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1 INTRODUCTION

Future intelligence services and armed forces will be increasingly reliant on
distributed swarms of smart devices. While some of these intelligent swarms are
already operational — teams of UAVs, groups of robots, networks of sensors —
deployment of others, such as self-assembled and self-reconfigurable structures,
smart materials, medical nano-robots, is ten, twenty or more years in the future.

Although individual units in the swarms mentioned above have various lev-
els of individual complexity and size, swarms share common characteristics and
control issues: namely, ability to function autonomously and robustly in un-
certain dynamic environments with a high probability of component failure.
Individual elements in a swarm also have limited and faulty sensing and com-
munication capabilities, and often need to coordinate to achieve a global goal
despite the highly heterogeneous and highly distributed nature of the system. Fi-
nally, individual components should be endowed with rudimentary intelligence
and learning abilities in order to enhance the adaptability and capabilities of the
swarm. The UAV example provides an illustration for why these capabilities are
necessary. Although some UAVs are individually controlled, as bigger swarms
are deployed for wider, more detailed surveillance, remote control is no longer
feasible, and UAVs have to operate autonomously. Distributed decision making
is thus critical to ensure robust coordination among UAVs, and to ensure mis-
sion continuation even as individual UAVs return for refueling or delegate their
tasks for other reasons.

The issues listed above pose fundamental challenges to the design of robust,
scalable swarm control algorithms. The challenge is made even greater by the
fact that one does not control the collective behavior of the swarm directly —
rather, it emerges out of interactions among individual components and between
components and the environment.

Over the course of this project we have developed a mathematical framework
for studying collective behavior of multi-agent swarms (MAS). This framework
will allow the MAS designer to rationally specify and optimize individual control
algorithms that will lead to the best collective behavior. Our mathematical
approach has enabled us to model and quantitatively analyze collective behavior
of different classes of agents:

• Simple agents using reactive control: agents decide about future actions
based solely on input from sensors (including communication with other
agents) and the action they are currently executing. Such agents can be
represented as stochastic Markov processes [26, 29].

• Next, we extended the formalism to adaptive agents that change their
behavior based on observations of the environment. These agents can be
represented by a generalized Markov process of order m, where m is the
number of observations used [24, 25].

• We also created a framework to study spatially inhomogeneous systems
where agents are interacting with spatially extended fields, for example,
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diffusing pheromones [11].

We showed that an equation, known as the Rate Equation, describes the
dynamics of the collective behavior of swarms. The Rate Equation formalism
can be derived from theory of stochastic processes [26], although in practice,
the models are usually phenomenological. The Rate Equation approach has
been applied to study distributed systems of reactive robots [43, 27, 23, 30, 1].
We formalized the approach and extended it to adaptive agents [25, 28] as well
agents interactive through external fields [11]. Below we review the elements
of the mathematical formalism for reactive (Section 1.2), adaptive(Section 1.3)
and spatially interacting (Section 1.4) agents and illustrate with a few results
from the robotics domain (Section 3.2, Section 3.1, and Section 3.3).

1.1 Background

Mathematical models can generally be broken into two classes: microscopic and
macroscopic. Microscopic descriptions treat the agent as the fundamental unit
of the model. These models describe the agent’s interactions with other agents
and the environment. Solving or simulating a system composed of many such
agents gives researchers an understanding of the global behavior of the system.
Examples of such microscopic models are reported in [31, 16]. Rather than
compute the exact trajectories and sensory information of individual agents,
their behavior is modeled as a series of stochastic events, with probabilities
determined by simple geometric considerations and systematic experiments with
small groups of agents. Running several series of stochastic events in parallel,
one for each agent, allows researchers to study collective MAS behavior.

A macroscopic model, on the other hand, directly describes collective MAS
behavior. It is computationally efficient because it uses fewer variables. These
models have been successfully applied to a wide variety of problems in physics,
chemistry, biology and the social sciences. In these applications, the microscopic
behavior of an individual (e.g., a Brownian particle in a volume of gas or an
individual residing in US) is quite complex, often stochastic and only partially
predictable, and certainly analytically intractable. Rather than account for the
inherent variability of individuals, scientists model the behavior of some average
quantity that represents the system they are studying (e.g., volume of gas or
population of US). Such macroscopic descriptions often have a very simple form
and are analytically tractable. It is important to remember that such models
do not reproduce the results of a single experiment — rather, the behavior of
some observable averaged over many experiments or observations. The two de-
scription levels are, of course, related: we can start from the Stochastic Master
Equation that describes the evolution of a agent’s probability density and get
the Rate Equation, a macroscopic model, by averaging it [26]. In most cases,
however, Rate Equations are phenomenological in nature, i.e., not derived from
first principles. However, we have developed a “recipe” that allows one to formu-
late the Rate Equations describing dynamics of a homogeneous MAS composed
of reactive agents simply by examining the details of individual agent controller.
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1.2 Stochastic Approach to Modeling Multi-agent Sys-
tems

The behavior of individual agents in, for example a robotic, swarm has many
complex influences, even in a controlled laboratory setting. Robots are influ-
enced by external forces, many of which may not be anticipated, such as friction,
battery power, sound or light signals, etc. Even if all the forces are known in
advance, the robots are still subject to random events: fluctuations in the en-
vironment, as well as noise in the robot’s sensors and actuators. A robot will
interact with other robots whose exact trajectories are equally complex, mak-
ing it impossible to know which robots will come in contact with one another.
Finally, the designer can take advantage of the unpredictability and incorporate
it directly into the robot’s behavior: e.g., , the simplest effective policy for ob-
stacle avoidance is for the robot to turn a random angle and move forward. In
summary, the behavior of robots in a swarm is so complex, it is best described
probabilistically, as a stochastic process.

searching

pickuphoming

start

Figure 1: Diagram of a robot controller for the simplified foraging scenario

Consider Figure 1 — a controller for a simplified foraging scenario. Each
box represents a robot’s state — the action it is executing. In the course of
accomplishing the task, the robot will transition from searching to puck pick-up
to homing. Transitions between states are triggered by external stimuli, such
as encountering a puck. This robot can be described as a stochastic Markov
process1, and the diagram in Figure 1 is, therefore, the Finite State Automaton
(FSA) of the controller.

The stochastic processes approach allows us to mathematically study the
behavior of robot swarms and other multi-agent systems. Let p(n, t) be the
probability a reactive robot is in state n at time t. The Markov property allows
us to write change in probability density as [26]

∆p(n, t) = p(n, t + ∆t)− p(n, t)

=
∑

n′
p(n, t + ∆t|n′, t)p(n′, t)−

∑

n′
p(n′, t + ∆t|n, t)p(n, t). (1)

The conditional probabilities define the transition rates for a Markov process

W (n|n′; t) = lim
∆t→0

p(n, t + ∆t|n′, t)
∆t

. (2)

1A Markov process’s future state depends only on its present state and none of the past
states.
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The quantity p(n, t) also describes a macroscopic variable — the fraction of
robots in state n, with Eq. (1) describing how this variable changes in time. Av-
eraging both sides of the equation over the number of robots (and assuming only
individual transitions between states are allowed), we obtain in the continuous
limit (lim∆t→0)

dNn(t)
dt

=
∑

n′
W (n|n′, t)N ′

n(t)−
∑

n′
W (n′|n, t)Nn(t), (3)

where Nn(t) is the average number of robots in state n at time t. This is the
so-called Rate Equation. It is sometimes also written in a discrete form, as
a finite difference equation that describes the behavior of N(kT ), k being an
integer and T the discretization interval: (N(t + T )−N(t))/T . Eq. (3) has the
following interpretation: the number of robots in state n will increase in time
due to transitions to state n from other states, and it will decrease in time due
to the transitions from state n to other states.

The Rate Equation is a useful tool for mathematical analysis of collective
dynamics of robot swarms. To facilitate the analysis, we begin by drawing
the macroscopic state diagram of the system. The collective behavior of the
swarm is captured by an FSA that is functionally identical to the individual
robot FSA, except that each state of the automaton now represents the number of
robots executing that action [27, 23, 30]. Not every microscopic robot behavior
need to become a macroscopic state. In order to keep the model tractable,
it is often useful to coarse-grain it by considering several related actions or
behaviors as a single state. For example, we may take the searching state of
robots to consist of the actions wander in the arena, detect objects and avoid
obstacles. When necessary, the searching state can be split into three states,
one for each behavior; however, we are often interested in the minimal model
that captures the important behavior of the system. Coarse-graining presents
a way to construct such a minimal model.

The macroscopic automaton can be directly translated into the Rate Equa-
tions. Each state in the automaton becomes a dynamic variable Nn(t), with its
own Rate Equation. Every transition will be accounted for by a term in the
equation: a positive term for the incident (W (n|n′)Nn′) arrows and negative
term for the outgoing (W (n′|n)Nn) arrows.

Finding an appropriate mathematical form for the transition rates is the
main challenge in studying real systems. The transition is triggered by some
stimulus — be it another robot in a particular state, an object to be picked
up, etc. In order to compute the transition rates, we assume, for simplicity,
that robots and stimuli are uniformly distributed. The transition rates then
have the following form: W (n|n′) ≈ M , where M is the environmental stimulus
encountered (e.g., , number of sticks in the arena). The proportionality factor
connects the model to experiments, and it depends on the rate at which a robot
detects sticks. It can be roughly estimated from first principles (“scattering
cross section” approach [27]), measured from simulations or experiments with
one or two robots, or left as a model parameter. There will be cases where the
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uniformity assumption fails: e.g., , in overcrowded scenarios where robots, de-
pending on their obstacle avoidance controller, tend to clump, forming “robotic
clouds” [30]. If the transition rates cannot be calculated from first principles,
it may be expedient to leave them as parameters of the model and obtain them
by fitting the model to data. We illustrate the approach in the sections below
by applying it to study foraging (Section 3.2) and collaboration (Section 3.1) in
multi-robot systems.

1.3 Modeling Adaptive Agents

If each agent had instantaneous global knowledge of the environment and the
state of other agents, the system could dynamically adapt to any changes.
In most situations, such global knowledge is impractical. However, for suffi-
ciently slow dynamics, agents can correctly estimate the state of the environment
through repeated local observations (by storing them in memory). We devel-
oped a theory of such a memory-based adaptation mechanism [24, 25], which
is outlined here. Let p(n, t) be the probability an agent is in state n at time
t. We note that for a homogenous system of independent and indistinguishable
agents, p(n, t) describes the macroscopic state of the system, since it is simply
the fraction of agents in the state n. Let us assume that the agents use a finite
memory of length m of the past of the system in order to estimate the present
state of the environment and make decisions about future actions. Then the
evolution of the system can be represented as a generalized Markov processes
of order m. This means that the state of an agent at time t + ∆t depends not
only on the configuration of the system at time t (as in simple Markov systems),
but also on configurations at times t −∆t, t − 2∆t, . . ., t − (m − 1)∆t, which
we refer to as history h of the system. In the derivation below we will employ
the following identities: p(n, t + ∆t|h) =

∑
n′ p(n, t + ∆t|n′, t; h)p(n′, t|h) and∑

n p(n, t + ∆t|n′, t; h) = 1.
Let us introduce the probability distribution function over the histories (for

a homogenous system this distribution is the same for all the agents): p(h, t),
1 =

∑
h∈H p(h, t), where H is the set of all feasible histories (if it continuous,

one should use integration instead of summation for proper normalization). We
can then write for the change in probability density ∆p is:

∆p(n, t) = p(n, t + ∆t)− p(n, t) (4)

=
∑

h

[
p(n, t + ∆t|h)− p(n, t|h)

]
p(h)

=
∑

h

∑

n′
p(n, t + ∆t|n′, t; h)p(n′, t|h)p(h, t)

−
∑

h

∑

n′
p(n′, t + ∆t|n, t; h)p(n, t|h)p(h, t)

In the continuum limit, as ∆t → 0, ∆p/∆t can be written as

dp(n, t)
dt

=
∑

h

∑

n′
W (n|n′;h)p(n′, t|h)p(h, t) (5)
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−
∑

h

∑

n′
W (n′|n; h)p(n, t|h)p(h, t) ,

with transition rates

W (n|n′; h) = lim
∆t→0

p(n, t + ∆t|n′, t;h)
∆t

. (6)

In the most general form Eq.5 is analytically intractable due to strong cor-
relations both in time and state–space. Instead, we average over all agents as in
the preceding section and derive the macroscopic equation for the rate of change
of 〈Nn〉, the average number of agents in state n:

dNn

dt
=

∑

n′

[〈W (n|n′)〉hNn′ − 〈W (n′|n)〉hNn

]
. (7)

Here for notational convenience 〈. . .〉h denotes average over histories, and we
have dropped angle brackets around N , although this variable still denotes an
average quantity.

Equation 7 is very similar to the rate equation we used to study Markov-
based agent systems Eq. (3), except that transition rates W (n|n′) are now re-
placed by their history-averaged values. We will use the above equation to
study how agents can use histories, or memories of past events, to improve the
collective behavior of the system. We illustrate the approach in Section 3.3 by
examining adaptive task allocation in robots.

1.4 Modeling Spatially Correlated Systems

While the approach outlined above works well for many spatially uniform sys-
tems, it is too coarse-grained for systems with a spatial correlation in agents’
interactions. Thus, it is not sufficient to describe, for example, an ant-like
swarm where agents interact through evolving chemical fields or robots moni-
toring chemicals released into a fluid. These situations require a generalization
of the Master Equation, in which each robot not only has a discrete controller
state k but also a continuous coordinate x (i.e., its spatial location). As with
the original formulation, we suppose the number of agents in each state is suffi-
cient to determine the collective behavior of interest. Because x is a continuous
variable, these counts become densities leading us to introduce n̄k(x, t) as the
average robot fraction density in state k at location x and time t. Thus a small
volume ∆x around location x contains, on average, the fraction n̄k(x, t)∆x of
the robots in the system.

Let us consider a system where agents interact with the environment through
a certain external chemical field. Let us also assume that agents are able to
interact through stigmergy by releasing a special chemical into the environment
that we call communicative signal. We denote ρ(x, t) and c(x, t) concentration
of the chemical and communicative signal, respectively, at point x at time t.
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Then we can write down the generalized rate equation as follows:

∂n̄k(x, t)
∂t

=
∫

dx′
∑

j

wjk(x,x′; ρ, c)n̄j(x′, t) (8)

− n̄k(x, t)
∫

dx′
∑

j

wkj(x,x′; ρ, c) .

Now the transition rates wjk depend not only the state indices j and k and
occupation vector but also on the spatial coordinates and concentration of the
chemical at the corresponding points. Note also that we have included the
dependence of the transition rates on x and x′ explicitly to account for agents’
kinematics even in the absence of chemical and communicative concentrations
(e.g., to describe freely diffusing agent).

The transition rates wjk(x,x′; ρ(x), c(x)) summarize the behaviors of the
individual robots. For example, the robot’s internal state could change when
it detects a chemical concentration above a predetermined threshold. Commu-
nication among nearby robots allows the robots to reduce noise in estimating
chemical gradients and hence perform better than individual robots, but at a
cost of additional power use for the communication. Robot motion, either mov-
ing passively with the fluid or using powered locomotion, e.g., to follow chemical
concentration gradients, also contributes to the transitions.

While Equation 8 is a general description of the overall system behavior, it
is too complex in its present form to be useful. Fortunately, it can be simplified
considerably into a more intuitive form by noting that in many physically real-
istic situations agents’ motion can be decoupled from state transitions, so that
the transition rate can be represented as

wjk = δjkWk(x,x′; ρ(x), ρ(x′), c(x), c(x′))
+ δ(x− x′)wjk(ρ(x), c(x)) , (9)

where δjk is Kroenecker’s symbol2 and δ(x) is its continuous analogue δ–function.
In other words, during a transition between two discrete states we neglect the
change in robot’s position. In Eq. 9 Wk is an appropriately chosen kernel that
describes agents’ motion (as index k indicate, it can be different for each state),
while the second term describes transition between discrete states.

Equation 9 allows us to separate transition function into terms with purely
spatial transitions and terms with purely state transitions. Indeed, using Eq. 9
we can decouple the agents’ kinematics from the state transitions between dis-
crete state and rewrite Eq. 8 as follows:

∂n̄k(x, t)
∂t

= Lkn̄k(x, t) +
∑

j

wjk(ρ, c)n̄j(x, t) (10)

− n̄k(x, t)
∑

j

wkj(ρ, c)

2Kroenecker’s symbol is defined as follows: δij = 1 if i = j and δij = 0, i 6= j.
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Here Lk is an operator (specified below) that describes the motion of agents in
state k. The second and third terms in Eq. 10 describe agents state transitions.
Note that now wjk(ρ, c) depends on spatial coordinates indirectly, through con-
centration ρ(x, t) and c(x, t). When the concentrations ρ and c are constants,
Eq. 3 is recovered by integrating Eq. 10 over the spatial coordinates x, assuming
that Lk preserves the number of agents in state k (e.g., no absorbing boundaries)
so that integral over the first term in Eq. 10 vanishes.

To specify the operators Lk, we note that for the particular environment we
are interested in, (i.e., microscopic robots operating in a fluid) robots’ motion
can be described by a diffusion equation [19]. We studied [11] chemotactic robots
that respond to a chemical and signalling fields by propelling themselves in the
direction of increasing concentration. This capability is modeled after bacterial
chemotaxis which allows these single cell organisms to efficiently move towards
food sources and away from noxious sources. Although in some cases the exact
derivation from the microscopic transition rates is feasible, if very involved (see,
for example, [36, 7] for treatment of bacterial chemotaxis which can be treated
as a biased random walk), chemotaxis in a chemical concentration field ρ(x, t) is
usually introduced into the rate equations phenomenologically by postulating a
chemotactic velocity as VD = ηρ∇ρ(x, t), where ηρ is the so called chemotactic
sensitivity (which may itself depend on ρ). One can then write for operators Lk

Lk = Dk∇2 − v · ∇ −∇ · [Vρ
D(ρ,∇ρ) + Vc

D(c,∇c)] (11)

Here, Dk is the diffusion coefficient of agents in state k assumed to be a constant,
v is the flow velocity, and Vρ

D and Vc
D are the chemotaxis drift velocities of

robots due to concentration gradients of the chemical and the communicative
signal, respectively.

To proceed further, we should also define how the chemical and concentration
fields evolves in time. As an example relevant for microscopic robots, we consider
the evolution of this fields in a moving fluid in which the robots operate. The
evolutions of ρ(x, t) c(x, t) are governed by the diffusion equation:

∂ρ

∂t
= Dρ∇2ρ− v · ∇ρ− γρρ + Qρ(x, t) (12)

∂c

∂t
= Dc∇2c− v · ∇c− γcc +

∑

k

qkn̄k(x, t) (13)

In Eq. 12 the terms on the right describe, respectively, the diffusion of the
chemical (with a diffusion constant Dρ), the advection of the chemical due to
fluid motion with velocity v, the decay of the chemical at rate γρ, and its de-
position by sources with intensity profile Qρ(x, t). Terms in Eq. 13 have similar
meaning, except the deposition rates of signalling chemical is proportional to
the fraction of agents in state k, n̄k(x, t) (note that, generally speaking, the
coefficients qk themselves depend on the fraction of agents in state k). The
parameters in this equation could, in general, depend on space and time, as
well as the location of the robots (e.g., a sufficiently high concentration of the
robots could significantly affect the fluid flow). For simplicity, we will treat
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them as constants. For microscopic robots, fluid motions will usually be at
very low Reynolds number so the fluid flow will be laminar with the velocity
v changing smoothly with location. Viscous forces dominate the motions of
such robots with requirements for locomotion mechanisms and power use quite
different from experiences with larger robots [39].

In Section 3.4 we motivate the approach by describing a medically relevant
scenario that considers a swarm of microscopic robots moving in a fluid to local-
ize a chemical source. We solve a one-dimensional model and analyze different
design choices.

1.5 Learning Approaches to Distributed Coordination

The problem of coordination in multi-agent systems, where agents have to
achieve a consensus in their actions to receive maximum reward, is an impor-
tant problem that has attracted much interest. Reinforcement learning and
game dynamics have been shown to be a general and robust method for achiev-
ing coordination in MAS, even when agents are not directly communicating or
sharing information [42]. In the game theory formalism, each agent is charac-
terized by a set of strategies and it seeks to maximize its payoff (i.e., , utility or
profit). Game dynamics studies the behavior of agents in response to games that
are played many times successively. Over the course of the games, the winning
strategies are rewarded, loosing ones are penalized, and the agents maximize
their profit or utility by choosing the best performing strategies. It is the extra
degree of freedom, characterized by the agents’ strategies, that allows the system
to adapt in dynamic environments. Game dynamics has a number of appealing
properties as a control mechanism for multi-agent systems: it is distributed,
flexible and scalable. The agents may vary in complexity from the very simple
agents who do not have any information about other players or rules of the
game, or even be aware of their existence, to more complex deliberative agents
who can strategize and reason about their opponents beliefs and actions. The
agents may act independently of one another, or jointly as in some cooperative
agent systems, or they may cooperate or act competitively.

The Minority Game (MG) was introduced as a simplification of Arthur’s El
Farol Bar attendance problem [2]. The MG consists of N agents with bounded
rationality that repeatedly choose between two alternatives labelled 0 and 1
(e.g., staying at home or going to the bar). At each time step, agents who
made the minority decision win. In the Generalized Minority Game, the wining
group is 1 (0) if the fraction of the agents who chose “1” is smaller (greater)
than the capacity level η, 0 < η < 1 (for η = 0.5, the game reduces to the
the traditional MG). Each agent uses a set of S strategies to decide its next
move and reinforces strategies that would have predicted the winning group.
A strategy is simply a lookup table that prescribes a binary output for all
possible inputs. In the original version of the game, the input is a binary string
containing the last m outcomes of the game, so the agents interact by sharing
the same global signal. If the agents choose either action with probability 1/2
(the random choice game), then, on average, the number of agents choosing
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“1” (henceforth referred to as attendance) is (N −1)/2 with standard deviation
σ =

√
N/2 in the limit of large N . The most interesting phenomenon of the

minority model is the emergence of a coordinated phase, where the standard
deviation of attendance, the volatility, becomes smaller than in the random
choice game. The coordination is achieved for memory sizes for which the
dimension of the reduced strategy space is comparable to the number of agents
in the system[4, 40], 2m ∼ N .

In addition to the original MG, different versions of the game where the
agents interact using local information only have been studied. In particular,
it was established that coordination still arises out of local interactions, and
the system as a whole achieves “better than random” performance in terms of
the utilization of resources. Note that reinforcement learning is similar to game
dynamics, in that an agent receives a payoff that allows it to determined best
actions. Minority Games and reinforcement learning in general can serve as
a general paradigm for resource allocation and load balancing in multi–agent
systems.

In all previous studies the capacity level has been fixed as an external pa-
rameter, so the environment in which the agents compete is stationary. In many
situations, however, agents have to operate in dynamic environments. We ad-
dressed this problem in our research. Namely, we studied a system of boolean
agents playing a generalized minority game, and assumed that the capacity level
is not fixed but varies with time, η(t) = η0 + η1(t), where η1(t) is a time depen-
dent perturbation. The framework of the interactions was based on Kauffman
NK random boolean nets [20], where each agent gets its input from K other ran-
domly chosen agents, and maps the input to a new state according to a boolean
function of K variables, which is also randomly chosen and quenched through-
out the dynamics of the system. The generalization we made is that agents are
allowed to adapt by having more than one boolean function, or strategy, and
the use of a particular strategy is determined by an agent based on how often
it predicted the winning group throughout the game.

2 SUMMARY OF PROJECT RESULTS

We have achieved great success in applying mathematical formalism outlined
above to study collective behavior of distributed systems of mobile robots for
which a body of experimental and simulations data exists. In this section we
outline some of our successes, going into detail of the particular applications in
the later sections.

2.1 Collective Behavior of Groups of Robots

We mathematically studied collective behavior of various distributed robot sys-
tems. These studies were inspired and corroborated by experiments and simu-
lations with real robots. For example, Ijspeert et al. [16] studied dynamics of
collaboration in groups of robots using stick-pulling experiments as a model of
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collaboration. The robots’ task was to locate sticks scattered around the arena
and pull them out of their holes. A single robot cannot complete the task on its
own: rather, when a robot finds a stick, it lifts it partially out of the hole and
waits for a period specified by its gripping time parameter for a second robot
to find it. If a second robot finds the first during this time interval, it will pull
the stick out; otherwise, the first robot releases the stick and returns to the
searching state.

We found that a minimal model that includes only the salient details of the
process [27] reproduced key experimental observations and qualitatively agreed
with results of experiments and simulations (see Figure 2(a)). Martinoli &
Easton [30] formulated a more detailed model based on our work that accounts
for every state in the robot control diagram.
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Figure 2: Collaboration rate per robot vs gripping time parameter for differ-
ent robot group sizes and 16 sticks. (a) Results of the minimal model for 8
(short dash), 16 (long dash) and 24 (solid line) robots. (b) Results for detailed
model (solid lines), embodied simulations (dotted lines), the microscopic model
(dashed lines).

Figure 2 depicts the collaboration rate, the rate at which robots pull sticks
out, as a function of the individual robot gripping time parameter for the mini-
mal (a) and the detailed (b) models. Figure 2(b) also shows results of embodied
and probabilistic numeric simulations for the same set of parameters. One can
see quantitative agreement already with swarms as small as 8 robots. The min-
imal model shows the same qualitative behavior as the more detailed model.
See Section 3.1 for details of the application.

In foraging experiments, we studied the influence of physical interference on
the swarm performance [23]. Interference is a critical issue in swarm robotics,
in particular in foraging experiments where there is a spatial bottleneck at
the predefined “home” region where the collected objects must be delivered.
When two robots find themselves within sensing distance of one another, they
will execute obstacle avoidance maneuvers. Because this behavior takes time,
interference decreases robots’ efficiency. Clearly, a single robot working alone is
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relatively more efficient, because it does not experience interference from other
robots (the larger the swarm, the greater the degree of interference). However,
parallel work helps speed up the foraging process and increases the system
robustness in case of individual robot failures.
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Figure 3: Time it takes the swarm of robots to collect objects in the arena for two
difference interference strengths. Symbols are results of embodied simulations,
while lines give the model’s predictions.

Figure 3 shows the total time required to complete the task for two differ-
ent interference strengths, as measured by the avoiding time τ . For both cases
task completion time is minimized for some swarm size and increases for larger
swarms. The greater the effect of interference (larger τ), the smaller the op-
timal swarm size. Results show good quantitative agreement with embodied
simulations with swarms of one to 20 robots. Section 3.2 presents details of the
application.

We studied extensions of the basic model outlined in Section 1.2. In Sec-
tion 3.3 we analyze dynamic task allocation in multi-robot systems. In this ap-
plication, robots adapt to changing task requirements and environmental condi-
tions by making repeated local observations of the tasks, environment and other
robots. Such robots can be described as general Markov processes and studied
using the formalism of Section 1.3. We obtained very good agreement between
predictions of the model and results of realistic 3-D simulations.

Another refinement of the formalism, as described in Section 1.4, applies to
spatially non-uniform systems, for example, systems where robots generate and
interact with diffusing chemical fields.

2.2 Distributed Resource Allocation

The problem of coordination in multi-agent systems, where agents have to
achieve a consensus in their actions to receive maximum reward, is an impor-
tant problem that has attracted much interest recently [41]. We studied minority
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games and reinforcement learning as a model for resource allocation/load bal-
ancing problem in a large scale MAS, where resource capacities are changing
in time. We found that reinforcement learning [9] and minority games[13, 12]
were efficient and robust mechanisms for achieving coordination in dynamic
distributed systems. We applied this mechanism for load balancing in Grid
distributed computing environment [10]. Section 4 presents details of this ap-
plication.

2.3 Collective Mind Project

In addition to this work, Business Collective Mind for Equipment Reliability
project was funded by DARPA at the level of a study. The Principal Investigator
was Norman Sondheimer of University of Massachusetts with William Wallace
of Rensselaer Polytechnic Institute and Peter Will of University of Southern Cal-
ifornia Information Sciences Institute as co-PIs. The tasks were to solicit ideas
from the best University, Industry and Military researchers and practitioners on
the Collective Mind concept to generate support for a research program from
the Military and report the results to DARPA. This project is described in
Section 5.

3 Robotic Applications

In the sections below we illustrate our approach to modeling and analyzing
collective behavior of multi-agent systems with detailed applications from the
robotics domain.

3.1 Collaboration in a Group of Robots

The stick-pulling experiments were carried out by Ijspeert et al.[16] to study
the dynamics of collaboration among locally interacting simple reactive robots.
Figure 4 is a snapshot of the physical set-up of the experiments. The robots’ task
is to locate sticks scattered around the arena and pull them out of their holes.
A single robot cannot pull the stick out by itself — a collaboration between
two robots is required for the task to be successfully completed. Collaboration
occurs in the following way: one robot finds a stick, lifts it partly out of the
ground and waits for a second robot to find it and complete the task by pulling
the stick out of its hole completely.

The actions of each robot are governed by the same simple controller, out-
lined in Figure 5. The robot’s default behavior is to wander around the arena
looking for sticks and avoiding obstacles, which could be other robots or walls.
When a robot finds a stick that is not being held by another robot, it grips
it, lifts it half way out of the ground and waits for a period of time specified
by the gripping time parameter. If no other robot comes to its aid during the
waiting period (time out), the robot releases the stick and resumes the search
for other sticks. If another robot encounters a robot holding a stick, a successful
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Figure 4: Physical set-up of the stick-pulling experiment showing six Khepera
robots.

collaboration will take place during which the second robot will grip the stick,
pulling it out of the ground completely, while the first robot releases the stick
and resumes the search. After the task is completed, the second robot also re-
leases the stick and returns to the search mode, and the experimenter replaces
the stick in its hole.

3.1.1 Real Robots, Embodied Simulations and Microscopic Model-
ing

Ijspeert et al. studied the dynamics of collaboration in the stick-pulling experi-
ment at three different levels: by conducting experiments with physical robots;
using a sensor-based simulator of robots; and using a microscopic probabilis-
tic model. The physical experiments were carried out in groups of two to six
Khepera robots in an arena containing four sticks. Because experiments with
physical robots are very time consuming, Webots, the sensor-based simulator
of Khepera robots, was used to systematically explore parameters affecting the
dynamics of collaboration. The Webots simulator [32] attempts to faithfully
model the environment and replicate the experiment by reproducing the robots’
(noisy) sensory input and the (noisy) response of the on-board actuators in or-
der to compute the trajectory and interactions of all the robots in the arena.
The probabilistic microscopic model, on the other hand, does not attempt to
compute trajectories of individual robots. Rather, it is a numerical model in
which the robot’s actions — encountering a stick, a wall, another robot, a robot
gripping a stick, or wandering around the arena — are represented as a series of
stochastic events, with probabilities based on simple geometric considerations
and systematic tests with one or two real robots. For example, the probability
of a robot encountering a stick is equal to the product of the number of un-
gripped sticks, and the detection area of the stick normalized by the arena area.
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Probabilities of other interactions can be similarly calculated. The microscopic
simulation consists of running several processes in parallel, one for each robot,
while keeping track of the global state of the environment, such as the number
of gripped and ungripped sticks. According to Ijspeert et al. the acceleration
factor for Webots and real robots can vary between one and two orders of mag-
nitude for the experiments presented here. Because the probabilistic model does
not require calculations of the details of the robots’ trajectories, it is about 300
times faster than Webots for this experiment.
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Figure 5: Flowchart of the robots’ controller reported from [16] with overlapped
state blocks.

Ijspeert et al. systematically studied the collaboration rate, i.e., the number
of sticks successfully pulled out of the ground in a given time interval, and its
dependence on the group size and the gripping time parameter. Though in
that work they also investigated the effects of robot heterogeneity and explicit
communication, we will focus on a homogeneous system of non-communicating
robots. Ijspeert et al. report very good qualitative and quantitative agreement
between the three different levels of experiments. The main result is that,
depending on the ratio of robots to sticks (or workers to the amount of work),
there appear to be two different regimes in the collaboration dynamics. When
there are fewer robots than sticks, the collaboration rate decreases to zero as
the value of the gripping time parameter grows. In the extreme case, when the
robot grabs a stick and waits indefinitely for another robot to come and help it,
the collaboration rate is zero, because after some period of time each robot ends
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up holding a stick, and no robots are available to help. When there are more
robots than sticks, the collaboration rate remains finite even in the limit the
gripping time parameter becomes infinite, because there will always be robots
available to help pull the sticks out. Another finding of Ijspeert et al. was that
when there are fewer robots than sticks, there is an optimal value of the gripping
time parameter which maximizes the collaboration rate. In the other regime,
the collaboration rate appears to be independent of the gripping time parameter
above a specific value, so the optimal strategy is for the robot to grip a stick and
hold it indefinitely. They also found that the system is one of few collaborative
systems known to the authors that demonstrates super-linearity, i.e., for some
range of robot group sizes and a given number of sticks, adding a robot not only
increases the global performance of the system but also the relative performance
of the other robots. However, as the robot group size increases, the overcrowding
and interference effects cause the relative collaboration rate to saturate and
become sub-linear.

3.1.2 Mathematical Model of the Stick-Pulling Experiments

In the following sections we present a macroscopic analytical model of the stick-
pulling experiments in a homogeneous multi-robot system. Such a model is
useful for the following reasons. First, the complexity of a macroscopic model
is independent of the system size, i.e., the number of robots: therefore, the
time required to obtain solutions for a system of 5, 000 robots is as long as
that to obtain solutions for a system of five robots, whereas for a microscopic
description the time required for computer simulation scales at least linearly
with the number of robots. Second, our approach allows us to derive analytic
expressions for certain important parameters, (e.g., those for which the per-
formance is optimal). It also enables us to study the stability properties of
the system, and see whether solutions are robust under external perturbation
or noise. These capabilities are important for the design and control of large
multi-agent systems.

In order to construct a model of the stick-pulling experiments, it is helpful to
write the macroscopic state diagram of the system. During a sufficiently short
time interval, each robot can be thought to be in one of two states: searching
or gripping. The state labels several related robot behaviors and it is a useful
shorthand for thinking about the system. Using flowchart of the robots’ con-
troller, shown in Fig. 5, as a reference, we can consider the search state to be the
set of behaviors associated with looking for sticks, such as wandering around the
arena (“look for sticks” action), detecting objects and avoiding obstacles; while
the gripping state is composed of the decisions and actions inside the dotted box.
We assume that actions “success” (pull the stick out completely) and “release”
(release the stick) take place on a short enough time scale that they can be
incorporated into the search state. While the robot is in the obstacle avoidance
mode, it cannot detect and try to grip objects; therefore, avoidance serves to
decrease the number of robots that are searching and capable of gripping sticks.
We can also include avoidance into the model explicitly [27].
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In addition to states, we must also specify all possible transitions between
states. When it finds a stick, the robot makes a transition from the search state
to the gripping state. After both a successful collaboration and when it times out
(unsuccessful collaboration) the robot releases the stick and makes a transition
into the searching state, as shown in Fig. 6. These arrows correspond to the
arrow entering and the two arrows leaving the dotted box in Fig. 5. We will
use the macroscopic state diagram as the basis for writing down the differential
rate equations that describe the dynamics of the stick-pulling experiments.

search grip

(s)

(u)

Figure 6: Macroscopic state diagram of the multi-robot system. The arrow
marked ‘s’ corresponds to the transition from the gripping to the searching
state after a successful collaboration, while the arrow marked ‘u’ corresponds
to the transition after an unsuccessful collaboration, i.e., when the robots time
out.

The dynamic variables of the model are Ns(t) and Ng(t), the number of
robots in the searching and gripping states respectively. Also, let M(t) be the
number of unextracted sticks at time t. The latter variable does not represent
a macroscopic state, rather it tracks the state of the environment. We assume
that robots and sticks are distributed uniformly around the arena.

A series of differential rate equations govern the dynamics of the stick-pulling
system:

dNs

dt
= −αNs(t)

(
M(t)−Ng(t)

)
+ α̃Ns(t)Ng(t)

+αNs(t− τ)
(

M(t− τ)−Ng(t− τ)
)

Γ(t; τ) (14)

Ng = N0 −Ns (15)
dM

dt
= −α̃Ns(t)Ng(t) + µ(t) (16)

where α, α̃ are the rates at which a searching robot encounters a stick and a
gripping robot respectively, τ is the gripping time parameter, and µ(t) is the rate
at which new tasks are added. The parameters α, α̃, and τ connect the model
to the experiment. α and α̃ are related to the size of the object, the robot’s
detection radius, or footprint, and the speed at which it explores the arena.
The three terms in Eq. 14 correspond to the three arrows in Fig. 6. The first
term accounts for the decrease in the number of searching robots because some
robots find and grip sticks. Under the uniform distribution assumption, the
rate at which robots encounter ungripped sticks is proportional to the number
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of ungripped sticks in the arena, with the proportionality factor given by α.
The second term describes the successful collaborations between two robots,
and the third term accounts for the failed collaborations, both of which lead to
an increase the number of searching robots.

Γ(t; τ), the fraction of failed collaborations at time t, is the probability no
robot came “to help” during the time interval [t−τ, t]. To calculate Γ(t; τ) let us
divide the time interval [t− τ, t] into K small intervals of length δt = τ/K. The
probability that no robot comes to help during the time interval [t−τ, t−τ +δt]
is simply 1− α̃Ns(t− τ)δt. Hence, the probability for a failed collaboration is

Γ(t; τ) =
K∏

i=1

[1− α̃δtNs(t− τ + iδt)]Θ(t− τ) (17)

≡ exp
[ K∑

i=1

ln[1− α̃δtNs(t− τ + iδt)]
]
Θ(t− τ)

The step function Θ(t − τ) ensures that Γ(t; τ) is zero for t < τ . Finally,
expanding the logarithm in Eq.(18) and taking the limit δt → 0 we obtain

Γ(t; τ) = exp[−α̃

∫ t

t−τ

dt′Ns(t′)]Θ(t− τ) (18)

We do not need a differential equation for Ng, the number of gripping robots,
because this quantity may be computed using conservation of robots condition,
Eq. 15. The last equation, Eq. 16, says that the number of unextracted sticks
M(t) decreases in time at the rate of successful collaborations. The equations
are subject to the initial conditions that at t = 0 the number of searching robots
is N0 and the number of unextracted sticks is M0.

Dimensional Analysis To proceed further let us introduce n(t) = Ns(t)/N0,
m(t) = M(t)/M0, β = N0/M0, RG = α̃/α, β̃ = RGβ and a dimensionless time
t → αM0t, τ → αM0τ . µ′ is the dimensionless rate at which new tasks (sticks)
are added. n(t) is the fraction of robots in the search state and m(t) is the
fraction of unextracted sticks at time t. Due to the conservation of the number
of robots, the fraction of robots in the gripping state is simply 1 − n(t). The
equations Eq. 14– 16 can be rewritten in dimensionless form as:

dn

dt
= −n(t)[m(t) + βn(t)− β] + β̃n(t)[1− n(t)] + n(t− τ)[m(t− τ)

+βn(t− τ)− β]× γ(t; τ) (19)
dm

dt
= −ββ̃n(t)[1− n(t)] + µ′ (20)

γ(t; τ) = exp[−β̃

∫ t

t−τ

dt′n(t′)] (21)

Equations 19–21 together with initial conditions n(0) = 1, m(0) = 1 deter-
mine the dynamical evolution of the system. Note that only two parameters, β
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and τ , appear in the equations and, thus, determine the behavior of solutions.
The third parameter β̃ = RGβ is fixed experimentally and is not independent.
Note that we do not need to specify α and α̃ — they enter the model only
through RG (throughout this paper we will use RG = 0.35, the value reported
in [16]).3 Below we provide a detailed analysis of these equations.

Analysis of Results Let is assume that new sticks are added to the system
at the same rate that the robots pull them out. This situation was realized
experimentally by replacing the sticks in their holes after they were pulled out
by robots. Therefore, the number of sticks does not change with time (m(t) =
m(0) = 1). A steady-state solution, if it exists, describes the long term time-
independent behavior of the system. To find it, we set the left hand side of
Eq. 19 to zero. Eq. 19 has a non-trivial steady–state solution which satisfies the
following transcendental equation:

−1 + (β + β̃)(1− n) + (1− β(1− n))e−β̃τn = 0 (22)

Figure 7 shows the dependence of the fraction of searching robots in the steady
state on the gripping time τ for different values of the parameter β. Note, that
for small enough β’s n(τ) → 0 as τ → ∞. The intuitive reason for this is the
following: when there are fewer robots than sticks, and each robot holds the
stick indefinitely, after a while every robot is holding a stick, and no robots are
searching. For β > 1/(1 + RG), however, n(τ) → const 6= 0 as τ → ∞. The
inset in Fig. 7 shows how a typical solution, n(t), relaxes to its steady state
value. The oscillations are characteristic of time–delay differential equations,
and their period is determined by τ .

The collaboration rate is the rate at which robots successfully pull sticks
out of their holes. The steady–state collaboration rate R(τ ; β) is given by the
following equation:

R(τ, β) = ββ̃n(τ, β)[1− n(τ, β)] , (23)

where n(τ, β) is the number of searching robots in the steady–state for a par-
ticular value of τ and β, and (1 − n(τ, β)) is the number of gripping robots in
the steady–state. Figure 8 depicts the collaboration rate as a function of τ .
For β > βc the collaboration rate increases monotonically with τ . However,
for β < βc there is an optimal gripping time, τ = τopt, which maximizes the
collaboration rate. To understand this behavior note that the maximum collab-
oration rate for a given β is achieved for n(τ, β) = 1/2. For β > βc, however,

3The parameter α can be easily calculated from experimental values quoted in [16]. As
a robot travels through the arena, it sweeps out some area during time dt and will detect
objects that fall in that area. This detection area is VRWRdt, where VR = 8.0 cm/s is robot’s
speed, and WR = 14.0 cm is robot’s detection width. If the arena radius is R = 40.0 cm, a
robot will detect sticks at the rate α = VRWR/πR2 = 0.02 s−1. According to [16], a robot’s
probability to grab a stick already being held by another robot is 35% of the probability of
grabbing a free stick. Therefore, RG = α̃/α = 0.35. RG is an experimental value obtained
with systematic experiments with two real robots, one holding the stick and the other one
approaching the stick from different angles.
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Figure 7: Steady state solution vs (dimensionless) gripping time parameter τ :
for β = 0.5 (short dash), 1 (long dash), 1.5 (solid line). Inset shows a typical
relaxation to the steady state for τ = 5, β = 0.5.
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Figure 8: Collaboration rate per robot vs (dimensionless) gripping time pa-
rameter τ for β = 0.5 (short dash), β = 1 (long dash), β = 1.5 (solid line).
These values of β correspond, respectively, to two, four, and six robots in the
experiments with four sticks.
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the solution of Eq. 22 is always greater than 1/2, so an optimal solution does
not exist. For β < βc a simple analysis gives

τopt =
2
β̃

ln
1− β/2

1− 1/2(β + β̃)
, β < βc =

2
1 + RG

(24)

Mathematical analysis of the minimal model reproduces the following con-
clusions of Ijspeert et al.: the different dynamical regimes depending on the
value of the ratio of robots to sticks (β) and the optimal gripping time param-
eter for β < βc. The three curves in Fig. 8 are qualitatively similar results of
simulations in groups of up to six robots. Martinoli & Easton [30] formulated
a more detailed model based on our work that accounts for every state in the
robot control diagram and agrees quantitatively with simulations of groups of
as few as a dozen robots.

3.2 Optimal Group Size for Robot Foraging

Figure 9 is a snapshot of a typical foraging experiment with four robots. The
robots’ task is to collect small pucks scattered randomly around the arena.
The arena itself is divided into a search region and a small “home”, or goal,
region where the collected pucks are deposited. The “boundary” and “buffer”
regions are part of the home region and are made necessary by limitations in
the robots’ sensing capabilities, as described below. Each robot has an identical
set of behaviors governed by the same controller. The behaviors that arise in
the collection task are [15]:

Avoiding obstacles, including other robots and boundaries. This behavior is
critical to the safety of the robot.

Wandering or searching for pucks: robot moves forward and at random in-
tervals turns left or right through a random arc. If the robot enters the
Boundary region, it returns to the search region. This prevents the robot
from collecting pucks that have already been delivered.

Detecting a puck.

Grabbing a puck.

Homing : if carrying a puck, move towards the home location.

Creeping : activated by entering Buffer region. The robot will start using the
close-range detectors at this point to avoid the boundaries.

Home : robot drops the puck. This activates the exiting behavior.

Exiting : robot exits the home region and resumes search.

21



Figure 9: Diagram of the foraging arena (courtesy of D. Goldberg).

3.2.1 Interference

In the foraging scenario outlined above, robots act completely independently,
without communicating directly or through the environment. Interference is the
only interaction between the robots, and it is caused by competition for space
between spatially extended robots. When two robots find themselves within
sensing distance of one another, they will execute obstacle avoiding maneuvers
in order to reduce the risk of a potentially damaging collision. The robot stops,
turns in place by some angle and moves forward. This behavior takes time to
execute; therefore, avoidance increases the time it takes the robot to find pucks
and deliver them home. Clearly, a single robot working alone will not experience
interference from other robots. However, if a single robot fails, as is likely in
a dynamic, hostile environment, the collection task will not be completed. A
group of robots, on the other hand, is robust to an individual’s failure. Indeed,
many robots may fail but the performance of the group may be only moderately
affected. Many robots working in parallel may also speed up the collection task.
Of course, the larger the group, the greater the degree of interference — in the
extreme case of a crowded arena, robots will spend all their time avoiding other
robots and will not bring any pucks home.

Interference has long been recognized as a critical issue in multi-robot sys-
tems [8, 43]. Several approaches to minimize interference have been explored,
including communication [37] and cooperative strategies such as trail formation
[46] and bucket brigade [8, 35]. In some cases, the effectiveness of the strategy
to minimize interference will also depend on the group size [35]. Therefore, it
is important to quantitatively understand interference between robots and how
it relates to the group and task sizes before choosing alternatives to the default
strategy. For some tasks and a given controller, there may exist an optimal group
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size that maximizes the performance of the system [34, 8, 35]. Beyond this size
the adverse effects of interference become more important than the benefits of
increased robustness and parallelism, and it may become beneficial to choose
an alternate foraging strategy. We will study interference mathematically and
attempt to answer these questions.

3.2.2 Mathematical Analysis of Foraging

As mentioned above, interference is the result of competition between two or
more robots for the same resource, be it physical space, a puck both are trying
to pick up, energy, communications channel, etc. In the collection and foraging
tasks, competition for physical space, and the resulting avoidance of collisions
with other robots, is the most common source of interference. In order to under-
stand interference quantitatively, we will first examine the simplified foraging
task that includes searching and avoiding only. This task can be implemented
with a subset of robot behaviors listed in Section 3.2, namely searching, avoid-
ing, detecting a puck and grabbing it. This scenario may be realized experi-
mentally by allowing robots to pick up a puck and store it in a carrying pouch,
for instance. Then we will examine the full foraging scenario, where robots are
required to deliver collected pucks to a home location.

Above we described a methodology for constructing mathematical models of
collective behavior of multi-agent systems. The methodology applies to Markov
systems, in which each agent’s state at a future time depends only on its present
state and none of its past states. While this may seem as a restrictive criterion,
it is satisfied by many behavior-based and reactive robot systems. In the context
of robotics, state labels a set of related robot behaviors required to accomplish a
task. Thus, the search state may consist of the wandering and puck detecting
behaviors, or we may simply take each behavior to be a separate state. The
mathematical model consists of a series of coupled differential equations, one for
each state, each of which describes how the average number of agents in that
state changes in time. The equations may be solved analytically or numerically,
allowing us to quantitatively study the behavior of the multi-agent system.
Below we construct and solve a mathematical model of two foraging scenarios,
with an emphasis on analyzing the effects of interference.

Figure 10 shows the state diagram for foraging with homing. Initially the
robots are in the search state. When a searching robot encounters a puck, it
picks it up and moves toward the “home” region. Execution of the homing
behavior requires a period of time τh. At the end of this period, the robot
deposits the puck at home and resumes the search for more pucks. While a
robot is either searching or homing, it will encounter and try to avoid obstacles
for a time period τ after which it returns to its previous state. There are two
separate avoiding states to preclude robots from moving from the searching to
the homing state, or vice versa, through the common avoiding state.

Each state in the diagram corresponds to a dynamic variable. Let Ns(t),
Nh(t), Nav

s (t), Nav
h (t) be the number of searching, homing, avoiding while

searching and avoiding while homing robots at time t, with the total num-
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Figure 10: State diagram of a multi-robot foraging system with homing.

ber of robots, N0 = Ns(t) + Nh(t) + Nav
s (t) + Nav

h (t), a constant. We model
the environment by letting M(t) be the number of undelivered pucks at time t.
Also, let αr be the rate of detecting another robot and αp the rate of detecting
a puck. These parameters connect the model to the experiment, and they are
related to the size of the robot and the puck, robot’s detection radius and the
speed of the robot. It was shown experimentally [15] that interference is most
pronounced near the home region, because the density of robots is, on average,
greater there. Therefore, we expect the rate of encountering other robots to be
greater near the home region and introduce α′r, the rate of detecting another
robot while homing. The following equations describe the time evolution of the
dynamic variables4:

dNs(t)
dt

= −αpNs(t)[M(t)−Nh(t)−Nav
h (t)]

−αrNs(t)[Ns(t) + N0] +
1
τh

Nh(t) +
1
τ

Nav
s (t), (25)

dNh(t)
dt

= αpNs(t)[M(t)−Nh(t)−Nav
h (t)]

−α′rNh(t)[Nh(t) + N0] +
1
τ

Nav
h (t)− 1

τh
Nh(t), (26)

dNav
h (t)
dt

= α′rNh(t)[Nh(t) + N0]− 1
τ

Nav
h (t), (27)

dM(t)
dt

= − 1
τh

Nh(t). (28)

The first two terms in Eq. 25 account for a decrease in the number of search-
ing robots when robots find pucks and start homing, or when searching robots
encounter and attempt to avoid other robots. The number of available pucks
is just the number of pucks in the arena less the pucks held by homing robots.
When a searching robot encounters another searching robot, both start execut-
ing avoidance maneuvers, decreasing the number of searching robots by two;
while when a searching robot encounters a homing or either of the avoiding

4For simplicity, we do not include wall avoidance in the equations, but do take it into
account when fitting model to the data.
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robots, the number of searching robots decreases by one. The total decrease is,
therefore, proportional to 2Ns + Nh + Nav

s + Nav
h = Ns + N0. The last two

terms in the equation require more explanation. We assume that it takes on
average τh time for a robot to reach home after grabbing a puck. Then the
average number of robots that deliver pucks during a short time interval dt and
return to the searching state can be approximated as dtNh/τh. Likewise, in a
period of time dt, dtNav

s /τ robots leave the avoiding state and resume searching.
Interference will increase the homing time for each robot; therefore, in general,
homing time will be a function of N0, τ and τ0

h , the average homing time in the
absence of collisions with other robots. For low to moderate robot densities, it
is reasonable to assume the increase will be linear in the interference strength.
The effective homing time can, therefore, be modeled as

τh = τh
0[1 + α′rτN0] . (29)

The remaining equations have similar interpretations. We can take advan-
tage of the conservation of the total number of robots to compute Nav

h (t). Equa-
tions 25–28 are solved numerically under the conditions that initially, at t = 0,
there are M0 pucks and N0 searching robots.

Figure 11 shows the time evolution of the fraction of searching robots and
pucks for M0 = 20, N0 = 5, τ = 3 s, τ0

h = 16 s. The number of searching
robots (solid line) first quickly decreases as robots find pucks and carry them
home, but then it increases and saturates at some steady state value as the
number of undelivered pucks approaches zero (dashed line). The fraction of
searching robots in the steady state is inversely proportional to the avoiding
time parameter.
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Figure 11: Time evolution of the fraction of searching robots (solid line) and
undelivered pucks (dashed line) for τ = 3 s, αp = 0.02, αr = 0.04, and α′r = 0.08.

In order to compare the performance of different size groups, we define the
efficiency of the system as the inverse time required for the group to collect 80%
of the pucks (M(T80%)/M0 = 0.2 in Fig. 11(a)). Figure 12(a) shows efficiency
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of the group vs. group size for two different interference strengths, as measured
by τ . For both cases the efficiency of the group peaks for some group size,
indicating an optimal group size for the task. The efficiency is less for the
group with a higher interference strength, or larger avoiding time parameter
(solid line). Moreover, the greater the effect of interference, the smaller the
optimal group size. However, unlike the searching-and-avoiding task, in this
case efficiency has a maximum, indicating an optimal group size for the task.
Moreover, the greater the effect of interference (larger τ), the smaller the optimal
group size.

The final plot (Fig. 12(b)) shows that for this variant of the foraging task
interference causes the per-robot efficiency to monotonically decrease with group
size — adding a robot to the group decreases the performance of all robots,
though if the initial group size was less than the optimal size, adding a robot
will increase the overall efficiency of the group.
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Figure 12: (a) Efficiency of different size robot groups defined as the inverse of
the time it takes the group to collect 80% of the pucks in the arena for τ = 3 s
(solid line) and τ = 1 s (dashed line) and τ0

h = 16 s, αp = 0.02, αr = 0.04,
α′r = 0.08. (b) Efficiency per robot for different group sizes

3.2.3 Comparison with simulations

We validate the mathematical model by comparing its predictions to the results
of foraging simulations. We used Player/Stage to simulate the foraging task
with groups of robots. Player/Stage is a client/server-based scalable multi-robot
simulator developed at the USC Robotics Lab [14]. Player is a network-based
interface to the onboard sensors and actuators that constitute a robot, while
Stage supports virtual Player robots, sensing and moving in a two-dimensional
bitmapped world, that interact with simulated devices. Available sensor models
include sonar, laser rangefinder, pan-tilt-zoom camera with color “blob” detec-
tion and odometry.

The Stage world consists of a circular arena, with robots and pucks initially
randomly distributed around the arena. Each robot comes equipped with a
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ring of 16 sonars, evenly distributed around its perimeter, for the purpose of
obstacle avoidance, a color camera and a vision system to locate “colored” pucks,
a gripper for picking up the puck, and an odometry system to help robot find
“home” and move towards it. We simulated foraging task in groups of one to ten
robots, each given a task to collect (or collect and deliver home) 20 pucks. For
each group of robots, we averaged results of several, usually ten, simulations.
Simulation parameters are listed in Table 1.

Behavior structure The robots’ behavior structure closely replicates that
of the robots studied in experiments [15]. Behavior-based control governs the
actions of the simulated robots. The following behaviors were used:

0 Search for pucks: robot executes a random walk around the arena until
a puck is found with a camera. The puck is “painted” some bright color,
so that it can be seen with a color camera. The size of the puck in the
robot’s visual field must exceed some minimum detection area (in pixels),
before the robot recognizes it as a puck.

1 Collect pucks: under this behavior the robot will visually servo towards
the puck and collect it with a gripper. The gripper may fail to pick up
a puck with some small probability, consistent with failure under experi-
mental conditions due to unreliability of real grippers and sensor update
rates.

2 Go home: after the puck has been collected, the robot will odometrically
servo towards the home location and deposit the puck there. Home is a
semicircular region centered on a point at the edge of the arena.

3 Reverse homing: the robot moves away from home a specified distance
in a random direction.

4 Avoid collisions: If a close obstacle (another robot or arena wall) is
sensed at any time, the robot will turn away from the obstacle in a random
direction at 40 deg/s for a time specified by the avoid time parameter.

For purposes of analysis only, we split behavior 4 into two distinct behaviors:
4—avoiding collisions while behaviors 0, 1 and 3 are active, and 5—avoiding
collisions while homing, i.e., , when behavior 2 is active.

A note on calculating parameters In the mathematical models presented
below, we will use a set of parameters to connect the model to experiments and
simulations. The main parameters we will use are αp, αr, the rate at which
a robot encounters a puck and another robot respectively. In principle, these
parameters can be computed ab initio by taking into account the details of
the robots dimensions and sensing capabilities in the following way: as a robot
travels through the arena, it sweeps out some area during time interval dt and
will detect objects that fall in that area. This detection area is vwidt, where v is
robot’s speed, and wi is robot’s detection width for object of type i. This number
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Parameter Value Parameter Value
# of robots 1 - 10 avoid time 3 s
# of pucks 20 avoid dist 250 mm
robot radius 0.2 m robot speed 300 mm/s
puck radius 0.05 m min detect area 200 pixels
arena radius 3 m rev. homing time 10 s
home radius 0.75 m

Table 1: Simulation parameters

is the sum of the sizes of the robot and the object it is trying to detect, and
the detection distance associated with the sensing hardware it is using to detect
that object (eg. sonar, camera resolution, etc.). If the arena radius is R with Ni

objects of type i distributed uniformly around it, a robot will detect these objects
at a rate αi = vwiNi/πR2. This idealization is useful for roughly estimating
model parameters, but because it omits all the details of the experiment (such
as sensor errors and failures), it does not get them right. A better way is
to estimate them by fitting the model to experimental data, or by calibrating
the model by measuring these parameters experimentally or in simulation for
a single robot and using this value in the calculations. In order to estimate αr

by calibration, for instance, we have to run the experiment or simulation for
two robots in an empty arena, keeping track of the number of times each robot
attempts collision avoidance maneuvers. Likewise, to estimate αp, we have to
run the experiment or simulation for a single robot and some pucks scattered
around the arena, keeping track of the rate at which the robot picks them up.
Although we did not perform these calibrations explicitly, we can estimate the
parameters from the simulations data: αr = ncollisions/Ttotal = 0.06 (note
that this number includes wall collisions), and αp = T1/(20 · Ttotal) = 0.02.
These numbers are very close to the values we used, which we determined (by
eye) to give the best agreement between theory and simulations. Note that this
calibration can be done in simulation for a single robot for an environment of
arbitrary complexity, and the parameters can be used to study the performance
of teams of robots quantitatively in the same complex environment.

We ran foraging simulations for groups of one to ten robots and twenty
pucks randomly scattered around the arena. In the results presented below,
we split the avoiding behavior into two behaviors: 4—avoiding while searching,
collecting pucks and reverse homing, and 5—avoiding while the homing behavior
is active.

Analysis of Results Table 2 lists the average amount of time (in seconds)
each robot spent in the active behaviors during the time it took the group
collect the pucks and deliver them home. The last two columns list the average
number of times a robot attempted to avoid collisions, both while engaging in the
non-homing behaviors and while homing, during the time it took the group to
complete the task. Although in all cases all twenty pucks were collected, robots
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rbts 0 1 2 3 4 5 colls hcolls
1 307.64 156.90 265.11 225.84 73.69 21.99 23.7 7.1
2 118.68 81.07 170.02 101.89 46.70 45.08 15.1 13.5
3 94.80 61.48 143.22 61.54 57.65 71.78 17.8 22.1
4 50.98 39.71 131.51 34.06 55.84 99.85 15.9 29.5
5 53.14 29.59 126.84 24.27 69.52 150.66 18.9 41.3
6 67.05 28.89 139.68 20.32 94.26 224.40 22.0 53.3
7 137.90 58.11 111.32 23.69 130.21 184.20 37.0 43.1
8 80.94 32.94 133.35 17.06 123.05 265.56 30.1 62.3
9 74.62 31.36 153.58 15.96 130.10 299.18 33.7 77.7

Table 2: Average time (in seconds) each robot spends in the active behaviors
during the foraging task (0: search, 1: collect, 2: home, 3: reverse home, 4:
avoid, 5: avoid while homing) as a function of robot group size. The last
two columns give, respectively, the average number of avoidance maneuvers per
robot while searching/collecting/reverse homing and while homing.

were only able to deliver on average 19.14 ± 0.53 of them. This was caused by
excessive crowding near the home location. In the current implementation of
the simulator, robots see the already delivered pucks, and if there are no other
pucks left in the arena, the robots will all go home. Although reverse homing
acts to disperse robots, and eventually all puck should be delivered, we did not
run the simulations long enough for this to happen. The total time in the results
presented below is, therefore, the time the last of the pucks was delivered.

Figure 13(a) graphically displays the average amount of time each robot
spent in the active behaviors while foraging. Fig. 13(b) shows the fraction of
the total task time the robot was homing (behaviors 2 and 5 active). Note that
the rate of increase in the homing time per robot as a function of group size
appears to justify our assumption, Eq. 29, that the homing time increases with
the size of the group.

3.3 Dynamic Task Allocation

We studied adaptive task allocation in multi-robot systems [18, 25, 28]. This
scenario is based on the foraging task. Consider an arena with some number
of pucks scattered about it. The pucks can be of two distinct types, Red and
Green. Each robot can be tasked to collect pucks of a specific type, say Red.
When the robot’s foraging state is set to Red, it is searching and collecting Red
pucks. The robots can also recognize the foraging state of robots that are visible
to it. The robots have no a priori information about the shape of the arena,
the number of pucks left in it or the number of foraging robots. The goal of
adaptive task allocation is to design a robot controller that will allow robots to
dynamically adjust the division of labor, so that the number of robots searching
for Red and Green pucks will, over time, correctly reflect their prevalence. To
achieve this group behavior, each robot must be able to dynamically change its
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Figure 13: (a) Average time each robot spent in the active behaviors during the
time it took the group to deliver all pucks vs robot group size. (b) Percentage
of time each robot was homing as a function of group size.

foraging type.
The solution is for each robot to count the number of pucks of each type in

the environment as well as the number of robots in each foraging state [18]. It
does so by observing pucks and robots that are visible to it and adding these
observations to history (memory). At some time interval, the robot uses the
history array to estimate the fraction of pucks and robots of each type, and
changes its foraging state according to a transition function.

In order to experimentally demonstrate the dynamic task allocation mecha-
nism we made use of a physically-realistic simulation environment. Our simu-
lation trials were performed using Player and Gazebo simulation environments.
Player [14] is a server that connects robots, sensors, and control programs over
a network. Gazebo [21] simulates a set of Player devices in a 3-D physically-
realistic world with full dynamics. Together, the two represent a high-fidelity
simulation tool for individual robots and teams that has been validated on a
collection of real-robot robot experiments using Player control programs trans-
ferred directly to physical mobile robots. Figure 14 provides snapshots of the
simulation environment used. All experiments involved 20 robots foraging in a
400m2 arena.

The robots used in the experimental simulations are realistic models of the
ActivMedia Pioneer 2DX mobile robot. Each robot, approximately 30 cm in
diameter, is equipped with a differential drive, an odometry system using wheel
rotation encoders, and 180 degree forward-facing laser rangefinder used for ob-
stacle avoidance and as a fiducial detector/reader. Each puck is marked with
a fiducial that marks the puck type and each robot is equipped with a fiducial
that marks the active foraging state of the robot. Note that the fiducials do not
contain unique identities of the pucks or robots but only mark the type of the
puck or the puck type a given robot is engaged in foraging. Each robot is also
equipped with a 2-DOF gripper on the front, capable of picking up a single 8
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Figure 14: Snapshots from the simulation environment used. (left) An overhead
view of foraging arena and robots. (right) A closeup of robots and pucks.
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cm diameter puck at a time. There is no capability available for explicit, di-
rect communication between robots nor can pucks and other robots be uniquely
identified.

3.3.1 Mathematical Model of Dynamic Task Allocation

At a high level, coarse-grained description, each robot can be considered to
belong to either Green or Red foraging state during a sufficiently short time in-
terval. In reality, each state is composed of several robot actions and behaviors,
such as wandering the arena, detecting pucks, avoiding obstacles, etc. However,
since we want the model to capture how the fraction of robots in each foraging
state evolves in time, it is a sufficient level of abstraction to consider only these
states. If we find that additional levels of detail are required to explain robot
behaviors, we can elaborate the model by breaking each of the high level states
into its underlying components.

A robot uses information in its history to make a transition between states.
A robot makes a transition to Red foraging state according to a transition
function that depends on the difference between the estimated fraction of Red
robots and Red pucks; otherwise it makes a transition to the Green state.

Let NR(t) and NG(t) be the number of robots in Red and Green foraging
states respectively at time t, and MR(t) and MG(t) be the number of uncollected
Red and Green pucks in the arena. These dynamic variables correspond to
quantities that have been averaged over many experiments or simulations. The
following set of differential equations govern how the average numbers of robots
and pucks evolve in time. 5

dNR

dt
= αR(t)NG(t)− αG(t)NR(t)

dMR

dt
= βRMR(t)NR(t) + µR

Due to conservation of robots, NG = N − NR, where N is the total number
of robots (likewise, MG = N − MR). Quantities αR and αG govern the rate
at which robots switch to Red and Green states respectively. In an adaptive
system, these are time-dependent. Parameter βR is the rate at which robots
encounter Red pucks, while µR is the rate at which new Red pucks are deposited
in the arena (likewise for Green pucks). For simplicity, µR and µG are such that
the total number of pucks remains constant. Experimentally, this is realized by
the replacing a puck in a new random location after a robot picks it up.

It is more convenient to work with the average density, nR = NR/N , rather
than the number of robots. Also, we may safely ignore the equations for pucks,

5The differential equations describing the evolution of a dynamical system are usually
derived as a continuous limit of discrete time difference equation, for example: NR(t + 1) =
NR(t) − αG∆tNR(t) + αR∆tNG(t). The problem with this approach is that it models a
synchronous system, where all robots make decision at the same time. Although feasible, such
a model is not realistic; moreover, most choices of transition rates αR and αG lead to severe
oscillations in the dynamic variables. The differential equations model we are working with is
derived from the stochastic master equation, and is applicable to asynchronous systems.
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because these quantities do not enter the equations describing time evolution
of the number of robots. Dividing both sides of the equation by N , the total
number of robots, reduces it to:

dnR

dt
= αRnG(t)− αGnR(t) . (30)

Likewise, the densities of Red and Green pucks are mR = MR/M and mG =
MG/M .

Transition Rates Equation 30 is a special case of the Rate Eq.7 describing
an adaptive system, with αR and αG representing the history averaged tran-
sition rates 〈W 〉h. At regular time intervals, the robot looks at the history of
observations and estimates the density of Red pucks and robots in Red state. In
general, the transition probability should be a function of m̂R − n̂R, the differ-
ence between the estimated fractions of pucks and robots in a particular state
(degenerate to choice of R or G).

At the collective level of Equation 30, the macroscopic transition rates αR

and αG are in fact simply averaged microscopic transition probabilities:

αG = α〈f(n̂R − m̂R)〉P (n̂R,m̂R)

αR = α〈f(n̂G − m̂G)〉P (n̂G,m̂G) (31)

where α assures the proper time scale, 〈...〉P stands for averaging over the dis-
tribution P , and P (n̂, m̂) is the joint probability that a robot has observed the
fraction of robots and pucks of a corresponding color to be n̂ and m̂ respectively.
We note that for sufficiently large history lengths can approximate P (n̂, m̂) by
a sharply peaked distribution around its mean (〈n〉, 〈m〉). This suggests that
if the microscopic transition functions are smooth enough, then the effect of
averaging is to replace the estimated values of densities with their mean values
(in the case of the step function, the effect of averaging is to smear out the
discontinuity).

A steady state is one in which the densities of robots in Red or Green
states no longer change. Existence of the steady state is of prime interest to
the designer, because if a system has one, we can reliably predict its long term
behavior. In the adaptive task allocation problem, the desired steady state is
one in which the distribution of robots is equal to the distribution of pucks,
namely, nR,ss = mR and nG,ss = mG. In our previous work [25] we showed that
in order to achieve the desired steady state, the transition rates must have the
following functional form:

αR(m̂r, n̂r) = m̂rg(m̂r − n̂r), (32)
αG(m̂r, n̂r) = m̂gg(m̂g − n̂g) ≡ (1− m̂r)g(−m̂r + n̂r). (33)

Here g(z) is a continuous, monotonically increasing function of its argument
defined on an interval [−1, 1]. We consider the following forms for g(z):

• Power: g(z) = 100z/100
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• Stepwise linear: g(z) = zΘ(z).6

3.3.2 Comparison with Simulations

Figure 15 shows results of embodied simulations (solid lines) as well as solutions
to the stochastic version [28] of the model (dashed lines) for different values of
robot history length and forms of transition function (given by Eq. (32) and 33,
with g(z) linear or power function). Initially, the Red puck fraction (dotted line)
is 30%. It is changed abruptly at t = 500 s to 80% and then again at t = 2000 s
to 50%. Each solid line showing Red robot density has been averaged over
10 runs. We rescale the dimensionless time of the model by parameter 10,
corresponding ε = 0.1. The history length was the only adjustable parameter
used in solving the equations. The values of h used to compute the observed
fraction of Red robots were h = 2, 8, 16, corresponding to experimental history
lengths 10, 50, 100 respectively. For mr, the observed fraction of Red pucks,
we used their actual densities.

Solutions exhibit oscillations, although eventually oscillations decay and so-
lutions relax to their steady state values. In all cases, the steady state value is
the same as the fraction of red pucks in the arena. History-induced oscillations
are far more pronounced for the linear transition function (Figure 15(a)) than for
the power transition function (Figure 15(b)). For the power transition function,
these oscillations are present but become evident only for longer history lengths.
This behavior is probably caused by the differences between the values of tran-
sition functions near the steady state: while the value of the power transition
function remains small near the steady state, the value of the linear transition
function grows linearly with the distance from the steady state, thereby ampli-
fying any deviations from the steady state solution. The amplitude and period
of oscillations and the convergence rate of solutions to the steady state all de-
pend on history length, and it generally takes longer to reach the steady state
for longer histories. Another conclusion is that the linear transition function
converges to the desired distribution faster than the power function, at least for
moderate history lengths.

3.4 Target Localization with Microscopic Robots

Let us consider a D–dimensional volume with multiple targets that release cer-
tain chemical into the environment. The task of the microscopic swarm is to
aggregate at these targets in order to carry out some actions in the vicinity of
the targets. This capability is fundamental to many medical applications envi-
sioned for these microscopic robots. For example, the volume of fluid may be a
blood vessel that has been damaged. Robots are required to aggregate at the
injury site in order to assist in healing, forming clots, etc.

We consider a simple robot controller that on a high level can be thought to
consist of 3 discrete states described below:

6The step function Θ is defined as Θ(z) = 1 if z ≥ 0; otherwise, it is 0. The step function
guarantees that no transitions to Red state occur when mr < nr.
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Figure 15: Evolution of the fraction of Red robots for different history lengths
and transition functions, compared to predictions of the model
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State 1 (search): Do a biased random walk in the direction of the commu-
nicative signal concentration gradient.

State 2 (communicate): Move towards the chemical source following the con-
centration gradient of the target chemical and release communicative sig-
nal to other robots.

State 3 (disperse): Move away from the target in the direction opposite to
the target chemical’s concentration gradient for some specified time τ .

To fully specify a robot’s behavior, we also have to describe the transitions
between these states. The robots start out in State 1, the searching for targets
using random diffusive motion and following the gradient of the communicative
signal. Once the concentration of the target chemical at a certain point in space
is sufficiently high the robot at that point will switch to the State 2: it will start
moving towards regions of high concentration (using biased diffusion or gradient
following) while releasing a new chemical which acts as a communication signal
to attract other robots. With some probability (that can be fixed, or dependent
on the concentration of the robots at the source), robots in the State 2 will
switch to State 3, where they will disperse from the source, moving in the
direction opposite to the gradient. Finally, robots in the State 3 will switch to
the searching state with probability 1/τ . The last behavior ensures that robots
will not be stuck at local maxima of the chemical potential.

3.4.1 Mathematical Model of Target Localization Using Chemical
Fields

Let denote by n1(x), n2(x), n3(x) the fraction of robots in each state at point
x, with normalization condition

∫
dx

(
n1(x) + n2(x) + n3(x)

)
= 1.

Let ρ(x) and c(x) be the concentrations of the chemical released from the targets
and the communicative signal released by robots in State 2. We also denote by
Vρ

D and Vc
D the robots’ drift velocity in the concentration gradients of chemical

(released by the targets) and communicative signal (released by the robots),
respectively. Then the set of equations describing the evolution of the system
is as follows:

∂n1

∂t
= D1∇2n1 − v · ∇n1 −∇ · [Vc

Dn1]

− n1F (ρ) +
n3

τ
(34)

∂n2

∂t
= D2∇2n2 − v · ∇n2 −∇ · [Vρ

Dn2]

+ n1F (ρ)−G(n2, ρ, c)n2 (35)
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∂n3

∂t
= D3∇2n3 − v · ∇n3 +∇ · [Vρ

Dn3]

+ G(n2, ρ, c)n2 − n3

τ
(36)

where F (ρ) is the concentration–dependent transition rate from State 1 to State
2, G(n2; ρ; c) is the transition rate from State 2 to State 3, and 1/τ is the
probability that a robot in State 3 will switch to State 1.

Equations 34–36 have a simple intuitive interpretation. The first two terms
in Eq. 34 describe robots motion in State 1: diffusive searching and following
communicative signal, if present. The third term describes the drift in the flow.
The fourth term describes transitions to State 2 at the rate F (ρ), which depends
on the concentration of the target field. The last term describes transition of
robots from State 3 to State 1 after the robots have moved in the direction
opposite to the concentration gradient for a period of time τ . G(n2, ρ, c) is
the rate at which robots transition from State 2 to State 3, and it could in
principle depend on the local concentrations of the gradients, as well as the
number of agents present at the target site, for example, when presence of a
certain minimum number of robots is required for executing an action.

We have to complement these three equations with two more to account for
the evolution of chemicals ρ and c as follows:

∂ρ

∂t
= Dρ∇2ρ− v · ∇ρ +

M∑

i=1

Qiδ(x− xi)− γρρ (37)

∂c

∂t
= Dc∇2c− v · ∇c + qcn2 − γcc (38)

In Eq. 37 xi-s, i = 1, 2, ..M are the locations of the target sources, Qi is the
intensity of source i, and γρ is the decay rate of the target chemical. Similarly,
in Eq. 38 qc is the intensity of communication signal released by a robot in State
2, while γc is the decay rate of the signal.

Simplification: 1-dimension In this section we present results for a 1D
geometry and a single target scenario. We consider the case when the liquid
flow is very slow compared to other time scales so we can set v = 0. Also, since
there is only one target, we neglect the third (dispersing) behavior so that two
possible states are State 1 (“search”) and State 2 (“communicate”). The target
is located at x = 1 and serves as a point source for the chemical. We assume
that the diffusion of the chemical happens much faster compared to robots’
diffusion, and it quickly reaches its steady state profile. Hence, the equation for
evolution of ρ(x, t) can be solved separately, with a solution

ρ(x,∞) ≡ ρ(x) = Q0e
−
√

γρ/Dρ(1−x), 0 ≤ x ≤ 1. (39)

For the results presented here we used Q0 = 0.1, Dρ = 0.2 and γρ = 0.5.
All robots start at State 1 and are initially localized at x = 0. We assume

that a transition from State 1 to State 2 happens whenever a robot in State
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1 detects the target’s chemical above a certain threshold level ρ0, so that the
transition rate is F (ρ) = θ(ρ − ρ0), where θ(x) is the step function, θ(x) = 1
if x ≥ 0 and θ(x) = 0, x < 0. While in State 2, robots move in the chemical
gradient with a constant drift velocity VD and release a communicative signal
with intensity qc.

To proceed further, we need to specify the dependence of the drift velocity
in State 1 on the concentration of communicative signal c. Again, we assume
that once a robot detects communicative signal above certain threshold c0, it
propels itself through the fluid in the direction of the gradient with a constant
drift velocity VD. Then the dynamics of the system is described by the following
system of equations:

∂n1

∂t
= Dn

∂2n1

∂x2
− VDθ(c− c0)

∂n1

∂x
− F (ρ)n1 (40)

∂n2

∂t
= Dn

∂2n2

∂x2
− VD

∂n2

∂x
+ F (ρ)n1 (41)

∂c

∂t
= Dc

∂2c

∂x2
+ qcn2 − γcc (42)

Analysis of Results To study the effect of different design parameters on
aggregation behavior of the robots at the target, we solved the system Eq. 40–
42 numerically. We used the following parameters (in dimensionless units):
Dn = 0.01, Dc = 0.05, VD = 0.1, qc = 0.1, γc = 0.01. For the detection
thresholds we used c0 = 0.001 and ρ0 = 0.01, the later assuring that that
robots detect the chemical approximately midway in the interval [0, 1]. We used
reflective boundary conditions for n1 and n2, ∂n1/∂x|0,1 = ∂n2/∂x|0,1 = 0, and
absorbing boundary conditions for c, c(0) = c(1) = 0.

In Fig. 16 we plot the spatia–temporal evolution of robots’ densities with and
without communication. Clearly, the density peak at x = 1 is stronger for the
system with communicative behavior. This suggests that communication indeed
helps the robots to aggregate better. In addition, the aggregation process with
communication happens faster than without communication. This is also shown
in Fig. 17, where we plot the density of robots at x = 1 as a function of time
for three different cases: free diffusion7 (VD = 0), gradient following without
communication (VD 6= 0, qc = 0), and gradient following with communication
(VD, qc 6= 0). As it can be seen from Fig. 17, the systems with gradient following
and communicative behavior do demonstrate aggregative behavior, and it is
more pronounced for the system with communication. For instance, at time
t = 10 the robot density at x = 1 and with communication is more than 3 times
higher than in the non–communicating case.

One of the design objectives is to have robots aggregate at the target fast
enough, while at the same time not dissipating too much power due to the
propelling. To examine this tradeoff, let us consider the dependence of the

7Note that the absence of aggregation for free diffusing robots is due to reflective boundary
conditions at the source for n1 and n2. If one employs absorbing boundary conditions instead,
robots will demonstrate aggregative behavior even with free diffusion.
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aggregation time (defined as time needed for fraction n0 of robots to reach
the vicinity of the target which we define as the interval [0.95, 1],) on the drift
velocity VD. In Fig. 18 we plot aggregation time vs VD for three different
values of n0. One observes that if increasing the drift velocity from VD = 0,
the aggregation time decreases monotonically, with a steeper decline for larger
n0. However, it soon “saturates”, so that increasing VD further has very small
effect on the aggregation time. This is because for large values of VD/Dn, the
aggregation time is mainly dominated by time required for robots to diffuse and
detect chemical gradient, and increasing VD clearly does not have any effect on
this time. Hence, depending on the desired number of robots in the vicinity of
the target, as well as the required aggregation time, the best strategy for robots
might be to have a moderate drift velocity. Note that this type of analysis can
be used to assess the energy–efficiency of various behaviors since power required
to propel a robot through a fluid with velocity VD scales with VD.

4 Distributed Resource Allocation in the Grid

Grid computing is an emerging technology that enables users to share a large
number of computing resources distributed over a network. The dynamic, feder-
ating nature of Grid policy environments is dominated by virtual organizations
(VOs) which associate heterogeneous users and resource providers. Users have
resource-consuming activities, or jobs, that must be mapped to specific resource
providers through a resource allocation mechanism. The resource allocation
mechanism may choose among alternate mappings in order to optimize some
utility metric, within the bounds permitted by the VO policy environment.
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Figure 18: Aggregation time as a function of drift velocity, for three different
values of n0.

It is envisioned that deployment of Grid technology will grow from its cur-
rent modest scale to eventually overlay the global Web. It is not known how
large individual VOs will be, but it is reasonable to imagine resource sharing
among populations with tens of thousands of users and thousands of resources.
Hence, allocation mechanisms need to be highly scalable and robust to localized
failures in resources and communication paths. From the perspective of a sin-
gle VO, the dynamic policy environment can be viewed as the dynamic arrival
and departure of users and resources (occurring at a higher rate than users and
resources actually associate with and disassociate from the global Grid infras-
tructure). Some very large VOs may have an overlayed hierarchical structure,
but this structure does not necessarily map to underlying physical or geographic
hierarchy. Scalable Grid allocation mechanisms need to focus on the VO policy
environment rather than physical locations.

Although there has been considerable attention given to the resource allo-
cation problem in the Grid, very few researchers have addressed the problem
from the perspective of learning and adaptation. Meanwhile, the multi-agent
systems (MAS) and distributed AI communities have shown that groups of au-
tonomous learning agents can successfully solve different load balancing and
resource allocation problems [41, 12]. The goal of this paper is to apply multi-
agent learning techniques to the problem of resource allocation in the Grid. The
MAS approach is well suited for describing the Grid, because the distributed,
autonomous nature of agents (Grid users and resources) reflects the federated
nature of the Grid. Introducing learning allows the multi-agent system to adapt
to changes, such as the changing resource capacities, resource failure, or intro-
duction of new agents into the system. Furthermore, we believe that the MAS

41



approach will prove useful for policy design, because it can be used to study
the performance of a VO implementing a given resource allocation strategy to
verify that it does not lead to any unintended global consequences.

4.1 Grid Scheduling Issues

Due to decentralized Grid policies, portions of the Grid may use different allo-
cation strategies, and a centralized allocation manager is not feasible. However,
the Grid vision assumes that standard mechanisms will be deployed which can
be configured with appropriate localized policies. To a large degree, traditional
scheduling systems are distinguished by their strategy, as embodied in algo-
rithms and deployment parameters. The wide deployment of the GRAM [48]
job-submission interface has demonstrated that contemporary job scheduling
systems are architecturally consistent. Previous Grid architecture work leads us
to believe individual users, as well as brokering intermediaries, will apply alloca-
tion strategies to their own jobs in addition to the traditional resource providers
making allocation decisions for sets of jobs onto large (high-performance or ag-
gregate) resources. Hence, it is imperative to understand what the impact of
these decision will be on the efficiency of overall resource utilization in the sys-
tem. Understanding of the effects of different resource allocation mechanisms on
global system behavior will influence architectural decisions as well as the poli-
cies chosen within federated VOs. In this paper we examine a specific case when
the allocation decisions by individual users are based on reinforcement learning
and study the global performance of a VO implementing this mechanism.

A further challenge to Grid resource allocation lies in the lack of accurate
resource status information at the global scale. The allocation strategies em-
ployed by users and brokers have limited real-time environment knowledge at
their disposal. This suggests that feasible allocation mechanisms should not
depend strongly on the availability of current global knowledge. The multi-
agent learning approach studied here relies on minimal monitoring capabilities
to compare resources, only requiring that the agent obtain status signals for
job requests issued by the same agent. However, a simplifying assumption in
our simulations is that an existing discovery and policy-introspection system
permits the agents to scope their internal model of available resources to an
appropriate rough set.

4.2 Multi-Agent Reinforcement Learning

Reinforcement learning (RL) [44] is a powerful framework in which an agent,
for example, a Grid user, learns optimal actions through a trial and error explo-
ration of the environment and by receiving rewards for its actions. The reward
(utility) function defines what the good and bad actions are in different situa-
tions. The agent’s goal is to maximize the total reward it receives. For a single
agent in a stationary environment, the problem reduces to finding the optimal
policy. In the multi-agent setting, however, the environment is highly dynamic
because of the presence of other learning agents, and the usual conditions for
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convergence to an optimal policy do not necessarily hold. Nevertheless, vari-
ous generalizations of single agent learning algorithms have been successfully
applied to multi–agent settings.

We construct a multi-agent model of resource allocation for the Grid that is
simplified, yet maintains the main features of the Grid environment: heterogene-
ity of dynamic, large-scale populations of users and resources. In our system, a
large number of users submit jobs to one of the resources that are scheduled by
a local scheduler according to local policies. The users are modelled as rational,
selfish agents that try to maximize their utilities, (i.e., complete their jobs in
the shortest possible time). The agents have no prior knowledge about the re-
sources. Instead, they utilize a simple reinforcement learning scheme to estimate
the efficiency of different resources based on their past experience. We analyze
the global behavior of the system by numerical simulations, and compare it with
a baseline algorithm that makes use of a global knowledge of current resource
loads. Our results illustrate that reinforcement learning can be used to improve
the quality of resource allocation in a large scale heterogenous system.

4.3 The Model

In real Grid applications the problem of mapping resources to specific jobs can
be very complex, and may require co-allocation of different resources such as
specific amount of CPU hours, system memory, network bandwidth for data
transfer, etc. In this paper we neglect the need for co-allocation, and assume
that jobs generated by a user require only certain CPU-time so that they are
uniquely characterized by their duration.

4.3.1 Resources Providers

The local scheduling of computational tasks is a challenging problem in itself.
Usually, resources are characterized by the number and speed of the processors
available, system memory, as well as storage space. Multiple jobs can be run
simultaneously in the system, with the allocation of the CPUs to the tasks
determined by the local scheduling policies. There are many different scheduling
frameworks, such as FCFS (First Come First Serve), LJF (Long Job First), etc.
Some scheduling algorithms are adaptive: they chose the appropriate scheduling
strategy depending on the type of the jobs in the flow.

The scheduling decision for a contemporary batch system is too computa-
tionally expensive for us to perform thousands of times per time-step in our
agent simulations. In our model, we consider a simplified representation of the
resources and local schedulers. Namely, we assume that each resource is char-
acterized by its processing power P which is defined as a CPU time needed to
complete a job of a unit length. Within this framework, there is only a single
job running at the system at a given time (note that this approach is different
from one adopted in Ref[41] where the capacity of the resource was assumed to
be shared equally over all the jobs in the queue). For simplicity, we will assume
that all the local schedulers prioritize the jobs by their arrival time (FCFS).
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4.3.2 Users

In general, users can be thought of as either individual agents that generate jobs
and try to map resources for their execution, or as external resource brokers that
map jobs on behalf of many individual users. For the sake of concreteness, we
consider the first scenario, although the modelling approach developed in this
paper can apply to either case. For the case where user-to-broker relationships
are relatively static, i.e., based on VO structural policies, we would not expect
impact on the simulation scenarios other than that broker agents have higher
densities of job request. If the user-to-broker relationship is dynamic, i.e., based
on user observation of broker performance, the system behavior may be more
dynamic and explicit multi-tier study is required for those scenarios.

We model users as heterogenous selfish agents that try to maximize their
utilities. Clearly, one can define agent’s utilities in various ways. Often, the
agents are interested in minimizing the waiting time for the jobs they submit,
hence, they will prefer the resource with the minimal (resource performance-
normalized) queue length. Another user-centric measure is the response time
which is the time elapsed between the job generation and its completion. Clearly,
this metric depends not only on the length of the queue, but also on the actual
processing capacity of a resource: on the resources with larger capacities the
actual runtime of a job will be less. Other possible metrics might be based on
the accuracy of the completion time prediction.

In this paper, we used weighted contributions of two metrics: ρi = aiTw +
(1 − ai)Texc, where Tw is the queue wait time, and Texc is the job execution
time normalized to the duration of the job (i.e., inverse resource capacity). To
account for the heterogeneity, the weights ai were chosen randomly for each
agent. Note that using only the second contribution (ai = 0) would bias the
selection towards the resource with the highest capacity with no concern about
the queue length at that resource. For sufficiently high loads this would lead to
infinitely growing queue. To prevent this from happening we used lower bound
for ai at ai = 0.2

4.3.3 Resource Selection

To complete the definition of our model, we need to describe how the agents se-
lect resources. As the name “reinforcement learning” suggests, agents use their
past experience to choose between the resources. There are many different ways
to incorporate reinforcement learning. In this paper we use Q-learning. For each
possible action (i.e., selecting a specific resource) the agent keeps a Q-value that
indicates the efficiency of that resource in the past. For each new job, agents
chooses a resource according to the ε-greedy rule: with probability (1 − ε) it
choose the resource with the highest Q-value (ties are broken randomly), while
with (small) probability ε the agent chooses randomly and uniformly chooses
among the other resources. After each completed job, the agent gets a reinforce-
ment signal (containing the start-time and the end time for that job), calculates
the metric Ei, and translates it into a reward r for resource i that we have
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chosen as follows: r = sign(〈ρi〉 − ρi), where 〈ρi〉 is the utility averaged over
all the submitted jobs. Finally, the agent updates the Q values according to
Qi,t+1 ← Qi,t + α(r −Qi,t), where α is the learning rate.

To compare the performance of the RL algorithm we also studied two other
resource selection rules:

Random Selection: Agents are choose randomly with uniform probability
between the resources. As we will see below, the performance of this algorithm
is very limited in the case of widely heterogenous resource capacities that we
are interested in.

Least loaded: In this model agents choose the least loaded resource to submit
a job. Note that this selection rule assumes that agents have an up to date
information about the current utilization level of the resources. This can be
done by keeping a global registry with the load-level of each resource. To
escape crowding effects, where many agents choose the least loaded resource
simultaneously, the resource load has to be modified immediately after a job
is submitted. This would lead to a near ideal schedule for our scenario. Note,
however, that in real environments the information is usually not up to date.
We have studied the impact of crowding effect by introducing a parameter p so
that once a job is submitted to a resource, the load of that resource is updated
only with probability p (for the results presented in this paper we have used
p = 1/4). This parameter affects the apparent temporal coherence of the global
knowledge shared by the agents.

4.4 Experimental Results

In this section we present the results of simulations of our model for N = 1000
agents and and R = 250 resources. We neglect the network topology and
the communication costs associated with it. Instead, we assume that each of
the users can submit jobs to any of the resources. At each time step, agents
independently generate jobs at rate P = [0.1, 0.2]. The length of the jobs are
taken randomly from the uniform distribution in the interval [Jmin, Jmax]. To
take into account the wide dispersion in the job sizes in real Grid applications,
we chose Jmin = 10 and Jmax = 1000 = 100Jmin. Note that such a wide
dispersion in the job sizes (as well as resource capacities) is typical for the
Grid. The capacities of the resources were also chosen uniformly in the interval
[Cmin, Cmax].

Let us first consider a situation when the dispersion in the resource capacities
Cmax − Cmin is relatively small, Cmax = 350, Cmin = 650. To characterize the
system performance, we define the load of a resource as the total queue length
divided by the resources capacity. In Fig. 19 we plot the load in the system
averaged over the resources as a function of time. Note that the non–zero
average load for the Least Loaded algorithm is due to probabilistic failure to
update the load levels after each submission. For small value of job arrival
rate (the top figure) the random selection algorithm performs better than both
Least Loaded and RL—if the job load is sufficiently low, choosing resources
randomly guarantees load balancing. The situation changes drastically as one
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Figure 19: Average load vs time for job arrival rates a)P=0.15 and b)P=0.2

increase the job arrival rate, (or decreases Cmin). In this case, the performance
of the Random Selection algorithm is limited due to “bottlenecks”. Because the
randomizing agents choose the resources without considering their capacities,
for sufficiently high loads the queues on the resources with small capacities will
grow indefinitely. This is observed in 19b).

Clearly, the RL algorithm allows the agents to distribute jobs among the re-
sources much more efficiently than the Random selection rule. More remarkably,
we find out that for some parameter settings it performs quite well compared
to the Least Loaded algorithm, as it is illustrated in Fig 20 where we plot the
time evolution of the average job wait time. After a short transient (learning)
time the average wait for the RL selection rule falls well below wait time for
the Least Loaded. Thus, although the agents do not exchange information nor
have any global knowledge on the current load levels in the system, the learning
mechanism allows them to efficiently distribute jobs among the resources.

4.4.1 Effect of dynamic agent population

As we mentioned in the Introduction, it is envisioned that the users associated
with a VO might join and leave the system dynamically. Hence, it is important
to understand what is the effect of this dynamics on the resource allocation
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Figure 20: Average wait time for Least Loaded and RL selection rules (P = 0.15)
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mechanism. We addresses this in our simulations by assuming that at each time
step each agent has a non-zero probability PL of leaving the system. For each
agent that leaves, we add a new agent, that has to start the learning procedure
“from scratch.” As one should expect, for small values of the leaving probability
PL the impact of the dynamics is negligible. In other words, introducing small
number of new agents into the system does not affect the behavior of the others
significantly. If, on the other hand, one increases the leaving probability PL,
the situation becomes different: The intrusion of large number of unlearned,
and hence exploring, agents, deteriorates the system performance as illustrated
in Figure 21, where the average load vs time is plotted for different values of
leaving probability PL.
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4.4.2 Significance of Results

The benefit we have observed for the RL algorithm over random selection already
suggests an improvement over existing Grid metascheduling strategies, many of
which, while performing substantial planning of job sequences etc., make ran-
dom or otherwise uniform distribution decisions to spread work among several
(or many) large-scale resources [3]. Even when metaschedulers attempt to use
environmental information, such as load levels, our results suggest that the
RL algorithm can provide better adaptive behavior because each metascheduler
would learn from the environments responses to its own queries. Divergence of
the agent’s experience from the resource characteristics published through the
monitoring system will change the agent’s job distribution. Such divergence
can happen due to monitoring system errors, or more likely due to differences
in access privilege or priority between the reporting entities in the monitoring
system and the metascheduling agent.

A factor in real Grid resource allocation is the latency and limited quality
of job status information. Our simulations suggest that the RL algorithm can
cope with stochastic reward information, and it might not matter significantly
whether the noise in the reward information is due to variance in actual resource
behavior or in reporting. However, statistically biased reporting information
from resource providers could lead to poor agent behavior. The delay in reward
information, e.g., from learning after job completion instead of at job submission
time, will length the training period. With bursty job arrival, an agent may
perform worse during initial training or during adaptation than if it is able to
learn from reward information immediately while processing a cluster of jobs in
a short period.

5 Collective Mind Initiative

The overall goal of the Collective Mind Initiative is to show that

• Improved Equipment Performance,

• Weapons Effectiveness, and

• Mission Critical Readiness

can come from amassing and sharing collective knowledge derived from the
community of equipment via on-board information sharing that embodies the
functions and utility of agents. The knowledge found from a fleet of equipment
is to be used to improve the overall performance of the fleet, each single piece
of equipment in the fleet and all equipment with similar components.

Example 1 Commercial: examination of the logistics records from the col-
lection of all Honda Accord automobiles shows that it is wise to change the
engine-timing belt before 70,000 miles or risk failure soon thereafter.

Example 2 Military: examination of many failures of a military piece of
equipment showed that a specific type of high tensile bolt was made from non-
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MilSpec poor quality metal. All uses of the bolt in all equipment types were
inspected for compliance and replacement if required.

Finding solutions to these examples is at present, human intensive. Our
goal is to make it automatic by the development of new Artificial Intelligence
Information Intensive techniques that fit the new DOD concepts of Net-Centric
Warfare and apply over all of the Services.

We proposed to address the opportunity by the development of an innova-
tive technology: the Collective Mind with Collective Learning and Collective
Reasoning forming Collective Intelligence.

The approaches we propose to address these challenges of Collective Mind
capitalize upon the existing data in the form of designed engineering models and
existing field data; exploit the structure of platforms (equipment) as a network of
interacting subsystems; and exploit the heterogeneous experience of the various
platforms (equipment). The knowledge produced as a result of these efforts will
then be used to improve maintenance procedures in general, provide focused help
to the individual maintainer and will be integrated into sophisticated reasoning
systems for planning and scheduling - and for determining mission modifications
that could be proposed to improve mission operations.

The technical challenges are as follows:

1. Diagnosis and prognosis of individual components, subsystems and entire
platforms;

2. Planning and scheduling of logistics, including maintenance, and mission
activities to ensure mission success, and

3. Proposing changes in mission operations to ensure mission success. The
key technical areas proposed for the work here are:

• Reasoning: using substantial, appropriately represented knowledge,

• Learning: from experience so that the system performance improves

• Explanation of actions and recommendations, and

• Robust Response to surprise and contingencies.

A collective of units can be made from data from many units in the field.
Structural and statistically based algorithms would match successful and failed
performance to maintenance procedures, equipment status and environmental
conditions to identify or learn better ways to maintain equipment.

The scientific issues underlying this work are individualization and emer-
gent behavior, model compositionality especially the composing of multimodal
learning systems, with different strengths in different conditions.

We ran several workshops on the Collective Minds as well as holding many
smaller meetings. The first workshop was attended by potential users, military
and industrial, and the second and third workshops were attended mainly by
researchers from academia and Industry.

The Research Agenda reflect both our opinions as well as those of the many
workshop attendees.
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5.1 Background

Our definition of the Collective Mind has three parts, Cognition, Action and
Learning. Collective Cognition is the ”sum” of all knowledge obtained from the
collection of all assets in a group and/or similar groups. Collective-based Action
comes from deductions from the Collective Mind resulting in a set of feasible
actions that encompass group knowledge. Collective Learning is the ability to
learn from the collective, mind and actions. This is especially valuable as the
individual assets operate in real time in their individual missions.

The application focus of our work on Collective Intelligence is on Mission
Critical Readiness of Military Equipment. The details of that domain moti-
vate the working definitions of Collective Mind and serve to give metrics on its
efficacy.

We postulate a scenario in which a mission is proposed for the asset; assume
that the asset has not been asked to undertake the mission in the past, or if it
has, the proposed mission may be in a new environment.

The technical challenge is to improve the mission readiness by ensuring that
each and every asset (component, equipment, platform, etc.) employed in the
mission is capable of performing the operations specified to achieve the objec-
tives of the mission. This involves not only the selection of assets, but also their
preparation for the mission and even their maintenance during operations. The
first step is to search and see if there are any assets configured like that needed
for the mission that have performed similar mission in a similar environment
- and have a similar history. Here the collective is the set of all assets that
are the same as the set needed for the mission. We therefore need for every
asset a ”model” that predicts its performance based upon the condition of its
equipment, its past performance and the conditions expected during the ensu-
ing mission. More specifically, we need the vector of performance variables that
are some function of the attributes that represent the condition of the asset -
perhaps in terms of its components. The condition of the equipment is in turn
a function of its operation in the past (the missions it has performed including
the environment it has performed in) and its maintenance history.

The Collective Mind for this case is the knowledge from the collective set
of all assets as well as the ability to learn from the collective as these assets
continue to operate in the missions.

If we consider each asset (component, equipment, platform) as an agent with
its own reasoning and learning capability, the Collective Mind is a system of
interrelated actions by these agents. The actions are purposeful and the agents
are attentive to the actions of other agents. The agents construct their actions,
understand that the system consists of connected action by themselves and
others, and interrelate their actions within the system. In order to accomplish
the foregoing, actions by the agents must be contributions to the goals of the
system; there must be a common representation for each agent to understand the
actions of others and the results of those actions; and the system must recognize
the need for an agent to subordinate its actions to those of the system. In this
conceptualization, the actions are really the mental processes of the collective
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mind. The Collective Mind is in how the agents contribute and represent all
actions, and produce improved group behavior

These actions can be categorized as collective learning and collective reason-
ing (recognizing that in some cases the distinction may b somewhat arbitrary).

A question is: . . . does the Collective achieve the desired behavior?
Formally,
a) Let fi(xi) be the function (or task) to be optimized by an individual agent

Ai, where i = 0, . . . , N and N is the number of individuals in the collective, and
xi is the parameter of Ai.

b) Let G(f1(x1), f2(x2), . . . , fi(xi), . . . , fN (xN )) be the function that must
be optimized by the entire collective.

We are interested in the characteristics of G. Furthermore, when G is given,
can the system automatically determine fi(xi) for the individuals? In the sim-
plest case, when G is an additive (sum) function, then every individual should
simply maximize fi(xi) so that G will be maximized. However, in real world
applications, G can be much more complex, and some individuals must ”sac-
rifice” themselves (i.e., minimize their own fi(xi)) in order to maximize the
value of G in the collective situations. Ideally, given a new application G, the
”collective” should be able to automatically generate fi(xi) for each individ-
ual. An example is the voting game, where individuals vote ”yes” and ”no”,
but their reward depends on the percentage of yes votes of the people of whole
population. This global reward function is collected by a ”Referee” and is not
known by the individuals [45]. Similarly, if we make certain assumptions on the
relationship between individuals (such as they act as constraints), then there
are some studies that can perform distributed optimization when G is given and
fixed [33].

Collective Learning In general, the collective learns by:

• Collective experience - relates knowledge gained from new experience to
prior learning;

• Collective example - relate to events or objects via problem solving simu-
lations; and

• Collective discovery, i.e., improvisation Also, learning takes place in (at
least) two dimensions - time and space.

Machine learning is traditionally for single agents. Recently, there is the
new trend of multi-agent learning. However, the topic of ”collective mind”
has several unique features that demand a new paradigm for machine learning
that we call ”Collective Learning”. The new learning problems include: ” How
do individuals learn the structure (some call it topology) of the organization
dynamically? Existing approaches such as hidden Markov models or Bayesian
Networks are mostly about learning parameters and they avoid this structural
learning problem because it is too hard. ” How do individual agents learn a
model of the environment and the same time a model of other individuals?
Traditionally, these two modeling activities are fixed together, and most people
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claim one would subsume the other. In the Collective Mind, these two may be
related, but they definitely have different characteristics and require different
learning techniques.

The Collective Mind envisions integrating domain knowledge from many
sources with real-time data feeds from deployed platforms to support rapid
problems identification and response. Sources of domain knowledge include the
following:

• The ”anatomy” of each platform (What are the components and subsys-
tems? How are they physically located? How are they connected?),

• The ”physiology” of each platform (How does each subcomponent of the
platform contribute to the overall functioning of the platform? Typically,
this is divided into separate models for each subsystem.)

• The maintenance history of each component (When manufactured. His-
tory of maintenance actions. Results of previous tests.)

• The deployment history of each platform (What missions has it partic-
ipated in? Where? Under what environmental condition? How long
mothballed? Where?)

The real-time data feeds include the following:

• On-board sensors on each vehicle

• Maintenance events

• Debrief from crew after each mission (or each shift?)

Collective learning involves a distributed set of learning platforms that must
learn continually but that only occasionally have opportunities to communicate
with each other. Under such conditions, it is not feasible to pool all of the sensor
readings from all of the platforms in real-time. Instead, each platform must
form its own hypotheses and then, when the opportunity arises, communicate
its hypotheses to the other platforms (along with the key supporting data and
observations).

Existing learning methods do not have good ways of making use of domain
knowledge. Existing learning methods are designed for off-line batch training
(e.g., constructing an optical character recognizer by training on a database
of 1 million labeled hand-written characters). Existing learning methods are
designed for learning from a single combined database, rather than by combining
hypotheses from many other learning agents.

Making Learning Knowledge-Guided: Domain knowledge can guide learning
in two ways. First, it can suggest the space of hypotheses to consider. For exam-
ple, a learning system that only had sensor readings must learn to relate overall
platform failure directly to the history of sensor readings. It might explain a
platform failure in terms of the accumulation of several episodes of operation in
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high ambient temperatures. But a knowledge-based learning system could ex-
plain the platform failure in terms of failure of the engine caused by the added
load placed on the engine by the air conditioning system resulting from the
crew needing more air conditioning to operate successfully in high ambient tem-
peratures. A knowledge-based learner can relate sensor readings to individual
subsystems and then explain overall platform failure in terms of the failure of
certain subsystems.

Second, domain knowledge can constrain the space of possible explanations.
If we consider the space of all mappings from raw sensor readings to platform
failures, this is an immense space. Rapid learning from small amounts of data
requires that the space of mappings be highly constrained. Domain knowledge
can constrain the space by recasting it in terms of components and subsystems
rather than just raw sensor readings. It can also suggest the direction of possible
effects. For example, operating an engine at higher RPMs tends to reduce engine
life; operating an engine at extreme temperatures tends to reduce engine life, etc.
Without this kind of background knowledge, a learning system would need to
consider (and reject) the hypothesis that lower RPMs and normal temperatures
reduce engine life!

Existing research in Inductive Logic Programming and Probabilistic Rela-
tional Models shows how to use domain knowledge to define the space of possible
hypotheses. However, these methods have not been scaled up to large problems
or to problems involving very noisy, sensor-based data.

There is only a small amount of research showing how domain knowledge can
constrain the space of possible hypotheses considered by the learning system.
This research is largely ad hoc. Substantial work is needed to develop good
modeling languages for describing the domain knowledge and good ways of
converting the domain knowledge into constraints on the hypothesis space.

Making Learning Real-Time: There are two challenges to creating real-time
learning systems. The first challenge is to design online versions of existing
learning algorithms. There is a lot of existing work on online (real-time) algo-
rithms for training neural networks, linear threshold units, and decision trees.
Most batch search and optimization algorithms can be converted into online al-
gorithms in principle. The challenge is to find practical, efficient online versions
of these methods.

The second challenge is to make those online algorithms adaptive, by which
we mean that they can deal with changing worlds in which new kinds of failures
occur, new kinds of sensors become available, old sensors cease to be available,
and the probabilities of different faults change because of changes in missions
and the ways that platforms are being used in missions.

Existing research in expert-weighting and portfolio algorithms have been
shown (theoretically) to adapt rapidly to changes in the phenomena being pre-
dicted [47]. A DARPA program could transition this work into real-world sys-
tems and show how it can be applied in noisy real-time settings.

Making Learning Collective: The challenge for collective learning is for mul-
tiple learning agents to pool their learned knowledge without pooling all of their
sensor data. Existing research suggests the following directions to pursue:
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• First, research on ensemble learning methods learns to take a weighted
vote of the hypotheses learned by each individual learning agent [22]. This
has been applied, for example, to solve very large learning problems by ran-
domly dividing the available data into subsets, assigning a separate agent
to learn on each subset, and then voting the resulting learned hypothe-
ses. This has been shown to give results comparable to those obtained by
training a single system on the entire data set [38].

• Second, research in support vector machines (and related algorithms)
shows how to identify the key data points that support an hypotheses
[6]. These points are known as the ”support vectors”, and they are suf-
ficient to reconstruct the hypothesis perfectly. An interesting direction
would be for the multiple agents to exchange their support vectors and
then use all of these support vectors in learning.

5.2 Collective Reasoning (includes planning and schedul-
ing)

In collective mind, since knowledge and information are distributed among many
individuals, it makes reasoning and planning/scheduling much harder. One
unique advantage this will offer is that damage to any individuals will not para-
lyze the entire organization. The individuals should know where to ask for and
deliver information, know how to recover information when some nodes die,
know what to communicate among themselves in order to make a good plan,
and know how to evaluate a new plan/schedule collectively.

Another aspect of Collective Reasoning is how to divide a global task into
a ”workflow” of smaller tasks so that each small task can be performed by
some individuals, and when those small tasks are finished, the results should be
assembled in such a way that a global solution can be readily obtained. This is
the divide and conquer problem and typically the ”Task Allocation” problem.

An important opportunity for research is to integrate learned knowledge into
sophisticated reasoning systems. The Collective Mind requires this, because
the results of individual component and vehicle prognoses must be used by the
mission + maintenance scheduler to decide when and how to schedule platforms
for missions and for maintenance. Uncertainty in prognoses must be translated
into uncertainty in mission success and/or the need for maintenance.

• There are at least two approaches to incorporating uncertain predictions
into complex reasoning:

• propagation of uncertainty and ensembles.

Propagation of uncertainty computes a posterior distribution over random
variables of interest (e.g., mission success, expected equipment losses) based on
the distributions of other random variables (i.e., the prognostic predictions).

Ensemble methods construct a set of non-stochastic ”alternative scenarios”
or alternative models and compute schedules based on each scenario. The re-
sulting schedules are then analyzed to identify consensus scheduling decisions
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and/or ways of modifying the schedule so that it will succeed under all scenarios.
Ensemble methods have been very popular in classification learning, but there
has been little research on ensembles for reasoning.

Another research opportunity is to determine and propose modifications to
missions both in planning and scheduling of operations. The space of potential
mission modifications is huge, so some way is needed to constrain the Collec-
tive Mind from proposing ridiculous modifications. This can be viewed as the
problem of reasoning about the ”utility function” of the commander. We can
imagine that several tradeoffs are operating in a battle theater: (a) mission
goals, (b) safety of troops, (c) reliability of supply, (d) loss of equipment, (d)
speed. There has been recent work on inferring multi-attribute utility functions
by observing the choices made by humans, (e.g., in auctions or in video games).
We would also like to develop systems that are instructable, so that commanding
officer can say ”Timing is critical; don’t propose any modifications that delay
the mission.” This learning should begin during exercises and continue into the
battlefield. Once the utility function has been acquired, the scheduler can gener-
ate and evaluate alternative mission modifications and choose the modifications
and choose the modification that has the highest utility.

5.3 Collective Behavior

A collective should yield an emergent whole that is qualitatively more than the
sum of the parts. Its functionality ought not to be something that one of the
parts could do by itself if only it were bigger. Any such system faces a dual
challenge.

• How does the behavior of the individual elements yield the emergent be-
havior of the whole? (Example from our case: how does local awareness
of a platform’s own state roll up into a global assessment if the state of
readiness of the fleet?

• How can the global functionality be applied to the problem, given that
the individual elements are the only sensors and effectors that the system
has? (Example: if the system learns that alternators with exposure to
high temperature and high humidity have unusually high failure rates,
how does that knowledge affect local decisions at the company platoon
level?

This issue is at the heart of the need for compositionality, which may be the
critical issue at the heart of anything. What makes compositionality difficult is
that both individual behaviors of the piece and their interactions are typically
nonlinear. If one adopts a centralized approach, these can be addressed rela-
tively simply, but such a solution does not scale well and is not robust against
attack or acts of God.

Potential ways for addressing these issues draw heavily on simulation and
concepts from statistical mechanics as a body of knowledge about how global
properties emerge from locally interacting entities.
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These approaches are also relevant when we assume that the computational
and communications environment may be constrained - just as in the field.

The major challenge is to determine how the required learning and reasoning
functions can be achieved under such constraints, providing graceful degradation
(rather than catastrophic failure) as communications and computational power
are incrementally degraded. Conventional learning and reasoning algorithms
do not decompose neatly onto such an architecture, or at least they have not
been shown to be decomposable this way. Swarming approaches, by contrast
are ideally suited to such architectures, because of three of their characteristics:

• The individual processes are small compared with the overall system, so
they can easily run on cycles scavenged from other applications on em-
bedded processors;

• Each process interacts only with others that are co-located with it in some
topology. The best fit comes when this topology is isomorphic with the
physical distribution of the platforms, but even if it is not, it does provide
a way to limit the interactions among processes and thus function in an
environment with bounded communications.

• Their emergent dynamics are robust to incremental changes. They tend to
degrade gracefully over wide parameter ranges. (There are, naturally, lim-
its beyond which they cannot function, and characterizing these is critical
to a program in this area, but they offer a much broader range of oper-
ability than do conventional mechanisms.)

Integration of Monitoring/Diagnosis with Scheduling and Planning: The
modular vision of ”first we assess the state of our platforms, then we plan the
mission” is unrealistic in a highly dynamic environment in which platform state
and mission constraints change constantly. We need new mechanisms that can
incrementally learn and plan in tandem. Such mechanisms must have the ”any-
time” characteristic: they quickly produce an approximate answer, and can give
more detail if more time and resources are available to them. In the context of
closely coupled learning and planning, often an early approximation to one half
of the problem (say, learning) can help constrain the space that the planning
function must search, and the planner’s early results can in turn help focus the
learner, leading to more rapid convergence than would be possible in a sequential
system.

Swarming algorithms are typically any-time, and have been demonstrated
in both classification and planning tasks.

Environmental Integration: The issue here is discriminating between two
possible interpretations of an aberrant sensor reading: system malfunction (the
system is out of specs) vs. environmental or historical stress (the environment
is out of spec). No matter how complete our models of our systems may be,
complex electromechanical systems will always have emergent properties that
surprise us. We need ways to use other platforms that share the same situation
as an implicit engineering model to distinguish (local) equipment failure from
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(shared) environmental stress. More generally, we need to compare behaviors
across platforms that may not be co-situated right now, but that are near to
one another in the space of shared histories.

This challenge relies directly on the notion of proximity among platforms in
some topology (physical space-time; history space), and so lends itself naturally
to swarming methods, one of whose hallmarks is locality of interaction.

5.4 Improvisation

”Making do” and ”taking the initiative” are desirable actions of military per-
sonnel, tasked with supporting battlefield operations.

Improvisation involves reworking knowledge in time to meet the require-
ments of a given situation. Reworking refers to revising or abandoning planned-
for procedures. Time is central to improvisation since the improviser’s decision
cannot be undone once it is done. Finally, meeting requirements means ac-
counting for constraints in the decision setting while acting to meet the goals
of the response. The question of when to improvise involves recognizing when
planned-for procedures cannot or should not be applied. In problem-solving
terms, it may therefore be conceptualized as a categorization problem, in which
the ability of likelihood of a decision maker to categorize correctly is influenced
by a number of factors, such as penalties associated with making an incorrect
choice. The question of how to improvise involves developing and deploying
new procedures in real-time. It may be conceptualized as a search and assem-
bly problem, influenced by factors such as time available for planning, risk in
the environment and the results of prior decisions.

Collective improvisation is an approach to supporting battlefield personnel
when the need to develop and deploy new procedures arises. In collective im-
provisation, past knowledge - which may be contained in databases such as
ontologies and may be operated upon by decision logics - is re-examined and
reorganized in order to meet new requirements. Results of these improvisations
are then fed back into the system, thereby completing the learning loop.

Related prior work lays the foundation for collective improvisation. Hayes-
Roth and colleagues have developed a series of blackboard-style architectures
to support and in some cases model improvisation. Models built upon these
architectures are enabled with dynamic control, thereby allowing execution of
real-time control plans which specify a sequence of tasks, parameter values and
constraints. In order to support improvisation and capture the learning in-
volved, the blackboard or any architecture must have access to and understand-
ing of models of the physical systems of the platforms involved in battlefield
operations.

5.5 Collective Mind Experiment and Prototype

Collective Mind may be defined as using collective learning and collective rea-
soning to produce a desired outcome, and thus to use Collective Knowledge of
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the fleet to improve any and all individual platforms.The Collective Mind con-
cept was studied, as described above, by several Workshop Groups comprised
of experts from both the Academic and Military communities. The technical
opportunities excited the Academicians and the practical opportunities excited
the Military. It became clear that a proof of concept experiment, if it could
be performed within the Study, would serve to crystallize the thinking of both
Communities and show immediate tangible results to inspire both. A good
experiment necessarily requires a good corpus of experimental data. While mil-
itary data exists, the best and most accessible corpus of data was found in
General Electric Company in their Locomotive Division’s contract Maintenance
Operation. GE Locomotives are sophisticated electromechanical machines that
contain big diesel engines, have to operate in all climates, all weathers and
terrains and move heavy equipment. They can be considered therefore as rea-
sonable surrogates to military vehicles such as the Stryker and also, in a sense,
to big armored tanks. GE locomotives are on-line via their on-board satellite
dishes. The captured data is processed in real time to satisfy the needs of GE’s
railroad customers who require financial assurances that freight will move from
A to B reliably and on-time or else a fee has to be paid in compensation. This
problem is similar to the Military field commander who needs to move equip-
ment from A to B reliably and on time for military reasons and with a different,
even more severe pay-off function.

We selected Improving Mission Reliability, a component of Mission Opera-
tions, as the objective for the ”Proof of Concept” experiment. Mission reliability
was broadly defined as - given a mission of duration X-days, what percentage of
units assigned to that mission are able to complete the mission without a criti-
cal failure. The motivation for high mission reliability in both commercial and
DOD environments is two-fold. First, it gets the mission performed; second, it
makes mission planning and execution more predictable and effective; third, it
reduces the logistics footprint required to support a certain level of readiness.
In the military domain, this may mean picking the best 5 vehicles to conduct
a reconnaissance mission in swampy terrain; in the commercial sector, it may
imply selecting the best 5 locomotives to deliver time-critical shipments from
coast to cost. This problem is accentuated in the case of new mission types or
new equipment platforms when insufficient data exists on how the equipment
will behave in that environment.

The paradigm for new platforms focuses on the continuum and tension be-
tween engineering test cell projections made before deployment, and retrospec-
tive statistical measurement of performance found or measured after a substan-
tial number of missions. During this ’gap’ - the first wave of missions on new
platforms, both the commander and the maintainer are selecting and repair-
ing units ’blindly’ with respect to their equipment’s expected behavior. The
collective mind approach tries to compensate for the scarcity of operational ex-
perience on any single unit by learning from ground performance of ’peer’ units
with current or past similar deployment experience.
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5.5.1 The Experiments

The Study funded an experiment (in reality, a series of experiments) conducted
by GE Global Research that applied peer-based learning to predict time-to-
failure performance in locomotives. GE as part of their normal business keeps
an extensive and perhaps unique data set of field failures and repair actions from
customers locomotives. The data was obtained from GE locomotives owned
and operated by GR Rail and Union Pacific. The data is obtained from normal
computer control systems used in the Locomotive and delivered back to GE
by a variety of means including from a satellite dish on each train. That is
no special sensors were installed for the normal course of business or for our
experiments. The data for our experiment, combined design, utilization and
repair information on 1100 locomotives over a 2 year time period. Any individual
locomotive’s time-between-failures appears chaotic and unpredictable. Caveat:
the following is a description of the best industrial practice we could find. GE
used extensive files and records in their database.

This project utilized existing systems on the locomotives. No new sensors
were added to collect these data. This Collective Mind approach capitalized
upon existing data collection methods and did not design a priori new sensors
or other data collection systems.

The data for the study was collected from four different sources:

1. Locomotive Design & Engineering Data from GE Rail: GE Rail manu-
factured the locomotives in this study. As the OEM, GE Rail possessed
engineering data on locomotive models, configurations, date of manufac-
ture, date of service, the date EOA service was installed, upgrades, and
software modifications.

2. Locomotive Recommendation Data from GE Rail EOATM remote mon-
itoring and diagnostics service: For each locomotive, there was a time-
stamped record of when the Expert on Alert (EOATM) system detected
abnormal patterns in the fault data leading to a recommendation being
issued by GE Rail Locomotive Services. A red or yellow recommendation
indicated a problem that was serious and required a fix in the next 7-10
days at most.

3. Locomotive Maintenance Data from Repair Shops: Each red or yellow rec-
ommendation used in the experiments was associated with maintenance
feedback from railroads or GE repair shops which indicated the exact re-
pair action that successfully fix the problem. Therefore the data included
only maintenance intervals where a genuine problem existed on the loco-
motive that was verified by the maintenance personnel.

4. Locomotive Utilization data from a selected railroad: Each locomotive
maintains an on-board record of a number of utilization-related parame-
ters that are collected when a locomotive reaches a railroad yard. These
parameters include odometer miles, total megawatt-hours, hours spent
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motoring, hours spent in dynamic braking, cumulative engine hours, cu-
mulative engine hours moving, percentage of time spent in each of the
eight notch settings (analogous to gear settings) and others.

5. Diagnostics are done in GE’s Diagnostic center staffed by a group of ex-
tremely experienced engineers who have final decision power over the ma-
chine computed recommendation produced via case-based reasoning. The
diagnosis and repair recommendations are then sent to the local depot or
to the of the train, wherever it is(known through on-board GPS).

The Collective Mind Computational Approach Peer-based learning method-
ologies were investigated since they provide a transparent, adaptable model
mechanism. The particular approach taken was to focus on the representation
and reasoning mechanisms of instance-based reasoning. Instance-based reason-
ing (IBR) relies on a collection of previously experienced data that can be kept
in their raw representation. Unlike Case-based Reasoning (CBR), they do not
need to be refined, abstracted and organized as cases. Like CBR, IBR is an
analogical approach to reasoning, since it relies on finding previous instances of
similar problems and uses them to create an ensemble of local models. Hence
the definition of similarity plays a critical role in the performance of IBR’s. Typ-
ically, similarity will be a dynamic concept and will change over the use of the
IBR. Therefore, it is important to apply learning methodologies to define and
adapt it. Furthermore, the concept of similarity is not crisply defined, creating
the need to allow for some degree of vagueness in its evaluation. This issue was
addressed by evolving the design of a similarity function in conjunction with
the design of the attribute space in which the similarity was evaluated. After
developing several exploratory peer-based models, a fuzzy instance-based clas-
sifier (FIBC) was used that was designed by an evolutionary search (instead of
by a manual process). Specifically the following steps were used:

1. Retrieval of similar instances from the Data Base

2. Evaluation of similarity measure between the probe and the retrieval of
instances

3. Creation of local models using the most similar instances (weighted by
their similarity measures)

4. Aggregation of outputs of local mode to probe

It should be noted that no additional sensors were used for this experiment.
All data came from on-board sensors used by the control systems that regulate
the various subsystems in the locomotive. This constraint implies that it will
not be necessary to over-instrument existing or new platforms to re-apply a
similar process and obtain comparable results.

The experimental results reveal that consulting a unit’s peers, the Collective,
provides a significant increase in the ability to characterize the behavior of that
unit in terms of completing the next mission. The peer-based approach is robust
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and degrades gracefully with the information loss that is likely to be present in
the battlefield. In addition, ’rules of thumb’ such as using the newest units on
a mission were actually shown to be damaging rather than beneficial.

With this limited data, the use of Evolved Peers provided the best overall
accuracy (60.35% = over 3 times better than random selection) for past per-
formance. When the selection was limited to a small fixed number of units,
Evolved Peers provided an accuracy of 63.5% (over 10 times better than ran-
dom selection) for the past performance. Finally, Evolved Peers provided the
best overall accuracy (55% = 2.7 times better than random selection and 1.5×
better than best heuristics) for future performance.

The Collective (peer-based) approaches have shown great robustness to in-
formation loss. This will enable mission reliability for minimally instrumented
platforms operating with limited bandwidth.

The experiment showed the applicability of peer-based learning methodolo-
gies with evolutionary algorithms to select the best attributes for representing
peers and to define similarity measures for identifying the most similar peers for
a given unit. By evolving the models over different time slices, it has been shown
the ability to dynamically adapt the neighborhoods of peers using incremental
operational and maintenance data. In future work, structural design of the at-
tribute space (for the definition of peers) could be extended by using genetic
programming in lieu of evolutionary algorithms, and attribute selection and
weighting to attribute construction. The fitness function to tradeoff classifier
accuracy and confidence could be improved by adding measure of representation
parsimony and find Pareto fronts for different tradeoffs.

Generating more sophisticated local models for predictions could also extend
the approach. The present assumption was that each peer had a rather ”feeble”
track-history, which motivated the peer approach to begin with. In situations
where the peers have a richer track-history, more complex models, whose pa-
rameters could be obtained using a local search method, could be developed. In
addition to the aforementioned technical extensions, one or more experiments
should be conducted using data describing equipment usage more typical of mil-
itary operations. For example, the data should include instances of irregular use
of equipment, equipment use in diverse environments in a variety of missions,
equipment operating conditions that range from none to little usage, normal
operations and stressed and overload.

5.5.2 Conclusion of the Experiment

The GE experiment showed significant improvement in fleet performance, so
much so that GE has already tested some of the ideas in commercial practice.
The military representatives at the meeting where the results were reported
gave the work a very good report stating that the technology far exceeded any
technology used in the military today. The follow on to this comment has been
for the team, Sondheimer, Wallace and Will to continue to brief the personnel
in extensively in the Pentagon and at various service locations on the potential
benefits of research on the Collective Mind.
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5.6 Technology Transfer to the Military

A key imperative from DARPA was to elicit and enlist support from a real
military customer.

We made visits/presentations to the following organizations, in each case
explaining our concept, listening to their feedback and evolving the concept to
make it more suitable for technology transfer

• Department of Defense Condition Based Maintenance + (OSD CBM+)

• Department of Defense Office of Force Transformation (OSD OFT)

• US Air Force Expeditionary Logistics for the 21st Century (eLog21)

• US Air Force Knowledge Services (AFKS)

• US Air Force Research Laboratory (AFRL)

• US Army AMRDEC US Army Future Combat Systems (FCS)

• US Army Logistics Transformation Agency (LTA)

• US Army Materiel System Analysis Activity (AMSAA)

• US Army Objective Force

• US Army Research Laboratory

• US Army RDECOM SMS IPT

• US Army TARDEC Joint Strike Fighter Program Office

• US Marine Corp Systems Command (MARCORSYSCOM)

• US Navy Office of Naval Research

A public presentation was made to all services at the 2004 DoD Maintenance
Symposium in Houston, Texas.

Workshops on
We also conducted four Workshops Self-Aware Platforms and the Collective

Mind in January 23-24, 2003 at Strategic Analysis Inc. Arlington, VA; February
13-14, 2003, USC-ISI, Marina del Rey, CA; January 13, 2004, Erie, NY; April
1-2, 2004, Marina del Rey, CA.

5.7 Potential Impact

The Collective Mind Workshops showed that the Collective Mind topic was
challenging and had military relevance and interest.

The Collective Mind Workshops showed that the Collective Mind topic was
challenging and had academic and scientific interest.

The conclusion is that the objective of the DARPA study has been met;
both military and research and development communities endorse the concept.
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Realization the full benefits of the concept is DARPA-hard. A DARPA
program could stimulate important research in collective learning to pursue the
above and other emergent applicable ideas.

Robustness: now is the time to challenge learning researchers to develop ro-
bust engineering methodologies for deploying learning systems. Machine learn-
ing has, so far, taken place under ”laboratory conditions” where PhD researchers
hand-craft the systems to make them work. As a result, while machine learning
provides a revolutionary new method for constructing intelligent systems (such
as handwriting recognition, speech recognition, and artificially-intelligent sim-
ulated characters in games), the resulting systems do not learn after they are
deployed.

Scaling: machine learning currently does not scale. Indeed, even human
learning takes place only within the head of each individual person, and society
spends billions of dollars to combine and communicate this learned knowledge to
other people. The Collective Mind project envisions a learning technology that
is able to rapidly combine knowledge learned separately by many distributed
agents so that each agent can become a ”super agent” that benefits from ev-
erything learned by the other agents. This might allow computers to learn very
rapidly and identify patterns that people, with our limited ability to combine
learned knowledge, cannot detect.

Military system must learn after deployment. This is the key to making
all kinds of computer systems adaptive to the needs and environments of their
users. Without real-time learning, our hand-crafted intelligent systems will
remain brittle and hard-to-use.

Machine learning is currently too slow. Most systems must be trained on
thousands or millions of training trials. Learning can be much faster if domain
knowledge is available to guide and constrain the process. Success in the Collec-
tive Mind project will produce a widely-applicable knowledge-guided learning
technology.

The core of Transformation in the Military is rapid learning. Introducing
new equipment at a rapid pace demands fast learning. DARPA needs to step
up to the challenge. It is DARPA-hard

6 Discussion of Results and Approach

The mathematical methods used to analyze collective swarm behavior are based
on viewing individual agents as stochastic Markov processes. In order to con-
struct a description of the behavior of a swarm, we do not need to know the
exact trajectories of every agent; instead, we derive a model that governs the
dynamics of the aggregate, or average, swarm behavior.

Mathematical models are straightforward to construct and analyze — in fact,
they can be easily constructed from details of the individual robot controller [29].
The ease of use comes at a price, namely, the number of simplifying assumptions
that were made in order to produce a mathematically tractable model. First,
we assume that the robots are functioning in a dilute limit, where they are
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sufficiently separated that their actions are largely independent of one another.
Second, we assume that the transition rates can be represented by aggregate
quantities that are spatially uniform (unless we are explicitly modeling interac-
tions with external fields) and independent of the details of the individual robot’s
actions or history. We also assume the system is homogeneous, with modeled
robots characterized by a set of parameters, each of them representing the mean
value of some real robot feature: mean speed, mean duration for performing a
certain maneuver, and so on. Real robot systems are heterogeneous: even if the
robots are executing the same controller, there will always be variations due to
inherent differences in hardware. We do not consider parameter distributions
in our models as would be necessary to describe such heterogeneous systems.
Finally, mathematical models more reliably describe systems where fluctuations
(deviations from the mean behavior) can be neglected, as happens in large sys-
tems or when many experimental runs are aggregated. However, the success we
achieved in quantitatively predicting and explaining results of experiments and
simulations with real robots give us confidence for the validity of our approach.

7 Future Directions

We have successfully demonstrated that mathematical analysis can be used to
describe collective behavior of large multi-agent systems, including real robot
systems. Analysis is fundamental to building predictable and verifiable systems,
two aspects critical to swarm deployment.

Our work also has significant consequences to the design of multi-agent sys-
tems. In fact, our vision is to give system designers tools to programmatically
synthesize and optimize adaptive controllers for intelligent agents that will make
up intelligent swarms.

analysis
optimization

modeling

synthesis

specifications

Figure 22: Design cycle of Agent-based computing algorithms

Our vision of the design lifecycle is based on the synthesis→analysis→optimi-
zation loop shown in Figure 22. The designer specifies behavior of an individual
agent or component: its task requirements, its capabilities, its interactions with
other agents, as well as its response to environmental stimuli and contingen-
cies, such as possible actions of an adversary. We then apply Machine Learning
techniques to learn the automaton that describes the agent controller. Once we

64



have the controller, we use the mathematical framework we developed in the
course of the TASK program to model the behavior of an ensemble of agents
executing this controller. The evolution of the collective behavior can be stud-
ied quantitatively, and results of analysis used to guide performance-enhancing
modifications in the controller.

The realization of this vision requires further development of our mathemat-
ical framework to model more sophisticated agent behaviors, such as learning
from experience, learning from environment, or responding to other agents’
modifications of the environment. It will also require the development of tools
to synthesize agent controllers from their specifications. Our initial study of
automatic synthesis specifically [17] and design problem in general [5] shows
this to be a promising approach.
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[15] Dani Goldberg and Maja J Matarić. Robust behavior-based control for distributed
multi-robot collection tasks. Technical Report IRIS-00-387, USC Institute for
Robotics and Intelligent Systems, 2000.

[16] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration
through the exploitation of local interactions in autonomous collective robotics:
The stick pulling experiment. Autonomous Robots, 11(2):149–171, 2001.

[17] Chris V. Jones. A Principled Design Methodology for Minimalist Multi-Robot
System Controllers. PhD thesis, University of Southern California, 2005.
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