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Abstract

The United States Air Force has put an increased emphasis on the timely

delivery of precision weapons. Part of this effort has been to use multiple bay

aircraft such the B-1B Lancer and B-52 Stratofortress to provide Close Air Support

and responsive strikes using 1760 weapons. In order to provide greater flexibility,

the aircraft are carrying heterogeneous payloads which can require deconfliction in

order to drop multiple different types of weapons. Current methods of deconfliction

and weapon selection are highly crew dependant and work intensive.

This research effort investigates the optimization of an algorithm for weapon

release which allows the aircraft to perform deconfliction automatically. This reduces

crew load and response time in order to deal with time-sensitive targets. The overall

problem maps to the Job-Shop Scheduling problem. Optimization of the algorithm

is done through the General Multiobjective Parallel Genetic Algorithm (GENMOP).

We examine the results from pedagogical experiments and real-world test sce-

narios in the light of improving decision making. The results are encouraging in that

the program proves capable of finding acceptable release schedules, however the solu-

tion space is such that applying the program to real world situations is unnecessary.

We present visualizations of the schedules which demonstrate these conclusions.
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Weapon Release Scheduling from Multiple-Bay Aircraft

using Multi-Objective Evolutionary Algorithms

I. Introduction

T he changing nature of warfare has brought about a revolution in the accuracy

and precision of weapons used by the United States Air Force. Where more

than 600 weapons were required in 1944 and 175 weapons were required during the

Vietnam conflict, current operations require only a single weapon [33]. With many

different types of weapons available, the capability of carrying multiple weapons to

provide the single weapon necessary is of great utility. The ability to drop multiple

types of weapons during a single pass is currently restricted to multiple-bay aircraft

such as the B-1B Lancer, B-52H Stratofortress, and B-2 Spirit bombers. This partic-

ular investigation explores the optimization of the release orders of various weapons

in order to minimize threat exposure time as well as bay door open time.

The enhancement of weapon system effectiveness has been in large part due

to the use of so-called “smart weapons”. These smart weapons are those weapons

which are able to perform some type of target tracking or other terminal guidance

through the use of internal systems or external guides. For the purposes of this

investigation, smart weapons refer to those weapon systems which utilize a MIL-

STD-1760 connection for data transfer and weapon status monitoring [4]. Currently,

almost all aircraft currently in Air Force inventory may make use of 1760 weapons,

however we are constraining our investigation to multiple bay aircraft.

One of the changes in the use of weapons has been in the use of different

weapons for different types of targets. Where previously only certain types of

weapons were available as precision-guided munitions, now there are multiple types

1



Weapon Aircraft
B-1B B-52H B-2

AGM-154 Joint Standoff Weapon (JSOW) X X X
GBU-31 Joint Direct Attack Munition (JDAM) X X X
Wind Corrected Munition Dispenser (WCMD) X X

AGM-158 Joint Air to Surface Standoff Missile (JASSM) X X X

Table 1.1: 1760 Weapons

which can be employed. Some of these weapons and the aircraft under consideration

are listed in Table 1.1. All of these weapons have different use requirements and char-

acteristics in terms of altitude, airspeed, door position, and positioning depending

on the platform.

Previously, multiple bay aircraft could only carry and deliver a single type of

weapon system (e.g. a homogeneous environment). There are two possible ways

in which a system could be heterogeneous. The first is referred to as “bay-pure,”

in which each bay on the aircraft has the same type of weapon, but the bays have

different types. A more difficult problem is one in which weapons are mixed not only

across the bays but within the bays as well. The system analyzed in this research is

that of a heterogeneous environment in which different types of weapons are carried

within as well as across the bays.

1.1 Sponsors

This research effort is sponsored by the Air Vehicles Directorate (VA) and

the Munitions Directorate (MN), Air Force Research Laboratory (AFRL), Eglin Air

Force Base, Florida. The mission of AFRL/MN is to “develop, integrate, and tran-

sition science and technology for air-launched munitions for defeating ground fixed,

mobile/relocatable, air, and space targets to assure the pre-eminence of U.S. air and

space forces.” [2] The research contained herein supports the stated mission through

the development and analysis of an algorithm which allows for shorter response

times in order to defeat enemy targets. Specific points of contact include Mr. Lloyd

Reshard (AFRL/MN) and Dr. Gary Lamont (AFIT/ENG).

2



1.2 Research Goals and Objectives

The goal of this research is develop an algorithm that efficiently and effectively

schedules the release order of different weapons based upon changing objectives.

Based upon this formulation of the problem, it can be decomposed into several

primary objectives:

1. Develop a model that encapsulates the problem domain.

2. Develop an effective algorithm which solves the scheduling problem.

3. Evaluate the algorithm for efficiency.

4. Provide the algorithm in portable form for use in multiple environments.

1.2.1 Objective 1: Model Development. The goal of this program can-

not be accomplished without understanding the problem domain in which we are

operating. While the English language is sufficient to communicate the problem do-

main, it is necessary to quantify it symbolically, using mathematics. The analysis of

the problem domain provides the necessary information to create the mathematical

formulation.

The mathematical formulation during the initial phases is a general, high-level

abstraction of the problem domain. As further studies are conducted, the formulas

and descriptions become more precise, providing a more accurate model to be used.

The definition of the model includes defining objective functions and constraints

related to the problem domain.

1.2.2 Objective 2: Algorithm Development. In order to complete the re-

search, an algorithm is developed which is capable of providing solutions to the

model of our problem (e.g. a schedule for the proper sequence of weapons to be

delivered). A key portion of this objective is that the algorithm must effectively

solve the scheduling problem, which implies that the developed algorithm must find

“optimal” solutions either more often or more rapidly than prior existing algorithms.

3



The plan develops an algorithm and evaluates its effectiveness. Using the math-

ematical formulation from our first objective, we utilize a deterministic algorithm to

solve low-dimensional problems such as the bay-pure model. Using the previous re-

sults, we develop a stochastic algorithm to solve problems of higher dimensionality.

The results from the stochastic method are compared with the solutions for the ped-

agogical problems which are used as test material. When the stochastic method is

capable of generating optimal solutions, the results are compared with other results

from the literature.

1.2.3 Objective 3: Algorithm Optimization. With the successful develop-

ment of an effective generic algorithm capable of solving the problem, the next step is

tuning the algorithm to address the results of the refined model. This step improves

the efficiency of the algorithm, providing increased performance during operational

use.

The initial runs of the algorithm are used as a baseline for all future imple-

mentations of the algorithm. One issue in this research is that the final objective is

a generic algorithm which is capable of be implemented with relative ease on het-

erogeneous platforms of varying processor speed and memory capacity. Therefore,

instead of only looking for any bottlenecks which exist in the implementation of the

algorithm, research is also focused on making the algorithm itself more streamlined.

This includes efforts such as exploring the parallelization of the algorithm.

1.2.4 Objective 4: Algorithm Portability. With development and optimiza-

tion of the algorithm completed, the goal is to provide the algorithm in a portable

form to the user. This requires that the algorithm be repackaged from the develop-

mental work into a form, such as an executable, that can be used without significant

knowledge of the processes that it uses to solve the problem. With development

proceeding in a Linux-based, parallel environment, it also needs to be usable in a

single-processor, non-Linux environment to provide the greatest ease of use possible.

4



1.3 Approach

Our approach to this problem is straightforward. The research looks at and

discusses the problem domain in detail. We outline the basic approaches to a more

general problem which is then mapped to our problem domain, and point out some of

the previously used solutions. A prototypical solution is chosen, and detailed design

is done using our knowledge of the problem domain. Tests are run using pedagogical

examples as well as test sets from actual multi-weapon aircraft flights. The results

of the tests are analyzed, and conclusions are presented based on this analysis.

1.4 Thesis Overview

Chapter II gives background information and formulations of the overall prob-

lem and the Job-Shop Scheduling problem. It outlines the various approaches to the

Job-Shop Scheduling problem as well as outlining our method for solving the prob-

lem. Chapter III describes the low-level, detailed analysis of the algorithm domain

and the design of algorithms for the problem. Chapter IV describes implementation

of the design and the design of experiments to validate the algorithm. Chapter V

discusses the results of the experimental work and analyzes the data in terms of our

objectives. Chapter VI presents the conclusions from the research with an eye to

future work.

5



II. Background: Job Shop Scheduling Problem & Genetic Algorithms

The problem of performing optimization has been addressed in a variety of en-

vironments. In this chapter, we examine some of the fundamental background

and approaches which have been used to resolve problems of the same type.

Our generic problem with constraints is mapped to a general problem set,

that of the Job-Shop scheduling problem. The Job-Shop problem is described and

potential approaches are outlined. This lays the foundation for future discussion of

the mathematical model.

2.1 Problem Description

The generic problem we are trying to solve is as follows. Air Force multiple

bay aircraft have traditionally used a homogeneous loadout of weapons1. Reasons for

this included needing multiple weapons of the same type to be dispatched at a single

target in order to have an acceptable probability of a kill. In the face of increas-

ing accuracy, it became less necessary for multiple weapons to be delivered at the

same target; however, limitations in the avionics hardware and software continued

to constrain weapon loadout.

With recent advances in technology, this constraint has been removed. It

is increasingly desirable that multiple-bay aircraft, which are referred to as “bomb

trucks,” be capable of carrying multiple types of weapons, in particular smart weapons.

An example can be seen in Figure 2.1 in which a B-1B Lancer drops MK82 bombs

from all three bays. This is to provide local commanders with greater flexibility in

calling for support and allows the aircraft to support a much wider range of mis-

sions. In fact, the former limitation of bombers to strategic attack has been removed,

allowing the aircraft to function even in close-air-support roles [44]. The inherent

1A homogeneous weapon load is one in which the aircraft is carrying the same type of weapon
in of the bays of the aircraft.

6



Figure 2.1: B-1B Lancer showing the three bays

inability to plan out loitering missions, where the aircraft is waiting for targets to

be relayed to them, means that weapon assignment and scheduling needs to be per-

formed dynamically.

The problem that we are attempting to solve is that of the scheduling the

release of multiple types of weapons concurrently. The overall goal is to minimize

the amount of time that the bay doors are open, since the buffeting of the doors

caused by the speed is a critical limiting factor in the service life of the bay doors.

Additionally, the problem needs to be able to maximize the airspeed of the aircraft

to provide for low threat exposure time as well either maximizing or minimizing the

altitude based on the mission profile.

7



As outlined in Chapter I, our first objective in this research is to define the

problem domain in which we are operating. This chapter is primarily concerned with

providing the background on our problem domain mapping and potential solutions.

From the preceding description of the generic problem, we can map to a general

domain where there are known approaches to finding a satisfactory solution. In this

area, we map our problem to the general problem domain known as the Job-Shop

scheduling problem.

2.2 Job-Shop Scheduling Problem

The Job-Shop scheduling problem is part of a class of computational problems

known as “NP-complete” problems. This large set of problems is defined by either all

or none of them having polynomial time solutions, with strong evidence that there is

no polynomial time solution [70]. The NP-complete set of problems is “hard” in that

the problems are ones “for which we cannot guarantee to find the best solution in

an acceptable amount of time.” [28] Having an NP-complete problem entails using

a heuristic to get an approximation of the optimal solution. From the discussion

in [70], we know that not only is the scheduling problem NP-complete, but also that

it remains NP-complete for ≺= ∅ and < = 2. [70], Section 4.7, details the proof.

In this section, we discuss the formulation of the Job-Shop scheduling problem,

its application to the problem at hand, and some algorithms which have been used

to solve it.

2.2.1 Formulation. The Job-Shop scheduling problem is summarized

scheduling a number of jobs on a set of machines such that the makespan, the time

to complete the last job, is minimized. The general task system in mathematical

form is given by [27], by the following tuple:

(=,≺, [τij] , {<j}, {wi})

8



= is the set of tasks to be completed with ≺ defining the partial order in which

those tasks must be completed. [τij] is an m×n matrix of the execution times where

i denotes the job and j denotes the processor. When τij = ∞, it signifies that job

cannot be completed on that processor. <j is the set of the amount of resources

that a job requires. The canonical Job-Shop scheduling problem defines <j in terms

of the number of processors or machines that are required, in the mapping to our

general problem, <j is defined in terms of the number of door movements which

must be made. Finally, wi is the cost rate or deferral cost for completing =i at some

time t.

There are two primary methods of describing scheduling algorithms, based

upon the ability of the schedule to be manipulated. The first is that of list scheduling.

This type of scheduling assumes that = is constructed as an ordered list. In combina-

tion with ≺, this means that the priority list serves as the basis for the scheduling,

with no out of order execution allowed. Scheduling is therefore performed by re-

peated scans of the list whenever a processor becomes free for assignment [27]. This

type of scheduling algorithm is inappropriate for our problem since we specifically

want to allow for reordering of delivery order to minimize bay door open time.

Since our jobs in the problem must be allowed to complete before another job

is scheduled, we use nonpreemptive scheduling. The alternative type of scheduling

allowed for preemption, that is, jobs could be interrupted based on the fact that at

some point it would receive all of the necessary processor time [27]. We cannot use

this type of scheduling since the process of dropping a weapon has very few points

during which it can be delayed in order to allow another weapon to proceed.

2.2.2 Schedule Metrics. Once a schedule is generated, we must be able to

compare it to other schedules. Each schedule has a flow time, denoted f(S) where

S is the schedule. Since this is a maximum for a given schedule, we want to find

9



the minimum member of a set of maximums, a classic optimization problem. This

is represented in Equation 2.1, adapted from [27].

ω(S) = min(max1≤i≤n{fi(S)}) (2.1)

This problem is made more difficult by not allowing for preemption. Since we

are using identical processors in this case, the bays, the minimum length schedule

is optimal when ≺ is empty [27]. While our problem often allows for this case, the

assumption cannot be made that ≺ is empty by the discussion in Section 3.2.1.

2.2.3 Algorithms. As algorithms can be divided into deterministic and

stochastic classes, we examine both for algorithms capable of solving the scheduling

problem. Although there is some discussion in [26, 64] about algorithms which are

used to give approximations for the scheduling problem, the nonpreemptive discus-

sion is limited to those task sets which can be formulated as directed acyclic graphs

(DAG) or where the number of processors is greater than two.

The deterministic approach to scheduling has been summarized by Kwok and

Ahmad [48]. The most common methods are list scheduling techniques in which

the ≺ operator is used to determine the schedule. An example of this class of

algorithms is the Insertion Scheduling Heuristic (ISH) [47] which operates on DAGs

with communication delays by inserting any ready tasks into slots which exist due

to communication delays. The Duplication Scheduling Heuristic (DSH) [47] is an

extension of the ISH which uses task duplication to reduce the start time of tasks

within a schedule [77]. Other deterministic methods to solve the scheduling problem

include Tabu Search [16,62] and the shifting bottleneck procedure [9, 15,16].

Our area of interest is in using genetic algorithms (GAs) to provide an ac-

ceptable solution to the task scheduling problem. We refer to an acceptable solution

rather than to solving the problem since solving implies that a definitive, optimal so-

10



lution is found. We anticipate finding several solutions and choosing between them.

As noted in [77], there have been a multitude of ways in which GAs have been

applied, generally falling into two main approaches. The first approach uses GAs

as helper functions in combination with other list scheduling techniques to produce

schedules. The other method is to utilize the GA to “evolve the actual assignment

and order of tasks into processors.” [77] Here, we use the second approach to generate

a schedule based upon a list of weapons to be dropped. We choose this algorithm

based upon the results available in [72,73] that demonstrate the capability of genetic

algorithms in solving dynamic and static scheduling problems.

2.3 Evolutionary Computation Domain

The field of evolutionary computation has demonstrated satisfactory results

in solving hard problems such as the Job-Shop scheduling problem. Evolutionary

computation’s optimization process allows us to discover ”highly precise functional

solutions” to a particular problem [32], which is the objective of this research. For

this reason, we use evolutionary computation to solve our general problem. The def-

inition of evolutionary computation is that it uses the methods of natural evolution

to solve problems. Populations of solutions are evolved so that at some point, the

best solution found is considered as the individual with the highest fitness. [6]

At the most general level, search algorithms are algorithms which “search”

either the problem space or the solution space of a problem to find the optimal

answer. At the highest level, the interest is in exploring the search space. This

exploration occurs deterministically or stochastically, providing the foundation for

the categorization of search algorithms. Deterministic algorithms are those which,

given the same starting point, find an optimal or satisfactory solution every time.

Stochastic algorithms are random searches across the solution space which may not

find a satisfactory solution each time. Additionally, stochastic searches allow us

to exploit any partial solutions which we have found, since those partial solutions

11



could potentially be part of the final solution. Evolutionary computation (EC) is an

inherently stochastic area of study, with the randomness of the search discussed in

Section 2.3.6.

2.3.1 Evolutionary Algorithms. According to [12], the scheduling prob-

lem is just one of several combinatorial problem which can benefit from the use of

evolutionary algorithms. Other areas include:

• Routing

• Packing

• Design

• Simulation

• Control

• Classification

With all of these areas benefitting from evolutionary computation, it is impor-

tant to understand some of the concepts behind the term “evolutionary algorithms.”

The natural process of evolution is itself an optimization process [32]. While

not always generating perfect solutions, evolution is quite capable of developing good

functional solutions to a particular problem environment. When faced with prob-

lems whose chaotic nature did not lead themselves to being solved deterministically,

computer scientists and engineers began applying the essential principles of natural

evolution, that is, growth and adaptation over time, to the computing domain. Please

see [6] for a more in depth discussion of this topic. We are primarily concerned with

the basic operators of evolutionary computation, which are best understood from

the biological context in which they developed.

The EC efforts use many of the same terms as the biological descriptors of

evolution. As in biology, the fundamental unit of information is the chromosome. As
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outlined in [42], the discovery of chromosomes as the “carriers of genetic information”

allowed biologists to begin exploration into how that information was transmitted

and passed on to future generations. EC research uses chromosomes in much the

same way, with the particular problem domain affecting how the chromosome is

defined and described. Within an experiment’s population, each individual is a

chromosome in biological terms.

Biologists have long known that an individual is best described in terms of its

phenotype and genotype. [11] In EC, as in biology, the term phenotype refers to the

appearance of an organism or individual. In computation, this means that, for exam-

ple, an individual has a value of 0.45 in the range of 0.00 to 1.00. [24] The genotype

describes the DNA of an individual, and so is the primary mechanism for “variance

within a population because genetic changes caused by mutation and recombination

are passed with the genome.” [11] In the job-shop problem, the genotype is the set

of jobs that form a given schedule. The phenotype is how those jobs are described

in terms of the specific problem, such as a problem with five jobs to be scheduled

being constrained to the range from one to five inclusive.

Evolutionary algorithms are so named because they use the operators of bio-

logical evolution acting upon possible solutions to explore the problem domain and

exploit any “better” solutions. [6, 11] The basic algorithms in evolutionary com-

putation can be separated into two types, based upon their dependence upon the

different fundamental operators of evolution. The first operator is that of mutation,

and evolutionary strategies and evolutionary programming rely primarily upon this

operator to provide the development of a solution. The second category is that of

genetic algorithms and genetic programming, which are focused upon the crossover

(or recombination) aspect of evolution. Many evolutionary computation efforts in

fact use both crossover and mutation to achieve the best results in exploration and

exploitation of the solution domain.
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1 2 3 4 5 6 7 8 9 0 1 0 1 1 1 0 0 1 1 0

Original String Original String

1 7 3 4 1 6 7 8 2 0 1 0 0 1 1 0 0 1 1 0

Mutated string Mutated string

Figure 2.2: Example of Mutation

2.3.2 Mutation. In biology, mutation performs a vital operation in that

it acts upon a single chromosome or individual. The genotype is the focus of the

mutation operation. A biological mutation changes one of the pieces of genetic infor-

mation into another type of information. For example, the DNA sequence AGTTA

may become AGGTA. The computational version of mutation does the same to the

genotype of one of the individuals. Examples of this can be seen in Figure 2.2.

Much like in biology, EC uses mutation sparingly for the most part, with genetic

algorithms such as we are dealing with using a low percentage (≤ 1%) of mutation.

An evolutionary strategy, on the other hand, uses mutation as its primary operator.

For continued discussion of evolutionary strategies, please refer to [63].

As discussed in [8], there are many ways in which mutation can be applied to

the many formulations of problems in evolutionary computation. The underlying

biological premise is simple. As in nature, mutation is a change in the genotype

domain of an individual within a population. Possible ways to instantiate this type

of operator are bit flipping, position swapping, and permutations [8].

Mutation allows for increased exploration of a search space, since it moves

an individual from a given location within the solution space to another. How the

chromosome is defined and the specific mutation operator operates determines how

far a potential mutation would move the individual.

One problem that can arise in using the mutation operator is that duplication

of a phenotypic characteristic can occur. In some problem domains, this is not an
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1 0 1 1 1 0 0 1 0 0

Parent String A

0 1 0 1 0 0 1 1 1 0

Parent String B

Crossover point

1 0 1 1 1 0

0 1 0 0

Child String C

0 1 0 1 0 0

1 1 1 0

Child String D

Figure 2.3: Example of crossover

issue. However, in the scheduling problem, this cannot be permitted. It is intrinsic

to the problem that we do not want to have the same job scheduled multiple times.

In this case, instead of changing a single location, the corresponding location with

the same value must be mutated to have the value in the previous position.

2.3.3 Crossover. Also known as recombination, crossover is the practice

of taking individuals from a “parent” population and swapping pieces between the

individuals to create children for the next population. In biology, the chromosomes

undergoing recombination are aligned, a breakage occurs at the same location in

both, and the “homologous chromosome fragments are exchanged.” [18] This recom-

bination of material provides variability in the population.

Our description of the basic crossover operation is taken from [18], and was

introduced in [39]. It is composed of three steps. A simple, one-point crossover is

illustrated in Figure 2.3

1. Two individuals are chosen at random from the population of potential ‘parent’

strings.

2. One or more points in the chromosomes are chosen as crossover points, creating

substrings to exchange.

3. The substrings are exchanged and combined, creating two ‘offspring.’
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It is possible to extend the general principle of two parent strings to allow for

multiple parent crossover. [18] highlights some efforts in this area. Additionally, the

number of offspring is not constrained to simply two. In [39], one of the children in

thrown away, retaining a single child, while there are algorithms that produce many

more offspring and retain each of them.

This operation provides the primary means of exploitation in evolutionary

computation. An individual is staying within an area of the search space, but it is

moving within that area. This allows a potential optimum location in the search

landscape to be exploited. A critical assumption is that the individuals being used

in the crossover information have higher quality building blocks then the rest of the

individuals [11], taking advantage of Holland’s schema theorem. [39]

2.3.4 Constraint Handling Techniques. Part of the definition of any prob-

lem are the constraints inherent to that problem. In our problem domain, the con-

straints determine whether a solution is infeasible or feasible. Since feasible individ-

uals by definition are legitimate solutions, the question then is one of how to handle

the infeasible individuals. This area of evolutionary computation is called constraint

handling.

Constraint handling focuses on dealing with those infeasible individuals pro-

duced by the stochastic operation of an evolutionary algorithm. Potential ways of

addressing this are penalizing infeasible individuals, changing the topology of the

search space, repairing infeasible individuals, or only have feasible individuals in the

initial population [56]. The first method is to use a penalty function to make it more

difficult for infeasible individuals to remain in the population [66]. The penalty func-

tion can actually work on either feasible or infeasible individuals, depending on the

problem topology. Additionally, the function can be static, with predefined penalties

for distance from a desired area, or dynamic, with penalties changing as the solution
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space is explored. The dynamic version allows for infeasible individuals early in the

exploration, but weeds them out at the end [66].

By changing the topology of the search space, we greatly reduce the number of

infeasible individuals which can be generated in the population. This transformation

decodes the chromosomes in order to know how to build a feasible member [55].

Basically, it is a mapping from the entire search space into a feasible subspace [55].

Another means of dealing with undesirable members of the population is to repair

those individuals. What this means is that we take the portions of an individual

which violate some constraint, and change it so it no longer violates that constraint

[58]. The repair is usually done by finding the closest feasible point to that member,

and moving it to that point. Repair algorithms can be computationally expensive

to perform since there are additional calculations which must be performed in order

to move the individual.

There are many other algorithms for dealing with infeasible individuals. [25,54,

57] all deal with the aforementioned methods as well as others which are of interest.

2.3.5 GENMOP. The GENeral Multi-Objective Program (GENMOP) was

developed at the Air Force Institute of Technology (AFIT) to provide an implemen-

tation of a genetic algorithm. [46] Subsequent efforts at AFIT expanded GENMOP

to be run in parallel on a cluster of computers. GENMOP is designed to be as

modular as possible, with a user defining the chromosome representations, fitness

function, and genetic operators to use. The basic algorithm, in Bäck’s notation, is

given in Algorithm 1. Of particular interest is the crossover and mutation operations

of GENMOP. The algorithm chooses from four possible crossover functions and two

possible mutation functions based upon a normalized distribution for each.
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Algorithm 1 GENMOP in Bäck’s Notation
1: t := 0;

2: P (0) := {ai(0), ..., aµ(0)} ∈ Iµ

3: evaluate P (0) : {Φ(ai(0)), ..., Φ(ai(0))} where Φ(ak(0)) is user defined.

4: for i = 1 to Max num of generations do

5: Pi := null;

6: Pm := null;

7: Pm := Pi−1

8: Pi := Pm

9: Pm := crossover(Pi)

10: Pi := mutate(Pi)

11: Pi := Pi + Pi−1 + Pm

12: evaluate(Pi)

13: normalize(Pi)

14: end for

The symbols in GENMOP are described thusly. P is a population, with P (0)

being the population at time zero. An individual (a) is within the range described

by Iµ, with µ being the number of values in the range. Φ is a fitness function which

is applied to the each of the individuals in the population as an initial evaluation

step. Pm is the mating pool for the algorithm, and crossover is performed upon

this population while Pi takes the previous generation and performs mutation on its

members. The old population, the children of crossover, and the mutated population

are combined. The combined population is ranked and normalized to maximum

population size. The algorithm continues until the maximum number of generations

is reached.

2.3.6 Random Number Generators. As we discussed in Section 2.3.5, the

use of random number generators (RNGs) in genetic algorithms is important, if not
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critical. For this reason, we must be satisfied that the random number generator(s) in

use provide sufficient “randomness” to satisfy the stochastic nature of GAs. For any

RNG, the important factors in its evaluation are its distribution and its periodicity.

For an extended discussion of these factors, see [59,74].

The RNG in use in GENMOP is found in RNG.cc. It was developed as part

of the GNU Library in 1989 by the Free Software Foundation. This implementation

has been used in many other applications, and we therefore make the assumption

that it has been validated to provide sufficient randomness.

2.4 Summary

In this chapter, we discuss the outlines of the general problem domain, with

application to our particular problem. The fundamental concepts and operations

for EC are introduced and explained. The problem is described literally and mathe-

matically, with a presentation of the initial mappings into the EC domain. We next

present the development of our problem domain in the context of what is outlined

in this chapter.
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III. Problem Domain Development

The focus of this chapter is provide a design for a solution of the scheduling

problem described in II. Additional background is provided for the specific

problem of weapon scheduling from multiple bay aircraft. Constraints present in the

problem are specified, and aircraft specific factors are identified. Fitness functions

for evaluating the population of our genetic algorithm are designed.

3.1 Design goals

In Section 2.1, the overall problem that we address is described. The focus of

this chapter is on utilizing the techniques and approaches outlined in Chapter II to

provide a solution for our general problem.

3.2 Problem Discussion

Our pedagogical example in the analysis of the problem is that of the B-1B

Lancer bomber. The times used in door movement, launcher rotation, and other

constraints are from the performance of the B-1. However, these values are readily

changed to match those of other platforms, and are therefore general enough to

provide us with a proof of the concept.

3.2.1 Constraints. The constraints in this problem come from the weapons

themselves. Each weapon has a set of tolerances which must be met for safety

reasons. The tolerances are in terms of air speed, altitude, and bay door position.

Each tolerance is further modified by the actual bay location on the aircraft that

contains the weapon.

The first constraint is that of air speed. Certain weapons cannot be dropped

above a specified speed due to the possiblity of flyback. Flyback is when a weapon’s
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Weapon Type Release Bay Door Config Restrictions
CBU-103 FWD (10 weapons) Full
CBU-103 MID (10 weapons) Full FWD Bay doors open full
CBU-103 AFT (5 weapons) Full FWD or MID bay doors open full,

weapons on C rack only
CBU-103 AFT (10 weapons) Full FWD or MID bay doors open full

Table 3.1: Example of Bay Door Constraints

natural lift characteristics combined with the airspeed when it is dropped can allow

it fly up into the aircraft, a major safety hazard.

The next weapon specific constraint is that of altitude. While less of a con-

straint and more a recommendation to achieve full performance, it is still necessary

to plan with it as a constraint. This allows the aircraft to enjoy the full benefits of

range from the weapon, decreasing threat visibility time.

The most important constraint is that of bay door position. The bay door po-

sition varies both by weapon and by bay location. For an example of this constraint,

see Table 3.1 from [69].

3.2.2 Weapon Process. The operation of the weapon release is as follows:

The weapon is initialized by applying power through the 1760 cable. Targeting data

is downloaded from the avionics to the weapon through the weapons interface unit.

When valid data is resident in the weapon, it is now live and able to guide itself

towards the target to the best of its ability.

In order to drop the weapon, the bay doors on the aircraft must be positioned

according to the constraints for the weapon. There is a minimum cycle time which

must be allowed for the doors to transition to the desired position prior to weapon

release. Additionally, the weapon must be placed in a position on the carrying unit,

or rack, where it can be dropped. Problems in this instance include being blocked by

other weapons, hung stores, or not being able to rotate into position to be release.
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Beginning Position Ending Position Time (ms)
Closed Part Open 5100
Closed Full Open 7000

Part Open Closed 5100
Part Open Full Open 12100
Full Open Closed 7000
Full Open Part Open 12100

Table 3.2: Door Movement Times

3.2.3 Door timing. Since one of the primary motivations for this effort is

reducing the amount of time that the bay doors are open, the amount of time that

doors spend moving is important. According to [17], the amount of time it takes to

move a door into position is given in Table 3.2.

It is also important to note the amount of time that is required for a Multi-

Purpose Rotary Launcher (MPRL) to change between stations is 4500ms. When

the lancher is already moving, for example from station two to station three in a

cycle of station one to four, each additional station after the first adds 4400ms to the

rotation time. For the purposes of this project, all times are given in milliseconds.

This applies to all of the fitness functions, and allows for times to be given in a single

format, with less need to check that the same units are being used across the entire

project.

3.2.4 Chromosomes. The chromosome representation for the problem can

be seen in Equation 3.1.

Ci = {ω1, ..., ωk} (3.1)

Fundamentally, each chromosome C defines an ordered list of weapons (ω),

where the order is the release schedule for that weapon. This type of chromosome

representation means that we must be careful when applying the mutation oper-

ator to the chromosome. In order to prevent infeasible individuals (such as those
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without certain weapons or duplicates), we implement a static penalty function as a

constraint handling technique.

An alternative to this chromosome representation is using a chromosome that

consists solely of door positions. This chromosome representation has the advantage

of focusing the entire effort on the primary goal of reducing the amount of time a

bay door is open. However, by using a chromosome that includes an entire weapon

representation as we choose to do, we can look at additional factors in the scheduling

such as the weapon position within the bay, individual weapon safety concerns, and

timing intervals both between bays and individual weapons.

3.3 Fitness Functions

The proper operation of a genetic algorithm depends on the design and imple-

mentation of fitness functions. In this section, we discuss the design of the fitness

functions for our problem.

3.3.1 Time Fitness Function. Our primary focus is on reducing the amount

of time the bay doors are open. Therefore, the first fitness function we address is

that of how long a particular schedule allows the doors to be open.

The formulation for our problem is an algebraic equation. It includes all of the

times which must be accounted for in releasing a weapon.

Γ(S) = Σk
i=1(τd(ωi) + τr(ωi) + τt(ωi) + τs(ωi)) (3.2)

Where τd is the time it takes to position the doors correctly from the previous

position, τr is the time it takes for the weapon to be in position, τt is the time

needed for data transfer, and τs is the minimum safe time which must be allowed for

the weapon to release properly.

Given ωi, a weapon tuple, is defined as
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ω = {t, s, a, d, b, p, r} (3.3)

The weapon tuple parameters are as follows: type (t), airspeed (s), altitude

(a), bay door position (d), bay number (b), weapon position (p), and rack type (r).

The fitness is calculated by analyzing the schedule first in terms of dropping the

weapons one after another, with only the safety time between them. In this optimal

model, the assumptions are made that the bay doors are in the correct position, all

weapons have their data, and they are all in the correct position. This value only

needs to be calculated once to determine the measure that all individual schedules

will be measured against.

A schedule is evaluated using the algebraic model for weapon releases. This is

computationally difficult since door position and rack movement must be taken into

account. Once a schedule’s makespan has been computed, the fitness of the schedule

is calculated by subtracting the optimal time from it. The difference is the fitness,

which can be clearly seen to be better the lower it is.

Based upon the above discussion, our fitness function for this problem is

f1 = ts − to (3.4)

Where to is the optimal time (with the assumptions) and ts is the time for a given

schedule. The calculations are

to = Σn
i=1τs(ωi) (3.5)

ts = Σn
i=1(τd(ωi) + τr(ωi) + τt(ωi) + τs(ωi)) (3.6)
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Where taus is the minimum interval required between weapon releases, taud is the

time required for door movement, taur is the time required for weapon rack move-

ment, and taut is the time for data transfer and weapon initialization.

3.3.2 Movement Fitness Function. An important consideration in the wear

of the doors is not only the amount of time that they spend in the open position, but

also the number of times that the door moves. As a pedagogical example, consider

a sequence in which a weapon must be dropped from all three bays. The weapon in

the aft bay requires that the mid and forward bay doors be closed, and the weapon

in the mid bay requires that the forward bay door be open. Now, a schedule in which

the forward weapon was first, followed by the aft weapon, and the mid bay weapon

last needs to be evaluated differently from the forward-mid-aft schedule.

The primary focus of this fitness function is the number of door movements

which must be made. As this number increases, the overall fitness decreases. We

accomplish this be using a simple linear function in which there is a set value per

door movement. As more doors need to move, this value increases, representing a

decrease in the fitness.

f2 = Σn
i=1ωi(Σ

3
j=1(dj)) (3.7)

Where di is 1 if a door moves and 0 if it does not for each weapon. If all three doors

needed to move, the value added would be 3 for that particular weapon.

3.3.3 Safety Fitness Function. The final fitness function we use has to do

with the constraints of needing certain altitudes and/or aircraft velocities for certain

weapons. If the aricraft’s current airspeed is too high, or the current altitude is too

low for a weapon in a schedule, the schedule is penalized.

f3 = Σn
i=1(pa(ωi)) + Σn

i=1(pv(ωi)) (3.8)
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Where ωi is a weapon and p is the penalty for being out of constraints. The penalty

variable pa is the altitude penalty, while pv is the velocity penalty. As more weapons

are discovered to be out of the required flight profile, the penalties accumulate. This

means that a schedule in which, for example, only the weapons in the aft bay need

a lower airspeed will have a higher fitness than a schedule in which the aircraft is

traveling too fast to safely drop any weapons.

The value for p in this function is determined by the values of the constraints

surrounding the problem. One such value is the amount of time that it takes for a

specific weapon to be rotated or otherwise placed into position to be released. These

times vary from as low as 0 milliseconds to 9000 milliseconds. Additionally, the

amount of time that it takes to move door positions was considered. Therefore, the

penalty value for both altitude and velocity was set in the midrange of the various

movement times, at 4500ms.

3.4 Summary

In this chapter, we discuss the specifics of the problem domain and outline the

constraints inherent to the problem. Additional background material is presented

and analyzed. Based upon the discussion, we formulate three fitness functions to be

used in evaluating candidate solutions in the genetic algorithm. Using the discussion

from this chapter, we next implement specific algorithms and present experimental

designs.
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IV. Implementation and Experimental Design

The focus of this chapter is the actual implementation of the problem domain

design discussed in Chapter III. We cover the fundamental implementation

of GENMOP with particular emphasis on problem specific code. Additionally, the

experimental goals and design for the completion of the project is discussed in sec-

tion 4.4. The GenMOP algorithm is introduced in section 2.3.5. Section 4.1 discusses

the problem specific development and implementation of GenMOP for our problem.

4.1 GENMOP Implementation

The modularity of GENMOP makes the implementation of our problem specific

code require the modification of a small number of files. Building on the efforts of [45],

we instantiate a representative chromosome and the necessary operations to build

and monitor the chromosome.

The focus in this project is on providing problem specific functionality and

operations to the generic operations utilized by GenMOP. Modifications to GenMOP

occured in order to reference the data structures provided for this problem. The

overall algorithm flow remains the same, with input first being read in from a file.

An example of the data format can be seen in Section 4.1.2. With the data read in,

the initial population is created and each chromosome is evaluated using the problem-

specific fitness function(s). Using the fitness values, the population’s members are

then ranked using their Pareto-ranking. The most fit individuals in the population

are then used in a mating pool, where crossover and mutation are performed. The

children created from the mating pool are then evaluated, saved, and merged with

previous population (a µ+λ retention scheme). The combined population is reranked

according to the Pareto-rankings of the individuals. GenMOP then determines if the

required number of generations has been completed, creating another mating pool

in the event of further generations being necessary.
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4.1.1 GenMOP Program Flow. As discussed in Section 2.3.5, GenMOP is

designed to accomodate the solving of multiple objective problems through the use

of genetic algorithms. The program flow by which it does this is shown in Figure 4.1.

The basic flow is as follows. The program retrieves the basic information on the

number of generations, number of individuals per generation, number of processors,

and initial data from data files. An initial population is generated, which is then

ranked, normalized to the population size, and saved. The program then asks if it

currently on the last generation. If it is the last generation, the program is done.

Otherwise, the mating pool is populated from the current population, and crossover

is performed. With a new population of children, mutation is performed on them

and then they are evaluated. The child and parent populations are then combined,

and the total population is ranked before being normalized back to the population

size. The new population is then saved, and the program checks if it is the last

generation again. The loop continues until the maximum number of generations is

reached.

4.1.2 Data Representation. The data in the files used in this program are

relatively simple. The first line of the file denotes the number of weapons which are

to be scheduled. The next line provides the aircraft’s current altitude and speed

for the scenario. The remainder of the file is organized in the manner described in

Figure 4.2.

Each line in the file after the first two is a weapon. Each weapon is identified

by an ID number. The next field identifies which bay the weapon is located in. The

maximum airspeed (KCAS) and minimum altitude (in thousands of feet) are then

identified, followed by the door configuration for that bay. The interval time (in

milliseconds) is given. Finally, the door restrictions for the bays are listed.

One issue with the current data representation is that there is no way to tell

from a quick glance at a test file what weapons are due to be scheduled. This is
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Figure 4.1: GenMOP Program Flow
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Restriction: 

AFT

Restriction: 

MID

Restriction: 

FWD

IntervalDoor

Configuration

AltitudeAirspeedWhich

Bay

Weapon ID

Figure 4.2: Weapon Information Layout used for test data sets

due to the design decision to not provide the details of each weapon to the program.

Ideally, the solution implementation would have a table of the weapons with the

indivdual restrictions. An additional upgrade to the current format would deal with

having an aircraft loadout available, with different subsets of the loadout being used

as the desired scheduling problem.

4.2 Problem Specific Implementation

In this section, we examine the critical, and specific, code decisions which were

made to implement our solution.

4.3 Data Acquisition

This part of our implementation provides the means for using multiple test

files and alternate inputs. First, our global data structure contains a pointer to the

defined weapon data type. Within the read weapon file procedure, the pointer is

initialized to point to an array of weapon data, the size of which is given by the first

line in the data file as described in 4.1.2. After retrieving and setting the aircraft’s

altitude and speed to be used in fitness function f3 per the discussion in Section 3.3.3,

the procedure then populates the array with the values from the file.

This array is what is referenced in order to create individuals in the population.

The array also contains the necessary data for the first and second fitness functions

to perform checking upon an individual in a certain generation.

4.3.1 Chromosome Formulation. A chromosome is implemented in the

following manner. The first n items in the chromosome are the weapon identification
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numbers. After the nth weapon, three extra data fields are provided. These fitness

function data fields maintain the values from the three fitness functions for evaluation

and output. The chromosome can be seen in Equation 4.1.

Ci = (ω1|ω2| . . . |ωn|f1|f2|f3) (4.1)

Where Ci is a chromosome, ω denotes a weapon identification number, and f

is a fitness function value that is computed by GenMOP.

A chromosome for a specific scheduling scenario is a fixed length. The length

for a given chromosome is n + 3, where n is the number of weapons to be scheduled.

The final three pieces of a chromosome is the associated fitness data, and is only

used for outputting for data anlysis. Different scenarios of weapon deliveries do not

necessarily have differing chromosome lengths, but the implementation of GenMOP

allows us to specify the length of the chromosome depending on the number of

weapons. This means that overall, we have a variable length chromosome within the

overall context of the general scheduling problem, but a fixed length chromosome

within a specific schedule.

4.3.2 Fitness Functions. With GenMOP modified to provide the correct

input data acquisition and chromosome formulation, we move to implementing the

fitness functions. For GenMOP, there is in fact only a single, overall fitness function

which is called to evaluate individuals. Within the fitness function, the three fitness

functions that are discussed and designed in Chapter III are called. The results from

the individual fitness functions are stored in the data at the end of each chromosome.

The evaluation is then performed on the results of those three functions.

Time Fitness Function. From the discussion in Section 3.3.1, we have

a mathematical model for the fitness function. The algorithmic psuedocode view

of the model is shown in Algorithm 2. As implemented in GenMOP, it requires
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the input of a pointer to the original data array and a pointer to the chromosome

currently being evaluated.

Algorithm 2 Time Fitness Function

1: for i = 1 to number of weapons do
2: optimal time += weapon to drop(i).interval

3: end for
4: for i = 1 to number of weapons do
5: current time += door move time(weapon to drop(i))
6: current time += weapon to drop(i).interval

7: end for
8: fitness = current time - optimal time

An additional function is implemented to provide the door move time value.

This function is based on the door move times given in Table 3.2. It analyzes the

needed position and the previous door position and returns the amount of time that

it requires to get to the new position.

Movement Fitness Function. The algorithm for the second fitness

function is shown in Algorithm 3. The implementation is straitforward, with no ad-

ditional functions needed. It is important that on the first weapon to be evaluated, we

do not set the previous door position since we are assuming that all of the doors are

closed and therefore must move into the correct position. previous door position

and current door position are both initialized to the closed position (0,0,0). Al-

gorithmic psuedocode is shown in Algorithm 3.

Safety Fitness Function. The safety function is easy to implement

within GenMOP. Two checks are performed, against the maximum speed and mini-

mum altitude respectively. When a weapon’s constraints are violated, the penalty for

that schedule is increased. The specific value for each penalty is 3500ms and 2500ms

respectively, and is chosen due to the relative values of other aspects of dropping the

weapons. Specifically, there are intervals that approach 9000ms while going as low

as 210ms. The algorithmic psuedocode can be found in Algorithm 4.
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Algorithm 3 Movement Fitness Function

1: for i = 1 to number of weapons do
2: if it is not the first weapon then
3: set previous door position[j] = current door position[j]

4: end if
5: set current door position to the restrictions for the current weapon
6: check current door position against previous door position

7: if the current position is not the same as the previous position then
8: increment fitness2 by 1
9: end if

10: end for
11: return fitness2

Algorithm 4 Safety Fitness Function

1: fitness3 = 0
2: for i = 1 to number of weapons do
3: if weapon max speed ¡ current speed then
4: fitness3 = fitness3 + 3500
5: end if
6: if weapon min altitude ¿ current altitude then
7: fitness3 = fitness3 + 2500
8: end if
9: end for

10: return fitness2

4.4 Design of Experiments

In order to discern whether the algorithm is functioning correctly, it is necessary

to perform experiments. We use three sizes of experiments to validate our model.

Each experiment consists of a set of weapons which are needed to be dropped. The

algorithm should be able to assign and schedule the weapons for drop within a

reasonable time.

The first experimental size is small. In this case, we are using weapon taskings

such as one weapon from each bay, or a single bay dropping several weapons. The

small case provides an easily verifiable baseline for future experiments. When an as-

signment calls for multiple weapons, it is a medium sized experiment which provides

insight into the operation of the algorithm under realistic conditions. Finally, the
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Name File Description
JDAM Pure small jdam pure All three bays, all JDAM weapons
JASSM Pure small jassm pure FWD & MID bays, all JASSM weapons

JASSM + JSOW small jassm jsow 3 JASSM (AFT), 3 JSOW (FWD)
JDAM + JSOW small jdam jsow 3 JDAM (MID), 2 JDAM (AFT), 4 JSOW

(FWD)

Table 4.1: Small Experiment Descriptions

large experiment consists of dropping half or more of the total weapon loadout from

the aircraft.

In the experiments, we are looking at the time it takes for a solution to be found.

This time needs to be consistent for certain sizes of problems, as large problems will

in fact receive more time to be performed, within limits. The primary focus in the

analysis of the data is to accertain that the algorithm is discovering solutions along

the Pareto front. In terms of time and of optimality, the results from the experiments

should bear out the hypothesized performance of the algorithm.

4.4.1 Small experiments. The focus of the small size experiments is the

correct operation of GENMOP. A small experiment is one of two types of possible

problem inputs. The first type is one of fewer than ten weapons of varying types and

locations to be scheduled. The other type allows for more than ten weapons, however

the aircraft in this case is carrying only a single type of weapon. The summary of

experiments is shown in Table 4.1

4.4.2 Intermediate experiments. The intermediate experiment classifi-

cation is used for experiments in which the aircraft is carrying multiple types of

weapons, but the configuration is bay pure. These are shown in Table 4.2

4.4.3 Large experiments. In this experiment, there are multiple types

of weapons in the same bay, as well as across the aircraft. Table 4.3 shows the

experiments.
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Name File Description
CBU-105 + JDAM + JSOW int cbu105 jdam jsow 4 JDAM (FWD), 5 JSOW (MID),

5 CBU-105 (AFT)
JASSM + JSOW + MK-82 int jassm jsow mk82 4 JSOW (FWD), 4 JASSM

(MID), 8 MK-82 (AFT)
JASSM + JDAM + JSOW int jassm jdam jsow JSOW (FWD), JASSM (MID),

JDAM (AFT)

Table 4.2: Intermediate Experiment Descriptions

Name File Description
All Smart Weapons large jassm jdam jsow Mix of JASSMs, JDAMs, and

JSOWs
Smart and Unguided large cbu105 jdam jsow mk82 Mix of various types of smart and

unguided weapons

Table 4.3: Large Experiment Descriptions

4.4.4 Real-world scenarios. The B-1B Lancer program has performed

mixed load testing as a part of the Block-E computer upgrade program. In order to

provide a better idea of the performance of the algorithm, the operational testing

(OT) quick look reports are used to generate additional test files. The primary focus

of OT was to validate the performance of equipment and software on the aircraft

which was modified by the Block-E effort.

There are three tests performed by the 419th Test Squadron at Edwards Air

Force Base, CA, that are of particular interest to the results of this effort. While

data is available for the various captive carry (CC) missions which were performed

with mixed weapon loads, in these scenarios we do not have data on the release

order of weapons and therefore cannot compare the results of our algorithm to the

schedule used by the aircraft crew. Therefore, we utilize the three results where the

weapons were released. These test were performed from 9 Dec 2003 to 24 Feb 2004

and are summarized in Table 4.4.

4.4.5 GenMOP settings. The settings used for all the the experiments are

found in Table 4.5. These setting were chosen based upon the experimental results
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Name File Description
Flex CC #1 real flex 1 2 JASSM (FWD, 3 JSOW (MID),

2 CBU-105 (AFT)
Flex CC #2 real flex 2 2 JASSM (FWD), 4 JSOW

(MID), 3 JDAM (AFT)
Flex CC #2b real flex 2b 2 JASSM (FWD), 4 JSOW

(MID), 3 JDAM (AFT)

Table 4.4: Summary of B-1B Operational Testing Flex missions

Parameter Value
Maximum number of generations 100

Initial population size 100
Mutation rate 0.02

Save Generations 1
Mating pool size 5

Niche radius 0.2

Table 4.5: GenMOP Settings

in [43, 45, 46], where for the size of our general problem the number of maximum

generations and individuals can remain moderate. Most of the parameters have

previously been explained, however the Save Generations parameter has not. In

GenMOP, this is a flag (0 or 1) which tells the program to save the results at the end

of each generation or to throw them away. Saving a generation currently consists for

writing the individuals of a generation out to a file for later analysis.

4.5 Hardware Configuration

All experiments were performed on the AFIT Aspen cluster. As of the time of

this effort, the current configuration is a Linux Beowulf cluster. Each node within the

cluster uses dual 1 GHz Pentium III chips with 1GB of RAM. The operating system

is Linux 7.3, creating a homogenous environment. Each test was run on a single

node, utilizing both processors and the Message Passing Interface[MPI] capabilities

of GenMOP.
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4.6 Summary

In this chapter, we discuss the implementation of the design decisions that

are outlined in Chapter III. The test plan for the instantiated model is outlined,

with particular emphasis on the types of experiments that are run. Real world test

scenarios are also laid out, and the background for the scenarios described. We

proceed to analyze the results from the testing, and to draw conclusions.
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V. Analysis of results

In this chapter, we explore the results of the tests given in Chapter IV. The

primary focus is on the examination of the Pareto Front, with some additional

analysis provided.

5.1 Collection of Data

GenMOP provides for the automated saving of populations. Each individual

is printed to a given output file with the following format. The first item is the

Pareto ranking of the individual. This is an integer which relates how many other

individuals in the population dominated the particular individual in the population.

The entire chromosome of the individual is then saved for future analysis, as well as

the fitness data that is appended to each chromosome.

Each experiment is run 30 times in order to provide a measure of statistical

validity. The number of runs is determined by the number necessary for the central

limit theorem to apply as described in [45, 61], allowing the data to achieve an

approximately normal distribution. The results of each run are then combined,

retaining only the nondominated individuals for visualization.

5.2 Experimental results and Anlysis

For each experiment, the nondominated individuals are charted based on their

relative fitness values. With three fitness functions, the graphs are three dimensional.

They show the placement of the nondominated individuals within the solution space.

By examining the graphs, we therefore determine the pareto front.

From Figures 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, we can see that the pareto land-

scape of the solutions is relatively simple. While there are only a few points that

are called out in the graph, each point actually represents a multitude of schedules

which share the same fitness value in the solution landscape. As a representative,
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Scheduled Weapon
One Two Three Four Five Six
1 2 3 4 5 6
2 3 6 4 1 5
1 6 3 2 4 5
2 5 6 4 3 1
5 1 6 3 2 4

Table 5.1: Potential schedules with same fitness value
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Figure 5.1: Pareto Front graph for small jassm jsow

we look at the schedules produced for the small jassm jsow test set shown in Fig-

ure 5.1. The total number of schedules that have the same fitness value as the

schedule (1,2,3,4,5,6) is 1330. We list some of the representative values in Table 5.1.

5.3 Real world scenario results and analysis

In this section, we look at the computed schedules in regards to the actual

drop schedules that were used in B-1 OT.

In the first run, the release sequence was expected to be 2 JSOW/1 JASSM/2

WCMD/1 JASSM. The actual release order was 2 JSOW/2 JASSM/2 WCMD. [60]

Both of these schedules are found by the program, with a multitude of other sched-

ules which would have been acceptable. Other schedules which would have been

acceptable are found in Table 5.2.
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Figure 5.2: Pareto Front graph for small jassm pure
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Figure 5.3: Pareto Front graph for small jdam jsow
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Figure 5.4: Pareto Front graph for small jdam pure
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Figure 5.5: Pareto Front graph for int cbu105 jdam jsow
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Figure 5.6: Pareto Front graph for int jassm jdam jsow
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Figure 5.7: Pareto Front graph for int jassm jsow mk82
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Scheduled Weapon
One Two Three Four Five Six
1 3 2 4 6 5
2 1 3 5 4 6
1 3 4 6 2 5
3 2 6 5 4 1
2 3 4 6 1 5

Table 5.2: Potential schedules for flexcc 1
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Figure 5.8: Pareto Front graph for flexcc 1

It is intersting to note that all of the schedules with the same fitness value as

the flown profile begin with weapons from the forward or mid bays. The aft bay

weapons are never chosen to begin a viable schedule. From knowledge of the behavior

of the aft bay, we know that the most constraints are present on those weapons and

for this reason they are not chosen.

This delivery schedule is two JASSMs from the forward bay, four JSOWs from

the mid bay, and finally three JDAMs from the aft bay. Again, this schedule is found

by our program with a large number of other schedules having the same fitness value.

The Pareto front is shown in Figure 5.9.

The delivery profile for this test is similar to the test performed in flexcc 2.

The same weapon loadout is scheduled to be delivered from a different altitude

and mission profile. Specifically, the mission profile calls for a pop-up delivery of
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Figure 5.9: Pareto Front graph for flexcc 2
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Figure 5.10: Pareto Front graph for flexcc 2b

the weapons. If the schedules are evaluated before the proper altitude is reached,

the penalty functions will exihibit a disproportionate effect. However, we make the

assumption that the aircraft has just achieved the proper altitude, and the results

of the experiment are shown in Figure 5.9.

5.4 Analysis

From viewing the raw data and looking at the plots of the pareto fronts, we

can see that there are many schedules which have the same fitness value within our

solution landscape. This means that while there are some less optimal solutions, a
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large proportion of the available schedules are as good as any other when it is time

to release the weapons.

Therefore, based upon these results, we conclude that the problem is in fact

too simple to use an algorithm such as GenMOP on it. This is due to the number of

weapons which are to be scheduled at any one time. The primary emphasis was on

providing a rescheduling option for Weapon System Operators to use in the event of

in-flight rescheduling needs. However, these situations will rarely require more than

two or three weapons, and the WSOs are able to provide this capability manually.

5.5 Summary

In this chapter, the method of data collection from GenMOP is described,

with particular emphasis on the data required for our problem. The collected data is

graphed to determine the Pareto front in each experiment, and analyzed in terms of

the scheduling options which the program provides. Finally, we perform an overall

analysis on all of the available data, and conclude that the problem is simpler than

initial analysis would indicate for our given approximate problem domain model.
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VI. Conclusions

This chapter summarizes the work performed in this effort. A review of the

original goals is presented with relevant conclusions, building on the results

presented in Chapter V. Areas of future work are outlined. Finally, conclusions

based on this work are presented.

6.1 Goals

As presented in Chapter I, our objectives are as follows. We will examine them

in this section and analyze the project in terms of their accomplishment.

1. Develop a model that encapsulates the problem domain.

2. Develop an effective algorithm which solves the scheduling problem.

3. Evaluate the algorithm for efficiency.

4. Provide the algorithm in portable form for use in multiple environments.

6.1.1 Objective 1: Model Development. The focus of this objective is to

communicate the problem domain, and quantify it symbolically, using mathematics.

The analysis of the problem domain provides the necessary information to create the

mathematical formulation. This goal is accomplished in Chapters II and III. The

overall model is mapped to the Job Shop scheduling problem, and various methods

of solving the scheduling problem are presented.

6.1.2 Objective 2: Algorithm Development. This objective focuses on de-

veloping algorithms capable of providing solutions to the model laid out in objective

one. It uses the background information and discussion present in objective one to

provide these algorithms. The majority of work on this objective is accomplished

in Chapter III. We use an existing algorithm to provide the framework for our
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work, providing detailed implementation and parameter choices that are based on

the problem to be solved.

6.1.3 Objective 3: Algorithm Optimization. Initial testing with the imple-

mented algorithms provides feedback which is used to tune some of the parameters of

the program. The primary parameter that is modified is the value in fitness function

three. This value controls the penalty that applies to schedules that violate the air-

craft and weapon safety constraints of airspeed and altitude. The other parameters

that are modified based on initial testing are the number of generations and initial

starting individuals in the program.

6.1.4 Objective 4: Algorithm Portability. The conclusions that we draw

from the results that we present in Chapter V makes this objective moot. The reason

for this objective was to provide something which would be used by the end user

in the performance of normal duties. With what is known to be a problem of this

simplicity, the complex MOEA algorithm simply is not needed for use in the field.

Additionally, the problem domain model as currently designed and implemented

is highly static. The actual operation is highly fluid and dynamic, which requires

a revisiting of the problem domain to accurately gauge the effect of a dynamic

environment on weapon scheduling. Already established practices accomplish the

necessary tasks such that this program is not required.

6.2 Future work

In order to provide a useful program, the current implementation of the pro-

gram must be extended. The model of the operation of the aircraft must be better

quantified, and implemented within the code. Currently, a large portion of the model

is dependant on factors which are brough in through the data files to be analyzed.
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6.3 Summary

In conclusion, this effort demonstrated that while the weapon delivery schedul-

ing problem is complex, it is by no means complex enough to warrant the use of

evolutionary computation to solve it. The current methods for solving the problem

are entirely satisfactory, and do not require augmentation.
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IF, see frequency

independent and identically distributed data,

see i.i.d. data

jammer-to-noise ratio, see JNR

probability of false alarm, see detection prob-

ability, false alarm probability
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signal-to-interference plus noise ratio, see

SINR
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