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ABSTRACT 

 

 A new unstructured grid two-dimensional, depth-integrated (2DDI), morphodynamic 

model is presented for the prediction of morphological evolutions in shallow water.  This 

modelling system consists of two coupled model components:  i.) a well verified and validated 

continuous Galerkin (CG) finite element hydrodynamic model; and ii.) a new sediment 

transport/bed evolution model that uses a discontinuous Galerkin (DG) method for the solution of 

the sediment continuity equation.  The DG method is a robust finite element method that is 

particularly well suited for this type of advection dominated transport equation.  It incorporates 

upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bathymetric 

gradients that may form in the solution, and it possesses a local conservation property that 

conserves sediment mass on an elemental level.  In this paper, we focus specifically on the 

implementation and verification of the DG model.  Details are given on the implementation of the 

method, and numerical results are presented for three idealized test cases which demonstrate the 

accuracy and robustness of the method and its applicability in predicting medium-term 

morphological changes in channels and coastal inlets. 
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1. INTRODUCTION 

 

The transport of sediment as bed load is an important process that occurs in rivers, 

estuaries, and coastal regions.  In many situations, this process and the resulting morphological 

changes of the bed can have a detrimental impact on the coastal infrastructure and environment.  

For example, dredged navigational channels and coastal inlets can be rendered almost entirely 

useless by the accumulation of transported sediment.  Returning these structures to operational 

status, through dredging operations or the construction of jetties, represents a significant cost to 

the agencies that maintain them.  As another example, the structural integrity of bridges and piers 

may be compromised due to excessive scour of the bed around abutments.  In addition to these 

infrastructure problems, there is host of environmental issues of concern, such as the transport of 

pollutants with or as sediment, that can cause serious ecological damage.  Accurate numerical 

models that can predict sediment transport and the resulting bed morphology can help manage 

these costly problems. 

Clearly, the processes of sediment transport and morphological evolution of the bed are 

determined by the properties of the fluid flow, which in turn are affected by the changes in the 

morphology of the bed that they induce.  Thus, the motion of the fluid and the motion of the bed 

form an interdependent two-phase phenomenon that must be analyzed using a model system made 

up of two distinct but interdependent model components:  i.) a hydrodynamic component defining 

the evolution of the flow, and ii.) a sediment transport/morphological component defining the 

evolution of the bed.  Such a modelling system is often referred to as a morphodynamic model.  A 

description and comparison of some existing morphodynamic model systems is given by 

Nicholson, et al. (1997).  Typically, these model systems use structured computational grid 

methods.  To a lesser extent, unstructured grid methods have also been implemented and can, in 

fact, be highly advantageous based on their ability to provide local grid refinement near important 

bathymetric features and structures.  The ability to provide local grid refinement where it is 
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needed leads to improved accuracy for a given computational cost as compared to models that use 

structured grid methods.  However, both structured and unstructured grid method solutions to the 

governing morphological equation can experience numerical robustness and accuracy problems 

manifested in the form of spurious spatial oscillations, especially in the presence of steep 

bathymetric gradients (see for example Johnson and Zyserman, 2002).                    

In this paper, we describe the development of a new unstructured grid morphodynamic 

model system that uses a new class of highly accurate finite element methods for the solution of 

the governing morphological equation.  The hydrodynamic model component of our system is 

provided by the well verified and validated unstructured grid model ADCIRC, developed by the 

second author and a number of collaborators (Luettich and Westerink, 2004).  ADCIRC is both a 

two-dimensional, depth-integrated (2DDI) and three-dimensional (3D) free surface flow model.  

In this paper, we focus specifically on the 2DDI ADCIRC model, which solves the shallow water 

equations using the standard or continuous Galerkin (CG) finite element method in space.  To 

overcome well known problems in solving the shallow water equations using equal-order 

interpolating spaces with the CG finite element method, the continuity equation is replaced by the 

so-called generalized wave continuity equation (GWCE) (Lynch and Gray, 1979 and Kinnmark, 

1986).  The solution strategy used in ADCIRC has proven to be robust and computationally 

efficient, and it has been validated in a large number of cases (see for example Blain, et al., 1994; 

Westerink et al., 1994; Mukai, et al., 2002; Westerink et al., 2004). 

Working with a well established hydrodynamic model then, the main focus of this paper 

is the development and verification of a bed load sediment transport/morphological model 

component to work in conjunction with ADCIRC.  Mathematically, the morphological evolution 

of the bed is defined by the so-called sediment continuity or Exner equation.  This equation 

simply states that the time rate of change of the bed elevation is equal to the divergence of the 

sediment flux, which can be expressed in terms of the local flow properties through the use of an 

empirical sediment transport formula.  As is well known, solving advection dominated transport 
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equations of this type using the CG finite element method will frequently lead to spurious spatial 

oscillations in the solution.  To overcome these shortcomings, a number of so-called advection 

schemes can be employed (see Iskandarani, et al., 2005 for a review and comparison of some of 

the more popular schemes).  One such scheme that has received considerable recent attention and 

that has been applied successfully to a wide variety of problems is the discontinuous Galerkin 

(DG) finite element method.   

Originally developed by Reed and Hill (1973), but more recently expounded on in a 

series of papers by Cockburn, et al. (see the review article by Cockburn and Shu, 2001 and the 

references therein), the DG method uses trial and test function spaces that are continuous over a 

given element but which allow discontinuities between elements.  This results in a block diagonal 

or, with an appropriate choice of basis, diagonal mass matrix that can be trivially inverted.  

Communication between elements is accomplished via a so-called numerical flux, which for the 

case of a scalar equation can be defined using upwinding techniques.  The method is also “locally 

conservative”, meaning that the conservation of the transported quantity is satisfied on a local or 

elemental level.  This has been shown to be a desirable property when coupling flow and 

transport algorithms (see for example Dawson, et al., 2004) 

In this paper, we present the implementation and verification of a DG sediment 

transport/morphological model that is coupled to the ADCIRC hydrodynamic model.  We note 

that this sediment transport model is just one component of a suite of DG model components that 

are currently being developed for flow and transport, which will form a completely DG based 

morphodynamic modeling system with both h (grid size) and p (polynomial order) refinement 

options.  In this paper, we restrict our attention to the second-order (p = 1) case for the sediment 

transport model, but we note that p-refinement is easily implemented within the framework of the 

DG method (see Kubatko, et al., 2005 for an example of this for the shallow water equations).             

This paper is organized as follows.  In Section 2, we describe the mathematical model 

defining the sediment transport and morphological evolution of the bed which consists of the 
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sediment continuity equation and an empirical sediment transport formula.  We then present a 

simplified mathematical model, which we refer to as the Exner model, that uncouples the 

sediment transport/morphological model from the hydrodynamic model.  This simplified model 

can be used as a verification tool for the numerical method.  In Section 3, we give a detailed 

description of our implementation of the DG method for the sediment continuity equation, giving 

specific details on the numerical flux, basis, quadrature rules, time discretization, slope limiter, 

and continuous projection that are employed.  In Section 4, we present numerical results from 

three test cases with the aim of:  i.) verifying that the method achieves second-order convergence 

in space, and ii.) demonstrating how the model can be used for predicting so called medium-term 

(see for example de Vriend, et al., 1993) morphological changes in channels and coastal inlets.  

Finally, in Section 5, we summarize this paper, and we briefly discuss the current and future work 

in the development of this model system. 
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2. MATHEMATICAL MODEL 

 

 The evolution of the bed or bottom surface elevation due to the transport of sediment as 

bed load is governed by the so-called sediment continuity or Exner equation (see for example 

Henderson, 1966): 

 

 0b
z
t
∂

+∇ ⋅ =
∂

q  (1) 

 

 

where z is the elevation of the bed relative to a datum located below the bed (z is positive 

upwards) and qb is the bed load sediment transport function vector.   

 In order to close Eq. (1), a functional form of qb must be specified.  It is assumed that the 

sediment transport is always in the direction of the flow velocity, U = (u, v) where u and v are the 

velocity components of the flow in the x and y directions, respectively.  Thus the vector qb is 

computed as: 

 

 ˆ
b =q U qb  (2) 

 

where bq  is the magnitude of the sediment transport in the direction of the flow and is the 

normalized flow velocity vector (i.e. 

Û

ˆ =U U U ).  There are a number of empirical bed load 

sediment transport functions available (e.g. Bagnold, Einstein, Meyer-Peter and Mueller, see for 

example Sleath, 1984 for a thorough list), most of which can be transcribed in the following form: 

 

 ( ), , n
b A H=q U U  (3) 
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where A is a given function and n is a given positive constant both of which are specific to the 

particular sediment transport formula.  Note that A is typically a function of the flow velocity, U, 

the total height of the water column, H =  ζ - z  (where ζ is the water surface elevation relative to 

the same datum as the bed), and a number of constants that are based on sediment properties such 

as sediment type and grain size and data fitting procedures.  The constant n is typically in the 

range of 1 3 . n≤ ≤

 In our model, we will make use of a new bed load formula developed by Camenen and 

Larson (2005), though the numerical model to be described will be general enough to allow the 

use of any sediment transport formula provided it is a function of H and a monotonically 

increasing function of U.  Camenen and Larson develop new bed load sediment transport 

formulas for transport due to currents, waves, and combined waves and currents.  Their formulas 

were shown to provide the best agreement with the data sets that were compiled compared to a 

number of previously proposed formulas (Camenen and Larson, 2005). 

 In this paper, we only consider the Camenen and Larson bed load sediment transport 

formula due to currents which is given by (in dimensional form – SI units): 

 

 1.5 exp 4.5 cr
b c

c

q C ττ
τ

⎛ ⎞
= −⎜

⎝ ⎠
⎟  (4) 

 

where τc is the shear stress at the bottom due to the current, τcr is the critical shear stress, and C is 

a constant given by: 

 

 
( )
12

s

C
g ρ ρ ρ

=
−

 (5) 
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where g is the acceleration due to gravity and ρ and ρs are the water and sediment density, 

respectively.  The shear stress is computed by the formula: 

 

 21
2c fτ ρ= U  (6) 

 

where f is a dimensionless friction factor calculated assuming a logarithmic velocity profile (see 

for example Sleath, 1984): 

 

 ( )
2

508 1 ln
25 15

−
⎡ ⎤⎛ ⎞= + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

df H
H

 (7) 

 

where d50 is the median grain size.  The critical shear stress is computed from the critical Shields 

parameter which is either estimated as a constant or calculated using the formula proposed by 

Soulsby and Whitehouse (1997).   

 Using Eqs. (5) - (7) the sediment transport formula can be written in the form of Equation 

(3) with n = 3 and A given by the function: 

 

 
1.51 exp 4.5

2
τρ
τ

⎛ ⎞⎛ ⎞= −⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

cr

c

A C f ⎟  (8) 

 

Note that A is a monotonically increasing function of τc  and therefore U.    
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Fig. 1:  Definition sketch for Exner’s model 

 

2.1 A simplified model 

 

 For purposes of verifying our numerical scheme, we use a simplified mathematical model 

that essentially uncouples the sediment continuity equation from the hydrodynamics.  This allows 

us to verify the underlying numerics of the model in a simplified setting by comparing it to 

analytical solutions.  Assume that the flow is unidirectional (say in the x directional only) and 

quasi-steady with a rigid lid.  With these assumptions, the flow velocity is given by: 

 

 f fq q
u

H ζ
= =

z−
 (9) 

 

where qf is a constant flow discharge and ζ is the elevation of the rigid lid measured from the bed 

datum (see Fig. 1).  Furthermore, assume that the sediment transport is given by Eq. (3) with A = 

constant and n = 1.  With these assumptions the sediment continuity equation can be written as: 

 

 0fqz A
t x zζ

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂ −⎝ ⎠

 (10) 
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This model was originally proposed by Exner (1925).  Assuming a smooth initial condition, 

, the classical solution is given implicitly by: ( ) 0,0z x z=

 

 ( ) ( ) ( )2

0, ,      z z fz x t z x c t c Aq zζ= − = −  (11) 

 

where cz is the propagation speed of the bed.  As is well known, non-linear hyperbolic equations 

such as Eq. (10), depending on the initial conditions, will develop steep gradients (and eventually 

discontinuities or shocks) which provide a rigorous test for a numerical method.  A similar model 

was examined by Johnson and Zyserman (2002) in the context of testing a finite difference 

scheme. 
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Fig. 2: A typical element e and its neighboring element along edge i with normal ni; v(in) and v(ex) denote 
he  value of a  function v along edge i when approaching the edge from the interior and exterior of the 
lement respectively. 
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3. NUMERICAL MODEL 3. NUMERICAL MODEL 

  

 In this section, we give a detailed description of our DG sediment 

transport/morphological model.  To begin we define some notation.  Given a spatial domain, Ω, 

which has been discretized into a set of non-overlapping elements, let Ωe define the domain of a 

typical element e and denote the boundary of the element by Γe .  Our numerical approximation of 

z will make use of piecewise smooth functions which are continuous over Ωe but which allow 

discontinuities between elements along a given edge.  We denote this space of functions by Vh.  

Given a smooth function v defined over e, we denote the values of v along an edge by 

 In this section, we give a detailed description of our DG sediment 

transport/morphological model.  To begin we define some notation.  Given a spatial domain, Ω, 

which has been discretized into a set of non-overlapping elements, let Ω

(

e define the domain of a 

typical element e and denote the boundary of the element by Γe .  Our numerical approximation of 

z will make use of piecewise smooth functions which are continuous over Ωe but which allow 

discontinuities between elements along a given edge.  We denote this space of functions by Vh.  

Given a smooth function v defined over e, we denote the values of v along an edge by ( )inv when 

approaching the edge from the interior of the element and ( )exv when approaching the edge from 

the exterior of the element.  The outward unit normal vector for the boundary of the element will 

be denoted by n, and the fixed unit normal vector for a given edge i will be denoted by ni (see 

Fig. 2). 

 In our numerical scheme, we will also make use of continuous, piecewise linear 

approximations of U and ζ obtained from the ADCIRC model to compute the local sediment 

transport rates.  Briefly, these approximations are obtained by solving the shallow water 
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equations using the CG Galerkin finite element method in space and implicit/explicit time 

stepping (see Luettich and Westerink (2004) for details).  As previously mentioned, to achieve 

non-oscillatory results the primitive continuity equation is replaced with the GWCE.        

 We apply the DG method to the sediment continuity equation by multiplying Eq. (1)  by 

a test function and integrating over Ωhv V∈ e  to obtain: 

 

 0
e e

e b e
z vd vd
tΩ Ω

∂
Ω + ∇⋅ Ω =

∂∫ ∫ q  (12) 

 

Integrating the second term of this equation by parts gives: 

 

 0
Ω Ω Γ

∂
Ω − ∇ ⋅ Ω + ⋅ Γ =

∂∫ ∫ ∫
e e e

e b e b
z vd v d v d
t

q q n e

0

 (13) 

 

 Next we replace the solution z with an approximate solution zh which, using Galerkin’s 

method, is constructed from a set of basis functions which belong to the same space, Vh, as the 

test functions.  Due to the fact that there may be discontinuities along element edges, the 

boundary integral of Eq. (13) is undefined and for this we define a numerical flux, .  In our 

formulation, we use a simple upwind flux based on the assumption that the sediment transport is 

in the direction of the current: 

ˆbq

 

 
( )

( )

,
ˆ

, 0

in
b

b ex
b

q
⎧ ⋅ ⋅ ≥⎪= ⎨

⋅ ⋅ <⎪⎩

q n U n

q n U n
 (14) 

 
 

With the approximate solution and the numerical flux defined, the weak formulation of the 

problem now becomes: 
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 ˆ 0
Ω Ω Γ

∂
Ω − ∇ ⋅ Ω + Γ =

∂∫ ∫ ∫
e e e

h
e b e b

z vd v d v q d
t

q e  (15) 

 

Note that the method is locally or elementally conservative in the following sense:  setting v = 1 

on Ωe and zero elsewhere we have: 

 

 ˆ 0
e e

h
e b e

z d q d
tΩ Γ

∂
Ω + Γ =

∂∫ ∫  (16) 

 

That is, the time rate of change of zh over Ωe is balanced by the net flux of sediment into Ωe.    

 We proceed by describing the details of the implementation of the scheme including the 

choice of basis functions, the quadrature rules employed to compute the integrals, the time 

discretization, the application of a slope limiter to eliminate local undershoots or overshoots in 

the solution in the presence of steep gradients, and the continuous projection procedure used to 

project the discontinuous approximation zh into the space of continuous, piecewise linear 

functions which are fed back into ADCIRC as updated bathymetry.   
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Fig. 3: Master element defined in local coordinates ξ and η showing the degrees of freedom hi – the 
value of h at the midpoint of edge i opposite of  corner node i.  

  

3.1 Basis and degrees of freedom  3.1 Basis and degrees of freedom  

  

 As emphasized by Cockburn and Shu (1998), we note here that a judicious choice of 

basis functions can simplify the implementation of the scheme and improve the computational 

efficiency.  Owing to the fact that discontinuities are permitted across element interfaces, the 

choice of the basis functions are not limited by the requirement of continuity as in the CG finite 

element method.  Therefore, one can choose degrees of freedom that, for example, save cost in 

evaluating the integrals in Eq. (15) and/or simplify the implementation of the slope limiter.  In our 

implementation, we use piecewise linear triangular elements described below. 

 As emphasized by Cockburn and Shu (1998), we note here that a judicious choice of 

basis functions can simplify the implementation of the scheme and improve the computational 

efficiency.  Owing to the fact that discontinuities are permitted across element interfaces, the 

choice of the basis functions are not limited by the requirement of continuity as in the CG finite 

element method.  Therefore, one can choose degrees of freedom that, for example, save cost in 

evaluating the integrals in Eq. (15) and/or simplify the implementation of the slope limiter.  In our 

implementation, we use piecewise linear triangular elements described below. 

 Considering the “master element” as shown in Fig. 3 defined in the transformed 

coordinates ξ and η, the approximate solution zh can be expressed as: 

 Considering the “master element” as shown in Fig. 3 defined in the transformed 

coordinates ξ and η, the approximate solution zh can be expressed as: 

  

  ( ) ( )
3

1
,h i i

i
z z t( ) ( )

3

1
,h i i

i
z z t φ ξ η

=

=∑  (17) 
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where the degrees of freedom, zi are the values of the approximate solution at the mid-point of 

each edge and the basis functions, iφ  define the linear element of Crouzeix and Raviart (1973) 

which for the master element shown in Fig. 3 can be written in the form: 

 

 1 2 31 2 ,   1 2 ,   2 2 1φ ξ φ η φ ξ η= − = − = + −  (18) 

 

There are several things to note about this basis.  The functions iφ are equal to 1 at the mid-point 

of each edge i and 0 at the mid-points of the other two edges.  The basis functions are orthogonal 

over an element, specifically: 

 

 
1/ 6,
0,

φφ ξ η
Ω

=⎧
= ⎨ ≠⎩

∫
m

i j

i j
d d

i j
 (19) 

 

where Ωm denotes the domain of the master element.  This property, of course, gives rise to an 

orthogonal mass matrix that can be trivially inverted.  Lastly, in the continuous projection 

procedure to be described, we will make use of the value of the approximate solution at the 

vertices of the triangle.  The value of zh at vertex i, denoted by zvi, which is the vertex opposite of 

edge i (see Fig. 3), is easily computed as: 

 

 
3

1
2vi i j

j
z z

=

= − + z∑  (20) 

 

 As a final note, we remark that the orthogonal, hierarchical, “modal” type basis proposed 

by Dubiner (1991), which simplifies p refinement and also adaptivity, can easily be implemented 

within the framework of the DG method.   
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3.2 Quadrature Rules 

 

 Both of the integrals appearing in Eq. (15) are evaluated using suitable numerical 

quadrature rules.  We note that by using numerical quadrature and the simple upwind numerical 

flux defined previously, we can easily implement a number of different sediment transport 

formulas into the scheme without  making any changes to the base algorithm itself (provided that 

the formula meets the requirements as specified in Section 2).  Cockburn and Shu (1998) note 

that for a DG spatial discretization of degree p, quadrature rules that are exact for polynomials of 

degree 2p and 2p+1 must be used for the area and boundary integrals, respectively.  Thus for the 

linear elements used here (p = 1) we use a three point quadrature rule for the triangle so the area 

integral of Equation (15) is approximated by (noting that v∇ is constant over the element): 

 

 ( ) (
3

1
, ,

e
b e i b i i i

i
v d v w zζ

Ω
=

⎛
∇ ⋅ Ω ≈ ∇ ⋅⎜

⎝ ⎠
∑∫ q q U )⎞⎟  (21) 

 

where the wi’s are the quadrature weights of the associated quadrature points, which are the 

midpoints of each edge. Using this rule, the sediment transport function, qb is easily evaluated at 

the quadrature points given the fact that we already have zi, which are the degrees of freedom, and 

we need only to compute U and ζ at the mid-point of each edge.  We note that these values are 

easily obtained by averaging the two vertices for the given edge (owing to the fact that U and ζ 

are approximated using linear functions over the element as well).  The boundary integrals, which 

must integrate a third degree polynomial exactly, are evaluated using the two-point Legendre-

Gauss quadrature rule. 
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3.3 Time Discretization 

 

 The DG spatial discretization reduces the problem to a system of ordinary differential 

equations which we write in the concise form: 

 

 ( ) ( ), ,h h h h h
d L
dt

=z z U ζ  (22) 

 

where zh is the vector of unknowns over the whole domain. 

 We discretize this system of equations in time using a second-order Runge-Kutta scheme, 

which is equivalent to the so-called modified Euler method, written in the form: 

 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

1

1 1 1

, ,

1 , ,
2

t t t t
h h m h h h h

t t t
h h h m h h h

t L

t L+

= + ∆

= + + ∆

z z z U ζ

z z z z U ζ t
h

h

 (23) 

 

where is the morphological time step which may be different than that of the hydrodynamic 

time step, , and where it is to be noted that U and ζ are held fixed at time t.   

mt∆

∆ ht

 Given that explicit time stepping is used, the size of the morphological time step is 

limited by a Courant-Friedrichs-Levy (CFL) condition.  A direct calculation of this condition 

proves difficult in practice due to the highly non-linear nature of the sediment transport function, 

and instead we simply take , where N is some positive integer usually in the range 

of 10 to 50, i.e. the bed is updated every 10 to 50 hydrodynamic time steps.  In practice, this 

approach has proven to work well for a wide variety of problems and requires little additional 

computational effort.  It has been estimated that using this approach the additional computational 

cost for running the morphodynamic model is on the order of 2-10% of the cost of running the 

hydrodynamic model alone.         

mt N t∆ = ×∆
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3.4 Slope Limiter 

 

 In order to prevent spurious oscillations at sharp fronts, a slope limiter is applied at each 

step of the Runge-Kutta method described above.  We apply a simple slope limiter in which the 

degrees of freedom zi for a given element e are compared to the average of the approximate 

solution over e,  and the average of the neighboring element e' of the given edge,  .  If ze
avgz e

avgz ′
i 

does not fall in between the values  and e
avgz e

avgz ′  for the given edge i then the degrees of freedom  

for element e are set equal to .  In this way, the average of the element is maintained while 

setting its slope equal to zero, and sediment mass is still conserved over the element.  It should be 

noted this slope limiter is very easy to implement, but it can cause some numerical smoothing of 

the solution.  More sophisticated limiters that are less dissipative are currently being investigated.  

 We remark that for sufficiently smooth bathymetries, in practice it is often unnecessary to 

apply the limiter.  However, as the bed evolves, steep gradients may develop in the bed, and it has 

been observed that without the use of a limiter oscillations develop in the neighborhood of the 

steep gradient.  Typically, however, these oscillations seem to remain localized and do not 

degrade the solution globally.  The role of the slope limiter then, at least for the problems 

examined, is that of a mechanism to eliminate local oscillations rather than for stabilizing the 

scheme.      

e
avgz
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 Fig. 4: Node j surrounded by n elements;  the continuous approximation jz   for node j is determined 

from the (possibly) n unique  values from the elements surrounding the node.  

 

3.5 Continuous projection procedure 

 

 As previously mentioned, ADCIRC makes use of approximations that are continuous in 

space across the entire domain.  Thus, in addition to our discontinuous approximation zh, we must 

also compute a continuous approximation which must be fed back into ADCIRC after computing 

the updated bathymetry.  We wish to accomplish the following with our procedure:  given a node 

j which is a vertex for n different elements we wish to compute a single nodal value denoted by 

jz  based on the n (possibly) unique values at that node that are obtained from the DG method 

within the individual elements attached to that node (see Fig. 4).  We have experimented with 

several different approaches for obtaining these single nodal values and based on numerical 

experiments have implemented an angle based weighted average given by: 

 

 
1

n
i

j vi
i SUM

z
=

⎛ ⎞∠
= ⎜ ∠⎝ ⎠
∑ z ⎟  (24) 

 
 

where is the angle of the vertex of element i and i∠ SUM∠ is the total sum of the vertex angles 

around node j.  We have also experimented with weighted area averaging and centroidal type 
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averaging, but we have found that the approach given by Equation (24) gives the most consistent 

results under a wide variety of grid configurations.  We note that under certain grid configurations 

it was observed that mild in-plane (x-y plane) oscillations appeared in the continuous 

representation of the bed.  The weighted angle approach minimized the appearance of these 

oscillations, which were often much more visible using other averaging techniques.  It should be 

noted this procedure does not affect the local conservation property of the sediment due to the 

fact that z  is not actually used in the computations for updating the bed.   
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4. NUMERICAL RESULTS 

 

 The DG method outlined above has been applied to a number of problems.  In this 

section, we show the results for three idealized test cases.  

 

4.1 Test Case1: Morphological evolution of a symmetric mound 

 

 In this test case, we apply the DG method outlined above to the Exner model introduced 

in section 2.  The Exner model is examined in order to verify the numerical method 

independently of the hydrodynamic model.  It also affords us the opportunity to compare our 

numerical results to exact solutions so that we may check the order of convergence of the method. 

We solve a problem originally posed by Exner (1925).  The problem examines the 

evolution of an initially symmetric mound subjected to steady, uni-directional flow with a rigid-

lid assumption for the flow.  The initial condition is given as: 

 

 ( ) ( )0 0 1
2, ,0 , cos xz x y z x y A A π
λ

⎛= = + ⎜
⎝ ⎠

⎞
⎟  (25) 

 

where the parameters A0 , A1 , and λ are as defined in Fig. 5 which shows a cross section of the 

mound along the x-axis.  We take A0 = A1 = 1, λ = 20 in Equation (25) and ζ  = 3, Aqf = 1 in Eq. 

(10).  The flow is assumed to be in the x direction only, and we use periodic boundary conditions, 

i.e. ( ) ( )2, 2,λ λ= − = = +z x y z x y  and ( ) ( ), 2 ,λ= − = = +z x y z x y 2λ  The exact 

solution is given by Eq. (11). 
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Fig. 5:  Cross section of the initial condition for Exner’s “dune problem” as defined by Eq. (25) 

2x λ= − 2x λ=0x =

 λ

0η =
0  A

1  A

 1  A  1A

 

 

 

 

 

 We solve this one-dimesional problem over a two-dimensional domain using four 

different grids with uniform nodal spacing of h = 1, 0.5, 0.25, and 0.125.  We compute the 

maximum or L∞  norm by comparing our DG solutions to the exact solution.  In Fig. 6, we plot h 

versus the maximum error norm on a log-log scale where it can be observed that the theoretical 

convergence rate of p+1 is obtained.  Both the numerical and exact solutions of the evolution of 

the mound at a cross section taken along the x-axis are shown at two different times in Fig. 7.  

The solutions indicate that the mound develops into a dune-like shape with a gentle upstream 

slope followed by a steeper downstream slope that becomes progressively steeper in time.  It 

should be noted how well the DG solution captures the steep downstream slope of the dune 

without the introduction of any spurious spatial oscillations or any significant numerical damping.      
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Fig. 6:  Convergence plot of test case 1 demonstrating 2nd order convergence 
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Fig. 7:  Comparison of the exact and DG solution for test case 1 
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 Fig.8:  Computational grid of test case 2 

 

 

4.2 Test Case 2:  Converging channel 

  

 In this problem, we return to the full morphodynamic modelling system and examine the 

morphological evolution of an initially flat bed in a converging channel.  A plan view of the 

channel showing the computation grid is shown in Fig. 8.  The channel tapers in from a maximum 

width of 500 m at the edges to 250 m in the center over a distance of 2 km.  The boundary 

conditions for the hydrodynamics are specified in such a way that a maximum velocity of 

approximately 1 m/s occurs in the center of the channel. The evolution of the bed is examined 

over a 90 day period.  The sediment density and median grain size of the bed are taken to be 2000 

kg/m3 and 0.2 mm, respectively.  The time step used in the hydrodynamic model is 2 seconds and 

the bed is updated every 50 hydrodynamic time steps.  Figs. 9a-9c show plots of the bed elevation 

surface and velocity contours at 30, 60, and 90 days.   The bed changes have been scaled in the 

vertical for easy visualization.   

The velocity throughout the channel varies from approximately 0.50 m/s at the ends of 

the channel to approximately 1 m/s in the center of the channel.  The bed experiences erosion in 

the converging part of the channel due to the increase in the flow velocity.  Conversely, in the 
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diverging part of the channel, as the flow velocity decreases, accretion of the sediment occurs and 

a mound or shoal develops in time.  It can be noted the scour and accretion patterns occurring in 

the center of the channel are slightly larger than those occurring toward the sides of the channel 

across the width of a given cross section.  This can be explained by the fact that the velocity field 

is not entirely uniform across the width of the channel with somewhat higher velocities occurring 

in the center.  These small variations in the velocity field across the width of the channel produce 

variations in the morphology of the bed across the width of the channel given the fact that the 

sediment transport is a function of U .  We also note that the velocity field evolves along with the 

morphological changes.   

3

Finally, we remark that the computed results of the evolution of the bed compare well 

qualitatively to an analytical solution given by Exner (1925) for a problem of the same geometry.  

Exner’s results, as shown in Figure 10, are the solution of a simplified model similar to that of 

Section 2 but modified accordingly to account for variations in the width of the channel (see Graf, 

1971 for details).  Specifically, it can be seen that the numerical and analytical solutions show the 

same general evolution of the bed, i.e. scour in the converging section of the channel and 

accretion in the diverging section.   

 

 24



 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9a: Velocity contours and bed surface for test case 2 - Day 30 
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Fig. 9b: Velocity contours and bed surface for test case 2 - Day 60 
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Fig. 9c: Velocity contours and bed surface for test case 2 - Day 90 
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Fig. 10:  Exner’s analytical solution for the converging channel 
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Fig. 11:  a.)  Computational grid for the idealized inlet of test case 3 and b.) details of the grid in the 

vicinity of the inlet. 

 

4.3 Test Case3: Idealized Inlet 

 

 In this problem, we apply the model to the case of an idealized inlet as shown in Fig. 

11.  The domain consists of a 10 km by 20 km sound connected to the open ocean through an 

inlet which is 1 km wide and 0.5 km long.  The open ocean boundary is 20 km from the entrance 

of the inlet and is 50 km wide.  The initial bathymetry in the sound and through the inlet is 

constant at a depth of 5 m.  South of the inlet the bathymetry varies linearly from 5 m at the 

entrance to 14 m at the open ocean boundary.  The sediment density and median grain size are the 

same as those specified in the previous problem.  The grid for the problem is also shown in Fig. 

11 with the inset showing the details in the vicinity of the inlet.  The nodal spacing ranges from 

100 m near the inlet to 1 km at the open ocean boundary.  The problem is forced with an M2 tide 

with a 15 cm amplitude which produces a maximum current of approximately 1 m/s through the 

inlet.  The time step used for the hydrodynamics is 5 seconds, and the bed is updated every 50 

hydrodynamic time steps.  A 28 day simulation was run with magnified sediment transport rates 
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in order to enhance the advective processes and accelerate the morphological evolution of the 

dominant features.  Runs with no magnification of the sediment transport rates produced 

qualitatively similar results with smaller changes in the bed.   

 Figs. 12a-12d show the time evolution of the bed every 7 days over the 28 day 

simulation.  Note that larger values in the bed elevation indicate erosion and lower values indicate 

accretion due to the fact that the bed is measured as positive downward from the geoid.   On day 

7, there is noticeable erosion beginning at the southern end of the inlet.  Accumulation of the 

sediment can be seen along the sides of the inlet and to the south of the inlet indicating the initial 

formation of an ebb shoal.  During flood tide on day 14, it can be seen that there has been 

significant erosion through the throat of the inlet resulting in the initial formation of a flood shoal.  

It can also be seen that the ebb shoal has become more pronounced.  By day 21, there are distinct 

flood and ebb shoals to the north and south of the inlet respectively.  There is also additional 

erosion through the inlet following the same pattern as the initial scour.  At the end of day 28, 

there has been significant scour through the entire length of the inlet and the flood and ebb shoals 

have become even more pronounced.  It should be noted that even at this level of coarse grid 

resolution the model captures the main morphological changes one expects to observe in tidally 

dominated coastal inlets (see for example Hayes, 1980). 
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Fig. 12.)  Evolution of the bed in the vicinity of the inlet over the 28 day simulation – a.) Day 7, 

b.) Day 14, c.) Day 21, and d.) Day 28 
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5.  SUMMARY AND FUTURE WORK 

 

 

 In this paper, we have presented a new unstructured grid morphodynamic model which 

makes use of the existing ADCIRC finite element hydrodynamic model and a new DG finite 

element sediment transport/morphological model.  Specific details were given on the 

implementation of the DG method, and the model was shown to produce good results in three 

idealized test cases.  In the first test case it was verified, through the use of the Exner model, that 

the method achieves second-order convergence in space.  Additionally, it was demonstrated how 

the DG method can accurately capture steep gradients in the bathymetry without the introduction 

of spurious spatial oscillations.  The second and third test cases demonstrated how the full 

morphodynamic modelling system can be used to predict medium-term morphological changes of 

the bed in channels and tidally dominated coastal inlets. 

 We conclude with some comments on the current development of this morphodynamic 

modelling system, in terms of both physical and numerical features that will be implemented.  In 

this paper, we have only considered sediment transport due to currents.  However, in many 

coastal scenarios short waves, which interact with the current through the introduction of 

radiation stress terms in the momentum equations, can be the dominant force in the sediment 

transport process.  Therefore, future work will involve coupling a wave model component into the 

modelling system to include the effects of waves in both the hydrodynamics and sediment 

transport processes.  Numerically, as was previously indicated, the present model is only one 

component of a suite of DG models that are currently being developed.  Other DG model 

components will include a 2DDI DG hydrodynamic model (see Kubatko, et al., 2005) and 2DDI 

DG transport models for salinity and temperature.  In many applications, these models will be 

used in advection dominated flow scenarios such as coastal inlets.  The DG method is particularly 

advantageous for these types of situations. 
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