metastatic neoplastic cells after thyroidectomy (3,4). Additionally, NIS-expressing thyroid tumors can be imaged using nuclear scintigraphy, improving detection of residual, recurrent, or metastatic lesions. In addition to the thyroid gland, the salivary glands, gastric mucosa, lacrimal system, placenta, and lactating mammary gland express NIS and thus have the capacity to actively accumulate iodide (5). Our unpublished data as well
as that of others (5, 6) have demonstrated NIS protein in the majority of human breast cancers using immunohistochemistry. The fact that NIS is up-regulated in lactating mammary epithelial cells and that increased NIS expression is detected in many human breast tumors raises the potential for developing NIS-mediated radionuclide therapy as a safe and effective treatment for breast cancer.

The use of genetically engineered mice (GEM) has greatly increased understanding of mammary tumorigenesis, offering a convenient system for studying the interaction of specific genetic manipulations with external factors. Tumors from Her-2/neu and v-Ha-ras transgenic mice have been reported to express NIS and could be imaged using scintigraphy (5). Recently Kogai et al. (7) demonstrated trans-retinoic acid (tRA)-induced NIS mRNA expression and 125I uptake in mammary tumors from polyoma virus middle T antigen mice.

The objectives of the current study included evaluating NIS expression in mammary tumors of 14 GEM models to identify genetic manipulations that lead to increased NIS expression in vivo and investigating the role of associated signaling pathways in NIS induction in vitro using MCF-7 human mammary carcinoma cells. Based on the four transgenes associated with NIS induction, we identified that signaling pathways mediated by cAMP and phosphoinositide-3 kinase (PI3K) are important in NIS up-regulation. We further demonstrated that activation of PI3K alone is sufficient to increase NIS expression and radioidide uptake in MCF-7 human breast cancer cells, whereas cAMP stimulation increases NIS promoter activity and NIS mRNA levels but is not sufficient to increase radioidide uptake.

Materials and Methods

Transgenic mice

We requested unstained tissue sections from 14 GEM models of breast cancer. Table 1 summarizes the models investigated for NIS expression using immunohistochemistry and references for each model. Investigations who made tissue samples available are indicated in Acknowledgments at the conclusion of this manuscript. The four transgenic mouse models with high NIS expression are discussed in further details as follows.

Tissue sections from Ubi-human chorionic gonadotropin (hCG)β transgenic mice were obtained from Dr. Ilpo Huhtaniemi (University of Turku, Turku, Finland). The transgene, which was introduced into an FVB/N background, consisted of a 579-bp cDNA segment of the hCGβ gene driven by a 1.2-kb ubiquitin C promoter (8). Transgenic female Ubi-hCGβ mice were obese, underwent precocious puberty, and had abnormal estrous cycles leading to infertility. Females had abnormally high serum estradiol levels until 2 months of age, at which time it returned to normal. Serum progesterone, testosterone, and prolactin levels gradually increased from the age of 4–6 months until 12 months. Pituitary glands in female Ubi-hCGβ transgenic mice developed lactotrope hyperplasia and adenosmas by the age of 10–12 months. Mammary glands had marked lobuloalveolar hyperplasia by age 6 months, similar in phenotype to pregnancy, which progressed to mammary tumors by age 12 months in 91% of transgenic females. The histologic appearance of mammary adenocarcinomas varied from well-differentiated papillary carcinomas with abundant intraluminal secretions to poorly differentiated solid variants. Tumors had high mitotic indices and were highly invasive, with metastases to liver, lung, spleen, uterus, and adrenal glands occurring in nearly half of all cases. Ovariectomy at 6 wk of age completely prevented glandular hyperplasia and neoplasia.

Tissue sections from mouse mammary tumor virus (MMTV)-cyclooxygenase (Cox)-2 mice were obtained from Dr. Timothy Hla (University of Connecticut Health Center, Farmington, CT). The transgene, consisting of the human Cox-2 gene open reading frame driven by the promoter of the MMTV, was injected into a C57 background strain (9). High Cox-2 expression was detected in mammary gland tissue, particularly during lactation, and transgenic females exhibited premature mammary development. Involution was delayed from the normal 1–2 d until 7 d post weaning by virtue of decreased apoptosis of mammary epithelial cells. Multiparous females developed frequent hyperplastic alveolar nodules, and approximately 85% developed mammary adenocarcinomas. Histologically, tumors consisted of moderately to well-differentiated ductal and lobuloalveolar adenocarcinomas with frequent squamous metaplasia, scirrhous reaction, and neovascularization. Metastases to lymph nodes occurred in many MMTV-Cox-2 females.

Table 1. Immunohistochemical detection of NIS expression in mouse models of breast cancer

<table>
<thead>
<tr>
<th>Model</th>
<th>Ref.</th>
<th>n</th>
<th>No. positive (%)</th>
<th>% Cells positive</th>
<th>Intensity</th>
<th>Subcellular localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubi-hCGβ</td>
<td>8, 5</td>
<td>5</td>
<td>5 (100)</td>
<td>100</td>
<td>4+</td>
<td>PM</td>
</tr>
<tr>
<td>MMTV-neu</td>
<td>12, 13, 9</td>
<td>9</td>
<td>8 (100)</td>
<td>100</td>
<td>4+</td>
<td>PM</td>
</tr>
<tr>
<td>MMTV-PyMT</td>
<td>10</td>
<td>3</td>
<td>2 (100)</td>
<td>100</td>
<td>4+</td>
<td>PM</td>
</tr>
<tr>
<td>α-LH/CTPα</td>
<td>38</td>
<td>4</td>
<td>4 (100)</td>
<td>100</td>
<td>1-2+</td>
<td>PM</td>
</tr>
<tr>
<td>WAP-p53R172H + DMBA + pituitary isograft</td>
<td>39</td>
<td>4</td>
<td>4 (100)</td>
<td>100</td>
<td>1+</td>
<td>PM</td>
</tr>
<tr>
<td>C3(1)-Tagα</td>
<td>40</td>
<td>5</td>
<td>2 (40)</td>
<td>50</td>
<td>1+</td>
<td>PM</td>
</tr>
<tr>
<td>p53-/- mammary explants + DMBA + pituitary isograft</td>
<td>41</td>
<td>3</td>
<td>3 (100)</td>
<td>100</td>
<td>1+</td>
<td>PM</td>
</tr>
<tr>
<td>WAP-des-IGF-1β</td>
<td>42</td>
<td>2</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>WAP-p53R172H × WAP-des-IGF-1β</td>
<td>42</td>
<td>4</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>MMTV-HPV16E6/β-caseinβ</td>
<td>43</td>
<td>1</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>WAP-Tag × WAP-maspinα</td>
<td>44</td>
<td>2</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>MMTV-v-myc × MMTV-v-Ha-rasβ</td>
<td>45</td>
<td>3</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>DMBA + pituitary isograft onlyβ</td>
<td>41</td>
<td>5</td>
<td>0 (0)</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

PM, Plasma membrane; C, cytoplasm; N/A, not applicable.

a Glycoprotein α-subunit promoter driving LH/C-terminal peptide fusion gene.
b When acidic protein promoter driving p53 R172H mutant gene with DMBA carcinogen and implantation of pituitary isograft.

c Prostate steroid binding protein C3 (1) promoter driving SV40 large T antigen gene.
d p53 null mammary explants implanted in wild-type mice treated with DMBA and pituitary isograft.
e When acidic protein promoter driving IGF gene.
f Bitransgenic mice expressing mutant p53 and IGF-1.
g Mouse mammary tumor virus promoter driving human papillomavirus 16E6 subunit/β-casein fusion gene.
h Bitransgenic mice expressing SV40 large T antigen and maspin tumor suppressor gene.
i Bitransgenic mice expressing v-myc and v-Ha-ras oncogenes.
j Wild-type mice treated with DMBA and pituitary isografts.
Radioiodide uptake assay

Knostman et al. NIS Regulation in Breast Cancer

DNA constructs

NIS promoter-luciferase reporter gene constructs, 144-bp hNISp and 2.9-kb hNISp, were engineered using the PCL-B vector as described by Ryu et al. Recombinant retroviruses encoding v-Ha-ras, P1K p110 active, and empty vector pBpuro were obtained from Dr. Michael Weber (University of Virginia, Charlottesville, VA), Dr. Julian Downward (Imperial College Research Fund, London, UK), and Dr. Martin McMahon (University of California, San Francisco). MCF-7 stable clones expressing pXSN0, v-Ha-ras, or P13K, cells were maintained in 89% RPMI 1640 with glutamine (Invitrogen), 10% FBS, and 1% penicillin/streptomycin. Empty vector pBpuro were generated by retroviral infection of MCF-7 cells in the laboratory of Dr. James McCubrey (East Carolina University, Greenville, NC) as described by Davis et al.

Luciferase assay

Approximately 1X 10^6 MCF-7 cells were seeded in each well of a 6-well plate. After 24 h, cells were transduced with human NIS promoters (2.9-kb hNISp, 144-bp hNISp, or PCL-C control vectors) using Lipofectamine (Invitrogen). The culture medium was then changed to 5% charcoal-stripped medium, and cells were treated with IBMX (10 μM) and ChT (10 ng/ml) for 24 h. Cells were harvested, and luciferase assays were performed using a luciferase assay kit (Promega, Madison, WI) and luminometer (Lumat; PerkinElmer, Boston, MA). As a positive control, the PCL-C control vector with the Simian virus 40 (SV40) promoter showed high basal activities but no further activation by IBMX + ChT treatment. Normalization of transfection efficiency was determined by cotransfecting the cells with the plasmid pCH110 (SV40-LaCZ). Within each treatment group, luciferase activity was normalized to β-galactosidase activity.

Quantitative real-time PCR

Quantitative real-time PCR assay was performed as described by our laboratory. Briefly, 5X 10^5 MCF-7 cells were seeded in normal culture medium in 35-mm plates. Medium was changed to charcoal-stripped MCF-7 medium 1 day before treatment with 8-Br-cAMP or IBMX and ChT. RNA was isolated 24 h after treatment using TRIzol reagent (Invitrogen). One microgram of RNA was used for the reverse transcription reaction. Two microliters of cDNA template were used for quantitative real-time PCR, which used the human NIS dual-probe quantification method. For glyceraldehyde-3-phosphate dehydrogenase (GAPDH) normalization, 236 bp human GAPDH was amplified by PCR using two primers: GAPDH-F1 (TTT ACC ACC ATG GAG AAG GC) and GAPDH-R1 (GGG ATC GAC TGT GGT CAT GA). The amplified DNA fragment was cloned into the TA cloning vector, maxipreped (Qiagen, Valencia, CA) and used as the standard for SYBR Green I quantitative real-time PCR. The data were presented as a fold increase over control after NIS mRNA levels were normalized with GAPDH mRNA levels.

Radioiodide uptake assay

Radioiodide uptake assay was performed essentially as in La Perle et al. Twelve-well plates were seeded with 5X 10^5 MCF-7 cells per well. Assays were performed in triplicate. MCF-7 cells were treated with hCG or PGE2 for 24 or 48 h when applicable, after which time the cells
were incubated with 2 μCi/well of 125I in NaI for 30 min at 37 C. Cells were rapidly washed twice with 1 ml cold Hanks' balanced salt solution and incubated in 1 ml 95% ethanol at room temperature for 20 min to release intracellular 125I. The supernatant was counted in a γ-radiation counter. Counts per minute were normalized to cell number (1× 106). MCF-7 cells treated with IRA were used as a positive control (18).

Statistical analysis
Statistical analysis consisted of Student's t test and was performed using GraphPad software (GraphPad Inc., San Diego, CA). Each experimental group was compared with its respective control group.

Results
Of the 14 GEM models evaluated (Table 1), mammary tumors from transgenic mice expressing the oncogenes PyMT and neu (both activated and unactivated forms) were strongly positive for NIS using immunohistochemical staining, as were transgenic mice expressing the hCGβ subunit and the enzyme Cox-2 in the mammary gland (Fig. 1, A–K). NIS staining was primarily plasma membrane localized in all four models, although light cytoplasmic staining was present in Cox-2 and neu tumors. Lesions of lobular hyperplasia were available from activated neu and hCGβ mice. All of these lesions had strong plasma membrane staining for NIS (Fig. 1, G and J). Additionally, two samples from histologically normal juvenile c-neu mouse mammary glands were found to be strongly positive for NIS (Fig. 1F), whereas nonlactating mammary glands of nontransgenic mice did not express NIS (data not shown).

Upon examination of the available scientific literature concerning signal transduction pathways activated by the four transgenes (8–13, 19–22), we identified two signaling pathways of interest for further in vitro study. We hypothesize...
that cAMP elevation in hCGβ and Cox-2 mice and PI3K activation in PyMT and Her-2/neu mice are responsible for NIS induction in the corresponding mammary glands and mammary tumors (Fig. 1L, bottom panel).

Using the LH/CG receptor-positive MCF-7 human mammary carcinoma cell line, we showed that hCG treatment induces radioiodide uptake, an indication of NIS function (Fig. 2). We also showed that PGE2 treatment induces radioiodide uptake (Fig. 3). Cox-2 is critical in catalyzing the conversion of arachidonic acid to prostaglandins, such as PGE2. Because cAMP signaling plays an important role in hCG signaling and is induced by PGE2 treatment of MCF-7 cells (23), we further investigated the importance of cAMP in NIS induction in vitro. We showed that increasing intracellular cAMP levels using the phosphodiesterase inhibitor IBMX in combination with the adenylyl cyclase inducer ChT, or alternatively by administration of 8-Br-cAMP, markedly stimulated NIS mRNA expression in MCF-7 cells (Figs. 4 and 5). Interestingly, administration of high doses of IBMX and ChT resulted in less induction of NIS expression than did the lower doses. To determine whether cAMP has a direct effect on the NIS promoter, MCF-7 cells were transiently transfected with NIS promoter-reporter gene constructs consisting of either a 144-bp minimal promoter or a 2.9-kb 5’ flanking region driving expression of the luciferase reporter gene. In cells treated with IBMX and ChT, activities of both the minimal promoter and the 2.9-kb NIS promoter were increased more than 10-fold (Fig. 6), indicating that a cAMP response element is present in these promoter regions.

The importance of signal transduction through PI3K was investigated using MCF-7/PI3K stable clones. Stable clones expressing the constitutively active PI3K p110 catalytic subunit had greater than 4-fold increase in radioiodide uptake, compared with empty vector-expressing cells (Fig. 7). Stable clones expressing v-Ha-ras, one upstream mediator of PI3K activity, had slightly increased iodide uptake, compared with negative control cells. These findings reveal that PI3K overexpression is sufficient to induce NIS function in MCF-7 breast cancer cells.

Discussion

This study is the first to demonstrate the importance of cAMP and PI3K signaling in NIS regulation in the context of the mammary gland. We showed that activation of PI3K alone is sufficient to increase NIS expression and radioiodide uptake in MCF-7 human breast cancer cells, whereas cAMP stimulation increases NIS promoter activity and NIS mRNA levels but is not sufficient to increase radioiodide uptake (see Ref. 18 and our unpublished data).

We found that MMTV-Cox-2 and Ubi-hCGβ transgenic mice had high levels of NIS expression in their mammary tumors and that treatment of MCF-7 breast cancer cells with PGE2 or hCG stimulated radioiodide uptake. The signaling cascades downstream of PGE2 and hCG are similar, involving G protein-coupled receptors, cAMP up-regulation, and protein kinase A activation. In Cox-2 transgenic mice, up-regulation of the PGE2 receptors, EP2 and EP4, has been detected in mammary tumors, confirming that PGE2 signaling is activated in this system (24). Planchon et al. (23) showed
levels and NIS promoter activity (Figs. 4–6). Interestingly, P13K-mediated phenomenon secondary to neu expression.

That treatment of MCF-7 cells with PGE2 induced cAMP levels by more than 10-fold over untreated controls. Treatment with hCG also increased NIS expression in JAR human choriocarcinoma cells via interaction with the LH/CG receptor (25) and in rat FRTL-5 thyroid cells via interaction with the TSH receptor (26).

We demonstrated that treatment of MCF-7 cells with compounds that increase intracellular cAMP levels (IBMX, ChT, and 8-Br-cAMP) led to a significant increase in NIS mRNA levels and NIS promoter activity (Figs. 4–6). Interestingly, treating MCF-7 cells with forskolin, an adenyl cyclase activator, was not sufficient to increase radioiodide uptake (see Ref. 18 and our unpublished data). It is possible that, whereas increasing cAMP levels leads to increased NIS transcription, it does not result in sufficient protein levels or cell surface trafficking to have a significant effect on radioiodide uptake in MCF-7 cells. Thus, the effect of cAMP on NIS expression in MCF-7 cells is different from that in thyroid follicular cells. TSH up-regulates NIS expression and radioiodide uptake through interaction with TSH receptors in the plasma membrane, Gα-protein mediation, and an increase in cAMP (4, 14, 27), and NIS up-regulation can be fully reproduced through administration of cAMP agonists, such as forskolin. Thus, whereas the effects of hCG and PGE2 on NIS regulation the mammary gland context are similar to those of TSH in thyroid follicular cells, the pathways are not identical with respect to the effect of cAMP on radioiodide uptake.

Lactogenic hormones are critical in NIS regulation in the mammary gland (5, 16, 28), yet the signal transduction pathways stimulated by these hormones leading to increased NIS expression have not been characterized. In general, prolactin functions via activation of downstream signal transduction through MAPK and/or P3K (29, 30), and oxytocin uses protein kinase C/phospholipase C and Ras/Raf/MAPK (31). Transient transfection of mutant rasV12S35, which preferentially interacts with the downstream effector Raf-1, abolished NIS expression in TSH-stimulated Wistar rat thyroid (WRT) cells (32, 33). The rasV12C40 mutant, which interacts primarily with P3K, maintained NIS expression. Our finding of increased radioiodide uptake in MCF-7/P3K stable clones demonstrates that overexpression of P3K alone is sufficient to induce NIS function in MCF-7 cells. It is interesting to note that Lin et al. (11) discovered frequent induction of neu expression in PyMT mammary tumors, which was confirmed in our study (data not shown). Thus, NIS induction in the mammary tumors of PyMT mice is potentially a P3K-mediated phenomenon secondary to neu expression.

P3K up-regulation plays an important role in human
breast cancer, particularly in tumors expressing Her-2/neu or Src oncogenes (34), in which P53 overactivation is associated with antiapotptic effect. The role of cAMP in breast carcinogenesis is less known. Cox-2 is known to play a role in human breast cancer through promotion of proliferation, angiogenesis, inhibition of apoptosis, and immunosuppression (35). On the other hand, hCG promotes mammary epithelial cell differentiation, and hCG expression by tumor cells is a positive prognostic indicator in human breast cancer (36). However, overexpression of hCG in transgenic mice results in excessive estrogen production by the ovaries, a factor thought to be important in human breast cancer (8). All four transgenic mouse models of breast cancer have primary tumors of variable differentiation with systemic metastases. Up-regulation of signaling pathways in Her-2/neu-, PyMT-, and Cox-2-induced tumors is potentially more representative of the human disease than is up-regulation by marked hCG overexpression.

In this study, we found cAMP and PI3K to be of critical importance in up-regulating NIS in MCF-7 breast cancer cells and transgenic mouse models of breast cancer. Because MCF-7 is the only immortalized cell line with inducible NIS function, it is not known whether the \textit{in vitro} findings are applicable to nonneoplastic immortalized mammary epithelial cells (such as MCF-12A). However, based on the presence of NIS protein in the mammary epithelium of hCG and Her-2/neu transgenic mice before malignant transformation, it is likely that these pathways are operative in normal mammary epithelial cells as well as in breast cancer.

In summary, this study provides several significant advances in the understanding of NIS regulation in breast cancer. First, NIS expression in mammary tumors of Her-2/neu, PyMT, hCGβ, and Cox-2 transgenic mice indicates that signal transduction through cAMP and/or PI3K likely contributes to NIS up-regulation in breast cancer \textit{in vivo}. Furthermore, NIS expression in normal and early hyperplastic lesions of juvenile Her-2/neu mice and in hyperplastic lesions of hCGβ-overexpressing mice indicates that NIS induction is a specific result of transgene expression because NIS is induced before malignant transformation. Second, we demonstrated that activation of cAMP and PI3K induces NIS up-regulation \textit{in vitro} in MCF-7 cells. Previously, all-trans-9-cis-retinoic acid were the only compounds known to increase NIS expression in MCF-7 cells, in which they function through nuclear receptors (37). Finally, NIS expression in these four mouse models provides a vehicle for imaging and therapy using animal models not previously known to have NIS-positive mammary tumors. Further investigation of the molecular mechanisms underlying NIS induction by these two signaling pathways will facilitate NIS-mediated radionuclide therapy for breast cancer becoming a reality.

Acknowledgments

We thank Dr. Ilpo Huhtaniemi (Imperial College London) and Dr. Matti Poutanen (the University of Turku, Turku, Finland) for providing mammary tumor tissue from Ubi-hCG transgenic mice; Dr. Jeffrey Rosen, Dr. Darryl Hadsell, and Dr. Dan Medina (Baylor College of Medicine, Houston, TX) for providing mammary tumor tissues from WAP-p53-/-, WAP-des-IGF-I, p53+/- explants, and bistransgens; Dr. Susan Ritting (Rutgers University, Piscataway, NJ) for providing mammary tumor tissues from MMTV-c-myc × MMTV-v-Ho-ras; Dr. Jeffrey Green (the National Cancer Institute, National Institutes of Health [NIH], Bethesda, MD) for providing mammary tumor tissues from C3(1)-Tag mice; and Dr. Donna Kusewitt (The Ohio State University, Columbus, OH) for providing mammary tumor tissues from MMTV-PyMT mice. Additionally, we would like to acknowledge Dr. A. F. Parlow (the National Hormone and Peptide Program, Torrance, CA) for providing recombinant hCG for \textit{in vitro} experiments.

Received May 13, 2004. Accepted July 14, 2004.

Address all correspondence and requests for reprints to: Sissy M. Jhiang, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, Ohio 43210.

E-mail: jhiang.1@osu.edu.

This work was supported in part by the following grants: NIH NIBIB R01 EB001875-01 and DAMD17-02-1-0119 (to S.M.J.), NIH T32 RR07073 (to K.A.B.K.), and Schering-Plough Research Institute (to C.C.C.).

References

Knostman et al. • NIS Regulation in Breast Cancer
24. Planchon P, Veber N, Magnien V, Provost
23. Ichaso N, Dilworth SM 2001 Cell transformation by the middle-T antigen of 2003 Molecular beacon reverse transcription PCR of human chorionic gonad-
5. Cass LA, Meinkoth JL 2000 Ras signaling through PI3K confers hormone-independent proliferation that is compatible with differentiation. Oncogene 19:924–932

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.
Application of the Cre/loxP System to Enhance Thyroid-Targeted Expression of Sodium/Iodide Symporter

XIAOQIN LIN, ANDREW H. FISCHER, KWON-YUL RU, JE-YOEL CHO, THOMAS J. SFERRA, RICHARD T. KLOOS, ERNEST L. MAZZAFERRI, AND SISSY M. JHIANG

Biochemistry Program (X.L., K.-Y.R., S.M.J.), Department of Physiology and Cell Biology (X.L., K.-Y.R., J.-Y.C., S.M.J.), Department of Pediatrics, College of Medicine (T.J.S.), Department of Internal Medicine and Radiology, Divisions of Endocrinology, Diabetes, and Metabolism, and Nuclear Medicine (R.T.K.); Center for Health Outcome Policy Evaluation Studies (E.L.M.), Ohio State University, Columbus, Ohio 43210; Department of Pathology (A.H.F.), University of Massachusetts, Worcester, Massachusetts 01655; Department of Internal Medicine, University of Florida (E.L.M.), Gainesville, Florida 32608-4653; Department of Biological Science (K.-Y.R.), Stanford University, Stanford, California 94305; and Department of Biochemistry (J.-Y.C.), School of Dentistry, Kyungpook National University, Daegu, 700-422, Republic of Korea

Radioiodide uptake activity mediated by the human Na⁺/I⁻ symporter (hNIS) in thyroid follicular cells is the basis for effective ¹³¹I therapy in thyroid cancer. However, radioiodide therapy is not effective in patients with thyroid cancer displaying low or absent hNIS expression. This study assessed the Cre/loxP system for enhancing thyroid-targeted hNIS expression driven by the thyroglobulin (Tg) promoter. The following three recombinant adenoviruses (rAd) were constructed: rAd-Tg-hNIS drives hNIS expression by the Tg promoter; rAd-Tg-Cre drives Cre expression by the Tg promoter; and rAd-CMV-loxP-hNIS drives hNIS expression by the cytomegalovirus (CMV) promoter after Cre-mediated excision of an intervening loxP-GFP-Zeo-loxP. Immortalized normal and malignant rat thyroid cell lines and primary cultures of normal human thyroid and human follicular adenoma cells were investigated. We found that the relative promoter activity of Tg vs. CMV is critical for the efficacy of the Cre/loxP system. In cells with weak Tg promoter activity, coinfection of rAd-Tg-Cre and rAd-CMV-loxP-hNIS induced higher hNIS expression than single infection of rAd-Tg-hNIS. Finally, Tg promoter activity was partially restored in malignant thyroid cells by forced expression of the paired domain-containing transcription factor (Pax-8), allowing the Cre/loxP system to mildly enhance radioiodide uptake. (J Clin Endocrinol Metab 89: 2344–2350, 2004)
Lin et al. • Thyroid-Specific NIS Expression by Cre/loxP

A

![Diagram of Cre recombinase-mediated recombination](image)

B

![Diagram of Cre recombinase-mediated recombination](image)

Materials and Methods

Cell lines and stable clones

Cos-7 monkey kidney cells were maintained in DMEM supplemented with 10% fetal bovine serum (FBS). FRTL-5 differentiated normal rat thyroid cells (kindly provided by Dr. Leonard D. Kohn, Ohio University, Athens, OH) were cultured in Coon's modified Ham's F-12 medium, supplemented with 5% calf serum and six hormone (6H) mixture as purified hNIS antibody (1:1500), which recognizes the COOH terminal of the hNIS.

Preparation of human normal or tumor primary thyroid culture

Human normal thyroid tissue and human follicular adenoma tissue were put into tissue culture as described previously with minor modification (19). Fresh tissue (0.1–1 g) was cut into approximately 1-mm cubes and washed with cold Hanks' Balanced Salt Solution (HBSS; calcium and magnesium free). The tissue was then digested with digestion solution (fresh clostridium collagenase (100 U/ml) and Dispase (1 mg/ml) in HBSS) for 1.5 h at 37°C with 5% CO2 and agitated with a large bore pipette every 30 min. The large undigested fragments were allowed to settle briefly, and the supernatant containing released epithelial clusters was transferred to a fresh flask with the addition of 10% FBS and maintained at 37°C. The remaining tissue fragments continued to be digested by incubating with fresh digestion solution at 37°C until the digested tissue became very soft and filmy. This entire sample and the previously collected supernatant were filtered through a 70-mm Falcon cell strainer to remove the remaining clumps that consist largely of connective tissue. The cells were then washed with HBSS three times and cultured in a 2:1:1 mixture of DMEM, Ham's F-12, and MCDB-104 (Life Technologies, Inc., Paisley, UK) supplemented with 10% FBS. Human Investigation Committee approval for these studies was obtained at the University of Massachusetts (Institutional Review Board no. H-10396).

Construction and production of rAd

The plasmid pSh-Tg-hNIS was constructed as follows. A KpnI-Pmel DNA sequence fragment containing the hNIS gene was excised from pSh-CMV-hNIS (20) and cloned into the pShuttle vector. The 2.0-kb bovine Tg promoter (located from −2036 to +9 nucleotide relative to the transcriptional start site) was then released as a KpnI-Pmel fragment into the pCMV-β-4-REV vector subcloned as a NotI (blunt-ended by T4 DNA polymerase)-XbaI fragment and replaced the hNIS gene in pSh-Tg-hNIS. The extra 588-bp polyA fragment was then removed by MluI/XbaI digestion to generate pSh-Tg-hNIS.

The plasmid pSh-Tg-Cre was constructed as follows. The Cre recombinase gene and 588 bp of polyA sequence from the PBS185 vector were released as a SpeI (blunt-ended by T4 DNA polymerase)-XbaI fragment and replaced the hNIS gene in pSh-Tg-hNIS. The extra 588-bp polyA fragment was then removed by MluI/XbaI digestion to generate pSh-Tg-Cre.

Detection of hNIS protein by Western blot analysis

Cells were plated in 100-mm dishes. When cells became 70–80% confluent, they were infected with various adenoviruses at the indicated multiplicity of infection (MOI) for 2 h. Forty-eight hours postinfection, cells were harvested for Western blot analysis as described previously with minor modification (22). Briefly, the membrane fractions of the cells were subjected to 7.5% SDS-PAGE. The proteins were transferred to nitrocellulose membrane (Schleicher & Schuell, Keene, NH). The membrane was incubated with the affinity-purified hNIS antibody (1:1500), which recognizes the COOH terminal of the hNIS protein, for 1 h at room temperature, followed by in-
Enhanced hNIS expression and RAIU activity in FRTL-5 rat normal thyroid cells coinfected with rAd-Tg-Cre and rAd-CMV-loxP-hNIS

To compare the abilities of the Tg-hNIS and Tg-Cre/CMV-loxP-hNIS systems to mediate hNIS expression and function, we infected FRTL-5 cells with either rAd-Tg-hNIS alone (MOI = 20) or with both rAd-Tg-Cre and rAd-CMV-loxP-hNIS (MOI = 10:10). Analysis of coinfection with the Cre/loxP system revealed that optimal hNIS expression occurred when cells were administered with a 1:1 ratio of rAd-Tg-Cre vs. rAd-CMV-loxP-hNIS (data not shown). Because hNIS antibodies do not detect endogenous rNIS in FRTL-5 cells, we were able to compare the expression levels of hNIS induced by the designated adenovirus. Our data showed that both Tg-hNIS and Tg-Cre/CMV-loxP-hNIS conferred hNIS expression in FRTL-5 cells; however, the level of hNIS protein in FRTL-5 cells coinfected with the Tg-Cre/CMV-loxP-hNIS system was significantly higher than that in cells infected with rAd-Tg-hNIS alone (Fig. 3A). It is difficult to quantify the relative hNIS expression levels induced by one system vs. another because different exposure times were required to optimize the detection of hNIS protein.

As shown in Fig. 3B, the RAU activity in FRTL-5 cells was significantly increased by infection of rAd-Tg-hNIS alone as well as by coinfection of rAd-Tg-Cre and rAd-CMV-loxP-hNIS. Interestingly, although Tg-Cre/CMV-loxP-hNIS is much more efficient than Tg-hNIS in inducing hNIS expression, the increase of RAU activity in cells coinfected with the Tg-Cre/CMV-loxP-hNIS system was only slightly higher than that in cells infected with rAd-Tg-hNIS alone (Fig. 3B). Thus, it appears that not all induced hNIS resulted in increasing RAU activity in infected FRTL-5 cells. This may be because noninfected FRTL-5 cells already have high-level iodide uptake due to endogenous rNIS (see Discussion).
Enhanced hNIS expression and RAIU activity in FRTL-5 cells stably transfected with Pax-8 compared with FRTC parental thyroid cells infected with rAd-Tg-hNIS alone (MOI = 20). A, Western blot analysis of hNIS expression (0.5 μg per lane). The hNIS expression level in cells coinfected with rAd-Tg-Cre/rAd-CMV-loxP-hNIS was much higher than that in cells infected with rAd-Tg-hNIS alone. This increase may be due to the direct stimulating effect of Pax-8 on the endogenous rNIS promoter. Therefore, we stably transfected rat Pax-8 into malignant FRTC cells (FRTC/Pax-8) to increase Tg promoter activity. As shown in Fig. 4A, human normal thyrocytes, cells were either infected with rAd-Tg-hNIS alone (MOI = 20) or coinfected with rAd-Tg-Cre and rAd-CMV-loxP-hNIS (MOI = 10:10). Only RAIU assay was performed to investigate hNIS function due to the availability of cell numbers. As shown in Fig. 5, the RAIU activity was increased by both systems, and the increase of RAIU activity in cells coinfected with Tg-Cre/CMV-loxP-hNIS was significantly higher than that in cells infected with rAd-Tg-hNIS alone. Similarly to FRTL-5 cells, the primary culture infected with control adenovirus displayed a rela-
Enhanced hNIS expression and RAIU activity in human thyroid follicular adenoma primary culture coinfected with rAd-Tg-Cre and rAd-CMV-loxP-hNIS

A human thyroid follicular adenoma primary culture was derived from a thyroid follicular adenoma that was cold on the radiiodine scan 3 months before surgery, which implies the absent or weak hNIS expression or function in the cells compared with surrounding normal cells. To reintroduce hNIS expression and evaluate the efficacy of the Tg-Cre/CMV-loxP-hNIS system in this follicular adenoma, cultured cells were either infected with rAd-Tg-hNIS alone (MOI = 20) or coinfected with rAd-Tg-Cre and rAd-CMV-loxP-hNIS (MOI = 10:10). Western blot analysis and RAIU assay were performed to examine hNIS expression and hNIS function. Again, as shown in Fig. 6, hNIS expression levels and the increase of RAIU activity induced by Tg-Cre/CMV-loxP-hNIS (MOI = 10:10) were significantly higher than those induced by rAd-Tg-hNIS alone (MOI = 20). The cells infected with rAd-CMV-loxP-hNIS alone (MOI = 20) showed low RAIU activity.

Relative promoter activity of Tg vs. CMV in targeted thyroid cells crucial for the efficacy of the Tg-Cre/CMV-loxP-hNIS system

In this paper, we hypothesize that the Tg-Cre/CMV-loxP-hNIS system is able to enhance thyroid-targeted hNIS expression. The hypothesis is mainly based on the assumption that CMV promoter activity is much stronger than Tg promoter activity in targeted cells. Thus, the relative promoter activity of Tg vs. CMV in the targeted cells will be vital for the efficacy of Tg-Cre/CMV-loxP-hNIS. Experiments were performed to correlate the relative promoter activity of Tg vs. CMV with the efficacy of Tg-Cre/CMV-loxP-hNIS in targeted thyroid cells. The investigated cells were divided into four experimental groups. Cells were either transfected with Tg/pGL3B or CMV/pGL3B to determine Tg or CMV promoter activity by luciferase assay. Simultaneously, cells were either infected with rAd-Tg-hNIS alone (MOI = 20) or coinfected with the Tg-Cre/CMV-loxP-hNIS system (MOI = 10:10) to determine RAIU activity. As shown in Fig. 7, when the relative promoter activity of Tg vs. CMV is 1:5 in P14 FRTL-5 cells, Cre/loxP is not effective to further enhance Tg-targeted hNIS-mediated RAIU activity. In comparison, when Tg promoter activity was much weaker than CMV promoter activity in P20 FRTL-5 (the relative promoter activity of Tg vs. CMV is 1:333), the Cre/loxP system was more effective in increasing RAIU activity than Tg-hNIS alone. In primary cultures of human thyrocytes, in which the relative promoter activity of Tg vs. CMV was about 1:1600 or 1:1500, the Tg-Cre/CMV-loxP-hNIS system was very effective in enhancing RAIU activity (Fig. 7). In addition, it was interesting to note that the CMV promoter activity varied among different cells (data not shown).

Discussion

Several groups have investigated the potential of NIS-mediated radionuclide imaging and therapy in thyroid or nonthyroidal cancer cells (5, 25, 26). However, most studies express NIS under the control of the strong and constitutive CMV promoter as proof-of-principle experiments. To apply NIS-based gene therapy to patients, it is important to restrict NIS expression to targeted cells to avoid unwanted side effects in nontargeted tissues. For patients after total thyroidectomy, NIS expression may be restricted to residual thyroid cancer using Tg as a tissue-specific promoter. However, Tg promoter activity is generally much weaker than that of a constitutive viral promoter. Thus, the Tg-Cre/CMV-loxP-hNIS system may be superior to a Tg-hNIS system to induce hNIS expression in thyroidal tissues. In this study, we showed that the Cre/loxP system was effective in enhancing...
transcriptionally targeted NIS expression/function in FRTL-5 cells, FRTC cells, normal human thyroid primary culture, and human thyroid follicular adenoma primary culture. In addition, we showed that the efficacy of Tg-Cre/CMV-loxP-hNIS is dependent upon the relative promoter activity of Tg vs. CMV. Thus, for thyroid cancers with strong Tg promoter activity, a Tg-hNIS system may be sufficient to confer high levels of hNIS expression to improve radiiodide therapy. For thyroid cancers with weak Tg promoter activity, Cre/loxP is an attractive system to enhance Tg-targeted NIS expression. However, for thyroid cancers with negligible Tg promoter activity, strategies to increase Tg promoter activity must also be used to confer Tg-targeted hNIS expression.

Immortalized FRTL-5 cells have been known to display different characteristics with age or transformation. Serially passaged FRTL-5 cells are reported to dedifferentiate and lose Tg expression (27). This is consistent with our data that the aged P20 FRTL-5 cells had weaker Tg promoter activity than the young P14 FRTL-5 cells (Fig. 7A). Similarly, decreased Tg promoter activity has been reported in FRTC tumor of the 12th generation compared with the third generation (23). Although forced expression of Pax-8 in FRTC cells increased Tg promoter activity and allowed Tg-targeted hNIS expression/function, the increase of RAIU activity in FRTC/Pax-8 cells coinfection with Tg-Cre/CMV-loxP-hNIS was not high enough to justify further animal study. We also evaluated the effects of Cre/loxP system on FTC133 human thyroid carcinoma cells (28). However, FTC133 cells exhibited undetectable Tg promoter activities and did not induce RAIU activity by the Tg-hNIS system or the Cre/loxP system (data not shown). Therefore, a non-iodine-avid tumorigenic thyroid tumor cell line, yet with some retained Tg promoter expression, will be essential to examine the efficacy of the Cre-loxP system to increase Tg-targeted hNIS expression/function in preclinical animal models.

It is interesting to note that the extent of increased RAIU activity does not appear to be proportional to the extent of induced hNIS expression in all cells studied. For cells with high levels of endogenous NIS expression and function, it is possible that the cell surface is eventually saturated with functional NIS, excluding further cell surface trafficking of exogenous hNIS. However, for cells with low or absent endogenous NIS, defects in cell surface trafficking of hNIS are suspected. The proper and efficient cell surface trafficking has been shown to play an important role in the functional expression of hNIS in thyroid cells (9, 29, 30). Thus, possible defects in cell surface trafficking of hNIS in malignant cells remain a real challenge for hNIS-based gene therapy.

To apply Tg-targeted NIS gene therapy, Tg promoter activity in cancer cells needs to be sufficient, if not maximized. In this study, we showed that forced expression of Pax-8 into FRTC cells slightly increased Tg promoter activity and induced detectable hNIS expression. Thyroid transcription factor 1 (TTF-1) has also been shown to reactivate the Tg promoter in thyroid carcinoma cells (31, 32). Therefore, forced expression of both TTF-1 and Pax-8 may further facilitate the efficacy of Tg-targeted NIS gene therapy. In addition, a tandem repeat of the minimal Tg promoter has been shown to induce much higher thyroide kinase expression in transduced thyroid cells than the single Tg promoter did (33). Thus, it is desirable to generate a composite Tg promoter yielding the highest thyroid-specific promoter activity. Furthermore, the efficiency of Cre-directed site-specific recombination could be enhanced by facilitating Cre nuclear localization (34). Finally, the efficacy of the Cre/loxP system may be further improved by dually expressing Tg-Cre and CMV-loxP-hNIS in a single adenovirus to avoid inefficient coinfection of two adenoviruses.

In conclusion, the Tg-Cre/CMV-loxP-hNIS system can significantly enhance thyroid-targeted hNIS expression and induce RAIU activity in thyroid cells with weak Tg promoter activity. We showed that the relative promoter activity of Tg vs. CMV is crucial for the efficacy of the Cre/loxP system. Thus, before NIS-based gene therapy, Tg promoter activity should be evaluated, for example, by measuring serum Tg levels upon TSH stimulation in patients.

Acknowledgments

We thank Dr. Leonard D. Kohn at Ohio University (Athens, OH) for providing FRTL-5 cells; Dr. Makoto Itaka at Saitama Medical School...
References

5. Pasca di Magliano M, Di Lauro R, Zannini M 2000 Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci USA 97:13144-13149
Cloning of the 5'-Flanking Region of Mouse Sodium/Iodide Symporter and Identification of a Thyroid-Specific and TSH-Responsive Enhancer

Xiaoqin Lin,1 Kwon-Yul Ryu,2 and Sissy M. Jhiang1

The sodium/iodide symporter (NIS) mediates active iodide uptake into thyroid follicular cells and is important for the diagnosis and radioiodide treatment of thyroid cancers. In order to better investigate the transcriptional regulation of the NIS gene, we cloned the 3.2 kb 5'-flanking region of the mouse NIS (mNIS) gene in this study. The cloned 5'-flanking region of mNIS shares 68% identity with that of rat NIS (rNIS), yet has little similarity to that of human NIS (hNIS). Based on sequence homology to rNIS, the putative mNIS transcriptional start site is mapped to −97 nt relative to the ATG site. The minimal promoter of mNIS is located within 650 bp of the 5'-flanking region as determined by the transient expression analysis of promoter-reporter constructs. The mNIS upstream enhancer (mNUE) was identified based on sequence homology to rNUE. The mNUE is localized to the region between −3042 and −2809 nt relative to the ATG site and shares 94.4% identity with rat NUE (rNUE), while only 67.8% identity with human NUE (hNUE). It contains two Pax-8 binding sites and a Tax/CREB binding site. The mNUE is also demonstrated to confer thyroid-specific and TSH-responsive transcriptional activity. The high degree of homology in the 5'-flanking region between mNIS and rNIS suggests that mNIS and rNIS share similar mechanisms for transcriptional regulation.

Introduction

The sodium/iodide symporter (NIS) is a transmembrane glycoprotein that mediates active iodide transport into thyroid follicular cells (1). The active iodide uptake is not only the first and rate-limiting step for thyroid hormone biosynthesis, but also the basis for the use of radioiodide (131I) in diagnosis and treatment of differentiated thyroid cancers (2–5). Because of the physiologic and therapeutic significance of NIS in thyroid cells, the regulatory mechanisms underlying NIS gene expression have attracted much attention. Several groups have attempted to elucidate the transcriptional regulation of rat NIS (rNIS) and human NIS (hNIS) genes by characterizing their corresponding 5'-flanking regions (6). The minimal region for rNIS promoter activity is localized to −291 to −135 nt relative to the ATG site (7–9), while the hNIS minimal promoter is localized to −433 to −395 nt relative to the ATG site (10–11). It has been shown that the NIS minimal promoter alone is not sufficient to confer thyroid-specific transcriptional activity. Among the cis-acting elements identified, the rNIS upstream enhancer (rNUE), located at −2495 to −2264 nt relative to the ATG site, represents the most important aspect of NIS gene regulation. The rNUE contains two paired domain-containing transcription factor (Pax-8) binding sites and a degenerate cAMP response element (CRE) sequence, and stimulates transcription in a thyroid-specific and thyrotropin (TSH)-cAMP-responsive manner (9). Based on sequence homology to rNUE (69% identity), the hNIS upstream enhancer (hNUE) was identified and shown to confer thyroid-specific and TSH-cAMP-responsive transcriptional activity (12–14). The 296 bp hNUE is located at −9348 to −9054 nt relative to the ATG site and contains a Pax-8 binding site and a CRE-like sequence.

Recently, mouse NIS (mNIS) cDNA was cloned and found to exhibit 92% identity with rNIS cDNA, while only 78% identity with hNIS cDNA (15–18). Using the genomic walking method, a 3.2 kb genomic DNA fragment corresponding to the 5'-flanking region of the mNIS gene was cloned and characterized. The 3.2 kb 5'-flanking region of mNIS shares 68% identity with that of rNIS, yet shares little similarity with that of hNIS. Based on sequence homology, the mNIS upstream enhancer (mNUE) was localized to the region between −3042 and −2809 nt relative to the ATG site. The mNUE shares 94.4% identity with rNUE and enhances transcription in a thyroid-specific and TSH-responsive manner.

1The Ohio State Biochemistry Program, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH; 2Department of Biological Sciences, Stanford University, CA.
Materials and Methods

Cloning of 3.2 kb mNIS genomic DNA fragment

Based on the published sequence of mNIS cDNA, two mNIS gene-specific primers, mNISGSP1 (5'-GCA CCT GCA CAG CCG A CA TGA AGA TA-3') and mNISGSP2 (5'-CAT GGT CAG CCA ACA CAG GTA G-3'), were designed, corresponding to +220 to +195 nt and +72 to +47 nt relative to the putative ATG site, respectively. With these two primers and the adapter primers provided by the genomeWalker™ kit (Clontech, Palo Alto, CA), PCR reactions were performed using platinum Taq DNA polymerase (Gibco, Invitrogen, Carlsbad, CA). The modified procedure of primary touchdown PCR includes 7 cycles of denaturation at 94°C for 2 seconds, annealing and extension at 70°C for 3 minutes, then 37 cycles of denaturation at 94°C for 2 seconds, annealing and extension at 65°C for 3 minutes, and finally an extension at 65°C for 4 minutes. The secondary touchdown PCR includes 5 cycles of denaturation at 94°C for 2 seconds, annealing and extension at 70°C for 3 minutes, then 24 cycles of denaturation at 94°C for 2 seconds, annealing and extension at 65°C for 3 minutes, and finally an extension step at 65°C for 4 minutes. Two DNA fragments, 1.8 kb and 3.1 kb in length, containing the 5'-flanking region of the mNIS gene were amplified from Dral and PvuII mouse genomeWalker libraries, respectively. These two DNA fragments were cloned into the TA cloning vector pCR2.1 (Invitrogen), named 1.8 kb/pCR2.1 and 3.1 kb/pCR2.1, and their nucleotide sequences were analyzed. Based on the sequence determined from the 3.1 kb DNA fragment, two reverse primers, mNISGSP3 (5'-GTC TCT AGA AGG TGG GCC TC-3') and mNISGSP4 (5'-CAA GCA ATC AGT CAG AGA GAG TGG GC-3'), corresponding to -2832 to -2807 nt and -2940 to -2915 nt relative to the ATG site, respectively, were designed for another round of genomic walking. The resulting 350 bp DNA fragment from the Dral library was cloned into pCR2.1 vector to generate 350 bp/pCR2.1 for nucleotide sequence analysis.

Plasmids

1.8 kb/pGL2B was constructed by inserting the 1.8 kb Kpnl-EcoRV fragment from 1.8 kb/pCR2.1 vector into the Kpnl-HindIII sites of pGL2B, which is a promoterless luciferase vector. The mNIS/pGL2B DNA construct was subsequently generated by removing the 969 bp SpeI-MluI fragment from 1.8 kb/pGL2B and then removing the putative ATG site by digesting with Ncol enzyme, followed by Mung Bean nuclease treatment (New England Biolabs).

The putative mNUE DNA fragment was amplified from mouse genomic DNA by PCR using a pair of primers, mNUE-F1 (5'-GAG GAT TGG TGC AGC TCG AAG TGG GCC TC-3') and mNUE-R1 (5'-GAG TCT CTC TCT AAG AGA AAG TGG GCC GC-3') which the italics are the Kpnl and SstI sites, respectively. The resulting putative mNUE was cloned into the Kpnl/SstI sites of mNIS/pGL2B, generating mNUE-mNIS/pGL2B.

Cell culture, transient transfection, and luciferase assay

FRTL-5 rat normal thyroid cells were cultured in Coon's modified Ham's F12 medium, supplemented with 5% calf serum and six hormone (6H) mixture containing TSH (1mU/ml), insulin (10 µg/ml), hydrocortisone (10 nM), transferrin (5 µg/ml), and L-glycyl-histidyl-lysine (2 ng/ml) (7). Rat-1 rat embryonic fibroblast cells were maintained in DMEM supplemented with 10% fetal bovine serum (FBS).

Cells were seeded in 6-well plates. When cells became 50%-60% confluent, calcium phosphate transfection was performed using 3 µg of promoter-luciferase reporter DNA construct and 0.2 µg of β-galactosidase DNA construct. The DNA precipitates were replaced with fresh medium 8 hours later for FRTL-5 cells or 20 hours later for Rat-1 cells. Cells were washed with PBS and lysed with 80 µL of the lysis buffer 48 hours post-transfection in a luciferase assay kit (Promega, Madison, WI). The luciferase and β-galactosidase assays were carried out as described previously (7). For luciferase assay, 20 µL of cell lysate was used. For β-gal assay, 7 µL of lysis was used with the Galacto-Light chemiluminescent β-galactosidase reporter assay kit (Tropix, Applied Biosystems, Foster City, CA). Experiments were performed in duplicate.

The investigation of the effects of TSH on (enhancer)/promoter constructs in FRTL-5 cells was performed as described previously (9). The transfected FRTL-5 cells were cultured in starvation medium supplemented with 0.2% calf serum for 72 hours and then incubated in the 4H medium (without insulin and TSH) or with 4H + TSH (without insulin) for an additional 72 hours. The cells were harvested, and luciferase and β-galactosidase assays were performed.

Computer-assisted identification of potential transcription binding sites in the 5'-flanking regions of NIS

Potential transcription factor binding sites in the 5'-flanking regions of mNIS, rNIS, and hNIS genes were analyzed using the MatInspector Release Professional 6.2 program (Genomatix, Munich). A core similarity, defined by the consecutive highest conserved positions in the matrix, was set to be larger than 0.8. A matrix similarity took into account all bases over the whole matrix and was set as optimized, which minimized false positives and false negatives for each individual matrix (19).

Results

Isolation and sequence analysis of the 3.2 kb mNIS 5'-flanking region

Two gene-specific primers, mNISGSP1 and mNISGSP2, were derived from the published 5' end of the mNIS cDNA sequence (17). After one round of genomic walking, the 1.8 kb DNA fragment from the Dral library and the 3.1 kb DNA fragment from the PvuII library were obtained and sequenced. The 1.8 kb DNA fragment contains 1596 bp of mNIS 5'-flanking region and 220 bp of mNIS open reading frame (ORF) sequence. The 3.1 kb DNA fragment contains 3012 bp of mNIS 5'-flanking region and 72 bp of mNIS ORF sequence. Another round of genomic walking using two mNISGSP3 and mNISGSP4 reverse primers based on the identified 3.1 kb mNIS promoter sequence was performed to isolate a 350 bp DNA fragment from the Dral library, which extends 233 bp further upstream of the identified mNIS 5'-flanking sequence. Taken together, 3465 bp of DNA sequence, including 3245 bp of the mNIS 5'-flanking region and 220 bp of mNIS ORF, was determined (Fig. 1). The de-
CLONING of mNIS PROMOTER AND IDENTIFICATION of mNUE

FIG. 1. The transcription factor binding sites shared by both mNIS and rNIS in the 3.2 kb 5'-flanking region. The nucleotide sequence of the mNIS 5'-flanking region is shown in bold letters. The first nucleotide of the translation initiation site (ATG) is designated as +1. The arrow indicates the putative transcriptional start site. The potential TATA box is underlined. The identified potential transcription factor binding sites with their consensus sequences are shown in the upper (+) or lower (-) strand of the mNIS 5'-flanking region.

terminated 220 bp mNIS ORF sequence matches the published mouse cDNA sequence. The 3.2 kb 5'-flanking region of the mNIS gene shares 68% identity with that of the rNIS gene. Higher homology regions with about 80% identity are found within the proximal and distal regions of NIS1 5'-flanking sequence. In contrast, the 5'-flanking region of mNIS shares little similarity with that of hNIS, except in the minimal promoter and hNUE regions. The putative transcriptional start site of mNIS is located around -97 nt upstream of the ATG site, based on sequence homology with rNIS. In comparison, the transcriptional start site of rNIS is located around -98 nt relative to the ATG site, while the transcriptional start site of hNIS has been mapped to -375 nt relative to the ATG site (7-11). A potential non-canonical TATA box (AATAAA) is identified at -124 to -118 nt relative to the ATG site, 21 nt upstream of the putative mNIS transcriptional start site. Similarly, the TATA box is located 21 nt upstream of the putative rNIS transcriptional start site and 23 nt upstream of the putative hNIS transcriptional start site (7-11). Potential transcription factor binding sites in the 5'-flanking regions of mNIS and rNIS genes were analyzed by the MatInspector Release Professional 6.2 program. A total of 204 and 279 potential transcription factor binding sites were identified in the 3.2 kb 5'-flanking regions of rNIS and mNIS, respectively. Among these transcriptional binding sites, 63 were shared by both mNIS and rNIS. Interestingly, the MatInspector Re
lease Professional 6.2 program failed to identify the two Pax-8 binding sites, which are located in the NUE region of mNIS and rNIS. This may be due to underdeveloped consensus sequences of the Pax-8 site in the software.

A stretch of 234 bp between -3042 and -2809 nt relative to the ATG site, which shares 94.4% identity with rNUE, was identified as the putative mNUE (Fig. 2). The putative mNUE also contains two Pax-8 binding sites and a cAMP response element (CRE)-like sequence based on sequence homology to rNUE. Using the MatInspector software, both mNUE and rNUE were found to contain a Tax/CREB binding site, while hNUE contains a CREB binding site (20). Thus, the sequence surrounding the CRE-like sequence is well conserved between mNUE and rNUE, yet it is completely divergent between mNUE/rNUE and hNUE.

Functional analysis of mNIS promoter and mNUE

To investigate the promoter activity of mNIS, a 650 bp DNA fragment corresponding to the immediate 5′-flanking region of mNIS was inserted into a promoterless luciferase reporter construct pGL2B to generate mNIS/pGL2B. To in-
CLONING OF mNIS PROMOTER AND IDENTIFICATION OF mNUE

investigate the functionality of the mNUE. a 233 bp of PCR-amplified DNA fragment corresponding to the putative mNUE was inserted into mNIS/pGL2B to generate mNUE-mNIS/pGL2B. The promoter activities of these two DNA constructs were evaluated in the FRTL-5 rat thyroid cells and the Rat-1 fibroblast cells. As shown in Fig. 3, mNIS/pGL2B conferred significant promoter activity in both thyroid and non-thyroid cells, compared to the promoterless pGL2B. Thus the minimal promoter of mNIS is located within the 650 bp of the 5'-flanking region, and the minimal promoter activity is not thyroid-specific. We also showed that the enhancer activity of mNUE is thyroid-specific, as mNIS promoter activity was increased by mNUE more than threefold in FRTL-5 thyroid cells but not in Rat-1 fibroblasts. To determine whether the enhancer activity of mNUE is TSH-responsive, mNIS/pGL2B and mNUE-mNIS/pGL2B DNA constructs were transfected into FRTL-5 thyroid cells in the absence or presence of TSH. The enhancer activity of mNUE on mNIS promoter activity was dramatically stimulated by TSH (almost eightfold) (Fig. 4). In contrast, TSH did not increase luciferase activity of cells transfected with pGL2B.

Discussion

NIS expression in thyroid tissues is not only of physiological significance but also of clinical significance. While some thyroid cancers have defects in NIS cell surface trafficking (5), many thyroid tumors have decreased NIS expression. Studying the mechanisms underlying NIS regulation in thy-
FIG. 2. Sequence alignment among mNUE (upper), rNUE (middle), and hNUE (bottom); 234 bp of mNUE is highly conserved with 234 bp of rNUE (94.4% identity), while mNUE shares 67.8% identity with 285 bp of hNUE. The Pax-8 and CREB sites are underlined.
CLONING OF mNIS PROMOTER AND IDENTIFICATION OF mNUE

Luciferase Activity

<table>
<thead>
<tr>
<th>DNA Construct</th>
<th>FRTL-5</th>
<th>Rat-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>mNIS (-650/+220 nt)</td>
<td>12.6</td>
<td>8.2</td>
</tr>
<tr>
<td>mNUE-mNIS (-650/+220 nt)</td>
<td>43.3</td>
<td>7.9</td>
</tr>
<tr>
<td>Bovine Tg (-2036/+9 nt)</td>
<td>1057.0</td>
<td>1.3</td>
</tr>
<tr>
<td>SV40 promoter/enhancer</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

FIG. 3. Functional analysis of mNIS promoter activity. Luciferase activity of each DNA construct was determined in FRTL-5 cells or Rat-1 cells. A β-gal construct was co-transfected to normalize the transfection efficiency. The normalized luciferase activity of pGL2-Control (pGL2C) containing the simian virus 40 (SV40) enhancer and promoter was arbitrarily designated as 100 in each cell line. All numbering of the NIS DNA fragment is relative to the ATG site. The numbering of the bovine Tg promoter is relative to its transcriptional start site. The data represent two independent experiments. Duplicate transfections were performed in each experiment.

Considering that both Ras and Raf transformed thyroid cells had very low level of NIS expression (22), RREB-1 may be involved in NIS regulation. Because a USF binding site is co-localized with the Pax-8 binding sites identified in hNUE, mNUE, and rNUE, USF may compete with Pax-8 for binding, therefore suppressing NIS expression in thyroid cells. Indeed, the binding of USF to E-box element (CACGTG) was increased by TGF-β1 (personal communication with Dr. Leonard Kohn, NIH), and TGF-β1 has been shown to suppress NIS expression (28). The thyroid hormone triiodothyronine (T3) was shown to decrease NIS expression in FRTL-5 cells (28). It has also been shown that T3 decreases alpha-fetoprotein mRNA in HepG2 hepatoma cells by binding to the CEBP-like site (29). Thus, the CEBP binding site may play a role in T3-mediated NIS expression. Oct-1 directly interacts with retinoid X receptor (RXR) and reduces the binding of heterodimer of thyroid hormone receptor/RXR to the thyroid hormone responsive element (30). Since retinoic acid (RA) has been shown to increase NIS expression in human follicular carcinoma cells and MCF-7 human breast carcinoma cells (31,32), Oct-1 may play a role in RA- or T3-mediated NIS expression. Interferon γ (IFN-γ) has been reported to exert an inhibitory effect on TSH-cAMP mediated NIS expression (33). Since interferon regulatory factor 7 (IRF-7) is induced by IFN-γ (34), the IRF-7 site may also be worthy of investigation. Taken together, AP2, API, v-Maf, RREB-1, USF, CEBP, Oct-1, and IRF-7 binding sites may play a role in the transcriptional regulation of NIS. The investi-

FIG. 4. The enhancer activity of mNUE is TSH-responsive. FRTL-5 cells were transfected with luciferase reporter DNA constructs containing mNIS or mNUE-mNIS. The transfected cells were cultured in the absence of TSH for 72 hours and then continued to be cultured in medium with or without TSH for an additional 72 hours. A β-gal construct was co-transfected to normalize the transfection efficiency. The data represent two independent experiments. Duplicate transfections were performed in each experiment.
gation of these factors may better elucidate the mechanisms underlying the transcriptional regulation of NIS gene.

References

CLONING OF mNIS PROMOTER AND IDENTIFICATION OF mNUE

Address reprint requests to:
Sissy M. Jhiang
The Ohio State University
Department of Physiology and Cell Biology
304 Hamilton Hall
1645 Neil Avenue
Columbus, OH 43210
E-mail: Jhiang.1@osu.edu
LIN

AU1
is "NIS" correct, or should it be "rNIS"?

AU 2
previous mention was of "Maf." Should it be "v-Maf" throughout?