

Global Path Planning for Unmanned
Ground Vehicles

J. Giesbrecht
Defence R&D Canada – Suffield

Technical Memorandum

DRDC Suffield TM 2004-272

December 2004

Defence Research and Recherche et développement
Development Canada pour la défense Canada

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Global Path Planning for Unmanned Ground Vehicles (U)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defence R&D Canada -Suffield,PO Box 4000, Station Main,Medicine
Hat, AB,CA,T1A 8K6

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper is an overview of high-level path planning methods used in mobile robotics with special
emphasis on outdoor planning for unmanned ground vehicles. It surveys all portions of the path planning
process including world representation, graph search algorithms, and planning for partially and
completely unknown environments. Planning representations such as Cell Decompositions, Roadmaps, and
Potential Fields are covered as well as both heuristic and non-heuristic methods of graph search. Specific
recently developed and popular algorithms are also investigated such as A*, D*, Potential Fields,
Wavefront Planning, Probabilistic Roadmaps and Rapidly Exploring Random Trees.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

58

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Global Path Planning for Unmanned
Ground Vehicles

J. Giesbrecht
Defence R&D Canada – Suffield

Defence R&D Canada – Suffield
Technical Memorandum
DRDC Suffield TM 2004-272
December 2004

© Her Majesty the Queen as represented by the Minister of National Defence, 2004

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2004

DRDC Suffield TM 2004-272 i

Abstract

This paper is an overview of high-level path planning methods used in mobile
robotics with special emphasis on outdoor planning for unmanned ground vehicles.
It surveys all portions of the path planning process including world representation,
graph search algorithms, and planning for partially and completely unknown
environments. Planning representations such as Cell Decompositions, Roadmaps, and
Potential Fields are covered as well as both heuristic and non-heuristic methods of
graph search. Specific recently developed and popular algorithms are also
investigated such as A*, D*, Potential Fields, Wavefront Planning, Probabilistic
Roadmaps and Rapidly Exploring Random Trees.

Résumé

Cet article donne une vue d’ensemble de méthodes de planification de parcours de
haut niveau utilisées en robotique mobile axées sur la planification en extérieur pour
les véhicules terrestres sans pilote. Il fait l’examen de toutes les étapes de la
planification de parcours dont la représentation de l’univers, les algorithmes de
recherche par graphes et la planification concernant des milieux partiellement ou
complètement inconnus. Les représentations de planification telles que la
Décomposition de cellules, le Calendrier de lancement et les Champs potentiels sont
couvertes ainsi que les méthodes à la fois heuristiques et non heuristiques de
recherche par graphes. Des algorithmes spécifiques récemment mis au point et
répandus, tels que A*, D*, Champs potentiels, Planification du front d’onde,
Calendriers de lancement probabilistiques et Arbres aléatoires rapides, sont aussi
examinés.

ii DRDC Suffield TM 2004-272

This page intentionally left blank.

DRDC Suffield TM 2004-272 iii

Executive summary

Global path planning is the process of using accumulated sensor data and a priori
information to allow an autonomous robot to find the best path to reach a goal
position. It is a key component in creating autonomy for unmanned ground vehicles
and there are a large number of different techniques currently in use. It is important to
have an understanding of the many methods available because each one of them is
suited to a specific set of circumstances under which it will be the optimal choice.
For this reason, this report surveys the variety of techniques which are currently
popular, with special focus on their applicability to outdoor navigation.

A global path planner will often be paired with a local navigator in a typical mobile
robot application. Global path planning is concerned with long range planning and is
a slow, deliberative process which finds the most efficient path to a long term goal.
It is not concerned with vehicle stability or small scale obstacles, which are left to the
local navigator system.

The planning process is comprised of two main steps: compiling the available
information into an effective and appropriate configuration space and then using a
search algorithm to find the best path in that space based on the user's pre-defined
criteria such as path distance, proximity to the enemy, and so on. There are three main
categories of configuration spaces which have proven to be effective on mobile
robots: Cell Decomposition, Roadmaps, and Potential Fields.

The first category of representation, Cell Decomposition, uses a world divided into a
set of representative areas, such as regular grid cells, and then describes the
characteristics of the world for each of the cells. Typical characteristics represented in
the grid are roughness, elevation, traversability and so on. More advanced techniques,
such as quadtrees, attempt to be more efficient than regular grids in dividing up the
world, to make the path planning process more efficient.

The second type of representation, the Roadmap Methods, attempts to describe the
world in terms of how to get from one key location to another, and the cost of getting
between them. Road maps are much harder and time consuming to create than Cell
Decompositions, but have the advantage of being faster to use once created. Two of
the most recent and exciting developments in the field of path planning utilise
Roadmaps, Probabilistic Roadmaps and Rapidly Exploring Random Trees.

The third type of representation is called Potential Fields. The robot is represented as
an object under the influence of potential created by goals and obstacles in the world
much like an electron in an electric field. This method has more commonly been used
for local obstacle avoidance in mobile robots but can also make for effective path
planning.

iv DRDC Suffield TM 2004-272

Once the world representation has been built using one of the above three methods,
the robot then uses a search algorithm to find the best path in that world. Older, less
sophisticated algorithms such as Djikstra's algorithm and Depth-First Search are still
in wide use. However, modern developments have led to the use of heuristics, or
educated guesses, to speed up the search method. The most popular search algorithm
in use, the A* algorithm, is of this type. Further developments, such as the D*
algorithm, attempt to speed up the process for circumstances where the world is
partially known and new information is frequently being uncovered.

Giesbrecht, J. 2004. Global Path Planning for Unmanned Ground Vehicles.
DRDC Suffield TM 2004-272. Defence R&D Canada – Suffield.

DRDC Suffield TM 2004-272 v

Sommaire

La planification de parcours global consiste à utiliser les données accumulées par les
détecteurs, ce qui à priori est considéré comme information et permet à un robot
autonome de trouver le meilleur parcours vers la position désirée. Il s’agit d’un
composant clé concernant la création d’autonomie pour les véhicules terrestres sans
pilote et un grand nombre de techniques différentes sont actuellement utilisées. Il est
important de bien comprendre les nombreuses méthodes disponibles parce que
chacune d’entre elle est adaptée à un ensemble de circonstances particulières et
représente le choix optimal dans ces circonstances. Pour cette raison, ce rapport
examine une variété de techniques qui sont actuellement répandues en focalisant
spécialement sur l’applicabilité de ces dernières à la navigation en extérieur.

Le planificateur de parcours global sera souvent jumelé avec un navigateur local
durant une application ordinaire de robot mobile. La planification de parcours global
se préoccupe de planification à long terme et est un processus lent et délibéré qui
trouve le parcours le plus efficace pour un objectif à long terme. Elle ne se préoccupe
pas de la stabilité du véhicule ou des obstacles de petite échelle qui sont laissés aux
soins du système du navigateur local.

Le processus de planification se compose de deux étapes principales : la compilation
de l’information disponible dans un espace d’arrangement efficace et approprié et
ensuite l’utilisation d’un algorithme de recherche pour trouver le meilleur parcours
dans cet espace en se basant sur les critères prédéfinis par l’utilisateur tel que la
distance du parcours, la proximité de l’ennemi et ainsi de suite. Il existe trois
catégories principales d’espaces d’arrangement qui ont prouvé être efficaces sur les
robots mobiles : la Décomposition de cellules, le Calendrier de lancement et les
Champs potentiels.

La première catégorie de représentation, la Décomposition de cellules, utilise un
univers divisé en un ensemble de zones représentatives, telles que des cases de grilles
ordinaires et décrit ensuite les caractéristiques de cet univers pour chacune des cases.
Les caractéristiques ordinaires représentées dans les grilles sont la rugosité, l’altitude,
la probabilité de traverser et ainsi de suite. Des techniques plus avancées, telles que
les arbres quadratiques, tentent d’être plus efficaces que les grilles ordinaires pour
diviser l’univers et rendre plus efficace le processus de planification de parcours.

Le second type de représentation, les méthodes de Calendrier de lancement, tentent de
décrire l’univers en termes de comment se rendre d’un lieu clé à un autre et le coût de
se rendre entre les deux. La méthode des cartes des routes est plus difficile et plus
coûteuse en temps à créer la représentation que le Décomposition de cellules mais
cette méthode a l’avantage d’être plus rapide à utiliser une fois la représentation
créée. Deux des développements les plus récents et les plus passionnants dans le
domaine de la planification de parcours utilisent les méthodes de Calendrier de
lancement, Calendriers de lancement probabilistiques et Arbres aléatoires rapides.

vi DRDC Suffield TM 2004-272

Le troisième type de représentation est appelé Champs potentiels. Ce robot est
représenté comme un objet soumis à l’influence d’obstacles potentiels, créés sous
forme d’objectifs et d’obstacles dans l’univers, d’une manière qui s’apparente
beaucoup à celle d’un électron dans un champ électrique. Cette méthode a été utilisée
plus couramment pour éviter les obstacles locaux qui se présentent aux robots mobiles
mais elle peut aussi être utilisée effectivement dans le domaine de la planification de
parcours.

Une fois que la représentation de l’univers a été construite en utilisant une des trois
méthodes mentionnées ci-dessus, le robot utilise alors un algorithme de recherche
pour trouver le meilleur parcours dans cet univers. Des algorithmes plus anciens et
moins sophistiqués tels que l’algorithme Djikstra et Recherche en profondeur sont
encore largement utilisés. Cependant, les développements récents ont amené à utiliser
l’heuristique ou des hypothèses bien fondées pour accélérer la méthode de recherche.
Un algorithme de recherche de ce type est l’algorithme A* qui est le plus répandu.
Des développements plus avancés, tels que l’algorithme D*, tentent d’accélérer le
processus dans des circonstances où l’univers est partiellement connu et où
l’information nouvelle est fréquemment découverte.

Giesbrecht, J. 2004. Global Path Planning for Unmanned Ground Vehicles.
DRDC Suffield TM 2004-272. R & D pour la défense Canada – Suffield.

Table of contents

Abstract . i

Resume . ii

Executive Summary . iii

Sommaire . v

Table of contents . vii

List of figures . ix

1. Introduction . 1

1.1 Global Path Planning and Local Navigation 3

1.2 Path Planning Concerns . 4

1.3 Overview of Report . 6

2. World Representation for Planning . 6

2.1 Topological vs. Metric Path Planning 6

2.2 Planning Space . 7

2.2.1 Configuration Space . 7

2.2.2 Discrete vs. Continuous Space 8

3. Representation and Path Planning . 9

3.1 Cell Decomposition Methods . 9

3.1.1 Approximate Decomposition 10

3.1.2 Adaptive Cell Decomposition 11

3.1.3 Exact Cell Decomposition . 12

3.2 Roadmap Methods . 14

3.2.1 Visibility Graphs . 14

3.2.2 Voronoi Diagrams . 15

3.2.3 Probabilistic Roadmaps . 15

DRDC Suffield TM 2004-272 vii

3.2.4 Rapidly Exploring Random Trees 18

3.3 Potential Fields . 18

3.3.1 Navigation Functions . 20

3.3.2 Depth-First Planning and Potential Fields 20

3.3.3 Best-First Planning and Potential Fields 21

3.3.4 Wavefront Based Planners and Potential Fields 21

4. Graph Search Algorithms . 22

4.0.5 Depth-First Search . 24

4.0.6 Breadth-First Search . 24

4.0.7 Iterative Deepening . 25

4.0.8 Uniform-Cost Search . 25

4.0.9 Trulla Algorithm . 26

4.1 Heuristic Search . 27

4.1.1 Best-First Search . 27

4.1.2 A* Search . 27

5. Path Planning for Partially Known and Unknown Environments 28

5.1 Path Planning for Exploring . 29

5.2 Path Planning for Partially Known Environments 29

5.2.1 Continuous and Event Driven Replanning 30

5.3 Real-Time Heuristic Search . 30

5.4 Incremental Heuristic Search . 31

6. Time Complexity of Search Methods . 33

7. Conclusions . 35

References . 37

Annex . 42

viii DRDC Suffield TM 2004-272

List of figures

Figure 1. Global Path Planning vs. Local Navigation 4

Figure 2. Topological and metric representations. 7

Figure 3. 8-connected and 4-connected grids. 10

Figure 4. Incompleteness of approximate cell decomposition. The bridge is labelled as
blocked because the grid has resolution which is too low. Also note the inefficiency
of the regular grid in the open spaces. 11

Figure 5. Quadtree representation. 13

Figure 6. A framed quadtree. 13

Figure 7. One type of exact cell decomposition. 14

Figure 8. A visibility graph. 15

Figure 9. A Voronoi diagram. 16

Figure 10. PRM with randomly chosen nodes. 17

Figure 11. A poorly covered and a well covered PRM. 17

Figure 12. Path planning using RRTs. The roadmap paths are grown in linear
increments from both the goal and the start positions. When the two paths grow
within a certain distance of one another, they are connected, and the robot can
follow the path to reach the goal. 18

Figure 13. Simplified potential fields. Field produced by obstacles in a) and b), the field
produced to create goal attraction in c), and the sum of the fields in d). This
summed field will be used to direct the robot along the levels of lowest potential.
Note the local minima that will cause the robot to be trapped. 19

Figure 14. Simplified wavefront planning. 22

Figure 15. The path planning process. 23

Figure 16. Depth-First Search (note that with Depth-First Search for this example, nodes
D and H are never explored). 24

Figure 17. Breadth First Search. 25

Figure 18. Iterative Deepening Search. 25

DRDC Suffield TM 2004-272 ix

Figure 19. Uniform Cost Search. 26

Figure 20. A* Search Algorithm. 28

Figure 21. Agent-Centered Search. 31

Figure 22. Results for Framed Quadtree Representation. 34

Figure 23. Family Tree of Path Planning Methods . 36

x DRDC Suffield TM 2004-272

1. Introduction

A human driver looking at a map of a city, countryside or wilderness can quickly and
efficiently decide on the best path to get where he or she is going. Humans can
automatically separate portions of the map symbolically in our minds, recognize
hazards to our vehicle, roads which will take us there quickly, and effortlessly pick the
shortest way to reach our goal. For robots this is not such an easy task owing to their
lack of ability to reason symbolically. A robot must first divide up the world into pieces
it can recognize as obstacles, undesirable terrain, or dead ends. Then it must
systematically search through the world to find the best route.

Through the Autonomous Land Systems initiative, Defence R&D Canada is
investigating the area of Unmanned Ground Vehicles (UGVs). The goal is to create
autonomous robotic vehicles which can be useful in a wide variety of applications,
which can think for themselves and are not a burden to their users. One major
challenge is giving vehicles the ability to find their way intelligently through a wide
variety of terrains. This may mean finding suitable paths when given a complete map of
the area in which the robot is to operate, or perhaps when given nothing more than a
suite of sensors to view their world. In some instances it is possible to reach objectives
by blindly fumbling toward the goal. However, at other times, systems which are
purely reactive will take a long time in reaching their destination if they get there at all.
A global world view with the ability to plan well into the future based on accumulated
information is a distinct trait of intelligent creatures which allows them to reach goals
quicker and avoid potentially dangerous situations. Principles of global path planning
therefore need to be applied for successful UGV applications.

This document is a survey of methods that have been developed by the robotics
community for path planning by robotic vehicles. The general intention of the survey is
to provide guidelines for those methods which are most applicable to outdoor cross
country navigation. However, because a great deal of mobile robot research has
historically been focused on planning the paths of indoor robots and the movement of
robotic manipulators it is important to consider the applicable lessons from that
research as well. In addition, a combination of the methods developed for indoor and
cross country navigation will probably prove to be effective when implemented for path
planning in urban environments.

Autonomous navigation by a UGV or mobile robot from one location to another is a
very complex process. The robot must accomplish at least four simultaneous tasks to be
successful and efficient:

1. Perception - Viewing the world and interpreting what it sees.

2. Localization - Keeping track of the robot’s position.

3. Local Navigation - Making sure the robot doesn’t tip, drive into holes or bump into
obstacles.

DRDC Suffield TM 2004-272 1

4. Global Path Planning - Finding the fastest and safest way to get from start to goal.

The subject of this survey is the fourth task given above: global path planning which is
the process of deliberatively deciding on the best way to move the robot from a start
location to a goal location. In more technical terms it is defined by Dudek [12] as
“determining a path in configuration space between the initial configuration of the
robot and a final configuration such that the robot does not collide with obstacles and
the planned motion is consistent with the kinematic constraints of the vehicle”. The
field of path planning borrows heavily from experience in other fields, such as
computer networking, artificial intelligence, computer graphing, and decision making
psychology. Although it is not the only type of cognition required, path planning is
definitely a key component of autonomous intelligence.

There are a number of terms associated with path planning which are used in different
ways by different people. Some are clarified here for the purposes of this report:

Navigation - A very diverse term which can have a variety of meanings. Generally it
means “getting from here to there”, but it also encompasses the fields of path
planning, motion planning, obstacle avoidance, and localization.

Global Path Planning - Planning which encompasses all of the robot’s acquired
knowledge to reach a goal, not just the current sensed world. It is slower, more
deliberative, and attempts to plan into the future. There is generally no
requirement for it to run in real time, but instead is usually run as a planning phase
before the robot begins its journey.

Motion Planning - This term can mean both the high level and low level planning for
the way that a robot will move, but must involve a deliberative aspect. This term
is used more often in manipulator robotics or for planning on a smaller, more
local scale. An example for a mobile robot is the classic parallel parking problem.

Local Navigation - The process of using only the robot’s current sensed information
of its immediate world to avoid obstacles and to ensure vehicle stability and
safety. It is much more reactive than path planning and runs in real time. The
speed at which a vehicle can travel is limited by the speed at which the local
navigator can operate.

Obstacle Avoidance - Used in a very similar manner to local navigation, but where
local navigation considers vehicle stability, safety, and goal directedness, obstacle
avoidance is concerned with merely getting around objects that are in the robot’s
way.

Trajectory Planning - Planning the robot’s next movement. This term is synonymous
with motion planning.

Non-holonomic Path Planning - Requires the consideration of constraints which are
non-integrable and impose restrictions on possible state transitions. An example is
the inability of a car-like robot to move straight sideways.

2 DRDC Suffield TM 2004-272

Kinodynamic Path Planning - Accounts for constraints on the velocity and
acceleration that a robot can accomplish.

1.1 Global Path Planning and Local Navigation
It is important not to confuse the tasks of global path planning with local navigation
when discussing UGVs. Robust, intelligent systems for outdoor navigation must use
both, and these two processes are complementary. The local navigator is a reactive
process which relies on the latest sensor data to maintain vehicle safety and stability
while moving as fast as possible. Path planning, as discussed here, is a deliberative
process that looks ahead to the future and uses information about the world it has been
given or accumulated over time to provide a safe path for the robot, prevent it from
being stuck in cul-de-sacs, and to reach the goal in the shortest amount of time possible.
These are things that a less intelligent, more reactive behaviour cannot accomplish.
Unfortunately, it also means that global path planners operate slower and on a much
longer time scale than local navigators. Because of this slow planning speed vehicle
dynamic concerns are left to the faster, more reactive, local navigator layer. The global
planner works at a high level, especially for outdoor robots, due to the scale of barriers
in the natural world such as rivers and canyons, while reactive local navigator deals
with the smaller sensor-scale obstacles. Sensed obstacles require faster action than the
global planner can provide. It must also be noted that path planning is nonsensical for
robots that have no ability to store or accumulate information about the environment. In
that situation, a local navigation system is all the robot will be able to effectively use.

One of the major issues which much path planning research has focused on is planning
with vehicle constraints. Ackerman steered vehicles are commonly used in outdoor
environments. The simple fact that they can’t move straight sideways greatly
complicates the planning problem. Typically, vehicle constraints for global path
planning are much more important for indoor vehicles than outdoor vehicles due to the
differences in scale of the obstacles and the scale of planned paths between the two
environments. For outdoor vehicles the boundary obstacles and cul-de-sacs, etc. tend to
be of very large scale with respect to vehicle size. Therefore, for planning purposes,
planning is done with the robot treated as a point in space. The maps, or graphs, that
are searched through for outdoor path planning consist of a large number of nodes of a
smaller size than for indoor application. For these reasons the path planner is slower,
and looks further ahead than those planners for indoor robotics. However, for the
purpose of this survey, and as a general principle of application for outdoor vehicles, a
global path planner will simply plan at a high enough level that the turning radius of the
vehicle is small enough to get the vehicle around and out of any obstacles it mind find
itself in. Because most outdoor environments for UGVs will be relatively uncluttered
this often is a valid assumption. We can rely on the fact that the local navigator will
handle the low level logistics of moving the robot or that the operator will intervene if
the robot does get itself into trouble. However, it must be noted that for many path
planning algorithms there is no guarantee that the path planner is competent enough for
the environment, and the vehicle may require operator intervention.

DRDC Suffield TM 2004-272 3

Uses immediate sensor data only Uses accumulated and a priori information

Plans for long distances and time periods

Slow, deliberative process

Allows robot to avoid getting trapped

Plan to reach goal in most efficient manner

Simple model of vehicle (point robot)

Concerned with hills, rivers, canyons, forests,
roads, buildings, etc. bumps, logs, etc.

Concerned with rocks, holes, slopes,

Fast and reactive

Allows robot to travel safely

Plan to travel as fast as possible

Complex vehicle model (dynamics and kinematics)

Local NavigationGlobal Path Planning

Plans for immediate vicinity
 for a short time ahead

Figure 1: Global Path Planning vs. Local Navigation

1.2 Path Planning Concerns

Given an initial position and orientation, as well as a goal position and orientation, a
path planner’s job is to calculate a path which specifies a continuous sequence of
positions and orientations in order to avoid contact with obstacles. It should report
failure if no such path exists. Historically, the path planning problem has been studied
much less for outdoor vehicles than for indoor vehicles. This may be because outdoor
environments are much less cluttered than indoor, but is more likely that the ease of use,
size and complexity of indoor mobile robots make them ideal experimental vehicles.
This document attempts to analyze the methods presented in terms of effectiveness for
outdoor path planning, from which indoor path planning has a great many differences.
Indoors, the terrain is flat and vehicle stability can safely be ignored. Obstacles are well
defined and regular, and a binary obstacle/no obstacle representation is almost always
sufficient. Outdoor environments have some of the following complications:

• The range of obstacles is large, a robot must dodge rocks as well as mountains.

• Vast areas of terrain are often not mapped at high enough resolution for planning.

• Negative obstacles such as ravines, holes, and ditches pose a threat.

• Tipping hazards for robots exist.

• Outdoor areas often contain large areas of sparsely populated terrain, punctuated by
cluttered areas.

• Widely varying traversability exists, such as mud, pavement, tall grass, bushes,
trees, and rock piles.

Any navigation system for a UGV will need to incorporate all of these concerns in
order to be effective. Nevertheless, many methods developed for indoor robots have
applicability for outdoor vehicles but would require adaptation for efficient use. For
example, a river with a bridge across it will be much larger than a wall with a door in an
office, but they represent similar challenges to the robot but on a different scale. In any
event, there are many similar characteristics which all path planners have:

4 DRDC Suffield TM 2004-272

Search Space: This represents the possible states, or positions, orientations and
conditions of the robot, the world and its objects. A simple example is the x,y
coordinates of a vehicle in the Euclidean space. More complex states may involve
conditions as complicated as radio signal strength or fuel level.

Actions: A plan must also generate actions, or ways of moving from state to state.

Time: Planning always involves time in some way, even if not explicitly. A planner
may include time in such ways as: “at time t the robot will be at point x,y”, or
“the path should take the least amount of time possible.” Usually time is
represented simply as a sequence of actions: “after Action A is completed the
robot will do Action B”.

Initial and Goal States: The plan is the way the robot will get from the initial to the
goal state.

Criteria For Planning: The desired characteristics of the “best” plan, such as time,
distance, or safety. These are yardsticks by which to optimize plans.

Constraints: Those items which limit the range of plans that can be made, such as
maintaining vehicle safety, stealth or the physical limitations of the robot.

Algorithm: This is the method by which the best plan is obtained given the criteria
and constraints for planning.

Plan: The sequence of actions to move from the start configuration to the goal
configuration.

There are a number of considerations for path planning that will influence the design of
the system and criteria by which they are judged:

Environment: Does path planner sufficiently represent the environment? Is the
application indoor or outdoor? Is it cluttered or relatively open?

Robot Structure: Does the path planner provide a sufficient but not excessively
detailed representation of the vehicle with respect to size and mobility constraints?

Optimality: Requirements can be based on minimum distance traveled, time taken,
vehicle safety, etc.

Completeness: Will it find a path if one exists?

Space and Time Complexity: Can it operate fast enough so the robot does not need to
stop and think?

Dynamic or Unknown Worlds: Can the path planner deal with changing information
or goals?

For some other general information regarding mobile robot path planning see
[12][44][33][35] [34].

DRDC Suffield TM 2004-272 5

1.3 Overview of Report

The methods for planning are very closely tied with the world representations used. In
order to plan a path for a robot, the world must be represented, in order to define that
portion of the world in which can be travelled through (free space), that portion that
can’t (obstacles), and sometimes that part which can be travelled in, but is undesirable
(traversability analysis). Therefore, the first section of this report is all about the
various ways that the information about the world can be represented within the robot.
It covers topological and metric path planning, the idea of a configuration space, and
discrete vs. continuous state spaces. The second section surveys specific
representations which have been applied to the path planning problem, such as cell
decompositions, road maps and potential fields. Once the world is represented within
the robot the path planner will need to search through the representation for the best
path to the goal using algorithms such as Depth-First, Breadth-First, and Heuristic
searches presented in the third section. The final piece of the path planning problem is
using information accumulated from sensors. The final two sections survey these
methods, which are the most recently developed and most effective for global path
planning in outdoor environments.

This report is a survey of global path planning, not local navigation techniques. It does
not cover sensor based motion planning techniques, planning algorithms which plan
vehicle action on a local scale, or systems which enable rough terrain mobility. This is
not to say that the techniques here do not allow for replanning and the consideration of
sensor acquired data but that the main planning function goes on within the space of
previously acquired information. This survey also gives little consideration to planning
with non-holonomic constraints and kinodynamic planning. This is not to say that the
planning algorithms presented below cannot be used on vehicles with these types of
constraints, but rather the planning is done at a high enough level and over a long
enough time scale that they are unimportant factors.

2. World Representation for Planning
2.1 Topological vs. Metric Path Planning

Humans use two types of navigation and representation: topological navigation and
metric navigation. Topological navigation operates on landmarks and identifiable
locations such as intersections. Directions are given in terms such as “go to the big tree,
turn left and cross the river”. Topological methods can go by many other names such as
qualitative, route based, or landmark navigation. They express space in terms of
connections between identifiable locations such as landmarks and intersections, and are
dependent upon perspective of the robot (i.e orientation clues are egocentric).
Topological representations cannot be used to generate metric representations even
though the reverse is true. The representations are used in a more reactive way and are
more robust to localization errors. Unfortunately most of the research in this field has
been undertaken for indoor environments where the identifiable nature of objects

6 DRDC Suffield TM 2004-272

enable a vehicle to easily find landmarks. It is more difficult in outdoor environments
where a sparsity and lack of uniqueness makes topological cues harder to find.
Topological methods may use waypoint navigation, visibility graphs, or voronoi
diagrams which are all described below. For some typical examples of topological path
planning implemented on indoor robots, see works by Park[48] or Thrun[64].

On the other hand, metric navigation lends itself well to outdoor environments even
though it requires more competent localization. Metric methods favor techniques which
produce an optimal path and express directions in terms of physical travel, often from a
bird’s eye view. The map structures are independent of orientation and position of the
robot. In metric navigation, directions are given in specific geographic terms with
distance and direction, such as “travel at 30 degrees for 300 metres then at 170 degrees
for 100 meters”. Metric paths are usually described as a set of waypoints or subgoals,
defined in the (x, y) coordinate system. Often GPS can provide a global coordinate
framework. In addition, metric navigation lends itself very well to computer data
representation, and computational search algorithms. The metric methods shown later
in this report are potential fields and cell decompositions.

Figure 2: Topological and metric representations.

2.2 Planning Space
2.2.1 Configuration Space

In path planning for mobile robotics, the vehicle and the world through which
it travels must both be represented in some manner so that plans can be
evaluated in a search space. The search space represents all the possible
situations that can exist. In order to plan a robot’s motions when there are
many degrees of freedom, a construction called a configuration space is used.
At every point in time, a robot can have exactly one combination of its
position and orientation. This unique combination is called a configuration. A
configuration space (c-space) represents each possible configuration as a
single point and contains all of the possible configurations of the robot. All of
the physical obstacles from the robot’s working space are mapped or
transformed into this configuration space. This c-space is used where the
combination of position and orientation is mapped into a single configuration
point, because it transforms the problem from planning complex object
motion to planning the motion of a point.

DRDC Suffield TM 2004-272 7

For example, consider a single rigid, wheeled mobile robot, operating in a two
dimensional environment. A configuration space which has three dimensions
could be used: position x, position y, and orientation angle. Each node in the
configuration space will be a unique combination of these three dimensions. If
the planning is at a high enough level or if the vehicle is capable of holonomic
motion, the configuration space can be reduced to the two dimensional x and y
space. For example, if orientation is not a concern, all the positions of a
mobile robot could be represented in an (x,y) grid, and the sequence of (x,y)
positions the robot will occupy in order to reach the goal then planned.
However, what if the world is cluttered, and the vehicle is a car-like robot
which has strict conditions of movement for safety, and a limited number of
motions it can control? In this case, the vehicle orientation becomes
important. Now a larger number of dimensions in the working space (x,y and
theta) must be considered, and a configuration space can aid the planning. If
planning is done in a three dimensional world then one may have to use up to
6 dimensions in the configuration space (x,y,z positions, as well as roll, pitch
and yaw).

A good choice of configuration space will contain the fewest number of
dimensions to allow the planning algorithms to work quickly. As degrees of
freedom are added for a complex system, the configuration space grows
quickly in size and number of dimensions, making planning much more
difficult. Unfortunately, as it has been suggested by Latombe [33], the
planning problem grows exponentially in time with the number of dimensions
in the configuration space. This means that the fewer the number of
dimensions that need to be considered the better. For this reason, researchers
often use simplifications of the problems to attain faster performance of a path
planner. For global path planning, the possible configurations are often
reduced to simply the x,y co-ordinate space.

2.2.2 Discrete vs. Continuous Space

In representing the world for robot path planning a continuous or discrete
search space can be used. A continuous state space models the world as a
continuous set of an infinite number of possible states. Path planning then
means finding a continuous trajectory which navigates this space. In general it
is more difficult to do planning in a continuous state space, as the mathematics
involved become complicated. The continuous state space is more often used
for reactive obstacle avoidance rather than for global path planning where the
complexities overwhelm its usefulness.

When using a discrete state space the search space is broken up into a finite
number of possible discrete states that the vehicle can reside in, and describes
any number of characteristics of that state, such as position and pose for
vehicles, or elevation, slope, roughness, etc. for an environment’s state space.

8 DRDC Suffield TM 2004-272

In order to produce a plan each of these discrete states has a state transition
function to determine the other states directly reachable from it. An algorithm
explores the state space to find a sequence of states which define a path from
the original state to the goal state. This search algorithm may operate on any
number of different rules which guide it to find the optimal path based on
whatever criteria the designer intends. Another way of thinking of the discrete
state space is as a set of nodes with links between them. Links can have costs,
and a path is a sequence of nodes connected by links.

This discrete vs. continuous state space consideration can be applied on many
levels. For example, if a planner was searching for a steering angle for a
vehicle, it could search through a number of discrete candidate steering
angles, or it could do a mathematical maximization on the continuous set of
all possible steering angles. As another example, potential field methods of
path planning can be applied to a continuous field defined by mathematical
functions, or the functions can be discretized into a grid map which the path
planner searches through.

3. Representation and Path Planning

Most methods of planning use one of three types of configuration space representation,
called roadmap, cell decomposition and potential fields. Roadmaps model connections
between special points, cell decomposition methods break the world into grids, and
potential fields apply mathematical fields to model the world. Of these three methods
cell decomposition is the one most widely used for outdoor robotics. Each of these
types may be either topological or metric in nature. All the methods mentioned below
in general must be discrete, except for the Potential Field method, which can also be
implemented in a continuous state space fashion.

3.1 Cell Decomposition Methods

Cell decomposition methods are the most studied and widely applied methods for
outdoor robotics. In these methods the planning space is broken up into discrete,
non-overlapping regions which are subsets of the c-space and whose union is makes up
exactly the entire c-space. The result is a graph in which each cell is adjacent to other
cells. The methods for traversing from one cell to adjacent cells is called the
connectivity graph. A planner then searches through the connectivity graph and the
path generated is a sequence of cells the robot should traverse to reach the goal. The
cost of traversing a cell may vary and the planner must apply a metric to determine
which is the optimal path. Cell decompositions are often used to represent the physical
space itself, but can also be used on a configuration space.

DRDC Suffield TM 2004-272 9

3.1.1 Approximate Decomposition

Approximate cell decomposition is created by laying a regular grid over the
planning space. The cells of the grid are of a predefined shape and size, and
are therefore easy to apply. If there is an object in the area contained by the
grid element, that element is marked as an obstacle. Otherwise it is left as free
space. The center of each cell becomes a node in the search graph that will be
examined to find a path. As shown in Figure 3, these nodes can either be
4-connected or 8-connected representing whether or not the robot is
considered to travel diagonally between them. Rather than identifying
particular objects or shapes, the cell decomposition simply samples the world
and marks up the graph accordingly as to whether the space is full, empty or
partially full. Two dimensional binary representations are called bitmaps, and
if they have a range of values, occupancy grids. Three dimensional grid
elements are known as voxels. This method is called “approximate” because
the boundaries of physical objects in the world do not necessarily coincide
with the predefined cell boundaries. Approximate cell decomposition is
popular for a number of reasons: the algorithms are easier to implement than
those for other representations, they are simple to apply to a world space, and
they are flexible. The cells size can be tuned for reducing computation time by
increasing the cell size, thus reducing the number of cells to search through, or
by reducing the cell size to provide more completeness and detail. This makes
them appealing for mobile robots where paths must be re-calculated on the fly.

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���
���
���
���

���
���
���
	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�

�

�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

���
���
���

���
���
��� ���
���
���
���
���
���

Figure 3: 8-connected and 4-connected grids.

However, there are a few problems with this method despite its ease of use.
The first is digitization bias. In cell decomposition methods an obstacle much
smaller than the grid size will result in that entire grid square being labelled as
occupied. This results in a conservative estimate of the free space, and space
that is passable might be considered impassable by the planner. In effect if the
grid resolution is too coarse there is no guarantee of finding a path where one
exists (i.e. it is non-complete). This problem with approximate cell
decomposition is illustrated in Figure 4 to a somewhat exaggerated extent. To
combat this a finer scale grid is used, which then means higher storage and
calculation costs for path planning. Also, the complexity of these methods
grows quickly with the dimension of the c-space so they are realistically
applicable only when the c-space has dimensions of around 4 or less.
Approximate cell methods were introduced by Brooks and Lozano-Perez [6],
and expanded by Zhu and Latombe [70] as well as many, many others since
(see the Section 4.0.9 on Trulla and Section 5.4 on D* below for examples).

10 DRDC Suffield TM 2004-272

Figure 4: Incompleteness of approximate cell decomposition. The bridge is labelled as blocked because the grid
has resolution which is too low. Also note the inefficiency of the regular grid in the open spaces.

When using approximate cell decomposition the system can use one of many
types of shapes to divide up the c-space. Regular cell decomposition using
square cells seems to be the dominant method of representation for outdoor
vehicles. Regular grids have an innate ability to be general, as there are no
assumptions about the size and shape of objects inherent in the representation,
which is good for outdoor environments.

The cells in the decomposition will have costs associated with traversing
them. If this cost is a binary value the map simply contains obstacle and free
space regions, which is very common for indoor robotics. However, one can
also assign a wider variety of values to the cell cost, resulting in a graph that
describes traversability of an area with more flexibility, as outdoor obstacles
rarely have easily definable boundaries. For example, to the map cells in a
map for an outdoor world one could assign many different costs of traversal,
such as roughness, slope, trafficability, etc, which can then be combined to
form a total cost value. This flexibility in representation allows for a powerful
path planning mechanism.

3.1.2 Adaptive Cell Decomposition

Adaptive cell decomposition is used to reduce the number of cells used in
open areas (in order to waste less memory storage space and computation
time), and to remove the digitization bias of the regular cell decomposition. It
is a good tactic for expansive natural terrains in which there are large areas
with the same traversability. Adaptive decomposition relies on the fact that

DRDC Suffield TM 2004-272 11

much of the information in the free space is redundant in a regular cell
decomposition. The regular shape of the cells is maintained, but the cells are
recursively reduced in size in order to both use the space more efficiently and
maintain as much detail as possible. The result is less memory required and
less processing time.

The most common type of adaptive decomposition is a quadtree as shown in
work by Samet [57] or Naniwa[45]. It begins by imposing a large size cell
over the entire planning space. If a grid cell is partially occupied, it is
sub-divided into four equal subparts, which are then reapplied to the planning
space. These subparts are then subdivided again and again until each of the
cells is either entirely full or entirely empty. The resulting map has grid cells
of varying size and concentration, but the cell boundaries coincide very
closely with the obstacle boundaries. A simple quadtree representation is
shown in Figure 5.

Unfortunately, adaptive cell decomposition imposes problems for dynamic
environments where the robot is acquiring new data and updating its map
based on new obstacles. When this happens, it is necessary for the entire data
structure of the map to be completely revamped. There is also some difficulty
using quad-trees with continuous cost maps, which are more useful on natural
terrain, because you cannot subdivide the world into free and occupied
regions. In addition, quad-trees have difficulty in providing near optimal paths
and often result in jagged paths. One good solution is framed quad-trees as
suggested by Chen [7]. As can be seen by comparing the regular quad-tree in
Figure 5 with the framed quadtree in Figure 6, a much better path can be
found. However, in high clutter environments framed quad-trees can be less
efficient than regular grids, due to the overhead required to keep track of the
cell sizes and locations.

3.1.3 Exact Cell Decomposition

Exact cell decomposition attempts to solve some of the problems with regular
grids in a different way. The cells do not have a predefined size or shape, but
are determined based on the world map and the location and shape of
obstacles within it. The cell boundaries correspond exactly with the
boundaries in the planning space, and the union of the cells is exactly that of
the free space in the world. This makes exact cell decompositions complete in
that they will always find a path if one exists, but they will not result in
optimal (shortest) paths. Unfortunately, there is no simple rule for how to
decompose the space into cells. This method is quite difficult to apply for
outdoor environments where obstacles are often poorly defined and of
irregular shape. It also does not lend itself well to the use of scales of
traversability (as opposed to using binary obstacle and free-space regions).
See Schwartz[58], or Avnaim [1] for examples of exact representations. A

12 DRDC Suffield TM 2004-272

start

goal

Figure 5: Quadtree representation.

start

goal

Figure 6: A framed quadtree.

DRDC Suffield TM 2004-272 13

summary of the application of exact cell decomposition for path-planning is
given by Sleumer [59]. One type of exact cell decomposition is shown in
Figure 7.

Figure 7: One type of exact cell decomposition.

3.2 Roadmap Methods

The second major type of representation for path planning are the Roadmap Methods.
Roadmaps are graphs which represent how to get from one place to another. Roadmap
methods of planning find the connections between the robot’s free space as a set of one
dimensional curves. Once the roadmap has been constructed it is used as a set of
standardized paths which the planner will search through to find the optimal solution.
The nodes in the graph are usually waypoints that the robot needs to travel between for
a successful journey. A topology based road map graph will put the nodes of the graph
at distinctive locations which the robot can identify. Roadmaps provide a huge
advantage over cell decompositions in the number of nodes a planner needs to search
through in order to find a path. The set of nodes doesn’t consist of all of the
configurations, but a select few that are special. This makes them harder to create, but
easier to manipulate and use. On the downside, roadmaps are generally difficult to
update or repair as the robot gains new information, because the entire roadmap
typically needs to be remade. In addition, most of the methods of creating the graph use
artifacts of the map, such as corners of objects or crossroad to generate the landmarks
and area boundaries, rather than things that can be sensed by the robot.

3.2.1 Visibility Graphs

One of the earliest roadmap methods, which applies to 2 dimensional
c-spaces, is the visibility graph, which was used on Shakey[47]. The visibility
roadmap consists of straight line segments which connect the nodes of the
polygonal obstacles, without crossing the interior of the obstacles, as in
Figure 8. These straight lines make up the paths on which the robot may
traverse, and the optimal path is selected by any of a number of search
techniques, explained in more detail later in this report. Visibility graph

14 DRDC Suffield TM 2004-272

methods are poor because the calculated paths are tangential to the obstacles
and the robot will brush right up against the obstacles. In order to account for
this obstacle regions are generally grown to provide a safety margin, although
this results in incompleteness and inefficiency of the planner. Another
problem is that the obstacles must be clearly defined polygons. This is a
problem for outdoor robots because obstacles almost always take on round or
amorphous shapes. A simple visibility graph is shown in Figure 8. In this
example the possible paths which can be taken by the roadmap are shown in
solid lines connecting the corners of the obstacles, and the shortest path
through the roadmap, which the robot would take, is shown as the dotted line.

start

goal

Figure 8: A visibility graph.

3.2.2 Voronoi Diagrams

A voronoi diagram[10] is another popular mechanism for generating a
roadmap from a c-space. It can be constructed as the robot enters a new
environment. The roadmap consists of paths, or voronoi edges, which are
equidistant from all the points in the obstacle region. A rough Voronoi
diagram is shown in Figure 9. The points where these edges meet are called
vertices, and often have a physical correspondence to aspects of the
environment which can be sensed, such as intersections of hallways. In
contrast to visibility graphs, Voronoi paths are by definition as far as possible
from the obstacles. If a robot follows a voronoi edge, it won’t collide with any
modeled obstacles, and there is no need to grow obstacle boundaries. This
makes Voronoi methods safe, but the paths generated inefficient.

3.2.3 Probabilistic Roadmaps

A much more recent advance in the roadmap methods is the Probabilistic
Roadmap (PRM) [22], which attempts to make planning in large or
high-dimensional spaces tractable. A PRM is a discrete version of a
continuous c-space which contains much fewer states than the original
c-space. It is generated by randomly sampling the larger c-space and then

DRDC Suffield TM 2004-272 15

start

goal

Figure 9: A Voronoi diagram.

connecting those points into a roadmap. PRMs are an improvement because
most other planners, especially cell decomposition ones, try to solve the
planning problem in the entire search space. PRM methods solve in a
roadmap built from a randomly chosen subset of the search space and then use
a computationally inexpensive search algorithm to finish the job. PRMs are
based on the premise that a relatively small number of points and milestones
and paths are usually sufficient to capture the connectivity of free space. This
assumption can greatly accelerate the planning process.

Path planning using a PRM has two phases, consisting of a construction of the
roadmap phase and path query phase. To construct the map random points in
the configuration space are chosen and added to a list of special points. If a
point lies in the obstacle region it is discarded. The mapping algorithm
attempts to connect this point to a subset of the other configurations already in
the list of special randomly chosen points. This connectivity is usually
evaluated very simply by using a straight line between the two points, and not
connecting them if an obstacle is in the way. This process of random selection
and then evaluating connectivity is repeated a large number of times. This
creates a list of the available connections between the points that were
randomly chosen. This list of connections is the roadmap, which defines a
series of waypoints around obstacles in the c-space. In the query phase, when
the robot needs to plan a path between two configurations, the algorithm uses
the roadmap created in the first phase to search through the waypoint nodes to
find the least-cost path between the start and goal configurations. The initial
graph building process is computationally expensive, however, once it has
been constructed, the search is very efficient. A simple example of a RPM and
a path from start to goal is shown in Figure 10.

One problem with a standard PRM method is that it is inefficient for narrow
confined spaces. Because the points which make up the roadmap are chosen at
random, the chance of catching a random point in the tight space is low, and
no connectivity will be established between sections of the map, as shown in

16 DRDC Suffield TM 2004-272

Randomly chosen points

Paths searched by algorithm

Start

Goal

Figure 10: PRM with randomly chosen nodes.

Figure 11. Greater coverage with a greater number of nodes leads to better
paths and more chance of getting through tight spots, but makes the planning
more complex. This problem has been tackled by Boor[3] and others.

Figure 11: A poorly covered and a well covered PRM.

Another problem with PRMs is that they are usually based on binary obstacles
that most other roadmap planners use, rather than a gradual costing. This
means that obstacles need to be well defined and generating variable path
costs is more difficult than with other methods. A third problem with PRM
methods occurs when obstacles are added or removed from the map and the
entire roadmap must be regenerated. Because generation of the roadmap is
slow and cannot be done in real time, the planner functions poorly when the
information is changing often or if the initial information is incorrect. That
said, however, the roadmap construction is incremental, and can be expanded
as necessary when the robot explores new terrain. Work has been done to
alleviate the problems with PRMs by Hsu [19], Leven[38] and others to
overcome the dynamic obstacle limitation. There are also many other
variations of PRM planners presented in the literature.

DRDC Suffield TM 2004-272 17

3.2.4 Rapidly Exploring Random Trees

A further variation of PRMs is the Rapidly Exploring Random Tree (RRT).
Rather than randomly sampling the configuration space as a PRM does the
planner begins at the start location and randomly expands a path, or tree, to
cover the configuration space. The main focus is to build a roadmap in a
fashion which draws the expansion of the connected paths toward the areas
which have not been filled up yet. The planner pushes the search tree away
from previously constructed vertices. This allows them to rapidly search
large, high dimensional spaces. They are also well suited to the capture of
dynamic or non-holonomic constraints, which with PRM methods have
difficulty (although this capability is not critical for high level global path
planning). One method for planning, as shown in Figure 12, is to grow two
RRTs, one from the goal and one from the start, and then search for states that
are common to both, creating a linked path between the two. For examples,
see “Randomized Kinodynamic Planning” by Lavalle [36], and others by
Kuffner [32], Cheng[8], and Frazzoli[14].

Start Goal

Start Goal

Figure 12: Path planning using RRTs. The roadmap paths are grown in linear increments from both the goal and
the start positions. When the two paths grow within a certain distance of one another, they are connected, and the

robot can follow the path to reach the goal.

3.3 Potential Fields

Potential Fields is the third major type of representation used in path planning.
Potential Field methods are quite different from the previously discussed methods of
planning, and have been used extensively in the past. Instead of trying to map the
search space they impose a mathematical function over the entire area of robot travel.
This method treats the robot as a point under the influence of fields generated by the
goals and obstacles in the world, much like an electron in an electric field. Obstacles
generate repulsive forces and goals generate attractive forces. These forces are stronger

18 DRDC Suffield TM 2004-272

near to the obstacle or goal and have less effect at a distance. At every space in the
world the resultant force of the fields on the robot determines the direction of motion
the robot should take. Even though a mathematical function is used, the search space
can still be either discrete or continuous. Potential Fields were originally devised for
real-time obstacle avoidance with emphasis on real-time efficiency, not path planning.
The method was based on information gained from sensors, rather than a priori
information (see Khatib[23]). These methods were expanded by Latombe [33] as well
as countless others. The methods are relatively easy to implement, and are
computationally efficient. Unfortunately Potential Fields have the flaw of containing
local minima other than the goal in which the robot can get stuck, as is shown in Figure
13. Much of the efforts of adapting potential fields have been at overcoming this flaw.

Goal

Start

2
3333

3
3
3 3 3 3

3
3

2222
2
2
2
2
2 2 2 2 2 2

2
2
2
2

12
11111111

1
1
1
1
1
1 1

1
1
1
1

Potential field for Obs2b)

Goal

Start

1
1 1

2

2
2

2 2
3333

3
3
3

44444
4
4
4
4

555555
5
5
5
5
5

6666666
6
6

6
6

777777
7
7
7

7
7

888888
8
8
8
8

8
8

8
9999999999

9
9
9
9
9
9
9
9
9

10101010101010101010
10
10
10
10
10
10
10
10
10
10

8
8

Potential field for the goalc)
Goal

Start

1
1 1

2

2
2

2 2
333

7
8

8
8

999
9
9

101010
10
10
10

4
4
4
4

55567
6
6
6
67

8
8
8
9
9 9 8 7 7 7

899101098
9

10

9
89

10

10
9
8

8 9 10 10 9
101111109

9
10
11
11
11
11
10

11121212121110

11
11
11
11
11
11
10

12121212121211

11
11
11
11
11
11
11

Local minima here

Sum of potential fields from Obs1, Obs2 and Goal
d)

Goal

Start

3
3 3 3 3

3
3
3333 2

2
2
2
22222

Value of potential field

Obstacles

3

2
2
2
2
2
2 2 2 2 2 2

1
1
1
1
1
1
1 1 1 1 1 1 1

due to first obstacle

Potential field for Obs1

at this point

a)

Figure 13: Simplified potential fields. Field produced by obstacles in a) and b), the field produced to create goal
attraction in c), and the sum of the fields in d). This summed field will be used to direct the robot along the levels of

lowest potential. Note the local minima that will cause the robot to be trapped.

Potential fields are often referred to as a local method, as opposed to a global method,
because the effect of the field on the robot is almost exclusively based on obstacles near

DRDC Suffield TM 2004-272 19

it. Obstacles far away have little to no effect on the robot’s motion, and so it can’t be a
useful planning method. One simple method of making potential fields a planning
method is to forward simulate the motion of the particle in the field, and then use that
simulated motion as a planned path. However, there are simpler and more efficient
ways to use the potential field for path planning which are described below.

3.3.1 Navigation Functions

The local minima problem can be overcome in one of two ways: 1) by
including techniques for escaping minima or 2) with the definition of potential
field which has no or few minima. If a potential field that had only one
minima was created, then a path from the start to the finish could easily be
planned (this is called a global navigation function). There are a very large
number of ways to define the potential field, but as was shown by
Koditschek[24], it is not possible to create one with no local minima (you will
have one saddle point in the field for every obstacle). It is more practical to
solve the minima problem by constructing a navigation function, which has a
certain small number of equilibrium points (an “almost global navigation
function”). These equilibrium points will be unstable so that any small
amount of noise will allow the planner to avoid them. This is equivalent to
taking solution 1 above (escape the minima). As for solution 2 (making a
potential function with few minima), there have been many methods
developed. See Koditschek and Rimon [25][54] for examples. However, it is
computationally complex to define these navigation functions, and therefore is
not that practically useful. Rather than defining these potential functions over
free space, it is much easier when the c-space is represented in the form of a
grid, such as is done for cell decomposition methods. The potential function
over the grid is called a numerical navigation function.

Once more, due to the requirement to discretely model obstacles, potential
fields are less useful for outdoor robotics. They are generally more efficient
than the graph search methods and don’t require an initial processing step to
construct the connectivity graph of the configuration space. This makes them
useful as a local obstacle avoidance mechanism, due to the ease of calculation
once the potential function has been defined. The robot can simply move from
one configuration to another by evaluating the resultant vector. As you get
more degrees of freedom in the robot and more dimensions in the c-space, it
becomes much more difficult for a designer to come up with an appropriate
potential function. As a result potential field methods are limited as a
planning method and have fallen from favour.

3.3.2 Depth-First Planning and Potential Fields

Using Depth-First planning, a path is iteratively generated as a series of
straight path segments through the configuration space[33]. Each segment is

20 DRDC Suffield TM 2004-272

generated from its start point in the direction of the resultant potential field at
its start point. The length of the segment will be equal to some predetermined
length. The calculation point, or start point, for the next segment is then the
end point of the previous segment. The segment length is chosen to be small
enough to ensure no collision with obstacles, and that it will not overshoot the
goal. This method descends on the steepest part of the potential function until
the goal configuration is reached. However, it has problems with local minima
where it can easily become trapped.

3.3.3 Best-First Planning and Potential Fields

Best-First search in potential fields[33] retains a wider number of search paths
simultaneously, and is more robust to local minima. It involves constructing a
tree whose nodes are configurations in the c-space, and whose root is the start
position. At every iteration the algorithm evaluates the neighbors in the
c-space of those leaves which have the lowest potential value in the field of
the configurations investigated so far. The neighbors are then installed in the
list of nodes to evaluate with a pointer toward its parent, and the algorithm
repeats until the goal is reached. If the most active branch should terminate in
a local minimum, another branch will be actively investigated until either it is
successful, or the previous branch’s local minimum has been overcome (the
minimum has been “filled up”). Once the goal has been reached the algorithm
follows the backpointers to the start position to define the planned path.

3.3.4 Wavefront Based Planners and Potential Fields

It is possible to create these grid based navigation functions with no minima
and plan the path to the goal in one step using a wavefront based planner. The
basic idea is that the c-space is considered to be a conductive material, and the
wavefront is heat radiating out backward from the goal to the start position.
The planner calculates the potential at each node (cell) in the graph as the
distance from the goal as it propagates outward. The output of the wavefront
propagation is a grid with each location containing the distance to the goal.
Once the start position has been reached by this propagation, the planner can
step back through those cells with the lowest potential to achieve the path to
the goal.

A simplified generic wavefront plan and one possible path are shown in Figure
14. The numbers in the cells represent the cost of any path at that cell, which
in this simplified case is the number of cell transitions (distance) to reach the
goal. In this example, the influence of the potential field from the obstacles
has been omitted for clarity. The effect of including the obstacles’ potential
fields would be to increase the costs of the cells which border the obstacles.

Two examples of potential fields and wavefront planning are the NF1 and NF2

DRDC Suffield TM 2004-272 21

navigation functions proposed by Latombe and Barraquand [33][2]. This
potential field/wavefront method has also been implemented in the
Player/Stage environment [15]. A simple illustration of wavefront planning is
shown in Figure14. In this example, the number of transitions from the start to
the goal are shown in the grid. The robot could simply follow the decreasing
values in order to reach the goal, and could do so along a number of different
paths in this example.

goal

start

1

1 1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

77

8

8

8 8

9

99

9

9

7

8

10

10

10 10

1010

10

11

11

11 11

11

11

12

12

1212

12
12

12

13

13

1313

1313

13

13

13

14

14141414

1414

14

14

14

14

14

15151515

15

151515

16 16 16

16

1617

17

171717

18 18 18

18

1819

1919

Figure 14: Simplified wavefront planning.

NF1, which was implemented by Lengyel [37], is simple and finds the path
with the shortest distance, but has a problem in that it produces paths which
graze obstacles. This may be satisfactory if the scale of the plan is high level
enough, and you have a local reactive navigator. Brock [5] used NF1 in just
this fashion.

NF2 is a similar wavefront propagation technique to NF1, except that it finds
paths that are as far away from obstacles as possible, in a similar manner to
Voronoi roadmaps. NF2 is more complicated and no longer finds the shortest
path to the goal, but gives the robot a larger margin of safety and more room
to maneuver. Other wavefront propagation methods include Trulla[42] as
described in Section 4.0.9 and Mitchell[41].

4. Graph Search Algorithms

Once a method of representing the environment has been established, it is then
necessary to search for the best path through that representation. Graph search
algorithms are used with the cell decomposition or roadmap methods of path planning,
and also with the potential field methods, as shown in the previous section. These
search algorithms come from a wide variety of applications including general problem
solving, artificial intelligence, computer networking, and mechanical manipulation.

22 DRDC Suffield TM 2004-272

They systematically search through a graph with the goal of finding a particular node.
In the case of mobile robotics they search a roadmap or cell decomposition c-space.
The side effect of this search for a particular node, the goal, is that if you keep track of
the moves the search algorithm made to find the goal node, you have a path. The simple
trick for keeping track of this path is to label each node with its parent node with a
backpointer. The string of backpointers defines the path.

Accumulated sensor data Representation
− Cell Decomposition
− Potential Field
− Roadmap

Graph Search Algorithm
− Breadth−first
− Depth−first
− A*
− Wavefront
− D*

Path

A priori information

Figure 15: The path planning process.

For UGVs, the search space is usually a two dimensional geographic world map which
has been broken into a grid, where the individual states are grid cells, or physical
locations in the world map, and the states reachable from any given cell (state) are
those immediately surrounding it. The path defined by the algorithm will then be a
sequence of grid cells the robot should traverse to reach the goal. Algorithms for UGVs
usually attempt to optimize this path based on fewest number of grid cell transitions (as
an approximation for distance traveled). As an alternative, a cost can be assigned to
traversing each node. In addition to the typical distance metric, many more variables
and costs to the planning space can be added. The global space can be marked up with
traversability, roughness hazard, slope hazard, boundaries of operation, communication
ability, and so on. In this way, the representation is more flexible, intelligent and has
more fidelity to the real world. When the paths are evaluated, the path length no longer
determined by the number of nodes it has traversed, but by the sum of all the costs of
traversals on that path. For example, Saab and VanPutte’s system [56] can even
evaluate paths based on energy expended going up and down hills.

Many graph search algorithms require that every node in the graph be investigated to
determine the best path. This works well when there are a small number of nodes, such
as in a Voronoi diagram. However, when planning a path using a regular grid map over
a large area this becomes very computationally expensive. Therefore, there are many
ways to traverse the graph with many adaptations of two basic themes known as
Breadth-First and Depth-First search.

Algorithms are evaluated based on three priorities:

Completeness - Is it guaranteed to find a solution if one exists?

Optimality - Is it guaranteed to find the least cost path?

Time/Space Complexity - What is the time and memory use of the algorithm, as the
number of states in the graph increases?

DRDC Suffield TM 2004-272 23

See Russell and Norvig [55] for a more complete description of the following
algorithms.

4.0.5 Depth-First Search

Depth-First algorithms search through states trying to move toward the goal as
rapidly as possible, continuing on a path until it finds a dead end. This means
that it doesn’t explore every avenue simultaneously, but rather chooses the
avenue which gets it closer to the goal, and only explores that avenue until it
is proven successful or unsuccessful. It searches one path to a leaf before
following any other path. To use an analogy, if you imagine the graph in terms
of a family tree, the first sibling’s (node’s) descendants are investigated before
the descendants of the other siblings. Depth-First algorithms work best for
problems where there are many possible solutions, and only one of them is
required. At this task, it will operate much faster than a Breadth-First system.
Depth-First search can only find the minimum length path by searching
through the whole graph, rather than stopping at the first solution. It is the
method of choice when there is a known short length to paths but there are a
large number of alternatives to sort through.

Goal

Start

B C D

E F G H

A

In event of a tie, the node to the left is chosen

Step 1: Explore paths
(goal not found)

A−>B

Step 2: Explore paths
(goal not found)

A−>B−>E
A−>B−>F

(success!)

A−>C

Step 4: Explore paths

Step 3: Explore paths

A−>C−>G

(goal not found)

(goal not found)

Step 5: Explore paths A−>C−>G−>Goal

(dead end)
(dead end)

Figure 16: Depth-First Search (note that with Depth-First Search for this example, nodes D and H are never
explored).

4.0.6 Breadth-First Search

When searching through the state space, Breadth-First algorithms search all
the alternative one-step extensions of the path for their successors before
going on to the next step. Every path which has x number of steps is fully
explored before examining all those with x +1 steps. Then it advances one
step, and examines all the available alternatives again. Breadth-First searches
keep all the possible paths to be kept in memory at once, evaluating them
simultaneously. To use the same family tree analogy, all the descendants of a
certain generation will be investigated before moving on to the next younger
generation. Breadth-First algorithms will always find the shortest path on its

24 DRDC Suffield TM 2004-272

first run and are more appropriate when there are a small number of solutions
which take a relatively short number of steps.

Goal

Start

B C D

E F G H

A

In event of a tie, the node to the left is chosen

Step 1: Explore paths A−>B
A−>C
A−>D

Step 2: Explore paths A−>B−>E
A−>B−>F
A−>C−>G
A−>D−>H

(goal not found)

(goal not found)

A−>C−>G−>GoalStep 3: Explore Paths
(success!)

(dead end)
(dead end)

(dead end)

Figure 17: Breadth First Search.

4.0.7 Iterative Deepening

Iterative Deepening search proceeds by a series of depth-bounded Depth-First
searches. It may be used to limit storage requirements or to limit the time
taken by a Depth-First search. It is much easier to make an iterative deepening
algorithm complete (find the guaranteed shortest path) than a Depth-First
search, in that you can do so without searching the entire graph space. It is
also efficient in that, unlike Breadth-First search, it does not require all paths
to be kept in memory at once.

Goal

Start

B C D

E F G H

A

In event of a tie, the node to the left is chosen

Step 1: Explore paths
(goal not found)

(In this example we use a two−step depth limit)
A−>B−>E
A−>B−>F
A−>C−>G
A−>D−>H

Step 2: Explore paths

(dead end)
(dead end)

(dead end)
A−>C−>G−>Goal

(success!)

Figure 18: Iterative Deepening Search.

4.0.8 Uniform-Cost Search

A variation of Breadth-First search is Uniform-Cost search, used in graphs
with varying costs of traversal. The Uniform-Cost search advances the search
at the same cost level, as opposed to advancing the same number of nodes. It
turns out that one can find the shortest paths from a given source to all points
in a graph in the same time rather than just one point using Dijkstra’s
algorithm[11], a type of Uniform-Cost search. Dijkstra’s algorithm does much

DRDC Suffield TM 2004-272 25

more searching than is necessary, but is guaranteed to find the shortest path.
The problem with algorithms given so far is that they often explore an
unnecessarily large search area, and take too much time doing so. Thus the
use of heuristics is introduced in Section 4.1.

Goal

Start

B C D

E F G H

A

In event of a tie, the node to the left is chosen

4

3

21

1 1

3

1

A−>BStep 1: Advance to cost=1
A−>C

Step 2: Advance to cost=2 A−>B−>E(dead end)
A−>B−>F (dead end)Step 3: Advance to cost=3
A−>D

Step 4: Advance to cost=4 A−>C−>G

Step 5: Advance to cost=5 A−>C−>G−>Goal
(success!)

In this example, paths have varying costs, as shown

Figure 19: Uniform Cost Search.

4.0.9 Trulla Algorithm

Trulla is a wavefront propagation method of path planning somewhat similar
to NF1 and NF2 (described in Section 3.3 under Potential Fields), and is
basically a Breadth-First search. It was developed by Hughes [20], and
implemented by Murphy in [43] and [42]. It attempts to add two significant
improvements to other path planners:

1. Allow dynamic discovery of obstacles and opportunities for navigational
savings at the path planning level.

2. Allow terrain characterization with variable costs.

The grid cells for the Trulla planner have a weight representing the difficulty
of traversability as well as a non-traversable rating. This representation allows
the tradeoff between taking a longer more traversable path and a shorter less
traversable path to be handled naturally. The paths in the Trulla algorithm are
represented in each grid cell as a vector with direction pointing to the
direction to the goal, and the magnitude representing the distance. This is
another attractive feature of the algorithm, in that the representation allows an
optimal path to the goal to be found from each position in the grid. This is
useful if the reactive navigator finds it necessary to deviate from the planned
path. A new optimal path can be resumed from the new location without
re-running the entire planner, as would be necessary with an algorithm like D*
[60]. However, unlike D* when a replan is required, the entire plan must be
recomputed.

26 DRDC Suffield TM 2004-272

4.1 Heuristic Search

For many applications, especially for UGVs, the search space, or global map, is very
large and has many parts that are unexplored. If there is some additional information
which gives the robot an indication of the distance to the goal, a lot of time could be
saved. In fact, the time complexity of uninformed search grows exponentially with the
size of the problem. In this situation, search algorithms use an heuristic, which is a rule
for making a guess as to which path moves us closer to the goal. An evaluation function
is used which scores each node or state in the search with an estimate of proximity to
the goal. For example, you could use an heuristic which says that the goal is to the
south, or perhaps uphill. When the search algorithm evaluates which path to investigate
it will choose the one which leads most directly uphill.

4.1.1 Best-First Search

Best-First search [67] is a Depth-First algorithm in which an heuristic
indicates how far away each position or state is from the goal. The nodes are
evaluated by estimating goodness of a node, comparing it with the goodness
of all the other nodes on the frontier, and expand the node which at the
moment seems most promising. Unfortunately this may not always be the best
choice, but it is the best way to proceed from the search algorithm’s point of
view. If the metric used to evaluate a node is the distance from the node back
to the start then this method is simply a Uniform-Cost search. However, if the
metric is an estimate of the distance to the goal, then it is called a Greedy
Search. This same Best-First search is used for Potential Field path planning,
as described earlier in Section 3.3. In that case, the metric used was the value
of the potential field at each node in the search graph. Best-First search makes
no guarantee about the shortest path and will, in fact, result in very long paths
because it bypasses some branches in the search tree. However, it does do
much less searching than other algorithms such as Dijkstra’s. Best-First
search is not very useful if there is even partial knowledge of the environment,
as it is much too greedy and ignores the costs of paths generated.

4.1.2 A* Search

A* is probably the most widely used search algorithm in robotics. It evaluates
the goodness of each node as above, but uses a combination of the two metrics
to estimate the distance to the goal: distance from the start, like Uniform-Cost
search, but also an estimated distance to the goal, like greedy search. It can
also be made to be optimal if it is not made too greedy. It was first proposed
by Hart [18], and is described in detail in Nilsson [46].

The goodness function for evaluating a path at each node can be expressed as
follows: f(n) = h(n) + g(n) where f(n) is the goodness of the node, h(n) is the
heuristic value of the node (nearness to the goal), and g(n) is the cost from the

DRDC Suffield TM 2004-272 27

Initial
State

Current
State

Goal
State

g(s) h(s)

f(s) = Estimate of the cost of shortest solution path going through state s
f(s) = g(s) + h(s)

Figure 20: A* Search Algorithm.

start position to the node. As in Best-First search the algorithm will evaluate
the node in the graph for which the resultant f(n) is the best. The heuristic
estimate, or guess, is often a calculation of what the straight line distance to
the goal would be if there were no obstacles.

A* has some very good properties, which is why the algorithm is very
commonly used in mobile robotics. Firstly, it will be complete provided that
h(n) does not underestimate how close the node is to the goal. Secondly, it is
optimal in that it will provide the fastest search of any other shortest path
algorithm which uses the same heuristic. A* is a Depth-First algorithm, and it
is possible to apply the principle of iterative deepening to it as required. You
can adjust the weightings of each of the two factors, h(n) and g(n), with speed
and optimality being traded off, which gives A* a lot of flexibility. If the cost
to goal weighting is strongest, A* becomes like Dijkstra’s algorithm and the
result is the optimal shortest path to the goal, but the search process takes
longer. If the heuristic weighting is the strongest, A* becomes like Best-First
search and shortest paths are given up, but A* will run faster. There are many
variations to A* and methods for computing heuristics which may apply to
different situations.

5. Path Planning for Partially Known and Unknown
Environments

The path planning methods outlined by Latombe[33], and in much of the other early
work made the assumption that the world was completely known ahead of time.
However, it is quite often that planning is started with information that is incomplete,
doesn’t have enough resolution, has changed since it was acquired, or is just plain
wrong, especially in outdoor environments. This type of planning relies on the free
space assumption, which assumes that the unknown world is completely traversable
until it is discovered to be otherwise. This means the algorithms need to be adapted to
be able to replan based on sensor data that is acquired during the course of the mission.
This is not referring to replanning around small scale obstacles, which is left up to the
reactive local navigator, but rather replanning because of the acquisition of information
which is important to the ability of the robot to reach its goal based on the previous
plan. The general method is as follows: the system generates a global path with the

28 DRDC Suffield TM 2004-272

available knowledge and then relies on obstacle avoidance to circumvent obstacles. If
the route is completely obstructed or a key piece of information has been found, a
replan is required. Action and planning must be interleaved. While the robot is
replanning it cannot be moving toward the goal, so it is absolutely crucial that
replanning methods are fast, and speed of operation is the driving factor behind their
design, sometimes at the expense of optimality and completeness.

5.1 Path Planning for Exploring

Exploration and map-building can be a valuable task for a UGV on a reconnaissance
mission. There are many algorithms which enable robots to explore unknown worlds.
They can generate optimal behaviour by computing an optimal path to use until a map
discrepancy is found, update the map and then replan the entire path. This is
problematic in large maps where the replan can be grossly inefficient, especially if
there is little information contained within the map and frequent replans are required.
Some algorithms sacrifice optimality for fast operation and are concerned with
covering the entire area. For a survey of non-heuristic methods, see Rao [53].
Pirzadeh[50] has the robot wander until it discovers the goal. The robot repeatedly
moves to the adjacent location with lowest cost and increments the cost of a location
each time it visits it in order to penalize repeated trips to the same place. Korf [30]
estimates the cost to the goal for each state based on initial information, and updates it
with backtracking costs as the robot traverses.

5.2 Path Planning for Partially Known Environments

When operating where there is a partial map available, the intent is to provide more
goal directed behaviour than can be provided by exploration algorithms, and speed of
planning is still of paramount concern. Lumelsky’s bug algorithms[40] move the robot
directly toward the goal, assuming there are no obstacles. Once an obstacle is
encountered, it moves around it until the point on the obstacle nearest the goal is found,
at which time it commences moving directly for the goal. Some other early approaches
to planning for partially known environments would rely on a complete replan from
scratch when information was found to be incorrect[16]. However, there are much
more efficient methods of speeding up the replan task that have been developed since
then. Usually, they involve graph search algorithms as presented above which have
been refined. Zelinsky [69] increases efficiency by using quad-trees[57] to indicate if a
space is traversable or non-traversable. Haigh[17] uses A* search with experience
gained in navigating previous terrain to adjust the heuristic used to create a faster
search. However, there are other ways of speeding up the search.

Some basic tools which enable faster replanning:

• Heuristics.

DRDC Suffield TM 2004-272 29

• Restricting the planning area using limited look-ahead (Real-time Heuristic
Search).

• Replanning only that part of the path affected by changes (Incremental Search).

• Replanning only that part of the path necessary to reach the goal (Incremental
Search).

5.2.1 Continuous and Event Driven Replanning

Another key concept involved in planning for partially known environments is
that of interleaving planning and execution, or “on-line planning”. The system
must manage the amount of time spent on planning and the amount spent
executing. There are two different paradigms for triggering replanning:
continuous replanning and event driven replanning. Continuous replanning is
done every time there is new information from a sensor, at which time it
updates all the necessary routes. Unfortunately, this may be too
computationally expensive and results in jerky motion if the frequency of
replanning is too high. Additionally, continuous planning is highly dependent
on sensing quality and is prone to wasting time and effort on phantom
obstacles. However, it will be very efficient and opportunistic in sparse
environments. The D* algorithm [60] presented in Section 5.4 below is an
example of this paradigm.

The alternative is event driven replanning. Some sort of metric is used to
judge when it is time to replan. For example, you can use the difference
between the intended path and the current path. If either the angle or distance
between the two becomes too great, it will call for a replan. This is very good
for the case where the real world proves more difficult and has more obstacles
than what were originally planned on. Conversely, if there are actually fewer
obstacles than planned for, this scheme would miss opportunities to take short
cuts. The implementation of the Trulla algorithm given in [42] is an example.

5.3 Real-Time Heuristic Search

Real-Time Heuristic search is a term coined by Korf [30] which includes agent
centered search and limited look-ahead search. This method restricts the planning
activity to the area around the robot, executes those local actions, and then repeats the
planning phase from the new location. Planning is done sequentially to create a global
plan. Time is saved by not planning on future contingencies that may never occur. They
allow fine grained control over how much planning is performed and try to reduce the
sum of the planning time and the plan-execution time of traditional search methods.
This method amounts to constructing global path planning as a sum of many local
planning activities, as is shown in Figure 21. Some examples are presented by Korf
(Learning Real-Time A*[31]), Pemberton [49] and Koenig[27]. Although not explicitly

30 DRDC Suffield TM 2004-272

intended as an agent centered search, the VFH* system developed by Ulrich[66], which
uses a local obstacle avoidance system in conjunction with a limited look-ahead A*
search, adopts many of the principles of agent centered search. Another
implementation by Chin[9] uses a wavefront planner with limited look ahead to plan
paths. A good overview of this topic is presented by Koenig [26]. It should be noted
that the term “incremental search” is sometimes used for real-time heuristic search, but
should not be confused with the term as presented in the next section.

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

Start

Goal

Local Search Space
Current State

Small agent−centered look−ahead
windows

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

 �
 �
 �
 �
 �

!�!
!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"
"�"

#�#
#�#
#�#
#�#
#�#

$�$
$�$
$�$
$�$
$�$

%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%
%�%�%�%�%�%

&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&
&�&�&�&�&�&

Traditional Planning

Agent−Centered Search

interleaving planning and execution

plan execute

start
goal

Global look−ahead window

path

Figure 21: Agent-Centered Search.

5.4 Incremental Heuristic Search

Incremental Replanning, also known as Greedy On-Line Planning or Fast Replanning,
replans only that part of the route which is necessary and reuses the information from
previous searches as much as possible to increase the speed of operation. Most of the
methods developed are versions of heuristic search methods which have been modified.

Incremental Replanning is important for 3 reasons:

DRDC Suffield TM 2004-272 31

• Sensor range is limited, meaning that changes to the robot’s information will only
need to be patched locally.

• Most obstructions are local in scale and, therefore, will not require a global replan.

• Only that portion of the path remaining between the robot and the goal needs to be
replanned (you don’t need to replan portions you’ve already covered).

Earlier approaches started with a map of optimal costs, and when new information was
discovered only the affected part of the map was updated. Boult is an early attempt
using polygonal obstacles and binary traversal costs[4]. This was further developed by
Travot[65] and Ramalingam and Reps [52] to include a range of traversal costs.
Unfortunately, when the robot is near the goal, these methods are still inefficient
because the user probably does not care about updating all of the changes, only those
between the robot and the goal. Therefore, a further development was the combination
of this incremental search with heuristic search methods to provide a very rapid
replanner. Heuristic searches, as shown above, use approximations to estimate the
distance to the goal and focus the search to those paths that are relevant. When
combined with the speed of incremental methods which don’t search from scratch but
reuse information, the methods are very rapid and powerful. Other than the algorithms
presented below, there are many others, such as [13, 21, 51, 63]. For an overview of
incremental search methods see Koenig[29].

The first, and still the most popular of the incremental methods, which was a major
advance in path planning for mobile robots, was the D* algorithm from Stentz[60]. It is
functionally equivalent to planning from scratch, but much quicker. It can be fast
because the impact of sensor acquired data must be local, because of the sensor’s
limited range, and the method therefore needs to only patch the locally affected portion
of the plan. To begin, D* uses whatever a priori information it has to do an A* search
from every possible location to the goal. This is computationally expensive, but is done
only once at the start. Normally, A* computes only one path, but D* computes all paths
at the start. This means that it is easy to switch to a different path and is similar to
Trulla in this sense. D* then continuously updates the map and dynamically repair the
A* paths affected by the change in the map.

The benefits of D* really come into play when the number of states gets large (i.e.
104

,105
,106), and it can offer a one or two order of magnitude improvement over doing

complete replans with A*. Because of this, it is more commonly implemented for the
more expansive outdoor environments.

There have been a large number of variants of D* presented since its development. The
first refinement, Focussed D*[61], uses an heuristic to limit the number of cells which
need to be included in replanning, and therefore further reduces the computation time
of D*. For better performance in expansive and uncluttered worlds, it was further
refined into Framed Quadtree D* by Yahja[68], which uses a more efficient
representation to further reduce the computational complexity and memory
requirements of the algorithm.

32 DRDC Suffield TM 2004-272

D* Lite[28], an alternative to Focussed D* developed by Sven Koenig, is not based
upon the D* algorithm at all but rather his own Lifelong Planning A*. It generalizes A*
as well as Ramalingam and Rep’s Dynamic SWSF-FP [52], combining techniques to
operate faster. It shares many of the advantages of LPA* such as being easier to
understand, analyze, optimize and extend than D*, has stronger theoretical foundations,
and has been shown to be at least as efficient.

The newest version is Constrained D* (CD*) from Stentz [62]. It is similar to earlier
constrained path planners such as ABC[39], in that it plans under constraints, but
incorporates the benefits of replanning from D*. It is geared directly for UGVs, and
expands D* to use hard and soft objectives. Hard objectives must be met, such as get to
the objective by a certain time. Soft objectives, such as maintaining stealth while
proceeding to the goal, are met as much as possible while meeting the hard objectives.

6. Time Complexity of Search Methods

In order to use global path planners effectively in mobile robotics, it is important that
the graph search process should take as little time as necessary. This is especially true if
the system may change goal locations during the mission or if the robot is discovering a
lot of new information as it progresses. Below is a summary of methods which can be
used to reduce the search time of the algorithms presented in this report:

1. Reduce the number of nodes in the search tree - Path planning algorithms operate
in polynomial time, O(nk), where n is the number of nodes and k is some positive
number. This means that, for any algorithm, if the number of nodes is reduced
which are to be searched, the computation time required is shortened. There are
number of ways of accomplishing this:

(a) Using topological methods - Topological methods generally will have many
fewer nodes in the world map because they select only key locations to include.
However, for most applications the difficulty in providing easily recognizable
landmarks to navigate by is prohibitive.

(b) Reduce the dimensions of the configuration space - If it is not necessary to plan
for all the degrees of freedom of a robot great savings can be had. For this
reason, many global path planners operate only in the x,y position space.
However, for robot motion planning in complex environments, this is not an
effective solution.

(c) Efficient representation - For sparse environments, storage methods such as
quadtrees can reduce the number of locations in the tree by only using as many
nodes as are required. However, they become less efficient when used in
complex environments. The results in Figure 22 are taken from Yajha’s paper
on framed-quadtree path planning[68]. The graph shows that for low
complexity worlds, as indicated by the fractal gain on the x-axis, significant
time savings can be made .

DRDC Suffield TM 2004-272 33

2. Sacrificing completeness - If the designer is willing to accept an algorithm which
may miss a path where one exists, the algorithm can be optimized. This can be
done in two basic ways:

(a) Reducing search resolution - Approximate grid representations reduce the
number search nodes by decreasing resolution of each grid cell. In doing so, it
is possible that computational speed is gained but the approximation may
obscure an available path.

(b) Reducing the search coverage - Probabilistic Roadmaps reduce the number of
search nodes, randomly sampling it to use only a subset of the entire world.
The greater the number of samples, the closer the planner will be to being
complete but the more time it will take to operate.

3. Choosing an efficient algorithm - If the designer knows something about the search
problem, a more appropriate algorithm can be used. For example, if it is known
that the solution will only consist of a few number of steps, but there are many
alternatives, a Breadth-First algorithm would work better than a Depth-First.

4. Sacrifice optimality - If the designer is willing to accept that the algorithm may not
find the best path to the goal but will find a path quickly, the search process can be
optimized. Heuristic methods are a prime example of this.

5. Update new information efficiently - For many planning applications, especially
outdoors, all the information required will not be available beforehand. Therefore,
it is necessary to replan efficiently by using a planner like D*. The results shown in
Table 1 come from Stentz’s D* paper [60]. The calculation times indicated are
from a simulation in which paths were planned initially and then replanned upon
the discovery of new information. The improvements that can be had when
comparing D* to the A* planner, which does not efficiently replan, can be seen.

Figure 22: Results for Framed Quadtree Representation.

34 DRDC Suffield TM 2004-272

Algorithm/Grid Cells 103 104 105 106

A* replan from scratch .427 sec 14.45 sec 10.86 min 50.82 min
D* efficient replanning .261 sec 1.69 sec 10.93 sec 16.83 sec

Table 1: Results for D* Replanning.

7. Conclusions

Global path planning is an important tool in creating autonomy for UGVs. In certain
uncomplicated environments or where a human operator is willing to plan and
intervene for the robot regularly, global path planning is not a necessity. However, if
the intention is to to create a higher level of autonomy in machines, it is a crucial
technology. A path planning algorithm can be faster and create better paths than a
human planner, especially in cluttered, complex environments.

This report has surveyed a large number of different methods not for historical reasons,
but because all of them are still in active use on robot platforms. Due to the multitude
of path planners developed so far, one must choose to tailor the path planning method
to the application. The designer chooses between them based on such criteria as speed
of operation, ability to find the shortest path, and applicability to the scale of obstacles
and complexity of the environment. Firstly, one must choose the world representation
carefully. For example, if using the right environment and the proper sensing
capabilities, a topological roadmap may be appropriate. For expansive, uncluttered
working spaces a Framed Quad-Tree may be the correct choice. If you have a large,
high dimensional configuration space, Probabilistic Roadmaps and Rapidly Exploring
Random Trees are powerful tools. But, if the environment is unknown or changing,
these methods are difficult to work with and it may be necessary to use a simple cell
decomposition.

Secondly, the graph search algorithm needs to suit the representations and the
application. If the speed of planning is not crucial but it is important to find the shortest
path, a simple Breadth-First algorithm may do the job. If speed is important, an
heuristic algorithm may need to be introduced, such as the A* algorithm.
Unfortunately, these algorithms depend on complete knowledge of the world
beforehand. If this is not available, a D*-like algorithm will be more appropriate, which
would otherwise be much too complex. If the environment is especially cluttered or
where there are a great number of contingencies, an Agent Centered search method can
be useful where a global look-ahead would be time consuming and wasteful of
resources.

Because of the requirement to choose a representation and search algorithm for the
environment, it is impossible to say that any one method is better than another, only
that it is more appropriate for a given set of circumstances. In any case, there are a wide
variety of effective algorithms available to be used for path planning and much research
is still being undertaken in refining and improving them. It is certain that global path

DRDC Suffield TM 2004-272 35

planning will be a crucial technology for creating robotic autonomy in the future.

Learning Real−Time A*
D*
Lifelong Planning A*
D* Lite

Iterative Deepening Best−first
A*

Uniform Cost
Wavefront NF1
Wavefront NF2
Trulla
Dijkstra’s Algorithm

Visibility Graph
Voronoi Graph
Probabilistic Roadmaps
Rapidly Exploring

Random Trees
Quad−tree
Framed quad−tree

Cell Decomposition

Planning Representations

Depth First Heuristic Search Replanning Methods

Search Algorithms

Exact Approximate Adaptive

Breadth First

Roadmap Methods Potential Fields

Regular Grids

Figure 23: Family Tree of Path Planning Methods

36 DRDC Suffield TM 2004-272

References

1. F. Avnaim, J. Boissonnat, and B. Faverjon. A practical exact motion planning
algorithm for polygonal objects amidst polygonal obstacles. Technical Report 890,
INRIA, 1988.

2. J. Barraquand and J. Latombe. Robot motion planning: A distributed
representation approach. Intl. Journal of Robotics Research, 10(6):628–649, 1991.

3. V. Boor, M. Overmars, and A. van der Stappen. The gaussian sampling strategy for
probabilistic roadmap planners. Proc IEEE ICRA, 1999.

4. T. Boult. Updating distance maps when objects move. Proceedings of SPIE-The
International Society for Optical Engineering, 1987.

5. O. Brock and O. Khatib. High-speed navigation using the global dynamic window
approach. In Proceedings of the IEEE Intl. Conference on Robotics and
Automation, 1999.

6. R. Brooks and T. Lozano-Perez. A subdivision algorithm in configuration space for
findpath with rotation. In Proceedings of the 8th International Conference on AI,
pages 799–806, 1983.

7. D. Chen, R. Szczerba, and J. Uhran. Planning conditional shortest paths through an
unknown environment: A framed-quadtree approach. Proceedings of the 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems, 3:33–38,
1995.

8. P. Cheng, Z. Shen, and S. Lavalle. Rrt-based trajectory design for autonomous
automobiles and spacecraft. Archives of Control Sciences, 2001.

9. Y. Chin, H. Wang, and L. Phuan. Vision guided agv using distance transform. In
Proceedings of 32nd Intl. Symposium on Robotics, 2001.

10. H. Choset. Sensor Based Motion Planning: The Hierarchical Generalized Voronoi
Graph. PhD thesis, California Institute of Technology, 1996.

11. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
McGraw-Hill., 1990.

12. G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics.
Cambridge University Press, Cambridge, UK, 2000. p. 10.

13. T. Ersson and X. Hu. Path planning and navigation of mobile robots in unknown
environments. Proceedings of the Intl. Conference on Intelligent Robots and
Systems, pages 858–864, 2001.

14. E. Frazzoli. Robust Hybrid Control for Autonomous Vehicle Motion Planning. PhD
thesis, MIT, 2001.

DRDC Suffield TM 2004-272 37

15. Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. Proceedings of the 11th
International Conference on Advanced Robotics, pages 317–323, 2003.

16. Y. Goto and A. Stentz. Mobile robot navigation: The cmu system. IEEE Expert,
2(4):44–55, 1987.

17. K. Haigh, J. Shewchuk, and M. Veloso. Exploiting domain geometry in analogical
route planning. Journal of Experimental and Theoretical Artificial Intelligence,
9(4):509–541, 1997.

18. P. Hart. A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on SSC, 4, 1968.

19. D. Hsu, J. Latombe, and R. Motwani. Path planning in expansive configuration
spaces. International Journal of Computational Geometry and Applications, 1999.

20. K. Hughes, A. Tokuta, and R. Ranganathan. Trulla: An algorithm for path planning
among weighted regions by localized propagations. In Proceedings of IEEE
Conference on Intelligent Robots and Systems, 1992.

21. Y. Huiming and C. Chia-Jung. Hybrid evolutionary motion planning using follow
boundary repair for mobile robots. Journal of Systems Architecture,
47(7):635–647, 2001.

22. L. Kavraki, P. Svestka, J. Latombe, and M. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Autonmation, 12(4):566–580, 1996.

23. O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. In
Proceedings IEEE Int. Conf. on Robotics and Automation, 1985.

24. D. Koditschek. Exact robot navigation by means of potential fields: Some
topological considerations. In Proceedings of the IEEE Intl. Conference on
Robotics and Automation, 1987.

25. D. Koditschek. Robot planning and control via potential functions. The Robotics
Review 1, 1989.

26. S. Koenig. Agent-centered search. Artificial Intelligence Magazine,
22(4):109–131, 2001.

27. S. Koenig. Minimax real-time heuristic search. Artificial Intelligence,
129:165–197, 2001.

28. S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in
unknown terrain. Technical Report GIT-COGSCI-2002/3, Georgia Institute of
Technology, 2001.

38 DRDC Suffield TM 2004-272

29. S. Koenig, M. Likhachev, and D. Furcy. Incremental search in artificial
intelligence. Artificial Intelligence Magazine, 2004.

30. R. Korf. Real-time heuristic search:first results. Proc. of Sixth National Conference
on Artificial Intelligence, July 1987.

31. R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

32. J. Kuffner and S. Lavalle. Rrt-connect: An efficient approach to single-query path
planning. In IEEE Int’l Conf. on Robotics and Automation, 2000.

33. J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

34. J. Laumond. Robot motion planning and control. LAAS Report 97438, June 2004.

35. S. Lavalle. Planning algorithms. Incomplete book, can be found at
http://msl.cs.uiuc.edu/planning/, June 2004.

36. S. Lavalle and J. Kuffner. Randomized kinodynamic planning. In IEEE Intl.
Conference on Robotics and Automation, 1999.

37. J. Lengyel, M. Reichert, B. Donald, and D. Greenberg. Real-time robot motion
planning using a rasterizing computer graphics hardware. In Proceedings of
SIGGRAPH, 1990.

38. P. Leven and S. Hutchinson. Robust, compact representations for real-time path
planning in changing environments. Proc. IEEE/RSJ ICIRS,, 2001.

39. B. Logan and N Alechina. A with bounded costs. Proceedings of the 15th National
Conference on AI, pages 444–449, 1998.

40. V. Lumelsky and A. Stepanov. Dynamic path planning for a mobile autonmaton
with limited information on the environment. IEEE Transactions on Automatic
Control, AC31(11), November 1986.

41. J. Mitchell and C. Papadimitriou. The weighted region problem: Finding shortest
paths through a weighted planar subdivision. Technical Report Technical Report
885, School of Operations Research and Industrial Engineering, Cornell University,
1990.

42. R. Murhpy, K. Hughes, E. Knoll, and A. Marzilli. Integrating explicit path
planning with reactive control for mobile robots using trulla. Robotics and
Autonomous Systems, 27:225–245, 1999.

43. R. Murphy and E. Noll K. Hughes. An explicit path planner to facilitate reactive
control and terrain preferences. IEEE International Conference on Robotics and
Automation, 3:2067–2072, 1996.

44. Robin R. Murphy. Introduction toArtificial IntelligenceRobotics. The MIT Press,
2000.

DRDC Suffield TM 2004-272 39

45. H. N. T. Naniwa and S. Arimoto. A quadtree-based path-planning algorithm for a
mobile robot. Robotic Systems, 1990.

46. N. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Company, 1980.

47. Nils J. Nilsson. Shakey the robot. Technical Report 323, AI Center, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, Apr 1984.

48. I. Park and J. Kender. Topological direction-giving and visual navigation in large
environments. Artificial Intelligence, 78(1-2), 1995.

49. J. C. Pemberton and R. E. Korf. Incremental search algorithms for real-time
decision making. Proceedings of the Second Annual Conference on AI Planning
Systems (AIPS-94), 1994.

50. A. Perzadeh and W. Snyder. A unified solution to coverage and search in explored
and unexplored terrains using indirect control. Proc. of IEEE International
Conference on Robotics and Automation, May 1990.

51. L. Podsedkowski, J. Nowakowski, M. Idzikowski, and I. Vizvary. A new solution
for path planning in partially known or unknown environment for nonholonomic
mobile robots. Robotics and Autonomous Systems, 34:145–152, 2001.

52. G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the
shortest path problem. Journal of Algorithms, 21:267–305, 1996.

53. N. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report
ORNL/TM-12410–58, Oak Ridge National Laboratory Technical Report, 1993.

54. E. Rimon and D. Koditschek. Exact robot navigation using artificial potential
fields. IEEE Transactions on Robotics and Automation, 8(5):501–518, 1992.

55. P. Norvig S. Russell. Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

56. Y. Saab. and M. VanPutte. Shortest path planning on topographical maps. IEEE
Transactions on Systems Man and Cybernetics,, 29(1):139–150, 1999.

57. H. Samet. An overview of quadtrees,octrees and related hierarchical data
structures. NATO ASI Series, F40, 1988.

58. J. Schwartz and M. Sharir. On the piano mover’s problem: I. the case if a
two-dimensional rigid polygonal body moving amidst polygonal barriers.
Communications on Pure adn Applied Mathmatics, 36:345–398, 1983.

59. N. Sleumer and N. Tschichold-Gurman. Exact cell decomposition of arrangements
used for path planning in robotics. Technical report, Institute of Theoretical
Computer Science Zurich, 1999.

40 DRDC Suffield TM 2004-272

60. A. Stentz. Optimal and efficient path planning for partially known environments.
Proceedings of IEEE International Conference on Robotics and Automation, 1994.

61. A. Stentz. The focussed d algorithm for real-time planning. Proceedings of the
InternationalJoint Conference on Artificial Intelligence, 1995.

62. A. Stentz. Constrained dynamic route planning for unmanned ground vehicles. In
Proceedings of the 23rd Army Science Conference, 2002.

63. M. Tao, A. Elssamadisy, N. Flann, and B. Abbott. Optimal route re-planning for
mobile robots: A massively parallel incremental a algorithm. International
Conference on Robotics and Automation, pages 2727–2732, 1997.

64. S. Thrun, A. Bucken, W. Burgard, D. Fox, T. Frohlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schmidt. Map learning and high-speed navigation in
rhino. Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot
Systems, 1998.

65. K. Travato. Differential a: an adaptive search method illustrated with robot path
planning. Journal of Pattern Recognition and Artificial Intelligence, 4(2), 1990.

66. Iwan Ulrich and Johann Borenstein. Vfh*: Local obstacle avoidance with
look-ahead verification. IEEE Intl. Conference on Robotics and Automation, pages
2505–2511, 2000.

67. P. Winston. Artificial Intelligence. Addison-Wesley, 2nd edition, 1984.

68. A. Yahja, A. Stentz, S. Singh, and B. Brummitt. Framed-quadtreee path planning
for mobile robots operating in sparse environments. Proceedings of IEEE
Conference on Robotics and Automation, 1998.

69. A. Zelinsky. A mobile robot exploration algorithm. IEEE Transactions on Robotics
and Automation, 8(6), December 1992.

70. D. Zhu and J. Latombe. Constraint reformulation and graph searching techniques
in hierarchical path planning. Technical Report CS-89-1279, Dept. of Computer
Science, Stanford University, 1989.

DRDC Suffield TM 2004-272 41

 UNCLASSIFIED
 SECURITY CLASSIFICATION OF FORM
 (highest classification of Title, Abstract, Keywords)

 DOCUMENT CONTROL DATA
 (Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization
preparing the document. Organizations for who the document
was prepared, e.g. Establishment sponsoring a contractor's
report, or tasking agency, are entered in Section 8.)

Defence R&D Canada – Suffield
PO Box 4000, Station Main
Medicine Hat, AB T1A 8K6

2. SECURITY CLASSIFICATION
 (overall security classification of the document, including special

warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation
(S, C or U) in parentheses after the title).

Global Path Planning for Unmanned Ground Vehicles (U)

4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Giesbrecht, Jared L.

5. DATE OF PUBLICATION (month and year of publication of
document)

December 2004

6a. NO. OF PAGES (total containing
information, include Annexes,
Appendices, etc) 54

6b. NO. OF REFS (total
cited in document)

 70

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the
type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include
the address.)

DRDC Suffield

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Suffield TM 2004-272

10b. OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

 (x) Unlimited distribution
 () Distribution limited to defence departments and defence contractors; further distribution only as approved
 () Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
 () Distribution limited to government departments and agencies; further distribution only as approved
 () Distribution limited to defence departments; further distribution only as approved
 () Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally corresponded
to the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected).

Unlimited

 UNCLASSIFIED
 SECURITY CLASSIFICATION OF FORM

 UNCLASSIFIED
 SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is
highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication
of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C) or
(U). It is not necessary to include here abstracts in both official languages unless the text is bilingual).

This paper is an overview of high-level path planning methods used in mobile robotics with special
emphasis on outdoor planning for unmanned ground vehicles. It surveys all portions of the path planning
process including world representation, graph search algorithms, and planning for partially and completely
unknown environments. Planning representations such as Cell Decompositions, Roadmaps, and Potential
Fields are covered as well as both heuristic and non-heuristic methods of graph search. Specific recently
developed and popular algorithms are also investigated such as A*, D*, Potential Fields, Wavefront
Planning, Probabilistic Roadmaps and Rapidly Exploring Random Trees.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and
could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifies, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-
identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the
title.)

autonomy, mobile robots, unmanned ground vehicles, path planning, obstacle avoidance, navigation

 UNCLASSIFIED
 SECURITY CLASSIFICATION OF FORM

