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Abstract:   
Asymptotic evaluation of the far field for large kro results in an analytical expressions, 
which provides a significant physical insight into the physical process-taking place in 
element pattern formation. 
 
I- Representation of a Single Element Excitation 
 
Fig. (1) schematically 
illustrates a circular array 
of N open ended parallel 
plate-waveguides, in a 
perfectly conducting 
cylinder coated with a 
dielectric cover.    The 
waveguides are assumed 
to propagate solely the 
TEM mode.  Only the i = 
o element is fed, the others 
are match terminated.  
 
The integral representation, regards an infinitely
the 2π periodicity is enforced by image element
placed an angular distance 2π apart.  In this infi
single element excitation is a superposition of th
±1,…).  Each source is represented in terms 
numbers ν.  
 

Denoting the angular electric field component by
an excitation, i.e. the field due the excitation of th
the modal voltages V  and currents I  are define
arbitrary r in the external radial waveguide, can 
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where νm=ν+2π/βm, and β=2π/N.  Expression 
from phase sequence excitation, to the incident 
coefficient T(ν,νo) and the voltage ratio V e (
dependent on the form of aperture electric field b
Yi

o is the admittance of the fundamental guide m
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Figure 1 Cross section of a ring array
 extended space −∞ ≤ ≤ ∞φ , in which 
s and periodic image sources, the latter 
nite angular space, the actual, physical 
e excitation of individual sources (s=0, 
of a band spectrum of angular wave 

 Eφ(r,φ; ν) that would result from such 
e i= o element.   In the feed waveguide, 
d in the usual manner.  The field at an 
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(1) relates the external field resulting 
wave voltage Vinc, via the transmission 
r V rm

i
o m, ) / ( , )1 ν ν , both of which are 

ut not on its on its complex amplitude.  
ode, and Ga is the real part of the active 
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admittance Ya.  
 
II- Element Pattern  
Expressions for the field resulting from a single element excitation are obtained with the 
help of (1), and the use of 2π/β periodicity in the ν of the Floquet fields, where 

T To m( , ) ( , )oν ν ν ν= , and in view of the identity f m d f
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the infinite sum of the finite integrals in (1) may be replaced by a single infinite integral 
[1,2,3], i.e. 
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As , even though k ro → ∞ ν < ∞ , it is permissible in (2) to use directly the large 
argument, first order asymptotic expression for the derivative of .  Therefore, 
the far field corresponding to (2) becomes 
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III- Transmission Coefficient T(v, νo)   
III-1 Active Admittance: 
When the form of the aperture field is a slowly varying function of ν, the behavior of the 
transmission coefficient determines the element pattern and hence, is of a very special 
importance.  Where the transmission coefficient is function of the active reflection 
coefficient Γa(ν) given by: 
T Y Yo a o a o a o a a o a( , ) ( , ), ( , ) ( ( ) ( )) / ( ( ) ( )*Y Y )ν ν ν ν ν ν ν ν ν ν= + = − +1 Γ Γ         (4) 

From (4) it is seen that the active admittance Ya(ν) uniquely specifies T(ν,νo) for a given 
match point vo . An approximate expression for Ya(ν) can be obtained as in planar arrays 
from the requirement of continuity of complex power at the aperture in a unit cell [1,2]: 
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where Ye and Yi are respectively the modal admittance of the radial and TEM guides.  
Since and the voltage ratios in (5) depend on the form of the aperture electric field, Eap, 
Ya(ν) may be calculated only provided this form is known.  For the case of a single mode 
aperture mode will be treated as an example.  The first term in the right hand side of (5) 
represents the contribution of the exterior region to the input admittance and is strongly 
ν-dependent because of the form of the dominant radial mode characteristic admittance 
Ye(r ,ν) at r = ro which is is given by [3] 
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where, k ko r= ε and the air-dielectric interface reflection coefficient Γ is 

Γ =
−

+
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III-2 Zeros_of T (ν, vo) and Surface Wave Resonance of an Unperforated Cylindrical 
Structure:  

T(ν,νο) exhibits zeros 
at the poles of Ya(ν).  
These occur at the 
value of ν for which 

.  These 
surface wave roots for 
imperforated structure 
occur for complex 
values of ν [1,2].  By 
continuity argument 
with the planar case, 
this type of resonance 
is expected to occur 
for a value of Real(ν) for which the
In such case, kr

Y re
o m( , )ν = ∞

1> Re(ν) >kor1.  As 
axis, as in the planar case, since an 
possible in the cylindrical case.   

 

 
It manifests itself in a resonant beh
experiences a sharp rise and a sig
planar case) in the predicted range 
corresponding planar case.  The l
sleeve thickness.  It is seen that i
region where (ν=kor1).  While thic
region where Debye's approximatio
modal admittance reduces to: 
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Figure 2 Root Locations as function sheet thickness
 air region is "cut-off" and the dielectric propagating.  
was pointed out, these poles do not lie on the real ν-
attenuated, angularly propagating surface wave is not 

avior of the imaginary part of Ya(ν), where the latter 
n reversal (but does not become infinite like in the 
for a value of  Re(ν/kor1), almost equal to that for the 
ocation of this resonance depends on the dielectric 
f (t/λ) is small the resonance moves into transition 
ker dielectric covers, locate this surface wave in a 
n is valid for the different cylindrical functions.  The 

1

1

kr

kr

                      (8)    

kr/                (9) 

ersion relation (8, 9) for the surface wave on smooth 
with a dielectric sleeve reduces to 

                           (10) 



Fig. 2 shows typical root 
location of (10) vs. sleeve 
thickness in the complex 
ν-plane.  In the limit 

reduces to 
relations previously 
derived in the planar case, 
i.e. to the lowest TM 
surface wave on a 
grounded dielectric slab as 
was pointed out earlier. 

k ro o → ∞

 
III-3 Poles of T(ν,νo):  

From (4), the poles of T( ν,νo) (see Fig. 3) are the natural resonance of the match-
terminated array structure, and correspond to the periodic solutions of the transverse 
resonance equation where 
Y Y m m pa o a m

p
m
p

o
p*( ) ( ) , / , ( , ,... ),( , ,... )ν ν ν ν π β+ = = + = ± = ±0 2 0 1 0 1       (11). 

Figure 3 Pole Singularities of T(ν) 

 
The pole location of the match terminated cylindrical array structure is a perturbation on 
that of the short-circuited structure.  The dispersion relation of the later corresponds to 
the poles of the m = 0 term in Ya(ν), i.e. .  Equation (11) has two relevant sets of 
significant poles.  One arises by perturbation due to finite curvature of the planar TM 
guided waves on a planar match terminated array structure.  The other, the familiar 
creeping waves which are a perturbation of those on a full dielectric cylinder, by 
bringing the perforated conducting cylindrical surface into proximity of the air-dielectric 
interface.  The location of the latter is near ν = k

ν o
p

or1.   
 
In the planar case, the wave numbers of the corresponding transverse resonance equation 
were found to correspond to leaky waves and the fundamental slow harmonic wave 
number was found to be near the surface wave number of the short-circuited array 
structure shows various pole locations for different dielectric thickness.  In the 
cylindrical case, a similar situation exists for the first set of significant poles where, for 
the set m = 0 of (12) the relevant surface wave pole is in a region of validity of Debye 
approximation.  In this case, to first order, the modal admittances are identical to the 
corresponding planar expression.  Since, the creeping waves pole locations are in the 
transition region, i.e. of , ν=kH k roν

( ) (2
1) or1 and different modal admittance representation 

must be used  
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where Ai is Airy function and ζkr is given by 
ς πkr kr kr kr krkr w w w w= − −(cos ( ) sin ) . 

 
 
IV- Asymptotic Evaluation of Far Fields   
The integral representation may be evaluated asymptotically for large values of kr1 
yielding simple 
analytical 
expressions.  The 
asymptotic evaluation 
of (3) proceeds in a 
manner similar to 
smooth large cylinder 
or uncovered 
cylindrical array [1].   
 
Different 
representations are 
obtained for the lit 
region, the shadow 
region and the 
shadow boundary 
(see Fig. 1). By virtue of the Physical space − ≤ ≤π ϕ π , is in the shadow region of the 
image sources s .  This shadow region is in general considerably deeper than that for 
s=0 source and consequently the contribution from 

≠ 0
s o≠  are neglected except near 

ϕ π= ± ; (details follow later).  Hence, the lit region and the shadow boundary transition 
region are pertinent only to the s =0 source. 

Figure 4 Contour deformation in the lit region 

 
A. Lit Region  

The basic integral in (12) to be evaluated is of the form 
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under the assumptions that the saddle point of this integrand lies in region where Debye 
approximation [1] of  can be used (this assumption will be justified later), i.e. Hν
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where sin /w kk ro 1 1= rν  and ψ ν φ( ) ( ) sin cos= − −w w w

o

                

For a given value of φ, the saddle point νs or ws are located at d dψ ν/ = , i.e. at  

φ φ ν= = =w or w ks ssin sin / 1rs o         (15) 

Since the range of ws is limited to − < <π π/ /2 w 2 otherefore, has a d dψ ν/ = . This 

20th Annual Review of Progress in Applied Computational Electromagnetics

April 19-23, 2004 - Syracuse, NY     © 2004 ACES



condition assures that νs < kor1, and justifies the assumption of validity of Debye 
approximation for .  This solution is valid only in the lit region.  Thus the 
steepest-descent path (S.D.P) through the saddle point is defined by: 

H k roν
( ) (2

1

) cos
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Re ( ) Re (ψ ν ψ ν φ= = −s                               (16)   
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The deformability of the original contour into the S.D.P. in the ν-plane may be 
ascertained by investigation of the behavior of the integrand as ν → ∞ .  By Cauchy's 
theorem one has (see Fig. 4) 

[Re ( ) Re ( )]j s sp
q

p
qπ ν− −        (17) 

In contrast to smooth cylindrical structures, the appearance of pole contributions in the lit 
region is due to the angular periodicity of the array.  The evaluation of the integral in the 
lit region is complicated by the fact that the transmission coefficient may have poles near 
or on the S.D.P. (Fig. 4).  In the development to follow, the first order saddle point 
contribution, the pole residues, and the transition pattern function due to the presence of 
a pole near the saddle point are obtained. 
 
1: First Order Saddle Point Contribution 
Upon substitution of 
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This contribution is observed solely in the lit region, appears to originate from the center 
of the cylinder and is referred as the "direct contribution" or "the space wave". 

2. Pole Contributions: From (41), the residue at a typical fast wave pole of  of  T(ν)  ν p
q
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In (20), the pattern φ dependence enters exclusively through the exponential; the 
remainder of the expression depends only on the pole location and represents the 
excitation coefficient for surface waves or creeping waves.  The poles of  T(ν) are  
and for q= 0 represent the harmonics of the fundamental q = 0 set.  With the help of (26) 
and (47), a typical fast wave pole contribution to the radiated electric field becomes 
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As seen from Fig. 9, only the q <0 poles are captured in the lit region. For element 
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spacing ½<a/λ<1, the poles corresponding to q < -1 (2) lie in the region |Re(ν/kor1)|>1 
where exponentially increasing with |ν|. Hence, the dominant pole contributions in the lit 
region [1,2] are those corresponding to q = -1, for which |Re(ν/kor1)|<1, and for wi is 
small.  The exponent in (49) is found to be  

− − = − − + + + − +−jk r j w jk r w w jo p r r o r i r1
1

1 4
ψ ν φ ν ν φ π( ) ( ) cos ( )        (23) 

where ν ν ν= + = +r r r ij w w j, w )0and for . ( ), , , ,− > > > >−ν ν νp r i r iw w1 0 0 0

A similar phase expression for those poles located at ν=  and is given by ν p
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1 4
ψ ν φ ν ν φ +
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where νr <o,νi,<o, wr 
<o,wi <o for  poles.  
The first term (23) 
expresses the fact that 
with increasing φ, for 
φ>0 the effect of this set 
is more pronounced 
(undergoes less 
attenuation), and has 
maximum contribution 

when the S.D.P. crosses  
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Figure 5 Ray Contributions in the lit Regio
ant pole, i.e., (φ = wr (which is the pole transition region).  On the other hand, (24) 
that, this set has less effect, more attenuation, as φ is increased for φ >o.  For the 
 lower half plane poles (wi<o, wr <o, νi.<o, vr<o) the real part of (24) indicates 
typical ray travels clockwise through an angle (φ + |wr|)| along the surface and 
 at a rate of |νi |> nepers/radians.  The first term in the imaginary part of (24) 
nts the phase change as the phase change as the ray travels from the source along 
face; its associated phase velocity is sin (wr)<0, and the ray thus represents a 
rd fast wave. The second term in the imaginary part of (24) is the phase 
ced to the cylinder center, associated with the free space path of the ray and 
 that, irrespectively of φ, the fast set emerges from the surface at a constant angle 
 the local normal (the positive angles are clockwise), as shown in Fig. 5.   

ue to upper half plane poles follow a path which is the mirror image of that for the 
alf plane poles, and (23), (19) show that, this set of poles has a phase difference 
at of the direct ray given by ∆φ φ ν φ≈ − + −k r w k r wo r r o1 1(cos cos ) r/ ( ), where wr 
o and very small, vr>o. Fast Wave Pole Transition  When the integral along the 
t descent path is approximated by the saddle point contribution, this overall result 
nces a discontinuity as a function of φ every time the path crosses a pole, the 
inuity being proportional to the pole residue. For poles deep in the complex plane, 
idue is exponentially small and the transition effect may be neglected.  For poles 
o the real axis, their proximity to the S.D.P. may be taken into account and a 
 - Syracuse, NY     © 2004 ACES



continuous transition field.  The overall result of the asymptotic evaluation of the integral 
(13) is given by the sum of the saddle point contribution (19), the residue contribution 
from the fully captured poles (22) and the contribution from the transition poles.  The 
latter harmonic q = -1 set, passes through this transition, where S.D.P. crosses the surface 
wave root ( ) first, then ( ) for p> 0 and the contribution is given by − −ν o
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Q(y) is the transition function given by the complementary error function 
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B. Shadow Region π/2< |φ| <π 

The integral (π/2<φ<π) can be expressed as a residue series at the poles of T(ν).  For 
element spacing ½<a/λ<1, the contributions in the shadow region come mainly from the 
sources s = 0, and s= ±1.  The contributions of all other sources are highly attenuated, as 
they have to travel long angular distances to reach the physical space −π<φ<π.  For 
example, for F j s j sp

q
p
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p qp q

) ) Re ( )
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ϕ π ν π ν= + ∑∑ 2 .  Where for s=0, the path of 

integration is closed at the lower half-plane, and for s = 1, it is closed at the upper half 
plane, as shown in Fig. 6.  A clear picture is captured by studying the phase for the slow 
wave sets = 0, q = 0, 
where:− ≈ − + − − + − + −jk k r w jo r1 1 4w jk r wi r o r rν ϕ π ν ϕ π π) ( ) (cos / .( ) /         (27) 

−

but, wr ≈ and wr<0, νr<0 . So for 
those slow waves in the lower half-plane 
one has νi<0, νr>o, Consequently 
− ≈ro p1

0ψ ν( − − − − −jk j ji r2 2ϕ π ν ϕ π π( / ) ( / )
The first term of (27) gives an attenuation 
as if it were traveling an angular distance 
( + −wr ϕ π− 2 with an 
attenuation factor |νi|.  A corresponding 
relation is found in the  

4/

/ )

phase, i.e, the second term in (27), which 
shows a forward wave travels a positive 
angle (ϕ π ϕ π≈ − 2 from the excit
as shown in Fig. 11b, while the third term
combined with (-jkor), indicates that the wav
which it travels on the surface an angula
observation point at the angle (π-|wr| ≈ π/2) 
the higher terms of the higher harmonics, i.e
kor1 and the Hankel function derivative blows
<0) and gives more attenuation with increasin
-1, the total complex 

n 

/ )
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Figure 6 Contour deformation for shadow regio
ed element with a positive phase velocity, 
 (jkor1 cos wr ≈ 0), so when the phase is 
e departs from the surface at a point B (to 
r distance ≈ φ−π/2 and radiates to the 

with respect to local normal).  For fixed p, 
., q>0 are exponentially decreasing as, v > 
 up, as well as (-|wi| |vr|+kor1sin |wr| sinh |wi| 
g νr and fixed |νi| as νr>kor1.  For the set q= 

phase is rewritten as 



− ≈ − + + + + +−jk w j w k r wo p i r r r o rψ ν ν ϕ ν ϕ( ) ( ) ( ( cos1
1 )         (28) 

the first term shows that the wave attenuates as it moves an angular distance (φ+|wr|) with 
an attenuation factor |νi|.  It is clear that this term is greater than the angle traveled by the 
same p wave but for the set, q=o, and consequently corresponds to higher attenuation for 
this term and hence q=o is the dominant term for the source s=o (see Fig. 7). 

To account for the contributions of the source s=1 (π/2<φ<π), the contour must be closed 
in the upper half plane as shown in Fig. 7, it is required to replace φ by (φ -2π), hence the 
total phase is given by  

− − ≈ − − − + − −jk r w jk r w j wo p i r o r r1
0

1ψ ν ν ϕ π ν ϕ π( ) ( ) cos ( r )         (29) 

where the first term of (29) shows that as if the wave traveling the angular distance |φ−π-
|wr|| with an attenuation 
rate |νi|. This angular 
distance is larger than that 
of the set (q=o, s=o), i.e., 
more attenuation is 
experienced, but it is only 
comparable to it if φ ≈ π, 
which will interfere with it 
giving ripples in the 
element pattern gain near 
φ≈π. While the second 
term of (29) shows that 
this wave has negative 
phase velocity with 
negative angle, so it is a 
forward wave. 
 

                      Fig. 7 Ray interpretation in the shadow 
 
Similar considerations for the set s =1, q = -1, with the contour of integration is closed in 
the upper half plane shows that a total phase given by 

− − ≈ − − − − − +−jk w j w jk r wo p i r r r oψ ν ν ϕ π ν ϕ π( ) ( ) ( ) c1
12 2 ros      (30) 

which shows, for the same p, 
the largest attenuation, due to 
the longest angle of travel 
compared to the three other 
sets, i.e., (s=o, q=0), (s=o, q= -
1), (s=1, q=o).  It is to be noted 
that the set of creeping wave 
poles corresponding to q = o 
requires special consideration 
since the Airy approximation 
must be used for the Hankel 
functions in the vicinity of 
ν≈kor1.  In general, the residue 

Figure 8 Contour in the shadow boundary
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at  corresponding to a creeping wave:  ν p
o

Re | ( )/ ( ) / (
( )

( / ) ( )'s V V e H k
p
o

creeping

p
o

p

e
p
o i

p
o j

o pν

ν ϕ π
νν ν= − − 2 2

1)r a ,          (31)  

where ap is given by (21) given before, For (φ−π/2)>0 (sufficiently large), the residue 
series is rapidly convergent, since contribution from successive values of p decay 
exponentially. However, when i.e. in the shadow boundary, the 
convergence slows down and an alternate technique must be used. 

( / ) ( ) /ϕ π− ≤ −2 1
2 3k ro

C. Shadow Boundary 
Near the shadow boundary the harmonic series is poorly convergent, and the techniques 
used in the lit region cannot be extended since the Debye approximation to the Hankel 
functions is not valid for ν ≈ kor1. This difficulty has already been resolved for smooth 
cylinders with surface admittance [1].  We can ascertain that the integrand decays 
exponentially away from ν/kor1 = 1 along the path Γ.  Thus, the integral along Γ in may 
be approximated, and from the large argument approximation for the Airy function [1] 
we can ascertain that the integrand decays exponentially away from ν/kor1≈/1 along the 
path Γ (see Fig. 8).  Thus the integral along Γ in may be approximated by  

F k r V k r r V k r r G k r r eo
i

o o
e

o a o r o
j kr kro( )| ( ) ( , ) / ( , )2 ( ) / ( )ϕ ν ε ς ς

Γ = − − −
1 1 1 1 1

1        (32) 

where k e g k rjk r
o

o= −− −1 2
1

1 3 2( / ) /(( ) ( / ); )ϕ π ϕ π α  

and g e Ai e Ai e
e

j j
j

( , ) / ( ( ) ( ))
/

/ / / /ς α τ α τ τ
π

ςτ π π= +
∞

∞ − − −
−

djz 2 3
2 21 3 2 3 1 3 2 3        (33) 

The shadow boundary transition function g( , )ς α  is a generalization of the Fock function. 

 
V. Example:  
Single Mode Aperture Field Approximation 
For illustration purposes, a TEM parallel plate waveguide-fed array is considered.  The 
aperture field is assumed to be uniform across the aperture. Matching the array under the 
equi-phase condition ν = 0 (broad-side scan), was selected for all calculations.  The 
numerical evaluation of the E-plane element patterns was performed with the help of 
harmonic series for a number of dielectric sleeve thickness with εr = 2.56, koro =50 and 
a/λ = 0.5.  Figs. (9),( 10) show main features of the E-plane element voltage 
gainpatterns, normalized to the unit cell gain 2π λa / . 

The presence of a dielectric cover on the cylindrical array is seen to introduce a 
pronounced dip, and pattern ripple near broadside, which tend to be larger than those of 
uncovered circular arrays with a/λ >o.  The location of the pattern dip is essentially 
identical to that observed in corresponding planar arrays with a dielectric cover of the 
same thickness. It is observed that radomes of increased thickness, the dip moves 
towards broadside and becomes more pronounced.  More ripples between broadside and 
the dip are observed for thinner covers, while in the shadow region almost a constant 
slope (on a dB scale) is found.  Characterization of these features is obtained by the 
asymptotic valuation of the Integral representation.  The results of this calculation are 
plotted in Figs. (9) and (10) for different radome thickness with koro = 50.   
 
In the lit region 0<φ<90°, the total pattern is the result of the superposition of the space 
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wave (saddle point contributions) and contributions from fast wave poles.  These poles 
were considered in pairs ( ).  In numerical evaluation, their number was varied to 
include just a surface wave contribution p=o, or in addition up to four creeping waves (p 
= 0, 1, 2, 3, 4), the ripple in the main beam in the lit region is found due to the 
interference between the space wave and the fast set of poles ( ).  However, it was 

determined that, only the surface wave pole ( ± ) contribution has a significant effect 
in the lit region.  An approximate prediction of the location of the dip can be made by the 
planar formula 

± −ν p
1

± −ν p
1

−ν 0
1

si , where n /ϕ ν λ−o
o a/= ok r1 ν o

o / r1 is the surface wave number.  The 
location of the planar array nulls is indicated by arrows in Figs. (9), and (10).  The 
pattern in the shadow region was computed by the residue series via only the slow wave 
poles (  for φ> 90ν p

o o), where p was varied from o to 3.   

 
Figure 9 Element Gain Pattern. 

 
Deep in the shadow region, the pattern is due to the wave with the lowest attenuation 
constant, which in the examples given is the first slow creeping wave (p = 1, q = 0, s = 
0).  For φ = π, interference between the two lowest creeping waves (s=+1, p=1, q=0) and 
(s =0, p =1, q =0) for yields the well-known back-lobe ripple of the pattern.  A detailed 
break down of the various wave contributions to the element pattern is discussed in Fig. 
(9).  It is seen that the dip in the space wave appears near 44.6o.  For 0<φ<15° and 
50°<φ<75°, the influence from the captured fast creeping wave poles and the surface 
waves (  as considered as their respective residue contributions. In the region 
15

( , )ν νo o
− −−1 1

o <<φ<50o, the pole transition effects were taken into account.  
As seen from Fig. 9 the general outline of the pattern in the lit forward region is 

determined by the space wave. By comparing the results of harmonic series with that of 
superposition of the space wave and surface wave residue contribution, one concludes as 
mentioned that, the ripple in the main beam may be directly attributed to interference 
between the space wave and the fast surface wave pole.  In addition, to obtain a good 
accuracy, one clockwise and one counterclockwise fast creeping wave should be taken 
into account.  Again, the pattern in the shadow region (see Figs. 9, 10) was computed 
sing residue series of only slow wave poles (  for π/2<φ <π), whose number was also ν p

o
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varied from p= o to 3.  This produced sufficient accuracy obtained even close to the 
penumbra.   
 
Deep in the shadow region, the slope (in dB) of the element pattern is essentially that of 
the single lowest creeping wave pole contribution.  The pattern in the shadow boundary 
transition 75° <φ <110° was determined by a numerical integration of the transition 
function. Fig. 9 shows the element pattern for koro =50, element spacing a/λ=0.5 εr=2.56 
and dielectric thickness t/λ=0.2, since dip appears now at an angle =38º and the pattern is 
correspondingly narrower than for t/λ=0.15.  The dip level however, is more pronounced 
than for t/λ =0.15.  Also, the ripple frequency has increased as the wave gets slower.  
Main factors in the location of the dip is the element spacing a/λ, and the surface wave 
location, as example, the dip will appear more closer to broadside for larger a/λ as 
shown in Fig. (10) for a dielectric sleeve of t/λ=0.15 with a/λ=0.525. In this case, the dip 
occurs at an angle 38°, compared to 44.6° shown before for t/λ=0.15 but a/λ=0.5.   
 
For a cylinder of larger 
radius, the above-
mentioned effects are 
modified.  For the case of 
koro =105 and a/λ=0.525, 
the element pattern in the 
lit region, is dominated by 
the space wave, while 
ripple amplitude decreases 
and its frequency 
increases as for the case of 
cylindrical arrays without 
dielectric radome [1,2]. 
 

Fig. 10 Element Gain Pattern. 
VI-Conclusions:  

Guided wave effects are profoundly influenced by curvature, and are clearly 
displayed in the element pattern in mutually coupled array.  Element pattern serves as a 
sensitive indicator of the degree of suitability of the phased array radome combination.  
A dielectric sheet in contact with the radiating structure of the phased array gives rise to 
scan volume limited by blind spots arising when phase synchronization of one of the 
Floquet modes with guided surface wave-- due to the dielectric cover. 
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