
AFRL-IF-WP-TR-2005-1555

MODEL-BASED INTEGRATED
SIMULATION (MILAN)

Viktor K. Prasanna
Cauligi S. Raghavendra
Akos Ledeczi

University of Southern California
Los Angeles, CA 90089-2562

MAR 2005

Final Report for 29 June 2000 – 31 December 2004

Approved for public release; distribution is unlimited.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRLIWS) Public Affairs Office (PAO) and is releasable to the National Technical
Information Service (NTIS). It will be available to the general public, including foreign
nationals.

PA0 Case Number: AFRLIWS-05-930,18 Apr 05

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.
pp-- -

7 /L/ ,4627
JONG S. HWANG, Program Monitor

I -,
ROBERT A. EHRET, Chief
Collaborative Simulation Technology & Applications Branch
Information Systems Division
Information Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

March 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)
29 Jun 2000 – 31 Dec 2004

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
F33615-00-C-1633

Model-based Integrated Simulation (MILAN) 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER
69199F

6. AUTHOR(S)
Viktor K. Prasanna

5d. PROJECT NUMBER
ARPI

Cauligi S. Raghavendra
Akos Ledeczi

5e.TASK NUMBER
FS

5f. WORK UNIT NUMBER
A4

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

University of Southern California
Los Angeles, CA 90089-2562

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY AFRL/IFSD
AIR FORCE MATERIEL COMMAND 11. SPONSOR/MONITOR’S REPORT

WRIGHT-PATTERSON AFB, OH 45433-7334 NUMBER(S)

 AFRL-IF-WP-TR-2005-1555
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
This document contains color.
14. ABSTRACT
The motivation for the Model-based Integrated Simulation (MILAN) project is to develop an extensible modeling, simulation,
and design space exploration framework for the design of latency and energy efficient embedded systems for signal
processing applications. Design of embedded systems requires minimization of energy dissipation (to maximize battery life)
while meeting a given latency constraint (typically real-time constraints). While until now Application Specific Integrated
Circuits (ASICs) were considered the primary choice for low power high performance embedded systems, the recent
advances in the design of general purpose processors (GPP), digital signal processors (DSP), field programmable gate arrays
(FPGAs), and memories have provided viable commercial-off-the-self (COTS) alternatives to ASICs. These devices are
designed using low-leakage process and support a number of low power operating and standby states, dynamic voltage and
frequency scaling, among others to support energy optimization. In the MILAN project, we focus on signal processing
applications that process a stream of input frames while meeting a given latency constraint for the processing of a single
frame. MILAN is a joint effort by the University of Southern California and Vanderbilt University and is supported by the
DARPA Power Aware Computing and Communication Program.

15. SUBJECT TERMS:
Embedded systems, simulation, design space exploration, reconfigurable systems
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Jong S. Hwang

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

SAR

34

19b. TELEPHONE NUMBER (include area
code)
937- 904-9048

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

i

TABLE OF CONTENTS

1 INTRODUCTION... 1

1.1 MILAN OVERVIEW .. 4
2 SUMMARY OF CONTRIBUTIONS.. 6

2.1 HIERARCHICAL DESIGN SPACE EXPLORATION... 6
2.1.1 MILAN Design Flow for Hierarchical Design Space Exploration... 6
2.1.2 Key Ideas of Our Methodology... 9
2.1.3 Advantages of Our Methodology .. 10

2.2 MODEL, DESIGN, AND SIMULATOR REUSE IN MILAN ... 11
2.3 MILAN FOR RECONFIGURABLE SYSTEMS ... 12

2.3.1 Modeling... 13
2.3.2 Design Flow for Reconfigurable Systems... 15
2.3.3 Illustrative Design Space Exploration for Reconfigurable Devices 16

2.4 MULTIGRANULAR SIMULATION ... 18
2.5 ACCURATE FUNCTIONAL SIMULATION... 19

3 LESSONS LEARNED.. 22
3.1 APPLICATION MODELING.. 22
3.2 SIMULATOR INTEGRATION ... 22
3.3 DEVICE SELECTION .. 23
3.4 HIERARCHICAL DESIGN SPACE EXPLORATION .. 23
3.5 DUTY CYCLE BASED DESIGN SPACE EXPLORATION... 24

4 TECHNOLOGY TRANSITION ... 25
4.1 POWER AWARE REMOTE INFORMATION SYSTEM (PARIS) .. 25
4.2 POWER AWARE SENSING AND TRACKING ANALYSIS (PASTA) ... 26

5 PUBLICATIONS ACKNOWLEDGING THIS CONTRACT ... 27
6 REFERENCES AND RELATED PUBLICATIONS... 29

 iii

Final Report

1 Introduction
The motivation for the Model-based Integrated Simulation (MILAN) project is to
develop an extensible modeling, simulation, and design space exploration framework for
the design of latency and energy efficient embedded systems for signal processing
applications. Design of embedded systems requires minimization of energy dissipation
(to maximize battery life) while meeting a given latency constraint (typically real-time
constraints)[14]. While until now Application Specific Integrated Circuits (ASICs) were
considered the primary choice for low power high performance embedded systems, the
recent advances in the design of general purpose processors (GPP), digital signal
processors (DSP), field programmable gate arrays (FPGAs), and memories have provided
viable commercial-off-the-self (COTS) alternatives to ASICs [26]. These devices are
designed using low-leakage process and support a number of low power operating and
standby states, dynamic voltage and frequency scaling, among others to support energy
optimization. Therefore, COTS devices such as Intel PXA 255 [11], IBM PowerPC 405
LP [9], Actel ProASIC [1], TI C5000 series DSPs [41], and Micron Mobile SDRAM [21]
are being considered as candidate components (processing and memory) for low power
high performance embedded design.

However, in terms of performance and flexibility, each class of components has its own
advantages and disadvantages. For example, an ISA-based embedded processor (GPP,
DSP, or micro-controller) is software programmable, possibly low power, but may not
meet the high performance needs of some signal processing application [34]. In contrast,
FPGAs support high degree of parallelism resulting in higher performance but are not
energy efficient and may not be suitable for control intensive applications. Additionally,
applications also enforce specific functional requirements, which require specific
hardware capabilities. For example, some signal processing applications exist which
requires high precision floating-point operations [38]. Such applications require the use
of floating-point processors, which may not be energy efficient, or software emulation on
fixed-point processors, which may not be latency efficient. Therefore, during the design
of low power embedded systems a number of commercial-off-the-self devices must be
evaluated to identify the suitable hardware for a given signal processing application. With
the availability of multiple implementation platforms such as FPGAs, traditional
processors, and DSPs, a designer not only needs to identify suitable platforms but also
appropriate hardware/software partitioning and mapping onto those platforms. In
addition, other capabilities that play a significant role, especially for energy efficient
design, are reconfiguration, dynamic voltage scaling, and choice of low power operating
states. While minimizing energy dissipation, our focus is on maximizing battery life.
Therefore, energy optimization with respect to the behavior of the embedded system
while processing a single input is not adequate. Energy models based on the processing
of a single input do not include the behavior of the embedded system when it is idle. Due
to quiescent power, energy dissipation when a system is idle can be significant.
Therefore, low power embedded system design requires design space exploration based
on duty cycle specification to identify suitable device activation schedule that meets the
given latency requirements while minimizing energy dissipation when the devices are
active and when they are not [26]. Duty cycle is the proportion of time during which a

1

MILAN: Model based Integrated Simulation

system is operated. Such specification allows modeling of a period of execution as
alternate active and inactive phases. Energy dissipation (e.g. due to leakage current),
especially for systems with low duty cycle, during the inactive phases can contribute
significantly to the overall energy dissipation of the system. Therefore, the tradeoff
between the performance cost of shutting down and starting up a device and the
performance cost of remaining idle needs to be considered during system design.

algorithms

scheduling

reconfiguration voltage scaling

target
devices

degree of
paralellismlarge design

space

binding

memory
configuration

Figure 1: Large design space

In the MILAN project, we focus on signal processing applications that process a stream
of input frames while meeting a given latency constraint for the processing of a single
frame [33]. Examples of such applications include mobile base stations for software-
defined radio, target detection and tracking systems, and space applications. We assume
that the application logic and therefore the performance are independent of the data
contained in the input frames. Such signal processing applications can be modeled as
data flow graphs [18]. A data flow graph is a directed acyclic graph where the nodes in
the graph represent the tasks (or kernels) and the directed edges connecting the nodes
represent the dependency (order of execution and data flow) among the tasks [19]. The
latency (and energy) constraints are specified based on the end-to-end performance of a
sub-graph of the complete data flow graph where the sub-graph has one source node and
one sink node. Additional advantage of a data flow graph is that such representation of an
application allows it to be statically scheduled using topological sort and greedy
scheduling.

Thus, many choices/tradeoffs are available during energy and latency efficient system
design. However, a large number of choices during application design results in a large
design space (Figure 1) that must be traversed efficiently to identify the designs that meet
the performance requirements. A number of tools and simulators exist for the design of
embedded system. SimpleScalar[36], PowerAnalyzer [31], ARMulator [4], Mambo [6],
SimplePower [37], JouleTrack [39], Xpower [44], DESERT [27] are some such tools.
However, due to lack of a standard interface, integration of these tools is extremely
difficult. In addition, execution speed can vary widely among these tools, which makes it
even harder to integrate (e.g. ~ 200 kilo instructions per second for SimpleScalar and <
10 instructions per second for FPGA simulators). Therefore, the focus of the MILAN
project is to develop a design framework that allows integration of a variety of widely
used simulators for candidate embedded devices through a unified interface and integrate

2

Final Report

a number of simulators into the framework. In addition, the framework would be
extensible such that additional simulators can be easily integrated.

In order to facilitate specification of the application, target hardware, design and
performance constraints, and integration of design tools, in the MILAN project, we have
developed a set of metamodels (modeling paradigms). These metamodels define a
domain-specific modeling language that is used to capture system models
[17][18][23][27][28]. Our models capture application specifications, details of the
candidate hardware for embedded systems, performance and design constraints, and
deployment scenarios wrt. duty cycle specification. Generic Model provides an
abstraction of the embedded systems that identifies the key architectural features that can
be exploited for performance and energy optimization [22]. These features include,
operating states, average power dissipation in each state, and state transition costs in
terms of latency and energy dissipation. Application model is developed by enhancing
the data flow graphs to capture choice of implementations for each task, and state
transitions (e.g. reconfiguration or dynamic voltage scaling) between task executions
[18]. MILAN supports both synchronous and asynchronous data flow graphs. Such
representation allows us to define application design problem as a combinatorial
algorithm that can be solved in an efficient manner using e.g. dynamic programming or
design space exploration tools such as DESERT and HiPerE. A mapping model is also
developed to specify the mapping between the application and resource models. MILAN
also includes a set of models to specify hardware designs that can be used to specify
FPGA based designs as well as generic hardware designs (not necessarily implementable
using FPGAs) specified using HDL (hardware definition language) such as VHDL. Our
modeling technique also allows us to develop library of models promoting reuse.

To address the problem of efficient exploration of a large design space, the MILAN
project has developed a hierarchical design space exploration methodology [26]. Our
methodology consists of two phases. The first phase uses a pruning technique that
evaluates the initial design space and prunes it to a smaller set of designs based on the
performance requirements. The pruning technique operates on the high-level models that
specify the target application, candidate processing devices and memories, and
performance constraints. The second phase uses a high-level estimation tool and low-
level simulators to perform hierarchical simulation. Hierarchical simulation uses low-
level simulators to perform component specific simulations for a given design. The
component specific estimates are combined using the high-level estimator to generate
system-wide performance estimates for a complete heterogeneous embedded system
based on a duty cycle specification. In our methodology, hierarchical simulation is used
to evaluate the designs identified in the first phase. The high-level estimation tool used
for hierarchical simulation operates at a higher level of abstraction than a typical low-
level simulator such as cycle-accurate, register-transfer level, or even instruction-set
simulators. For example, the high-level estimation tool discussed in this thesis requires
application input as a data flow graph, which is at a comparatively higher level of
abstraction than say ``C" as required by SimpleScalar [36]. Through the integration of
simulators, estimator, and pruning techniques, our methodology exploits the speed versus

3

MILAN: Model based Integrated Simulation

accuracy tradeoffs to perform faster, compared to simulation only, and more accurate,
compared to optimization techniques, evaluation of large design spaces.

MILAN is a joint effort by the University of Southern California and Vanderbilt
University and is supported by the DARPA Power Aware Computing and
Communication Program through contract number F33615-C-00-1633 monitored by
Wright Patterson Air Force Base.

1.1 MILAN overview
MILAN is implemented using Model Integrated Computing (please refer to [9][14][40]
for more information). MIC employs domain-specific models to represent the system
being designed. These models are then used to automatically synthesize other artifacts.
This approach speeds up the design cycle, facilitates the evolution of the application, and
helps system maintenance, dramatically reducing costs during the entire lifecycle of the
system. MIC is implemented by the Generic Modeling Environment (GME), a
metaprogrammable toolkit for creating domain-specific modeling environments [9].
GME employs metamodels that specify the modeling paradigm of the application
domain. The modeling paradigm contains all the syntactic, semantic, and presentation
information regarding the domain – which concepts will be used to construct models,
what relationships may exist among those concepts, how the concepts may be organized
and viewed by the modeler, and rules governing the construction of models. The
modeling paradigm defines the family of models that can be created using the resultant
modeling environment. The metamodels specifying the modeling paradigm are used to
automatically configure GME for the domain.

For the MILAN project, GME is used primarily for model-building. The models take the
form of graphical, multi-aspect, attributed entity-relationship diagrams. The static
semantics of a model are specified by OCL constraints [9] that are part of the
metamodels. They are enforced by a built-in constraint manager during model building
time. The dynamic semantics are applied by the model interpreters, i.e. by the process of
translating the models to source code, configuration files, database schema or any other
artifact the given application domain calls for.

The MILAN architecture is depicted in Figure 2. The design-space of a system is
captured by multiple-aspect, hierarchical, primarily graphical models in GME. The three
main categories of models specify the desired application functionality, available
hardware resources and non-functional requirements in the form of explicit constraints.
These complex models typically specify an exponentially large design-space. However,
only a subset of this space satisfies all the constraints. A symbolic constraint satisfaction
methodology is applied to explore and prune the design-space. Once a single design has
been selected, model interpreters translate the models into the input of the selected
simulators. Simulation results need to be incorporated back in the models. For some
simulators this will necessarily be a human-in-the-loop process, while for others the
procedure can be automated.

4

Final Report

The final component in the MILAN architecture is System Synthesis. Notice that this step
is similar to driving simulators. Instead of targeting the execution model of a simulation
engine, the synthesis process needs to generate code that complies with the runtime
semantics of a runtime system. Just like there is a need to support multiple simulators,
MILAN needs to support multiple target runtime systems. Currently, MILAN is more
focused on providing a simulation integration environment than providing system
synthesis capabilities.

Model interpreter
feeding-back results

Model interpreter
driving simulators/tools

System
Generation and
Synthesis Tools

GME 4

Resource
Models

Application
Models

Constraints

Mapping
Models

Resource
Models

Application
Models

Constraints

Mapping
Models

ii
Target System

ii

Functional
Simulators

High-level
Performance
Estimators

Cycle-
Accurate

Performance
Simulators

Design Space
Exploration

Tools

Design Space
Exploration

Tools

Design Space
Exploration

Tools

Functional
Simulators

High-level
Performance
Estimators

Cycle-
Accurate

Performance
Simulators

Functional
Simulators

High-level
Power

Estimators

Cycle-
Accurate

Power
Simulators

iiii

ii

Figure 2: MILAN Architecture

5

MILAN: Model based Integrated Simulation

2 Summary of Contributions

2.1 Hierarchical Design Space Exploration
application

model

resource
model

constraints

model for
mapping

performance
estimates

Generic Modeling
Environment

GME 3

design space

Design Space
Exploration

(DESERT)

Design Browser

High-level
Performance

Estimator

final design
SimulatorsSimulators

third party
simulators

>> 103~4

< 102
< 10

high-level
implementation

and input

identify a set
of designs

human-in-the-loop

heterogeneous
system

signal processing
applications

param
eters,

configuration

user

Figure 3: MILAN Design Flow

MILAN is a model based integrated simulation environment for embedded system design
and optimization through integration of various simulators and tools into a unified
environment. Using the MILAN environment, the designer formally models the target
application, underlying hardware, and constraints (latency, throughput, energy
dissipation, etc.) through a graphical interface provided by MILAN. The models are
stored in a model database. The model information is translated through model
interpreters into suitable input formats required by the integrated simulators. MILAN
adopts Model Integrated Computing (MIC) as the core design technology. The Generic
Modeling Environment (GME) is a configurable graphical tool suite supporting MIC.
GME allows the designer to create domain-specific models. A metamodel (modeling
paradigm) is a formal description of model construction semantics. Once the metamodel
is specified by the user, it can be used to configure GME itself to present a modeling
environment specific to the problem domain. MILAN defines its own metamodel that is
used to configure GME to provide the MILAN design environment. Every target system
is specified in MILAN as a model. Model interpreters are the software components that
translate the information captured in the models based on the input format required by the
integrated tools and simulators.

2.1.1 MILAN Design Flow for Hierarchical Design Space Exploration
In this section, we provide a brief overview of the MILAN design flow. The user Manual
(see Appendix) and the tutorials (included in the MILAN software releases) provide
additional details about the MILAN design flow.

MILAN design flow consists of modeling, performance estimation, and design pace
exploration. The user initiates the design process by modeling the application and the

6

Final Report

target architecture. Application modeling involves application specification as a data-
flow graph with alternatives. The alternatives refer to various implementation choices
available for an application task. The functional specification of the target system
specifies the structure of the data-flow graph and the choice of implementations specifies
the alternatives. For multi-rate applications, while modeling an application in MILAN,
the designer can specify the rate of execution for each application task. A rate of r for a
task refers to one execution per r input frames. MILAN supports hierarchical modeling
that enables hierarchical specification of the data flow graph making it easier to manage
and analyze an application model. Functional simulation and verification may be done
iteratively with application modeling. To enable functional simulation, MILAN supports
generation of high-level source code in C and Matlab and integration of functional
simulators. MILAN also supports specification of input stimulus at the source tasks and
output processing logic at the sink tasks. These capabilities are also exploited for
simulation using integrated simulators to estimate performance. MILAN supports both
synchronous and asynchronous data flow graph based application modeling. For
asynchronous modeling MILAN provides a run-time kernel for the execution of an
asynchronous implementation.

Resource modeling involves modeling of the target architecture. The modeling paradigm
is based on the GenM and the augmented FSM model [27]. The user identifies key
components and features of the target architecture that can be exploited for optimization
and models them in MILAN. In addition, the user also models various states and state
transition costs associated with different components such as reconfigurable devices,
processors supporting DVS, and power aware memories using the augmented finite state
machine model.

Finally, the user describes possible mappings for each task alternatives and different
performance or compositional constraints that the system needs to satisfy. A mapping is a
relation between an application task and a processing component. Performance
constraints are based on the latency and energy dissipation requirements given as input.
Design constraints capture requirements of mapping and composition of components in
case of device selection. Constraints on composition restrict the composition of alternate
processing components. For example, given a set of choices that includes two traditional
processors, one such constraint can be “a valid system may contain one of the processors
but not both”. Before we can perform design space exploration, we need to populate the
design space described above using the performance estimates for all the mappings
specified in the model. MILAN is a simulator integration environment. Hence, if
appropriate simulators are integrated, MILAN has the capability to perform automatic
simulation (using specified implementation and sample input) and update the model for
mapping using the simulation results.

Once the complete system is modeled, the user invokes the design space exploration
(DSE) tools. A DSE tool rapidly identifies a set of design that satisfies all the constraints.
Currently, MILAN provides Design Space Exploration Tool, DESERT, as the primary
DSE tool. DESERT is a constraint-based rapid design space exploration tool, developed
at ISIS, Vanderbilt University [29]. Our experience with DESERT shows that we can

7

MILAN: Model based Integrated Simulation

prune a design space with approximately 1020~1040 designs in order of minutes. DESERT
uses symbolic methods based on Ordered Binary Decision Diagrams (OBDDs) for
constraint satisfaction. We have also integrated other techniques based on dynamic
programming to provide additional DSE options to the user. One such technique targets
applications that can be modeled as a linear array of tasks. Given a linear array of tasks,
execution cost of each task on a target reconfigurable device, and reconfiguration cost,
the technique can identify a set of mapping with minimum latency or energy.

Design space exploration techniques are optimization heuristics based on a high-level
model of the target system. Therefore, the accuracy of the result depends on the
assumptions made during high-level modeling. Hence, we use hierarchical simulation to
further evaluate the designs identified by the DSE techniques (Figure 3). Hierarchical
simulation is a design evaluation technique based on simulation of the designs.
Hierarchical simulation implies simulation of a task or a set of tasks at different levels of
abstraction by exploiting the availability of simulators at different levels of abstraction.
Multiple abstraction levels make it possible to control the speed and accuracy of the
simulation results. Such flexibility enables a stepwise refinement approach in which
initially fast simulators are used to efficiently explore a large number of designs and later
more accurate simulators are used to facilitate a detailed evaluation of the designs.
MILAN facilitates hierarchical simulation through seamless integration of different
simulators and the ability to invoke all integrated simulator from a single modeling
environment. However, due to the complexity of the target heterogeneous systems, either
there is a lack of appropriate system-level simulator that can simulate the complete
system, or if such a simulator exists it is prohibitively expensive in terms of simulation
time. High-level Performance Estimator (HiPerE) tool, currently integrated into MILAN,
addresses both the above issues.

HiPerE Interpretive
Simulators Cycle-accurate

Simulators RT-level
SimulatorsSystem-level

Estimates

Component
Specific

Estimates

Figure 4: Hierarchical Simulation

Given a design, HiPerE evaluates system-level energy dissipation and latency. In order to
provide a rapid estimate, HiPerE operates at the task level abstraction of the application.
In addition to the task execution cost, various other aspects considered by HiPerE for
accurate performance estimation are data access cost, parallelism in the system, energy
dissipation when a component is idle, and state transition cost. Our results for signal
processing applications show that HiPerE estimates are within 8% of the estimates using
low-level simulations. HiPerE also produces an activity report that provides a coarse,
task-level trace of execution time behavior of the application. An activity report contains
processor specific task schedules, state transitions, and idle time or slack in between

8

Final Report

executions. The user can exploit the activity report to identify bottlenecks and further
optimization opportunities. Duty-cycle in the context of application execution refers to
the proportion of time during which a component, device, or system is operated. Support
for duty-cycle includes estimation of performance for a length of time or number of
execution instances while taking into account, start up and shut down cost, idle energy
dissipation, and rate of input. HiPerE supports performance estimation of a design for a
given duty-cycle. Additional details about HiPerE can be found in the MILAN User
Manual 1.1 (see Appendix)

2.1.2 Key Ideas of Our Methodology

In order to discuss our methodology, we define problem domain to refer to a class of
system design problems. Given an application that can be modeled using a DFG and a set
of target devices, problem domain refers to all system design problems that can be
defined based on the application and the target devices. For example, a linear array of
tasks and a processor that supports dynamic voltage scaling define a problem domain
which includes the following system design problem, “identify appropriate voltage
setting for each task such that overall energy dissipation is minimized”. Another problem
may require minimization of energy while a given latency constraint is satisfied. A set of
parameters are associated with each problem domain. A parameter can be a variable or a
constant. For example, for the problem domain discussed above, some of the parameters
are task execution cost for each voltage setting, operating voltage, voltage scaling cost,
cost of data access due to the use of a memory, choice of memory devices, etc. Among
the parameters, operating voltage is a variable parameter and task execution cost per
operating voltage is constant. For a given problem domain, there exist several
optimization heuristics, high-level estimators, and simulators that can be used to perform
design space exploration. We define parameter coverage as a metric to compare different
design space exploration (DSE) techniques applicable to a problem domain. For a given
solution, be it an optimization heuristic or an estimation/simulation tool, parameter
coverage refers to the set of parameters that are considered by each solution while
estimating performance or performing design space exploration. Higher parameter
coverage refers to a larger set of parameters and results in higher accuracy but can
potentially be time consuming during DSE. A low-level simulator is an example of a
performance estimation tool with high parameter coverage (e.g. SimpleScalar). In
contrast, optimization heuristics, due to high-level of abstraction, tend to have lower
parameter coverage.

Very Large
Design
Spaceheterogeneous

system

signal processing
applications

simulators

performance estimates

optimization
heuristics

high-level
estimator

G

design parameters

implementation
input stimulus

simulator configuration
designer

Figure 5: Hierarchical Design Space Exploration

9

MILAN: Model based Integrated Simulation

Given a problem domain, hierarchical design space exploration is defined as a two step
process (Figure 4). The first step uses an pruning heuristic that generates a set of designs
meeting the given constraints. The second step consists of a suitable high-level
performance estimator that evaluates the performance of any design that is a potential
solution for the given problem domain. The high-level estimator we discuss in this report,
HiPerE, uses an interpretive simulation based approach to estimate performance.
Therefore, the high-level performance estimator has higher parameter coverage than the
pruning heuristic. Hence, HiPerE can cover the parameters not included in the model
used by the pruning heuristic. As a result, our methodology can explore a larger design
space than an optimization heuristic only DSE scheme. Hierarchical design space
exploration assumes the availability of appropriate simulators to estimate the model
parameters required by the pruning heuristics and the high-level estimators. Examples of
such parameters are the performance cost of various mappings or operating state
transition costs etc. Some of the parameters can also be obtained from the data sheets
provided by the device vendors. We also assume that appropriate input such as
implementations in scripts or languages supported by the simulators, input stimulus, and
simulator configurations are available to perform simulation.

2.1.3 Advantages of Our Methodology

The primary difference between our version of a pruning heuristic and the traditional
version is generation of a set of designs as opposed to a single optimal design. The set of
designs consists of the designs that meet the given performance constraints. By ensuring
that we have a set of good designs as opposed to one optimal design, we increase the
chances of finding the optimal design from the set even when approximated high-level
models are used. Additional details can be found in [26]. The advantages of hierarchical
design space exploration are as follows:

 robust against approximation errors due to high-level abstractions (models) used
by the optimization heuristics

 reduces the number of simulations necessary when compared against simulation

based design space exploration

 combines the speed of optimization heuristic based DSE and the higher accuracy
and parameter coverage of simulation based DSE

 designer can potentially combine different optimization heuristics and high-level

estimators to suite the need of target application design problem domain

Low-level detailed simulators, such as SimpleScalar and ModelSim, provide accurate
performance estimates but are time consuming. Evaluation of a large design space, even
of the order of 10s or 100s, can take days. Our hierarchical design methodology does not
require simulation to evaluate the complete design space. Rather, the simulators are used

10

Final Report

just to estimate performance of different mappings that are used by DESERT and HiPerE
to perform DSE. Therefore, our methodology is significantly faster that simulation based
DSE. In comparison with optimization heuristic based DSE techniques, due to the use of
a high-level estimator, we support higher parameter coverage. Higher parameter coverage
results in the evaluation of a larger design space. This is because number of designs in a
design space depends on the possible values of various parameters associated with a
problem domain. For example, for the problem domain defined by an application and a
processor supporting DVS, if the number of discrete voltage settings increases or if we
also choose to evaluate a set of memory configurations, the size of the design space will
grow.

2.2 Model, Design, and Simulator Reuse in MILAN
MILAN model database stores the models in a canonical form that provides a common
representation for the information that are used to drive various simulators. The model
database is the basic support for design reuse in MILAN. While designing an application,
the designer builds models for the target devices and populates them through simulation
results or vendor provided data-sheets. If in the future, another design exercise involved
the some of the devices already modeled, the designer can reuse the models. The resource
models capture various characteristics of the target devices that can be exploited to
measure and optimize performance. They include various operating states, energy
dissipation in each state, state transition costs, etc. This information does not change from
application to application and hence can be reused. Besides, given an application, it is
always modeled as a hierarchical data flow graph of the constituent tasks. The tasks
typically are basic signal processing algorithms like matrix multiplication, FFT, matrix
decomposition, motion estimation, and are part of many different signal processing
applications. Therefore, the task specific information contained in the application model
and model for mapping can also be reused. If reused, the designer does not need to
perform simulations to populate the mapping model for these tasks. Other form of reuse
is through the use of simulators already integrated into MILAN. Simulator integration
depends on the underlying modeling paradigm and not on a specific model. Therefore, if
the modeling paradigm does not change for a new application design problem, simulators
integrated earlier are ready to use.

11

MILAN: Model based Integrated Simulation

2.3 MILAN for Reconfigurable Systems
The modeling and performance estimation support for FPGA provided in MILAN is
based on Domain Specific Modeling [7]. The focus is on FPGA based designs for typical
signal processing algorithms that contain loops and are data oblivious. Matrix multiply,
motion estimation, etc. are some such examples. There are numerous ways to map an
algorithm onto an FPGA as opposed to mapping onto a traditional processor such as a
RISC processor or a DSP, for which the architecture and the components such as ALU,
data path, memory, etc. are well defined. For FPGAs, the basic element is the lookup
table (LUT), which is too low-level an entity to be considered for high-level modeling.
Therefore we use domain specific modeling to facilitate high-level modeling of FPGAs.

Figure 6: Domain Specific Modeling

Domain-specific modeling technique facilitates high-level energy modeling for a specific
domain. A domain corresponds to a family of architectures and algorithms that
implements a given kernel. For example, a set of algorithms implementing matrix
multiplication on a linear array is a domain. Detailed knowledge of the domain is
exploited to identify the architecture parameters for the analysis of the energy dissipation
of the resulting designs in the domain. By restricting our modeling to a specific domain,
we reduce the number of architecture parameters and their ranges, thereby significantly
reducing the design space. A limited number of architecture parameters also facilitate
development of power functions that estimate the power dissipated by each component (a

12

Final Report

building block of a design). For a specific design, the component specific power
functions, parameter values associated with the design, and the cycle specific power state
of each component is combined to specify a system-wide energy function. More details
on domain specific modeling can be found in [7]. We have enhanced MILAN to facilitate
modeling of FPGA based designs using the domain specific modeling technique.

2.3.1 Modeling
Our kernel level modeling enables specification of parameterized design for signal
processing kernels for implementation using FPGAs. We exploit domain specific
modeling, a technique for high-level modeling of FPGAs, developed by Choi et al. [7].
This technique has been demonstrated successfully for designing energy efficient signal
processing kernels using FPGAs. A domain refers to a class of architectures and the
corresponding algorithms for a particular signal processing kernel. A class of
architectures can be a uniprocessor, linear array of processors, 2-D array of processors, or
any other class of parameterized architectures. For example, matrix multiplication on a
linear array of processors is a domain. A model defined using this technique consists of
RModules, Interconnects, component specific parameters and power functions,
component power state matrices, and a system-wide energy function. A Relocatable
Module (RModule) is a high-level architecture abstraction of a computation or storage
module. For hardware implementations on an FPGA, a register can be a RModule if the
number of registers in the design can vary based on algorithmic level choices.
Interconnect represents the resources used for data transfer between the RModules. A
component (also referred to as building block) can be a RModule or an Interconnect.
Component specific parameters depend on the characteristics of the component and its
relationship to the algorithm. For example, degree of parallelism, precision, size of
internal memory (on FPGA), binding options for RModules, power states, are possible
component specific parameters. Component specific power functions capture the effect of
component specific parameters on the average power dissipation of the component. For
this we assume a switching activity of 12.5%. Component Power State (CPS) matrices
capture the power state for all the components in each cycle. For example, consider a
design that contains k different types of components (C1,…,Ck) with ni components of
type i. If the design has the latency of T cycles, then k two dimensional matrices are
constructed where the i-th matrix is of size T×ni (Figure 6). An entry in a CPS matrix
represents the power state (e.g. active or clock-gated) of a component during a specific
cycle and is determined by the algorithm. System-wide energy function represents the
energy dissipation of the designs belonging to a specific domain as a function of the
parameters associated with the domain.

Modeling based on the technique described above has the following advantages.

 various parameters get exposed at the algorithm level
 performance models for energy, area, and latency are generated in the form of

parameterized functions
 it is possible to rapidly estimate different performance metrics using only the

information captured in the models
 a parameterized model of a domain captures a set of designs (based on parameter

values) that can be analyzed for various performance tradeoffs.

13

MILAN: Model based Integrated Simulation

We provide a hierarchical modeling support to model the datapath. The hierarchy
consists of three types of components; micro, macro, and basic blocks. A basic block is
target FPGA specific. For example, the basic blocks specific to Xilinx Virtex II Pro are
LUT, embedded memory cell, I/O Pad, embedded multiplier, and interconnects. In
contrast, for Actel ProASIC 500 series of devices, there will be no embedded multiplier.
Micro blocks are basic architecture components such as adders, counters, multiplexers,
etc. designed using the basic blocks. In principle, there is no difference between a basic
block and a micro block. The classification is introduced to enable logical creation of a
basic library per device. A macro block is an architecture component that is used by some
instance of the target class of architectures associated with the domain. For example, if
linear array of processing elements (PE) is our target architecture, a PE is a macro block.

Each building block is associated with a set of component specific parameters. Power
states is one such parameter, which refers to various operating states of each building
block. For example, we can model two states, ON and OFF for each micro and basic
block. In ON state the component is active and in OFF state it is clock gated. For macro
blocks it is possible to have more than 2 states due to different combination of states of
the constituent micro and basic blocks. Power is specified as a function or constant value
(in the example model, power for different components are specified as constants).

In addition each block can be associated with a set of variables. Precision, depth and
width for memory, size of register or memory are some example of variables that can be
associated with a component.

Figure 7: CPS matrices

While the datapath is modeled as specified above, the model for control flow is relatively
tricky. Our focus of the modeling and estimation capability is rapid energy, latency, and
area estimation. Area can be estimated based on the model of the data path (sum of the
components’ areas). In order to model the control flow we make use of CPS matrices.
Component Power State (CPS) matrices capture the power state for all the components in
each cycle. For example, consider a design that contains k different types of components
(C_1,...,C_k) with n_i components of type i. If the design has the latency of T cycles,
then k two dimensional matrices are constructed where the i-th matrix is of size Txn_i.
An entry in a CPS matrix represents the power state of a component during a specific
cycle and is determined by the algorithm (Figure 6).

14

Final Report

However, specification of such a matrix is not easy. Hence, we take advantage of the
typical loop oriented structures of kernels such as matrix multiply, FFT, etc. for which
the FPGA based designs are created. If we analyze the CPS matrices, we can observe that
another easy way to specify the same information is through a table. Such table would
contain a number of rows where each row is a 3-tuple (component, state, #of cycles in
this state). As we are interested only in performance estimation, this much of information
is enough.

2.3.2 Design Flow for Reconfigurable Systems

Model Kernel
Designs

Parameter
Estimation

Enumartion
& Tradeoff
Analysis

Kernels
e.g. matrix

multiplication, FFT,...

Algorithm &
Architecture

Algorithm &
Architecture

Algorithm &
Architecture

. .
 .

Candidate Kernel
Designs

Design Tools

estimate model
parameters

domain

Applications
e.g. beamforming,

SDR, target tracking

Hierarchical
Dataflow
Modeling

Candidate
Application

Designs

id
en

tif
y

ap
pl

ic
at

io
n

ke
rn

el
s

kernel level
application level

design choices, reconfiguration
costs. performance estimates

Model Re-
configuration

1 2

4 5

3

Hierarchical DSE

DESERT HiPerE

6

Figure 8: Design flow for Reconfigurable Systems

As shown in Figure 7, design flow using our framework consists of 6 steps. The first
three steps deal with modeling the kernel designs based on domain specific modeling and
identifying design choices. The last 3 steps perform application level modeling and
design space exploration (These steps are also described in the previous chapter). In the
following, we discuss each step in detail.

 Modeling Kernel Design (1): In this step, the designer analyzes the kernels to
define domain specific models. The designer identifies the micro, macro, and
library blocks and the associated component specific parameters. The model of
the data path is graphically constructed in this step using GME. The designer can
also specify high-level scripts for the building blocks to be used in the next step.
In addition, CPS matrices for the algorithm are also specified.

 Parameter Estimation (2): Estimation of the cost functions for power and area
involves synthesis of a building block, low-level simulations, and in case of
power, the use of confidence intervals to generate statistically significant power
estimates. The simulations are performed off-line or, if required simulator is
integrated, automatically using specified high-level scripts. Instead, if a library of
models is available, the stored performance estimates are used directly. Latency
functions are estimated using the CPS matrices. System-wide energy is estimated
using the latency function and component specific power functions.

15

MILAN: Model based Integrated Simulation

 Enumeration and Tradeoff Analysis (3): In this step, the designer chooses the
candidate kernel designs that would be evaluated while designing applications.
Given a domain specific model of a kernel, a set of designs are identified based on
the parameter values and binding choices. The framework also generates
comparison graphs to compare the performance of the designs.

 Hierarchical Data flow Modeling (4): Once, we have identified implementation
choices for each kernel, we construct the application model as a hierarchical data
flow with alternatives. Compound, alternative, and leaf nodes are used to specify
the application model. The leaf nodes are also associated with FPGAs on which
the kernel will be implemented. In addition, each leaf node is associated with
performance estimates obtained using the high-level performance estimator.

 Modeling Reconfiguration (5): Based on the mapping and area estimates of the
task implementations, pseudo nodes are introduced to model reconfiguration. This
step is automatic within our framework. The application model is analyzed using
topological sort and for each consecutive tasks (source and destination) executing
on a single FPGA, the application model introduces a pseudo task. Each pseudo
task is automatically associated with a set of alternatives and design constraints
are introduced to ensure that correct reconfiguration is chosen based on the
choices selected for the source and destination tasks.

 Hierarchical DSE (6): This step uses DESERT and HiPerE to explore the design
space using the application model. DESERT applies all the performance and
design constraints and selects a set of designs that meet the constraints. HiPerE
evaluates the selected designs based on their performance estimates and allows
the designer to choose the final design based on the given performance
requirements. In the following, we discuss this step in detail.

2.3.3 Illustrative Design Space Exploration for Reconfigurable
Devices

A matrix multiplication algorithm for linear array architectures is proposed in [32]. We
use this algorithm to demonstrate modeling, high-level performance estimation, and
performance tradeoff analysis capabilities of the design framework. Thus it uses only
Step 1, 2, and 3 of the design flow. The focus is to generate a set of energy efficient
designs for matrix multiply using Xilinx Virtex-II Pro.

In Step 1, the architecture and the algorithm were analyzed to define the domain specific
model. Various building blocks that were identified are register, multiplexer, multiplier,
adder, processing element (PE), and interconnects between the PEs. Among these
building blocks only the PE is a library block and the rest of the components are micro
blocks. Component specific parameters for the PE include number of register (s) and
power states ON and OFF. ON refers to the state when the multiplier (within the PE) is in
ON state and OFF refers to the state when the multiplier is in OFF state. Additionally, for
the complete kernel design number of PEs (pe) is also a parameter. For N×N matrix
multiplication, the range of values for s is 1 ≤ s ≤ N and for pe it is 1 ≤ pe ≤ N(⎡N/s⎤.) For
matrix multiplication with larger size matrices (large values of N) it is not possible to
synthesize the required number of PEs due to area constraint. In such cases, block matrix
multiplication is used. Therefore, block-size (bs) is also a parameter.

16

Final Report

Once the data path was modeled we generated the cost function for power and area for
the different components. Switching activity was the only parameter for power functions.
To define the CPS matrices, we analyzed the algorithm to identify the operating state of
each component in different cycles. As per the algorithm [12], in each PE, the multiplier
is in ON state for T/(⎡n/s⎤) cycles and is in OFF state for T×(1-1/ ⎡n/s⎤)) cycles. All other
components are active for the complete duration.

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 16
Block Size

N
or

m
al

iz
ed

 V
al

ue
s

Latency
Energy
Area

Figure 9: Energy, latency, and area tradeoffs

In Step 2, we performed simulations to estimate the power dissipated and area occupied
by the building blocks. The latency (T) of this design using N\⎡N/s⎤ PEs and s storage
per PE is T=(N2+2N(⎡N/s⎤) –(⎡N/s⎤) +1). Using the latency function, component specific
power functions, and CPS matrices, we derived the system-wide energy function.

Finally, we analyzed the model to identify a set of designs that provide a tradeoff
between different performance metrics. Figure 8 shows the variation of energy, latency,
and area for different block sizes for 16×16 matrix multiplication. It can be observed that
energy is minimum at a block size of 4 and area and latency are minimum at block size 2
and 16 respectively. This information is used to identify a suitable design (block size)
based on latency, energy, or area requirements.

Figure 9 shows energy distribution among multipliers, registers, and I/O pads for three
different designs. Design 1 corresponds to the original design described in [32] and
Design 2 and 3 are low energy variants discussed in [12]. Using Figure 9, we identify
that the registers dissipate the maximum energy and select them as candidates for
optimization. Optimizations considered include reduction of number of registers through
analysis of data movements (Design 2) and use of CLB based SRAMs instead of registers
to reduce energy dissipation (Design 3). Details of the optimized algorithm are available
in [12].

17

MILAN: Model based Integrated Simulation

47%
32% 24%

0%
10%

20%
30%
40%
50%

60%
70%
80%

90%
100%

Design 1 Design 2 Design 3

En
er

gy
 D

is
tri

bu
tio

n

Multiplier Register I/O

76%

51%

14%

0%
10%
20%

30%
40%
50%
60%
70%

80%
90%

100%

Design 1 Design 2 Design 3

En
er

gy
 D

is
tri

bu
tio

n

(a) 3x3 (b) 12x12
Figure 10: Reducing energy dissipation

2.4 Multigranular Simulation

One important requirement of the heterogeneous design paradigm is the
orthogonalization of concerns, that is to separate various aspects of design in order to
effectively explore alternative solutions. For example, system requirement specifications
and implementation or computation and communication are good candidate concerns that
should be separated. In large and complex systems there is a need for modular design to
mitigate complexity. Systems are typically designed in terms of components and
component interactions. A component usually embodies some kind of computation and it
has a standardized interface for communication. This helps to separate computation from
communication and the developer can design and implement one without being
concerned with the other.

Separation of system requirements and implementation is desirable because the former
captures the intention of the system designer and provide a high level view, while the
latter is specific and is done at a much finer level of granularity. By capturing the
intention separate of the implementation, the high level abstraction is preserved, allowing
the user to specify alternate implementations for the same intent. These alternatives may
be in the form of different algorithms to solve the same problem, a choice between
hardware and software implementation, or a selection of programming language.
Furthermore, implementation is a refinement of the intent and needs to be captured at
different levels of granularity. Initially a coarse grain implementation is used for
prototyping. This can be transformed in stages to a detailed low-level implementation
later.

By capturing alternative implementations at different levels of granularity we gain the
flexibility of choosing the implementation according to the exact needs of the system.
The development cycle starts from a coarse grain implementation. This is tested for
functional correctness and is then refined to different alternative implementations. The

18

Final Report

feasibility of these alternatives is explored by profiling them. This is followed by system
simulation of a few feasible system wide implementations to validate the system with
respect to the requirements. Simulation becomes more important as testing of these
applications on actual hardware is expensive and time consuming, especially for
applications implemented in hardware such as FPGAs or ASICs.

The MILAN modeling language incorporates a wide variety of domain specific modeling
concepts that as follows:

• A separate modeling sublanguage for modeling of hardware applications that uses
domain specific concepts such as hardware modules, ports, busses clocks and
event triggered functions,

• Strong data typing of communication ports for accurate simulation of data
exchange and to catch modeling errors at design time,

• Parameterization of components to develop generic modules for reuse, as well as
to design a set of solutions instead of a single solution,

• Data abstraction and information hiding to better manage complexity using
multiple aspects of the same module,

• Explicit designs of alternative implementations to capture design choices in order
to better explore different solutions, and

• A paradigm to compose hardware and software components together to facilitate
the design of heterogeneous systems.

Hierarchy in the modeling paradigm serves two purposes. First, it helps separate intention
from implementation. Using hierarchy the system is designed according to the intention,
that is, the high-level dataflow of the system. Then the design in refined by designing the
modules in detail until it is low-level enough to provide an implementation. Second, it
helps to mitigate complexity. The dataflow graph of large systems can be very complex;
hierarchy hides data at different levels to make the systems more manageable.

In the hierarchical graph representing the system, typically the lowest level modules
contain the behavioral information. Using multi-granular simulation the user can choose
to provide behavioral information for any module at any level of hierarchy. Thus, the user
can simulate a system with a mixture of coarse grain and fine grain implementations. The
code generator synthesizes the code for the system and whenever it finds a module
marked for using the coarse grain implementation it uses that and doesn’t traverse deeper
in that module.

2.5 Accurate Functional Simulation
There are two kinds of simulations, performance and functional, that are performed on a
system under development. Performance simulators simulate the system to generate the
metrics for system parameters such as latency, throughput, power, energy and so on,
while the functional simulator simulates the system’s functionality. Designing an
embedded system typically involves performing functional simulation on it before
committing the design. A functional simulation essentially verifies the behavior of a
system at a higher-level and helps capture the design errors and inconsistencies at an
earlier stage before proceeding to a detailed implementation of the system. It lets the

19

MILAN: Model based Integrated Simulation

designer verify a coarse-grain implementation of the system with its functional
requirements.

Accurate functional simulation of a system based on the dataflow approach that MILAN
advocates depends on two factors: accurate functional representation of the dataflow
components and the correct simulation of the runtime scheduler (in case of asynchronous
dataflow). Providing functional code for the dataflow components is the users’ job.
However, MILAN needs to schedule the dataflow graph exactly as the real runtime
system does.

MILAN supports three functional simulators: Matlab, SystemC and VHDL. The MILAN
framework is capable of simulating both synchronous and asynchronous dataflow.
Synchronous dataflow can be scheduled statically in compile time. MILAN uses the same
code generator module for both simulation and system synthesis ensuring consistency.
MILAN includes a MATLAB component that implements the same scheduling strategies
as the runtime system. Both a simple round robin scheduling strategy and several priority
based schemes are supported. The MATLAB environment provides the same simulation
results as the final target system for the same models and the same conditions provided
the component implementation are identical.

The design of functionality implemented in hardware is captured using an intuitive
graphical language supported by MILAN. The entire system’s description in VHDL
and/or SystemC is automatically generated from them using a model-interpreter. It also
facilitates the automatic generation of data type package, glue code, clock code, and
parameters from the application models. Furthermore, the generated VHDL descriptions
are in conformance with the IEEE Std 1076-1993 standard of the VHDL. Any simulator
compatible with this standard can be used to compile the generated code and simulate it.

Furthermore, different simulation modes are also supported. In order to simulate a
module in isolation, the module needs to be driven by sourcing functions and the output
of the module needs to be sent to sinking functions. In MILAN we allow the user to
capture the exact sourcing and sinking function associated with each communication port.
Hence, to synthesize code for an isolated simulation of a module, the true implementation
of the module in question is used along with the sourcing and sinking functions from
adjacent modules. The interpreter generates code of the module in question and creates
sourcing and sinking modules for it. Isolated simulation can be performed not only on a
single module, but also on a subgraph and the modules adjacent to this graph will be used
to supply and consume data.

For a complete simulation of the entire system a single design needs to be chosen. The
user can choose between alternative implementations by marking one of various
alternative implementations to use. Alternatively, the design-space exploration tool can
identify the point designs that satisfy the all constraints and mark the selected alternatives
automatically. The interpreter then traverses through the models and picks up the chosen
alternative implementations to form a single design. The true implementations of the
design are then used to generate Matlab, VHDL or SystemC code for a full simulation.

20

Final Report

To simulate hardware in a heterogeneous system, it is necessary to facilitate
communication between hardware and software components. In a real-world system,
hardware-software interactions are facilitated using device drivers. However, MILAN
does not require device drivers to simulate the system. The communication is achieved by
using entities called proxies. At a hardware-software interface, proxies are generated on
both sides. For example, a hardware proxy will read data from the hardware module at
the interface and pipe it to its software counterpart using TCP. Similarly, it will read data
from the pipe and provide it to the hardware module. The software proxy does the same
at the other end. The interpreter breaks the heterogeneous graph into hardware and
software graphs. It then generates the proxies and connects the respective graphs at the
interface. Finally, the two graphs are sent through their respective interpreters. The
hardware and software code can finally be compiled independently and then run together
to simulate the hardware.

21

MILAN: Model based Integrated Simulation

3 Lessons Learned
The MILAN project studied several key phases required for energy and latency efficient
application design using embedded systems. We discuss a number of lessons learned in
this chapter.

3.1 Application modeling
Synchronous data flow (SDF) emerged as a simple yet powerful abstraction to model
signal processing applications especially for energy efficient design using power aware
embedded systems. SDF specifies an application as a directed acyclic graph where the
nodes model the application tasks and the edges model the order of execution among the
tasks. SDF allows efficient scheduling of application tasks via topological sorting of the
task graph while exploiting available parallelism. In order to support low-power design
our target processing and memory devices supported a number of operating states.
Therefore, during application design, it is required to identify the most suitable operating
state for an application task while meeting given performance constraints. This requires
operating state transition between successive task executions. SDF emerged as a suitable
model that was easily extended to model operating state transition. SDF was also well
suited for design space exploration using DESERT, performance evaluation using
HiPerE, and automatic high-level code generation. For the MILAN design environment,
SDF was also extended easily to support a hierarchical modeling that allowed user-
friendly graphical interface towards application modeling. A variant of SDF,
asynchronous data flow (ASDF) was also supported by MILAN. Both SDF and ASDF
combined have proved to be simple yet powerful abstractions to model a wide variety of
signal processing applications especially used in the defense community.

3.2 Simulator integration
The main focus of the MILAN project was to develop a design environment that allowed
integration of a wide variety of popular simulators suitable for embedded devices. A
number of such simulators are available from academia and industry. Some examples are
SimpleScalar, SimplePower, PowerAnalyzer, JouleTrack, ARMulator, Xilinx XPower,
ModelSim, among others. The biggest concern while integrating these simulators is lack
of a standard interface and difference in simulation speed. Therefore, it is a very difficult
task to integrate these simulators in a manner that they interact with each other to
estimate system-wide performance for a heterogeneous embedded system that integrates
several processing and memory devices. Therefore, MILAN project has developed a
hierarchical simulation technique [26]. Hierarchical simulation relies on a high-level
performance estimator (HiPerE) to generate system-wide performance estimates by
integrating components specific performance estimates generated using the
aforementioned simulators. Thus HiPerE hides the lack of common interface and
difference in speed among the low-level simulators. MILAN, through the use of GME,
allows integration of individual simulators that are driven by the models supported by
MILAN. Thus, given appropriate high-level code and input stimuli for an application
task, simulation can be automatically performed and the component specific performance
estimate can be automatically updated in the MILAN models. HiPerE uses the updated

22

Final Report

models to generate system-wide performance estimates. Use of HiPerE also allows reuse
of component specific performance estimates.

3.3 Device selection
The MILAN project studied the problem of device selection. This problem assumes that
the target application is specified but the target hardware is not specified. Instead a
number of processing and memory devices are available which should be evaluated to
identify a suitable combination of devices that meet the functional and performance
requirements. Other aspects that can be considered are size, cost, and weight. Device
selection is a larger problem (with respect to design space) than application mapping and
scheduling as device selection includes mapping and scheduling while evaluating a
number of devices, which significantly increases the design space. MILAN is able to
evaluate a given set of devices due to its support for simulator integration (for each
candidate device) and availability of HiPerE. Device selection also requires design
constraints in addition to performance constraints. Design constraints specify valid
combination of devices. For example, a designer may not want to choose a target
heterogeneous embedded system, which integrates 2 FPGAs but would want 1 FPGA
with a general purpose processor. MILAN supports object constraint language (OCL).
OCL was identified as an efficient technique to specify design constraints and our design
space exploration tool, DESERT, could support design space exploration based on design
constraints without any modification.

3.4 Hierarchical design space exploration
MILAN supports hierarchical design space exploration which integrates a pruning
heuristic followed high-level estimation and low-level simulation. The primary difference
between our version of a pruning heuristic and the traditional version of optimization
heuristics is generation of a set of designs as opposed to a single optimal design. The set
of designs consists of the designs that meet the given performance constraints. By
ensuring that we have a set of good designs as opposed to one optimal design, we
increase the chances of finding the real-optimal design from the set even when
approximated high-level models are used. An optimal design is the best design identified
(based on the performance requirements) by the optimization heuristic using the
underlying approximated high-level model. A real-optimal design is the design that is
optimal when the designs are implemented using hardware and performance is measured.
A real-optimal design can be different than the design identified by the optimization
heuristic because the later assumes a high-level approximated model with lower
parameter coverage. For ease of comparison, we assume that the most detailed low-level
simulator available is accurate and can be used to identify the real optimal solution. We
also assume that the errors induced by approximations are marginally low when
compared with the actual performance values. Hierarchical design space exploration is
robust against approximation errors due to high-level abstractions (models) used by the
optimization heuristics and reduces the number of simulations necessary when compared
against simulation based design space exploration. Hierarchical design space exploration
allows a designer to potentially combine different pruning heuristics and high-level
estimators to suite the need of target application design problem domain.

23

MILAN: Model based Integrated Simulation

3.5 Duty cycle based design space exploration
Duty cycle is the proportion of time during which a system is operated. Such
specification allows modeling of a period of execution as alternate active and inactive
phases. Energy dissipation (e.g. due to leakage current), especially for systems with low
duty cycle, during the inactive phases can contribute significantly to the overall energy
dissipation of the system. Therefore, the tradeoff between the performance cost of
shutting down and starting up a device and the performance cost of remaining idle needs
to be considered during system design. HiPerE, a high-level performance estimator
integrated in the MILAN framework allows performance estimation and design space
exploration based on duty cycle specification.

24

Final Report

4 Technology Transition
The MILAN environment has been used for several different projects. By the time this
document was produced, there have been approximately 240 unique downloads (see
Appendix) of the MILAN framework. We briefly discuss two projects in this section.

4.1 Power Aware Remote Information System (PARIS)
The focus of the PARIS project is to identify an energy efficient implementation of a
personnel detection algorithm. The personnel detection algorithm is required to processes
input in real-time and hence there is a hard latency requirement. In addition, as the
system needs to be deployed in a power-constrained environment, energy dissipation is
also an important metric. We used MILAN to identify an energy efficient hardware and
the corresponding mapping for the above algorithm from a set of devices that consists of
traditional processors, FPGAs, and DSPs.

Using MILAN, we modeled the application (a 5 stage linear array of tasks) and the
candidate hardware choices. The PARIS application is a multi-rate application like the
beamforming algorithm discussed earlier. Resource modeling for PARIS involved
modeling of different operating states, performance cost of state transitions, and power
consumption for each state. We also performed several simulations to estimate the
performance values associated with the mappings of the application tasks and the target
hardware devices. PARIS project allows only certain combination of devices. These
design constraints were specified using OCL. We also evaluated both floating and fixed-
point implementation for each application task. The size of the design space prior to the
use of DESERT was approximately 73,000.

Following modeling, we performed a two-level design space exploration using DESERT
and HiPerE. DESERT cannot evaluate designs based on duty-cycle specifications.
However, it is not practical to use simulation to evaluate 73,000 designs. For example,
simulation of a design using TI Code Composer Studio (for DSP) takes approximately
25-30 minutes. Even with HiPerE, it takes approximately 10 hours to estimate the
performance of all the designs and a tedious manual comparison of all the estimates to
identify the energy efficient design. Therefore, DESERT is used to evaluate the large
design space based on the latency requirement. We initially assumed a constant rate
application model and evaluated all the target hardware for a single instance of execution
of the application. Later, we used HiPerE to evaluate the designs identified by DESERT.
Evaluation of the designs using HiPerE was based on duty-cycle specification and the
design with minimum energy dissipation was selected as the final design and the
associated architecture was identified as the target architecture.

Initially, DESERT identified two candidate architectures, Virtex-II Pro and a
combination of Actel ProASIC and TI DSP. Virtex-II Pro based designs were more
efficient in terms of latency and energy both for a single instance of execution. However,
based on duty-cycle specifications (which evaluates a design over a period of time that
includes, data processing and idling or shut-down and start-up), the combination of Actel

25

MILAN: Model based Integrated Simulation

ProASIC and DSP turned out to be more efficient. This is because Virtex-II Pro has a
very high quiescent power and start-up cost.

4.2 Power Aware Sensing and Tracking Analysis (PASTA)
The PASTA application design problem is to identify an energy efficient mapping of a
automated target recognition (ATR) application onto a heterogeneous embedded system
while meeting the given latency constraint. The underlying architecture for the PASTA
project is already specified (http://pasta.east.isis.edu).

The hardware includes sensor(s), a processor, several microcontrollers, memories, and a
radio. Each component can be independently turned on or off. In addition, the processor
(Intel PXA 255) supports voltage and frequency scaling. The target application is an
automated target recognition algorithm that performs beamforming based on acoustic
signals from the sensors. The beamforming application consists of a linear array of 6
tasks. The first three tasks are “receive data” which is mapped onto the radio, “sampling”
which is mapped onto the microcontroller, and “false-alarm detection” which can be
mapped onto either the microcontroller or the processor. The last three tasks that compute
beamforming are FFT, peak-pick, and delay sum.

The design problem for PASTA involves identification of the operating state of each
component for each task such that the complete ATR application dissipates the minimum
energy while satisfying the latency requirement. All the components in the PASTA stack
have at least two operating states; ON and OFF. There is a constant amount of time and
energy spent to switch on each component. In addition, the processor has 6 different
operating frequencies. Tasks can be mapped onto the processor or the microcontroller.
When mapped onto a processor, the task can be executed in a certain operating state and
the performance of the mapping depends on the operating state. Transition between any
two operating states also involves time and energy costs which depend on the source and
destination states. We modeled all the above in MILAN. The resulting design space was
approximately 500,000. However, we noticed that the transition costs between different
operating states of the processor are negligible except one transition, which involves
changing operating frequency of the bus. Hence, the design space was reduced to 12,000.
As with the other examples, we used simulators for Intel PXA 255 and the
microcontroller to estimate performance of all the mappings. The start-up costs and state
transition costs are estimated based on the data sheets provided by the vendors.

Design space exploration involved DESERT and HiPerE. For design space exploration,
the latency constraint was assumed to be < 1 sec. DESERT initially pruned the design
space to 10 designs based on the latency constraint. DESERT does not include the
performance of the sensor, radio, and the memory while evaluating the design space.
Hence we used HiPerE to identify the design with minimum energy dissipation. In the
resulting design, the components, which are idle, are switched off. For example, while the
radio is receiving data, the processor is turned off and is turned on only when data is
ready for processing. The design also maps the false-alarm detection task onto the
microcontroller, as while latency is higher compared with the PXA processor, energy
dissipation is lower.

26

Final Report

5 Publications Acknowledging this Contract

The list of documents and published manuscripts attached to the final report are described
below. The “File Name” corresponds to the name of the soft copy file for each document.

Num Title
1 MILAN User Manual 1.1
2 MILAN: A Model Based Integrated Simulation Framework for Design of Embedded

Systems, Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi A., Mohanty S.,
Mathur V., Neema S., Nordstrom G., Prasanna V., Raghavendra, C., Singh M.
Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES 2001),
Snowbird, Utah, June 2001

3 A Hierarchical Simulation Framework for Application Development on System-on-Chip
Architectures, Mathur V. and Prasanna V. K., 14th IEEE Int'l ASIC-SOC Conference,
Washington DC, September 2001

4 Rapid Design Space Exploration of Heterogeneous Embedded Systems using Symbolic
Search and Multi-Granular Simulation, Sumit Mohanty, Viktor K. Prasanna, Sandeep
Neema, and James Davis, Workshop on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2002), Berlin, Germany, June 2002

5 Domain-Specific Modeling for Rapid System-Wide Energy Estimation of
Reconfigurable Architectures, Seonil Choi, Ju-wook Jang, Sumit Mohanty, Viktor K.
Prasanna, The International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA 2002), Las Vegas, Nevada, USA

6 A Model-based Methodology for Application Specific Energy Efficient Data Path
Design using FPGAs, Sumit Mohanty, Seonil Choi, Ju-wook Jang, Viktor K.
Prasanna, IEEE 13th International Conference on Application-specific Systems,
Architectures and Processors (ASAP 2002), San Jose, California

7 Rapid System-Level Performance Evaluation and Optimization for Application Mapping
onto SoC Architectures, Sumit Mohanty and Viktor K. Prasanna, 15th IEEE
International ASIC/SOC Conference, Rochester, New York

8 Towards Automatic Synthesis of a Class of Sensor Network Applications, Amol Bakshi,
Jingzhao Ou and Viktor K. Prasanna, Intl. Conf. On Compilers, Architectures, and
Synthesis for Embedded Systems (CASES), October 2002

9 Ledeczi A., Davis J., Neema S., Agrawal A.: Modeling Methodology for Integrated
Simulation of Embedded Systems, ACM Transactions on Modeling and Computer
Simulation, 13, 1, pp. 82-103, January, 2003

10 Agrawal A., Ledeczi A.: Multigranular Simulation of Heterogeneous Embedded
Systems, Tenth IEEE Conference and Workshops on the Engineering of Computer
Based Systems (ECBS), p. 3-10, Huntsville, Alabama, April 7, 2003.

11 An Algorithm Designer's Workbench for Platform FPGAs, Sumit Mohanty and Viktor
K Prasanna, 13th International Conference on Field Programmable Logic and
Applications (FPL 2003), September 2003

12 A Modeling and Exploration Framework for Mapping of Linear Array of Tasks onto
Adaptive Computing Systems, Egor Andreev, Sumit Mohanty, and Viktor K Prasanna,
6th Annual Military and Aerospace Programmable Logic Devices (MAPLD)
International Conference, September 2003

13 A Hierarchical Approach for Energy Efficient Application Design Using Heterogeneous

27

MILAN: Model based Integrated Simulation

Embedded Systems, Sumit Mohanty and Viktor K Prasanna, International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2003),
October-November 2003

14 Domain-Specific Modeling for Rapid Energy Estimation of Reconfigurable
Architectures, Seonil Choi, Ju-wook Jang, Sumit Mohanty, and Viktor K. Prasanna,
Special Issue on Configurable Computing of the Journal of Supercomputing, Kluwer

15 MILAN: A Design Environment for Latency and Energy Efficient Implementation of
Adaptive Antenna Applications, Sumit Mohanty, Jingzhao Ou, and Viktor K.
Prasanna, to appear in Adaptive Antenna Arrays: Trends and Applications, Ed. Satish
Chandran, Springer, 2004

16 Design of High-Performance Embedded System using Model Integrated Computing,
Sumit Mohanty and Viktor K. Prasanna, 2nd RTAS Workshop on Model-Driven
Embedded Systems, 2004

17 A Framework for Energy Efficient Design of Multi-Rate Applications using Hybrid
Reconfigurable System, Sumit Mohanty and Viktor K. Prasanna, Field Programmable
Logic and its Application (FPL), 2004

28

Final Report

6 References and Related Publications
[1] Actel ProASIC Plus. http://www.actel.com/products/proasic/

[2] Agrawal A..: “Hardware Modeling and Simulation of Embedded Applications”, Master's Thesis,
Vanderbilt University, May, 2002.

[3] Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi A., Mohanty S., Mathur V., Neema S.,
Nordstrom G., Prasanna V. K., Raghavendra C., Singh M., “MILAN: A Model Based Integrated
Simulation for Design of Embedded Systems,” Language Compilers and Tools for Embedded
Systems, 2001.

[4] ARMulator. http://www.arm.com/support/ARMulator.html

[5] Bakshi A., Ou J., and Prasanna V. K., “Towards Automatic Synthesis of a Class of Application-
Specific Sensor Networks,” Intl. Conf. on Compilers, Architecture, and Synthesis for Embedded
System, 2002.

[6] Bohrer P, et. al: “Mambo -- A Full System Simulator for the PowerPC Architecture,” ACM
SIGMETRICS Performance Evaluation Review, 31(4): 8-12, March 2004.

[7] Choi S., Jang J., Mohanty S., and Prasanna V K, “Domain-Specific Modeling for Rapid System-
Wide Energy Estimation of Reconfigurable Architectures,” Engineering of Reconfigurable
Systems and Algorithms, 2002.

[8] Farkas, J.: “Asynchronous dataflow scheduling in the MATLAB environment”, M.S. Thesis,
Vanderbilt University, 2002.

[9] Generic Modeling Environment. http://www.isis.vanderbilt.edu/Projects/gme/

[10] IBM PowerPC 405. http://www-3.ibm.com/chips/techlib/techlib.nsf/products/
PowerPC_405_Embedded_Cores

[11] Intel PXA 255/270. http://www.intel.com/design/pca/prodbref/252780.htm

[12] Jang J., Choi S. and Prasanna V. K.: “Energy-Efficient Matrix Multiplication on FPGAs,” Proc.
of Field Programmable Logic and Applications, 2002.

[13] JouleTrack: A web based software energy profiling tool. http://www-
mtl.mit.edu/research/anantha/jouletrack/JouleTrack/

[14] Karsai G., Sztipanovits J., Ledeczi A., and Bapty T.: Model-Integrated Development of
Embedded Software, Proceedings of the IEEE, Vol. 91, Number 1, pp. 145-164, January, 2003.

[15] Lahiri K., Raghunathan A., and Dey S.: “Efficient Power Profiling for Battery-driven Embedded
System Design,” IEEE Tran. on Computer-Aided Design of Integrated Circuits and Systems,
2004.

[16] Ledeczi A., et.al.: “GME Users Manual”, available from www.isis.vanderbilt.edu/projects/gme.

29

http://www.isis.vanderbilt.edu/

MILAN: Model based Integrated Simulation

[17] Ledeczi A., et.al.: “Composing Domain-Specific Design Environments”, Computer,
pp. 44-51, November, 2001.

[18] Ledeczi A., Davis J., Neema S., and Agrawal A.: “Modeling Methodology for Integrated
Simulation of Embedded Systems”, ACM Transactions on Modeling and Computer Simulation,
13, 1, pp. 82-103, January, 2003.

[19] Lee E. A. and Messerschmidt D. G.: “Static scheduling of synchronous data flow programs for
digital signal processing”, Transactions on Computers, C36 (1), 24-35, 1987.

[20] Mathur V. and Prasanna V. K., “A Hierarchical Simulation Framework for Application
Development on System-on-Chip Architectures,” IEEE Intl. ASIC/SOC Conference, 2001.

[21] Micron, Mobile SDRAM. http://www.micron.com/

[22] Mohanty S. and Prasanna V. K.: “Rapid System-Level Performance Evaluation and Optimization
for Application Mapping onto SoC Architectures,” 15th IEEE Intl. ASIC/SOC Conference, 2002.

[23] Mohanty S, Prasanna V K, Neema S, Davis J: “Rapid Design Space Exploration of
Heterogeneous Embedded Systems using Symbolic Search and Multi-Granular Simulation,”
Language Compilers and Tools for Embedded Systems, 2002.

[24] Mohanty S. and Prasanna V. K.: “An Algorithm Designer's Workbench for Platform FPGAs,”
Field Programmable Logic and Applications, 2003.

[25] Mohanty S., Ou J., and Prasanna V. K.: “An Estimation and Simulation Framework for Energy
Efficient Design using Platform FPGAs,” IEEE Symposium on Field-programmable Custom
Computing Machine, 2003.

[26] Mohanty S. and Prasanna V K: “A Hierarchical Approach for Energy Efficient Application
Design Using Heterogeneous Embedded Systems,” Intl. Conf. on Compilers, Architecture, and
Synthesis for Embedded System, 2003.

[27] Mohanty S. and Prasanna V K: “Design of High-Performance Embedded System using Model
Integrated Computing,” 2nd RTAS Workshop on Model-Driven Embedded Systems, 2004.

[28] Mohanty S. and Prasanna V K: “A Framework for Energy Efficient Design of Multi-Rate
Applications using Hybrid Reconfigurable System,” Field Programmable Logic and its
Application, 2004.

[29] Neema S.: “System Level Synthesis of Adaptive Computing Systems,” Doctorate Thesis,
Vanderbilt University, Department of Electrical and Computer Engineering, May, 2001.

[30] Ou J., Choi S., and Prasanna V. K.: “Performance Modeling of Reconfigurable SoC
Architectures and Energy-Efficient Mapping of a Class of Applications,” Field-Programmable
Custom Computing Machines, 2003.

[31] PowerAnalyzer. The SimpleScalar-Arm Power Modeling Project.
http://www.eecs.umich.edu/~jringenb/power/

30

Final Report

[32] Prasanna V. K. and Tsai Y.: “On Synthesizing Optimal Family of Linear Systolic Arrays for
Matrix Multiplication," IEEE Transactions on Computers, Vol. 40, No. 6, 1991.

[33] Riley R., Thakkar S., Czarnaski J., and Schott B.: “Power-Aware Acoustic Beamforming,”
International Military Sensing Symposium, 2003.

[34] Scrofano R., Choi S., and Prasanna V. K.: “Energy Efficiency of FPGAs and Programmable
Processors for Matrix Multiplication,” IEEE International Conference on Field Programmable
Technology, 2002.

[35] Scrofano R., Mohanty S., Prasanna V. K., Bogdanowicz J. F., and Wanek E. W.: “Memory
Configuration based Design Space Exploration using MILAN,” High Performance Embedded
Computing, 2004.

[36] SimpleScalar Tool Suite. http://www.simplescalar.com/

[37] SimplePower: http://www.cse.psu.edu/~mdl/software.htm

[38] Singer P.: “The Optimal Detector,” SPIE Conference: Signal and Data Processing for Small
Targets, 2002.

[39] Sinha A. and Chandrakasan A.: “JouleTrack-A Web Based Tool For Software Energy Profiling,”
Design Automation Conference, 2001.

[40] Sztipanovits J. and Karsai G.: “Model-Integrated Computing”, Computer, Apr. 1997, pg. 110-
112.

[41] TI C5000 Series DSP. http://dspvillage.ti.com/

[42] Warmer D. G. and Kleppe A. G.: The Object Constraint Language : Precise Modeling With
UML, Addison-Wesley, 1999.

[43] Xilinx Virtex-II Pro Series of devices. http://www.xilinx.com/

[44] Xilinx Xpower – Power Estimator for Xilin FPGAs. http://www.xilinx.com/

31

	AFRL-IF-WP-TR-2005-1555
	Final Report for 29 June 2000 – 31 December 2004
	

	2005-1555.pdf
	1 Introduction
	1.1 MILAN overview
	2 Summary of Contributions
	2.1 Hierarchical Design Space Exploration
	2.1.1 MILAN Design Flow for Hierarchical Design Space Exploration
	2.1.2 Key Ideas of Our Methodology
	2.1.3 Advantages of Our Methodology

	2.2 Model, Design, and Simulator Reuse in MILAN
	2.3 MILAN for Reconfigurable Systems
	2.3.1 Modeling
	2.3.2 Design Flow for Reconfigurable Systems
	2.3.3 Illustrative Design Space Exploration for Reconfigurable Devices

	2.4 Multigranular Simulation
	2.5 Accurate Functional Simulation

	3 Lessons Learned
	3.1 Application modeling
	3.2 Simulator integration
	3.3 Device selection
	3.4 Hierarchical design space exploration
	3.5 Duty cycle based design space exploration

	4 Technology Transition
	4.1 Power Aware Remote Information System (PARIS)
	4.2 Power Aware Sensing and Tracking Analysis (PASTA)

	5 Publications Acknowledging this Contract
	6 References and Related Publications

