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Simulation modeling requires accurate input analysis to ensure validity

of the study. Hence, the mantra “garbage in = garbage out.” Much of the re-

search and simulation code that has been written to date has been focused on

traditional parametric methods. Here we investigate Bayesian nonparametric

methods for input modeling and reliability analysis. Bayesian nonparametric

methods have been shown in many cases to produce better predictive models.

Also, for use in a Bayesian setting, we have written C++ classes for random

variate generation. These contain functions for standard and truncated distri-

butions as well as functions for statistical data handling. Although we have

written the code for Bayesian algorithms, the functions can be used anywhere

a good source of random variates is needed. Included is a detailed description

of class implementation and usage along with complete source code.
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Chapter 1

Introduction

Many real-world systems of interest to operations research analysts have

inherently stochastic components. These include, but are certainly not limited

to, financial markets, mechanical systems with uncertain lifetimes, and queuing

systems. To gain a better understanding of the underlying mechanisms of

such systems, analysts build statistical simulation models. The focus of this

report is on input analysis for statistical simulation modeling. Input analysis

is extremely important to simulation modeling as wrong input distributions

will result in misleading simulation output and incorrect decisions.

In simulation input analysis we must first develop accurate probability

models to represent real-world random phenomena, then simulate draws from

these predictive distributions for input to the simulation model. To date, the

primary focus for input analysis has been on traditional, parametric statistical

methods [see Law and Kelton, 2000]. Here we discuss an alternative method

for input modeling in a reliability setting, Bayesian nonparametrics, and a

C++ class library that we’ve developed primarily for Bayesian simulation.

We’ve chosen to investigate Bayesian nonparametric methods for input

modeling in an attempt to make data models more robust and, as a result,
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make more accurate predictions. With a Bayesian nonparametric model we do

not force in any undue assumptions about the characteristics of the underlying

distribution, yet we can inject prior notions about the location and spread of

the data. Bayesian models also have a nice feature in that we can “learn from

experience”. We can continually update the model with new data and therefore

capture more and more information about the underlying mechanism.

The focus here is on a Bayesian nonparametric technique to simulate

cumulative hazard functions using Beta stochastic processes [see Hjort, 1990].

Cumulative hazard functions can then be used either for direct analysis or to

recover a predictive distribution. We give an overview of Beta processes and,

more generally, the stochastic process approach to Bayesian nonparametrics.

We also include a practical description of how Beta processes can be simulated.

Simulation in a Bayesian setting requires accurate generators that can

produce variates from standard and truncated probability distributions for use

in specialized algorithms. We have therefore written a C++ class library that

will generate random variates for use in a variety of contexts. We needed a

source that is reliable, easy to use, and flexible. There are many commercial

packages available that can produce quality random variates, but these are

generally not flexible enough for use in new (Bayesian) research projects. Our

C++ class was primarily developed for Bayesian statistical modeling but can

be used anywhere simulated random variates are needed.

Included is a complete description of the C++ class usage and imple-

mentation. We give specific examples and discuss each function in detail with
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general explanations and references to the underlying algorithm. The code has

been thoroughly tested and debugged, but we assume that the user has a basic

understanding of probability theory. Given the usage description, references,

and attached source code, one should be able to incorporate these functions

into almost any simulation study.

The report is organized as follows: in chapter 2 we discuss random

variate generation and the implementation and usage of our C++ class library.

Chapter 3 includes the theory and computational algorithms associated with

some Bayesian nonparametric methods, and chapter 4 concludes the report

with our summary and possible areas for future research. The appendices

include source code from our C++ class library.
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Chapter 2

Pseudo-Random Variate Generation in C++

When performing Bayesian statistical analysis, nonparametric, para-

metric, and mixed, one frequently must simulate draws from standard proba-

bility distributions, predictive distributions, and/or stochastic processes. The

need arises in building simulation models and while using sampling techniques

when non-conjugate set-ups render posterior distributions intractable. In ei-

ther case one needs a good source of uniform and non-uniform pseudo-random

variates from known distributions. We use the term “pseudo” here as true ran-

domness is impossible from a computer; generated data that appears random

is sufficient when trying to glean information in a stochastic setting.

We wanted a random variate (RV) source that is reusable, adaptable,

and reliable so that it can be used in future specialized Bayesian simulation

projects. Thus we built a class library in C++ to handle all random num-

ber generation, some statistical processing of data, and specialized Bayesian

functions to include variate generation from truncated densities using auxil-

iary variable techniques [see Damien et al., 1999]. C++ was chosen for its

versatility and object oriented nature. For example, all statistical functions,

as well as multivariate generator functions, can be passed vectors from the
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C++ standard library “vector” class. Using vectors in lieu of arrays results

in code that is faster/more efficient and does not require the user to pass vec-

tor sizes, which makes functions more general. In this chapter we discuss the

implementation and usage of functions from our random variate class library.

Section 2.1 contains a general description of how to implement the class

and its member functions. This includes detailed sample code that should

make the usage easier to understand. Sections 2.2 and 2.3 discuss the class

member functions associated with uniform and non-uniform variate generation

respectively. In section 2.4 we discuss algorithms and associated functions for

sampling from truncated densities. We conclude the chapter in section 2.5

with the statistical data handling functions.

2.1 Class Implementation and Usage

Our random variate class library consists of four files: RanV.h, RanV.cpp,

mrand seeds.h, and BayesRV.cpp. In the usual manner RanV.h contains the

class declarations, and RanV.cpp and BayesRV.cpp contain the associated

source code. The header file, mrand seeds.h, contains the 10,000 six vector

seeds needed for the random number generators. To implement, place the

header files (*.h) in an appropriate directory so that the compiler can locate

them, and compile and link RanV.cpp and BayesRV.cpp with the .cpp file

containing function main().

Once RanV.h is included in the main .cpp file with the statement

#include ‘‘RanV.h’’, merely instantiate objects of type RanV or BayesRV
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(with the statements RanV object() or BayesRV object()) to use the classes’

member functions. To set a particular seed value, instantiate objects with in-

put in the interval [1,10000]. The objects’ constructors will set the appropriate

seed value. At any other point the seed can be set to a new value with a call

to object.setSeed(int)1. Seed will default to 12 otherwise. C++ source

code from RanV.cpp is attached in appendix A and code from BayesRV.cpp

in appendix B. Header file RanV.h is in appendix C.

The following is complete sample C++ program that shows exactly

how classes RanV and BayesRV are implemented. The program instantiates

objects of type RanV and BayesRV, calls functions from each class, and outputs

results to a computer monitor.

1 //Samp1.cpp, Sample program that implements

2 //classes RanV and BayesRV

3

4 #include<iostream>

5 #include<vector>

6

7 using namespace std;

8

9 #include "RanV.h"

10

11 int main()

12 {

13 //declare variables:

14 double U, N, Chi, Gam, TRe;

15

1We assume “object” to be the general object instantiated with the statements RanV
object or BayesRV object.
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16 RanV rv(55); //instantiate RanV object

17

18 BayesRV bay(155); //instantiate BayesRV object

19

20 //call class member functions

21

22 U = rv.mrand(); //uniform(0,1) variate

23 N = rv.stdnorm(); //normal(0,1) variate

24 Chi = rv.ChiSquare(8); //ChiSquare n = 8 d.f.

25 Gam = rv.gamma(2.4); //Gamma(a), a = 2.4

26

27 //return truncated exponential with rate = 3.0

28 //and truncation limits [1,3]

29 TRe = bay.TRexpn(3.0,1,3);

30

31 //output results

32 cout << U << endl << N << endl << Chi << endl << Gam

33 << endl << endl

34 << TRe << endl;

35

36 return 0; //successful termination of program

37 }//end function main

In lines 4-5 we include header files from the standard template library.

We need “iostream” since we are using cout and endl, and “vector” is neces-

sary since class RanV employs vectors. Line 7 is necessary since cout and endl

are both from the “std” namespace. Line 9 contains the #include statement

for the RanV header file, and line 11 is the official start of the program.

The program itself is well commented (lines beginning with “//”). The

only items of note are in lines 16 and 18. These are where our RanV and

BayesRV objects are instantiated. Note here that the seeds for the uniform
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generator for each object are set to 55 and 155 respectively. At any subse-

quent point during the program, one could set the seeds to a new value with

rv.setSeed(int) or bay.setSeed2(int).

2.2 Uniform Variate Functions

All non-uniform random variate (RV) generators in this class library

are implemented using various methods (e.g. transformations, acceptance-

rejection) involving Uniform(0,1) RVs. It was therefore imperative that we

start by developing a good source of uniform variates. “Good” uniform variates

are those that are evenly distributed across (0,1) in all dimensions and appear

to be independent.

For Uniform(0,1) random numbers we employed a composite Multiple

Recursive Generator (MRG) as presented in Law and Kelton [2000] and de-

veloped by L’Ecuyer [1999]. The uniform RV source combines 2 MRGs and is

defined by:

Z1,i = (1, 403, 580Z1,i−2 − 810, 728Z1,i−3)[mod(232 − 209)]

Z2,i = (527, 612Z2,i−1 − 1, 370, 589Z2,i−3)[mod(232 − 22, 853)]

Yi = (Z1,i − Z2,i)[mod(232 − 209)]

Ui =
Yi

232 − 209

The parameters were chosen carefully by L’Ecuyer [1999], and the generator

has period of approximately 2191 with, according to Law and Kelton [2000],

good statistical properties through dimension 32. The resulting variates passed
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all statistical tests for uniformity and independence for which we subjected

them. The source code includes a header file with 10,000 6-vector seeds spaced

1016 apart which makes the generator a prime candidate for parallel computing

(although parallel processors were not used in this application).

There are four functions associated with Uniform variate generation:

mrand(), unif(), mrandst(), and mrandgt(). When calling object.mrand()

no input is required; the seed value is set when ‘‘object’’ is instantiated, or

with the function setSeed(stream)where “stream” is an integer on [1,10000].

The output will be a uniform RV on the interval (0,1). Figure 2.1 shows a

histogram of 64,000 variates from mrand()2. Simply use object.unif(a, b)

with real valued (a,b) to obtain general uniform RVs on the interval (a,b).

Figure 2.1: Uniform(0,1) random variates

Functions mrandst() and mrandgt() can be used to set and get re-

2The horizontal axis contains partitioned X values, and the vertical axis contains the
respective frequencies of the sample.
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spectively the actual 6-vector seed used in the uniform generator. Call the

function object.mrandst (vector<double> seed, str) with a vector con-

taining 6 real numbers and an integer on [0,10000] to set 6-vector stream “str”

to that contained in vector “seed”. To get the latest 6-vector used in the gen-

erator, pass an empty vector and the stream number using object.mrandgt

(vector<double> seed, str).

2.3 Non-Uniform Variate Functions

Given a good source of Uniform(0,1) variates, most common non-uniform

RVs are easily generated. Published research in this area is plentiful, robust,

and well developed. For an excellent, comprehensive source one can turn to

Devroye’s Non-uniform Random Variate Generation [see Devroye, 1986]. The

book is now out of print, but an Adobe pdf version has been posted by the au-

thor and can be found at http://jeff.cs.mcgill.ca/~luc/rnbookindex.

html.

Our class library can be implemented to generate data from the follow-

ing well-known continuous and discrete distributions: exponential, Weibull,

gamma, beta, Dirichlet, normal, lognormal, Chi-square, Bernoulli, binomial,

multinomial, and Poisson. The only continuous distribution that is imple-

mented via direct inversion is the exponential. This comes from the result

that Exponential(α) variates can be generated by X = − 1
α

ln(U) where U is

Uniform(0,1). Sums of exponentials can then be used to generate Gamma(α)

where α ∈ N and Weibull RVs are simply X
1
β where X is an exponential RV.
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The respective nonuniform probability density and mass functions (pdf’s

and pmf’s) implemented in this package are:

1. Exponential(λ): fX(x) = λ e−λ x, x > 0

2. Weibull(α, λ): fX(x) = αλα xα−1 e−(λx)α
, x > 0

3. Gamma(α): fX(x) = 1
Γ(α)

xα−1 e−x, x > 0

4. Beta(α, β): fX(x) = Γ(α+β)
Γ(α)Γ(β)

xα−1 (1 − x)β−1, 0 < x < 1

5. Dirichlet(α1, . . . , αk): fX1,...,Xk
(x1, . . . , xk) ∝ xα1−1

1 · · ·xαk−1
k ,

∑
Xi = 1

6. Normal(µ, σ2): fX(x) = 1
σ
√

2 π
e−

(x−µ)2

2 σ2 , −∞ < x < ∞

7. Lognormal(µ, σ2): fX(x) = 1
x σ

√
2π

e−
(ln(x)−µ)2

2 σ2 , x > 0

8. Chi-square(r): fX(x) = 1
Γ(r/2)2(r/2) x(r/2)−1 e−x/2, x > 0

9. Bernoulli(p): fX(x) = px (1 − p)1−x, x = 0, 1

10. Binomial(n, p): fX(x) = n!
x! (n−x)!

px (1 − p)1−x, x = 0, 1, . . . , n

11. Multinomial(p1, . . . , pk): fX1 ,...,Xk
(x1, . . . , xk) ∝ px1

1 · · · pxk
k ,

∑
pi = 1

12. Poisson(λ): fX(x) = e−λ λx

x!
, x = 0, 1, . . .

To obtain exponential variates, use the function expn(lambda)3 with

any lambda > 0. Weibull variates are obtained with the function weibull(shape,

3From this point forward, we will assume the reader knows to call a function using
“object” and drop the object.function() notation.
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scale) where the shape and scale parameters are both real valued and greater

than 0. Figure 2.2 contains a histogram of 64,000 exponential(2.0) variates and

figure 2.3 a plot of Weibull(2.0,4.0) variates4.

Figure 2.2: Exponential variates: rate = 2.0

Standard normal variates (Normal(0,1)) are generated using the polar

method [see Law and Kelton, 2000] and are easily converted to the general

case, Normal(µ, σ2), via Y = X ∗σ+µ. Standard normals can also be used to

generate lognormal and chi-square variates through Y = eX and Y =
∑

X2

respectively.

Function stdnorm() requires no input and returns a Normal(0,1) ran-

dom variate. See figure 2.4 for a histogram of generated standard normal vari-

ates. Normal(µ, σ2) random variates are generated using norm(mu, sig2),

4All histogram plots presented in this chapter use 64,000 generated values. Also, hori-
zontal axes contain partitioned X values, and vertical axes contain respective frequencies of
the sample.
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Figure 2.3: Weibull variates: shape = 2.0, scale = 4.0

and lognormal variates are generated using function logn(mu, sig2). Pa-

rameters mu and sig2 must be real valued with sig2 > 0 in both cases and

mu ≥ 0 for lognormal. To obtain a Chi Squared random variate with n degrees

of freedom, call function ChiSquare(n) with integer valued n ≥ 1.

For the generalized Gamma(α), α ∈ R, α > 0, we use a fast acceptance-

rejection routine5. For α > 1 we use a routine developed by Cheng [1977] and

presented in Law and Kelton [2000]. For α < 1 we use a routine attributed

to Ahrens and Dieter (1974) [see Law and Kelton, 2000]. Gamma(α) RVs can

then be used to obtain Beta(α1, α2) through Y = X1

X1+X2
and Dirichlet through

Y = Xi∑
Xi

. Gamma(α, β) is simply β X, where X = Gamma(α). See figure 2.5

for a histogram plot of Gamma(5.4) variates.

5Note that in the case of very small α, no acceptance-rejection routine will be fast. We
cover an algorithm for this special case in section 2.4.
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Figure 2.4: Standard Normal Variates: mean = 0, variance = 1

A Gamma(α) variate is returned with the function gamma(alpha)where

input alpha must be real valued and greater than 0. Again, to obtain a

Gamma(α, β) variate, multiply a Gamma(α) by β. Beta variates are ob-

tained using function beta(a1, a2) with real valued a1 ≥ 0 and a2 ≥ 0.6

Now, the Dirichlet distribution is a multivariate generalization of the Beta

distribution. For a vector of realizations from a Dirichlet distribution you

must pass a parameter vector and an empty vector for x values with the

function Dirichlet(vector<double> P, vector<double> X). The parame-

ters in vector P must sum to 1. After the function is called, vector X will

contain the desired random vector.

The discrete distributions that we implemented here are Bernoulli, bi-

nomial, multinomial, and Poisson. Bernoulli RVs are simple transformations

6If a1 and/or a2 are very small, use the beta function described in section 2.4.
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Figure 2.5: Standard Gamma Variates: alpha = 5.4, beta = 1

of uniforms, binomials are sums of Bernoullis, and multinomial random vec-

tors are obtained using binomials. Poisson RVs are a little bit tricky. We

employ an algorithm developed by Press et al. [2002] that separates cases into

λ < 12.0 and λ >= 12.0. For λ < 12.0 the code directly exploits the Poisson

distribution’s relationship with the exponential. When λ >= 12.0 we use an

acceptance-rejection routine to control processing time as λ gets large. See

figure 2.6 for a plot of generated Poisson variates.

Function bern(p) is used to generate a Bernoulli variate with param-

eter 0 ≤ p ≤ 1. To generate a Binomial variate call function binom(n,

p) with integer input n ≥ 2 and, again, 0 ≤ p ≤ 1. Now, the multino-

mial function is multivariate and also requires two vectors for input: one for

parameters such that all sum to 1 and one for return of x values. Calling

multnom(vector<double> P, vector<int> X) results in the desired random

15



Figure 2.6: Poisson Random Variates: mean = 8.4

vector being stored in vector X. Finally, to obtain Poisson variates (as in fig-

ure 2.6), use the function Poisson(lambda) with lambda > 0.

2.4 Sampling from Truncated Densities

In Bayesian simulation one frequently must sample from truncated den-

sities and/or distributions with exceptionally narrow spread. In both cases,

using an acceptance-rejection routine is not practical. In fact, if the trunca-

tion interval and/or spread is very small, obtaining a sample using acceptance-

rejection may be impossible. To sample from such distributions we have im-

plemented in C++ algorithms employing the auxiliary variable technique de-

veloped by Damien et al. [1999]. In this section we describe three algorithms

from Damien and Walker [2001] for sampling truncated Beta, Gamma, and

Bivariate Normal densities.
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The auxiliary variable technique was developed for ease of use in a

Gibbs sampler [see Casella and George, 1992]. In general, latent (auxiliary)

variables can be strategically added to probability distributions so that the

full conditionals are known and easy to sample. The latent variables must

be added such that the marginal densities include the desired distribution.

In this manner a Gibbs sampler is used with the full conditionals to produce

variate(s) from the original distribution.

Introducing one auxiliary variable to the Beta distribution reduces the

complicated task of generating truncated Beta variates to merely sampling

a Uniform and an exponential function. The truncated Beta distribution is

given, up to proportionality, by

fX(x) ∝ xα−1 (1 − x)β−1 I
(
x ∈ (a, b)

)

where α, β > 0 and 0 ≤ a < b ≤ 1 and I is the indicator function. Damien

and Walker [2001] introduce latent variable Y such that the joint density is

given by

fX,Y (x, y) ∝ xα−1 I
(
y < (1 − x)β−1, x ∈ (a, b)

)
. (2.1)

Note that

∫ (1−x)β−1

0

xα−1 I
(
y < (1 − x)β−1

)
dy = xα−1 (1 − x)β−1,

i.e. the marginal density of X is again the Beta distribution.

Given the joint density in (2.1), the full conditional for Y given X is

simply Uniform(0, (1 − x)β−1). The full conditional for X given Y depends

17



on whether β < 1 or β > 1; if β = 1 the Beta distribution can be sampled

directly using inversion. So for β > 1 the full conditional of X is

fX |Y (x|y) ∝ xα−1 I
(
x ∈

(
a,min{b, 1 − y1/(β−1)}

))
. (2.2)

Now when β < 1 the full conditional of X becomes

fX |Y (x|y) ∝ xα−1 I
(
x ∈

(
max{a, 1− y1/(β−1)}, b

))
. (2.3)

Both can be sampled directly using the inverse CDF technique with

F (x) =
xα − aα

bα − aα
I
(
x ∈ (a, b)

)
.

Now, the Gibbs sampler algorithm for generating a truncated Beta

reduces to:

1. INITIALIZE X

2. FOR 5 ITERATIONS

GENERATE Y AS UNIFORM(0, (1− x)β−1)

GENERATE X FROM (2.2) OR (2.3)

3. RETURN X

The biggest advantage of this algorithm over acceptance-rejection tech-

niques, if there are no truncation limits, occurs when α and/or β are very small.

See figure 2.7 for a sample of Beta(0.2,0.2) variates. These are generated using

function TRbeta(alpha, beta, a, b) from the “BayesRV” class where a and

18



Figure 2.7: Beta Random Variates: alpha = 0.2, beta = 0.2

b are the truncation limits. To obtain non truncated variates, merely set a =

0 and b = 1.

The method for truncated Gamma variates is very similar to that of

Beta. The Gibbs sampler algorithm is exactly the same as above but with

slightly different conditionals. The truncated standard (β = 1) Gamma den-

sity is given to proportionality by:

fX(x) ∝ xα−1 exp(−x) I
(
x ∈ (a, b)

)

where 0 ≤ a < b ≤ ∞. Damien and Walker [2001] introduce latent variable Y

such that the joint density is given as:

fX,Y (x, y) ∝ xα−1 I
(
y < exp(−x), x ∈ (a, b)

)
. (2.4)

Again, note that, integrating with respect to y:

∫ exp(−x)

0

xα−1 I
(
y < exp(−x)

)
dy = xα−1 exp(−x).

19



Now, given the joint density in (2.4) we have the full conditional for Y

given X as Uniform(0, exp(−x)). The full conditional for X given Y is given

as

fX |Y (x|y) ∝ xα−1 I
(
x ∈

(
a,min{b,−log(y)}

))
. (2.5)

Equation (2.5) is very similar to that of (2.2) and (2.3) and can be sampled

using inversion.

To obtain a truncated Gamma variate call function TRgamma(alpha,

a, b) from the “BayesRV” class. To obtain non truncated variates simply

call TRgamma() with a = 0 and b arbitrarily high compared to alpha. Again,

the advantages over the standard Gamma function occur when alpha is very

small. See figure 2.8 for a sample of Gamma(0.57) variates.

Like the truncated Beta and Gamma distributions, sampling from a

truncated multivariate Normal density can be greatly simplified using the aux-

iliary variable technique of Damien et al. [1999]. Without this technique the

task can be arduous at best. Here we have employed an algorithm from Damien

and Walker [2001] to handle the bivariate case. Given a good matrix handling

C++ library, this method can easily be extended to larger random vectors.

The truncated multivariate Normal density is given to proportionality

by

fX1,...,Xp(x1, . . . , xp) ∝ exp
(
− 1

2
(x− µ)′ Σ−1 (x − µ)

)
I
(
x ∈ A

)

where µ is the mean vector and Σ is the covariance matrix. Damien and Walker
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[2001] introduce only one latent variable Y and define the joint density as

fX1,...,Xp,Y (x1, . . . , xp, y) ∝ exp
(
− y

2

)
I
(
y > (x − µ)′ Σ−1 (x − µ), x ∈ A

)

where the full conditional for each Xi is given as

fXi|X−i,Y (xi|x−i, y) ∝ I(xi ∈ Ai).

The conditionals are then uniform densities with Ai = (ai, bi)∩Bi where Bi is

the set {xi|x−i : (x − µ)′ Σ−1 (x − µ) < y}. The bounds for Bi are therefore

found by solving a quadratic equation. Also, the full conditional for Y given

X is a truncated exponential distribution.

Figure 2.8: Gamma Random Variates: alpha = 0.57, beta = 1

Since the truncated exponential distribution is used frequently in sim-

ulation algorithms, other than just sampling truncated multivariate normal,

we created the function TRexpn(lambda, a, b). Call this function with real
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Figure 2.9: Truncated Exponential Random Variates: lambda = 2.0, a = 1.0,
b = 3.0

valued lambda greater than 0 and 0 ≤ a < b ≤ ∞ to obtain truncated expo-

nential variates as in figure 2.9.

Now, to obtain truncated bivariate Normal variates call the function

TRbiNorm(X, Mu, Sigma, A). X is an empty vector<double> to hold the

returned variates, Mu is a vector<double> containing the means, and Sigma

is a 2x2 double subscripted array containing the covariance matrix. A is again

a 2x2 double subscripted array. The first row contains the truncation limits

for X1 and the second row contains the truncation limits for X2.

Using function TRbiNorm() we reproduce a simulation described in

Damien and Walker [2001] of 10,000 samples from a bivariate Normal den-

sity truncated on the unit circle centered at (0.5,0.5). The means here are 0

and Σ is given with unit variances and covariance = 0.9. Figure 2.10 contains

a graph of the produced variates. Notice the truncation limits and the positive
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correlation between X1 and X2.

Figure 2.10: 10,000 Truncated Bivariate Normal Variates

2.5 Statistical Data Handling in C++

In addition to pseudo-random variate generation, we can use our class

library to input vectors of data from sequential, delimited data files and per-

form empirical statistical analysis. Analysis includes calculating population

mean and variance, covariance between two vectors of data, and empirical

quartiles. Input is stored in vectors so all data handling functions can be used

with internally simulated values as well.

External data files can be delimited in almost any manner to include
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spaces, commas, lines, and tabs. To get external data, call the function

getdata(vector<> D, filename) with an empty vector and filename to in-

clude the file extension, i.e. “filename.txt” or “filename.dat”. The data file

must be in the same directory as the compiled executable. The data will be

stored in vector “D”.

Data handling functions include cmom(vector<> D, mean, var), cov(

vector<> D1, vector<> D2, cov), and quant(vector<> D, vector<> Q).

The inputs to cmom() are a data vector, D, and double valued variables mean

and var to hold the outputs for population mean and population variance

respectively. Function cov() requires two data vectors, D1 and D2, and double

valued cov to hold the output sample covariance between the two data vectors.

Finally, function quant() requires a data vector, D, and a vector of

quantiles, Q. For output, the data vector is returned numerically sorted, and

function quant() replaces the percentile values in the quantile vector with the

desired data value. For example, Q might contain as input {0.1,0.5,0.9}

to return the 10th, 50th, and 90th percentiles respectively. If the data vec-

tor contained standard Normal variates, the quantile vector above would be

returned as approximately {-1.282,0,1.282}.
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Chapter 3

Bayesian Nonparametrics

3.1 Introduction

The focus of the Bayes portion of this report is on the use of Bayesian

nonparametric techniques for reliability (lifetime data) analysis. In general we

would like to glean useful information and make accurate predictions using

lifetime data collected about an observed set of items. In a traditional para-

metric setting we would make certain assumptions about the family of dis-

tributions from which these lifetimes arise and use collected data to estimate

the unknown, but fixed, parameter(s) from the chosen distribution family. In

Bayesian parametric analysis we view the parameter(s) as random and assign

prior distribution(s) from which we make inferences about the parameter(s)

in question. We then use Bayes theorem to make data conditional updates to

the prior distribution(s).

Traditional nonparametric techniques [see Siegel and Castellan Jr., 1988]

involve not making any assumptions about the family of distributions and us-

ing the data to build unknown, yet fixed, distributions from which to make

predictions. Now, in parallel with the parametric setting, Bayesian nonpara-

metric methods “randomize” the distribution in question and place a prior to
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which we can make data conditional updates (posterior). We can then use the

posterior to make inferences about the distribution and in turn make predic-

tions about lifetimes in question. A current survey of many popular Bayesian

nonparametric techniques with follow-on discussions can be found in Walker

et al. [1999].

We’ve chosen to investigate the use of stochastic process priors in

Bayesian nonparametric models. Since Ferguson [see Ferguson, 1973] intro-

duced the Dirichlet process prior in his seminal 1973 paper, the stochastic

process approach to Bayesian nonparametrics has become very popular for its

stable theoretical grounding and ease of use [see Walker et al., 1999]. Ferguson

[1973] showed that the Dirichlet process has large support and is conjugate to

the space of cumulative distribution functions (CDFs), i.e. the data condi-

tional posterior process is again a Dirichlet process.

In the stochastic process approach to Bayesian nonparametrics, we de-

fine a stochastic process with index set on the sample space, Ω, where spe-

cific realizations are cumulative distribution functions. In this setting, if the

stochastic process is carefully chosen (as in the Dirichlet process introduced

above), updates can be made using observations from the distribution in ques-

tion that will result in a well defined posterior process. The increments of the

posterior process can then be simulated to obtain realizations of the underlying

CDF, which can in turn be used to simulate predictive data sets.

The Dirichlet process prior has one drawback in that it leads to the

class of discrete distributions almost surely. To overcome this (while handling
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censored lifetime data), Doksum [1974], Ferguson [1974], and Ferguson and

Phadia [1979] developed a general class of priors called Neutral to the Right

(NTR) processes of which the Dirichlet is a specific case. They showed that if

the random distribution function F (x), x ∈ Ω is NTR, then Z(x) = −log(1 −

F (x)) is a Lévy process where

1. Z(x) has non-negative independent increments,

2. Z(x) is non-decreasing almost surely,

3. Z(x) is right continuous almost surely,

4. limx→−∞[Z(x)] = 0 almost surely and

5. limx→+∞[Z(x)] = ∞ almost surely.

Ferguson and Phadia [1979] also proved that if F (x) is NTR, then F (x)

given a sample X1,X2, . . . ,Xn, possibly right censored, from F (x) is again

NTR and Z(x) is again an independent increments Lévy process. As a result,

possibly right censored data can be used to make updates to the selected prior

process, then focus can be turned to the Lévy process Z(x) for realizations of

the random distribution F (x).

In this chapter we turn our attention to a specific class of Lévy processes

developed by Hjort [1990], beta processes, which are used as priors for the space

of cumulative hazard functions (CHFs). The distribution function F (t), t ≥ 0

can be recovered from the CHF, A(t), as A(t) = −log(1−F (t)) in the case of
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continuous F (t). Notice the parallel of A(t) to Z(x) above. In section 3.2 we

discuss the use of the cumulative hazard function in a Bayesian nonparametric

setting. Section 3.3 introduces the theoretical framework behind the beta

process, and section 3.4 addresses the computational issues associated with

simulating the increments of the beta process.

3.2 Random Cumulative Hazard Function

Most of the emphasis in the Bayesian nonparametric literature has been

placed on developing priors for the random distribution function (CDF). To

that effect the 1970s saw the development of Neutral to the Right (NTR)

processes as priors for the CDF, F (t), where Z(t) = −log(1−F (t)) is an inde-

pendent increments Lévy process. Hjort [1990], noticing a natural relationship

of hazard functions to Z(t), chose to focus on developing a stochastic process

prior not for the CDF, F (t), but for the cumulative hazard function (CHF),

A(t), instead. According to Hjort [1990] the CHF is as basic to understand-

ing survival phenomenon as the CDF, and the hazard rate concept is easily

generalized to more complicated models.

We’ve chosen only to address the time continuous CHF model. Let T be

a random variable with CDF F (t) = Pr(T ≤ t) on [0,∞) and F (0) = 0. The

cumulative hazard rate for T is a nonnegative, nondecreasing, right continuous

function A on [0,∞) where

dA(s) = A[s, s + ds) = Pr{T ∈ [s, s + ds)|T ≥ s} =
dF (s)

F [s,∞)

28



Now Hjort defines for 0 ≤ a ≤ b < ∞

A[a, b) =

∫

[a,b)

dF (s)

F [s,∞)

and requires

F [a, b) =

∫

[a,b)

F [s,∞) dA(s).

We have that A(t) is the value of the function A at the point t such that F (t)

is recoverable from A(t) by using product integrals[Gill and Johansen, 1990]:

F (t) = 1 −
∏

s∈[0,t]

{1 − dA(s)}, t ≥ 0. (3.1)

If F is continuous this reduces to the familiar

A(t) = −log(1 − F (t)).

We now have the framework for developing Hjort’s prior distributions

for A. Let F be the set of all CDFs F on [0,∞) having F (0) = 0 and let B

be the set of all nondecreasing, right continuous functions B on [0,∞) having

B(0) = 0. Define the space of cumulative hazard rates as

A = {A ∈ B for which (3.1) leads to an F ∈ F}.

To place probability distribution on A, it is natural to consider the non-

negative, nondecreasing Lévy processes, Z(t), defined above where Z(t) =

−log(1 − F (t)). However, not every Lévy process can be used as a prior for

A. To address this limitation Hjort constructs the beta process, whose sample

paths lie in A almost surely.
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3.3 The Beta Process

In this section we outline the key definitions and theorems associated

with the beta process. These include complicated Lévy representations that

define the increments of the process. The Lévy representation is a formula

denoting the moment generating function (MGF) or characteristic function

(CF) of the process. We will show in the next section how these Lévy formulas

can be used in practice. Many stochastic processes, including most of the

general processes developed as Bayes priors for random CDFs and CHFs, have

no closed-form representation defining the distribution of the increments–only

an MGF or CF. Hjort’s beta process is no exception. We should point out that

this is merely an overview of the beta process theory. Further development

and proofs for all theorems can be found in Hjort [1990].

We now define the beta process. Note that the goal of this definition

is to split the process into a continuous and a discrete component. This lends

itself to computational practicality as discussed in the next section.

Definition 3.3.1. Let A0 be a CHF with a finite number of jumps taking place

at t1, t2, . . . , and let c(·) be a piecewise continuous, non-negative function on

[0,∞). A beta process with parameters c(·), A(·) is a Lévy process denoted by

A ∼ beta{c(·), A0(·)}, (3.2)

if A has Lévy representation

E[e−θ A(t)] =

{ ∏

j:tj≤t

E[e−θ Sj ]

}
exp

{
−

∫ ∞

0

(1 − e−θ s) dLt(s)

}
, (3.3)
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with

Sj = A{tj} ∼ beta{c(tj)A0{tj}, c(tj) (1 − A0{tj})}, (3.4)

and

dLt(s) =

∫ t

0

c(z) s−1 (1 − s)c(z)−1 dA0,c(z)ds (3.5)

for t ≥ 0 and 0 < s < 1, in which A0,c(t) = A0(t)−
∑

tj≤t A0{tj} is A0(t) with

its jumps removed.

We can restate the last part of the definition as

A(t) =
∑

tj≤t

Sj + Ac(t),

where the jumps, Sj, are independent beta random variables from (3.4), and

Ac(t) is beta{c(·), A0,c(·)} as defined in (3.2).

Assume that A0 is the prior guess at the cumulative hazard, and c(s)

can be interpreted as the number at risk at time s in an imagined prior sample

with hazard rate corresponding to A0. The prior guess at the cumulative

hazard can be chosen from a parametric model such as the Weibull, i.e. A0(t) =

λα tα where α is an assumed prior shape parameter and λ is an assumed prior

scale parameter.

To define a Bayes posterior as developed by Hjort for the random CHF

A(t), let X1,X2, . . . ,Xn be a random sample from F (t) with CHF A ∈ A

(as defined above). Assume that (T1, δ1), . . . , (Tn, δn) are observed where Ti =

min(Xi, ci), δi = I{Xi ≤ ci} and c1, . . . , cn are censoring times. Define the
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counting process N and the left-continuous at-risk process Y by

N(t) =

n∑

i=1

I{Ti ≤ t & δi = 1}, Y (t) =

n∑

t=1

I{Ti ≥ t}, (3.6)

where I is the indicator function. Assume that the censoring times are either

fixed or independent of the lifetimes Xi. Also note that dN(t) = N(t) is the

number of observed Xi’s at a particular time t. The posterior process given

the data will then be

Theorem 3.3.1. (Hjort’s corollary 4.1) Let A ∼ beta{c(·), A0(·)} as in (3.2).

Then

A | (T1, δ1), . . . , (Tn, δn) ∼ beta

{
c(·) + Y (·),

∫ (·)

0

c(s) dA0(s) + dN(s)

c(s) + Y (s)

}
(3.7)

The posterior process contains fixed points of discontinuity (at each of

the observed times, censor and survival) even if the prior does not.

3.4 Computational Issues

Simulating sample paths from stochastic processes with no closed form

representation for their increments can be quite tedious. The stochastic pro-

cesses described earlier in this chapter can be separated into a continuous com-

ponent and a jump component. The jump components are straightforward in

most cases, as they are usually drawn from standard probability distributions.

The continuous component is much more complicated in general. Damien et al.

[1995] gives a general method for sampling from such distributions (denoted
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infinitely divisible) and Damien et al. [1996] apply this method to Hjort’s beta

process.

Sampling from posterior beta processes can be simplified, though, by

approximating the continuous component with standard beta distributions.

This is a result of the fact that the accompanying Lévy measures Lt(·) associ-

ated with the beta process as defined in (3.2) are concentrated on the interval

(0,1). The jump component is already given as a beta random variable (see

equation (3.4)).

To simulate a beta process let H(t) denote a random cumulative hazard

function and partition the time axis into times t = 0, . . . , T (a finer grid results

in a smoother curve). We have that H(t) =
∑

tj≤t Sj + Ac(t) where Sj are

jumps at time tj and Ac(t) is the continuous component. Assume that the prior

process is absolutely continuous, i.e.
∑

tj≤t Sj = 0 for all t. For the continuous

component we assume Ac ∼ Beta(a(t), b(t)), where a = c(t) and b = A0(t)

(the prior guess). Note that “Beta” here denotes the beta distribution not the

beta process.

Take c(t) = k, where k is an integer, say, 1 or 2 and A0(t) = αt. This

means the underlying failure rate is linear, with mean 1
α
. Choose α = 0.1

for example. Now, to sample the beta process PRIOR, at each time interval

sample from the appropriate Beta (a(t),b(t)) defined above. Note that the A0

parameter will change if the time intervals are of unequal lengths. You can

also make it more general by setting c(t) = λ t, where λ is a real number.
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Given data, the process will have jumps at each failure and censor

time tj. Each jump Sj will have a beta distribution with parameters a =

c(t)A0(tj)+dN(t) and b = c(t) (1−A0(tj)+Y (t)−dN(t)) where dN(t) is the

number of failures by time t and Y (t) is the number still at risk by time t as

defined in (3.6).

Now, the a(t) parameter in the beta distribution for the continuous

component is updated by simply adding the number of at risk observations

(right censored) from that interval to c(t). And so a(t) = c(t) + Y (t). Up-

dates to the b(t) parameter of the continuous component are slightly more

complicated. First define a couple of variables:

1. dA0(t) = α; the differential of A0 given above. Note if you change the

choice of A0 above, then the differential will obviously change.

2. dN(t) is the exact observations in the interval of interest.

3. Numerator = c(s) dA0(s) + dN(s)

4. Denominator = c(s) + Y (s)

For the first time interval from time t = 0 to the first point on the

grid, say, t1, integrate:
∫ t1

t=0
Numerator

Denominator
. This integrated quantity is your b(t)

parameter in the POSTERIOR beta process in the first interval. To get the

b(t) for the second interval integrate from t1 to t2, and so on.
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Key point: Note that the a(t) and b(t) parameters will likely change

from one time interval to the next. As you can see, with complicated choices

for c and A0, the updates can get nasty because the integral can become awful.

Using these parameters, simulate jump components and a continuous

component at each time ti in the partition of the time axis. The final simulated

value for H(t) will now be
∑

tj≤t Sj +Ac(t). Selecting the time axis partition to

coincide with the EXACT and RIGHT CENSORED data points will simplify

things. To obtain a smoother estimate of the hazard function include more

grid points. An estimate of the CDF F (t) can now be recovered using F (tj) =

1− [(1−F (tj−1)∗(1−Ac(tj))∗(1−S(tj))] as derived from the product integrals

in (3.1).
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Chapter 4

Summary and Areas for Continued Research

Using Bayesian nonparametrics for simulation input modeling has ex-

ceptional potential. Until recently such methods were impractical due to lim-

ited computing power and relatively immature computational methods. There

now exists multitudes of new published research in the area, and computing

power is virtually unlimited. We have given an overview of Bayesian non-

parametric methods with specific focus in hazard rate modeling for reliability

analysis. We have also written and presented two C++ classes that can be

used as a foundation for almost any Bayesian simulation project.

Computer programs inherently are evolving entities. Any program or

algorithm has potential for improvement. The C++ classes presented in chap-

ter 2 are no exception. They have been thoroughly debugged and employ

reliable, proven algorithms but are still a work in progress. Also, they can

be tailored to fit almost any project where random variates are needed. The

classes are a foundation and are meant to fill the void between published

methodologies and actual working simulation programs.

In addition, the Bayesian theory presented in chapter 3 presents a start-

ing point for future research. The methods can be applied to a “real world”
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reliability problem and compared to existing procedures. Section 3.4 presents

a usable technique with examples for simulating Beta processes, but the algo-

rithm was not actually coded. The examples should be tailored to a specific

problem since prior knowledge will be different in every case. The Bayesian

nonparametric method presented here could be easily implemented in an ex-

isting reliability study where failure events are volatile and difficult to model.

Censored data is also easily managed in this context.

For simulation input modeling, the hazard rates sampled from the

Bayesian nonparametric model can be used to recover a discrete cumulative

distribution function (CDF) as described in section 3.4. This CDF can, in

turn, be used to sample failure times for input to a simulation. Techniques for

sampling from a discrete CDF are well defined and can be found in Law and

Kelton [2000]. To obtain a smoother curve with more possible failure times,

simply create a finer grid for sampling the hazard rates.
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Appendix A

Source Code: RanV.cpp

The following is verbatim source code from RanV.cpp as described in

Chapter 2.

//RanV.cpp, Patrick J. Munson, 1 Apr 05
//Member function definitions for class RanV
//generates uniform and non-uniform pseudo-random variates
//and performs some statistical data handling

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include <fstream>
#include "RanV.h"
#include "mrand_seeds.h"

using namespace std;

/************************************************************************
All RV functions employ uniform RVs from combined MRG as presented by
L’Ecuyer (1999). 10,000 streams are supported, with seed vectors spaced
10^16 apart. Class RanV object must be initialized with a seed value in
the interval [1,10000]. If not seed defaulted to 12.
*************************************************************************/
RanV::RanV( int seed )
{

setSeed( seed );
}//end RanV constructor

void RanV::setSeed( int s )
{

stream = ( s >= 1 && s <= 10000 ) ? s : 12;
}//end function setSeed
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//UNIFORM RVs
/************************************************************************
Function mrand(): Returns uniform(0,1).
*************************************************************************/
double RanV::mrand()
{

//variables
const double m1=4294967087.0, m2=4294944443.0;
const double norm=1.0/(m1+1);
int k;
double p;
double s10=drng[stream][0], s11=drng[stream][1], s12=drng[stream][2];
double s20=drng[stream][3], s21=drng[stream][4], s22=drng[stream][5];

//calculate next "random" number
p = 1403580.0 * s11 - 810728.0 * s10;
k = (int)(p/m1);
p -= k*m1; //p (mod m1)
if (p < 0.0) p += m1;
s10 = s11; s11 = s12; s12 = p;

p = 527612.0 * s22 - 1370589.0 * s20;
k = (int)(p/m2);
p -= k*m2; //p (mod m2)
if (p < 0.0) p += m2;
s20 = s21; s21 = s22; s22 = p;

//update stream
drng[stream][0] = s10; drng[stream][1] = s11; drng[stream][2] = s12;
drng[stream][3] = s20; drng[stream][4] = s21; drng[stream][5] = s22;

if (s12 <= s22) return ((s12 - s22 + m1) * norm);
else return ((s12 - s22) * norm);

}//end function mrand()

/************************************************************************
Function unif(): Returns uniform(a,b).
*************************************************************************/
double RanV::unif( double a, double b )
{

double U;
U = mrand();

return U*(b-a) + a;
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}//end function unif()

/************************************************************************
Function mrandst(): Sets seed vector "stream" to desired 6-vector.
*************************************************************************/
void RanV::mrandst( vector<double> &seed, int str )
{

for ( int i=0; i<6; i++ )
drng[str][i] = seed[i];

}//end function mrandst()

/************************************************************************
Function mrandgt(): Returns the most current 6-vector of integers.
*************************************************************************/
void RanV::mrandgt( vector<double> &seed, int str )
{

seed.clear();
for ( int i=0; i<6; i++ )

seed.push_back( drng[str][i] );
}//end function mrandgt()
//END UNIFORM RVs

//NONUNIFORM RVs
/******************************************************************
Function "stdnorm()": Returns a N(0,1) random variate using the
mrand() function and the polar method.
*******************************************************************/
double RanV::stdnorm()
{

//variables
static int flag=0;
static double X2;
double W, Y, V1, V2;

//avoid duplicating effort using a flag, utilize both variates
if ( flag == 0 ) {

do {
V1 = 2.0*mrand()-1.0;
V2 = 2.0*mrand()-1.0;
W = V1*V1 + V2*V2;

} while ( W > 1.0 || W == 0.0 );

Y = sqrt( (-2.0*log(W))/W );
X2 = V2*Y;
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flag = 1;
return V1*Y;

} else { //we have an extra variate handy--return it
flag = 0;
return X2;

}//end if/else
}//end function stdnorm()

/*******************************************************
Function norm(): Returns N(mu, sig^2), using stdnorm()
********************************************************/
double RanV::norm( double mu, double sig2 )
{

double n0, nm;

n0 = stdnorm();
nm = sqrt(sig2)*n0 + mu;

return nm;
}//end function norm()

/************************************************************************
Function logn(): Returns lognormal using norm() and a transformation.
*************************************************************************/
double RanV::logn( double mu, double sig2 )
{

double n1, Nmu, Nsig2, lg;

Nmu = log( mu*mu/(sqrt(mu*mu+sig2)) );
Nsig2 = log( 1 + sig2/(mu*mu) );

n1 = norm(Nmu,Nsig2);
lg = exp(n1);

return lg;
}//end function logn()

/************************************************************************
Function expn(): Returns exponential(lamda) random variate using mrand()
and the inversion method.
*************************************************************************/
double RanV::expn( double lambda )
{

double U, ed;
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U = mrand();
ed = (-1.0/lambda)*log(U);

return ed;
}//end function expn()

/************************************************************************
Function weibull(): Returns weibull(a,b) random variate using expn(a)
and a transformation.
*************************************************************************/
double RanV::weibull( double shape, double scale )
{

double a, w;

a = pow( scale,shape );

w = pow( expn(a),(1.0/shape) );

return w;
}//end function weibull()

/************************************************************************
Function bern(): Returns bernoulli using mrand().
*************************************************************************/
int RanV::bern( double p )
{

double u;
u = mrand();

if ( u <= p ) return(1);
else return(0);

}//end function bern()

/************************************************************************
Function binom(): Returns binomial R.V. using bern().
*************************************************************************/
int RanV::binom( int n, double p )
{

int sum=0;

for ( int i=0; i<n; i++ )
sum += bern(p);

return sum;
}//end function binom()
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/************************************************************************
Function multnom(): Returns multinomial R. vector using binom(). Takes
advantage of conditional Xi given others is binomial.
*************************************************************************/
void RanV::multnom( vector<double> &mp, vector<int> &Xi )
{

//initialize variables and vectors
int m, r, j=1;
m = (int)mp[0];
r = mp.size() - 1;
Xi.clear();
for ( int i=0; i<r; i++ )

Xi.push_back(0);

double q=1.0;

do{
Xi[j-1] = binom(m,mp[j]/q);
m -= Xi[j-1];
q -= mp[j];
j++;

}while( m != 0 );
}//end function multnom()

/************************************************************************
Function ChiSquare(): Returns ChiSquare R.V. using stdnorm().
*************************************************************************/
double RanV::ChiSquare( int df )
{

double yLocal, sum=0.0;

for ( int i=0; i<df; i++ ){
yLocal = stdnorm();
sum += yLocal*yLocal;

}//end for

return sum;
}//end function ChiSquare()

/************************************************************************
Function gamma(): Returns gamma(a) R.V. using GB algorithm (Cheng 1977)
if a > 1. If a = 1 then reduces to exponential. If a < 1 then uses
rejection algorithm due to Ahrens and Dieter(1974).
*************************************************************************/
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double RanV::gamma( double alpha )
{

if ( alpha < 1.0 )
return gam1(alpha);

else if ( alpha == 1.0 )
return expn(alpha);

else
return gam2(alpha);

}//end function gamma()

//PRIVATE FUNCTION
double RanV::gam1( double alpha1 )
{

//See Law and Kelton for description of algorithm
double b, P, U1, U2, Y;
double Gam1=-1.0;

b = (exp(1.0) + alpha1) / exp(1.0);

do {
U1 = mrand();
P = b * U1;

if ( P > 1.0 ) {
Y = -log((b - P)/alpha1);
U2 = mrand();
if ( U2 <= pow(Y, alpha1-1.0) ) {

Gam1 = Y;
break;

}//end if
}else {

Y = pow(P, 1.0/alpha1);
U2 = mrand();
if ( U2 <= exp(-Y) )

Gam1 = Y;
}//end if/else

}while ( Gam1 < 0.0 );

return Gam1;
}//end function gam1()

//PRIVATE FUNCTION
double RanV::gam2( double alpha2 )
{

//See Law and Kelton for description of algorithm
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double a,b,q,theta,d,u1,u2;
double V,Y,Z,W, Gam2=-1.0;

a = 1.0/( sqrt(2.0*alpha2-1.0) );
b = alpha2 - log(4.0);
q = alpha2 + 1.0/a;
theta = 4.5;
d = 1.0 + log(theta);

if ( alpha2 == 0.0 )
Gam2 = alpha2;

do{
u1 = mrand();
u2 = mrand();
V = a*log(u1/(1.0-u1));
Y = alpha2*exp(V);
Z = u1*u1*u2;
W = b + q*V - Y;
if ( W + d - theta*Z >= 0.0 ){

Gam2 = Y;
break;

}//end if
if ( W >= log(Z) ){

Gam2 = Y;
}//end if

}while ( Gam2 < 0.0 );

return Gam2;
}//end function gam2()

/************************************************************************
Function beta(): Returns beta(a1,a2) R.V. using gamma().
*************************************************************************/
double RanV::beta( double a1, double a2 )
{

double g1, g2;
g1 = gamma(a1);
g2 = gamma(a2);

return( g1/(g1+g2) );
}//end function beta()

/************************************************************************
Function Dirichlet(): Returns Dirichlet R.Vector using gamma().
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*************************************************************************/
void RanV::Dirichlet( vector<double> &Dp, vector<double> &XiD )
{

int k;
k = Dp.size();

vector<double> yLocal;
yLocal.clear();
XiD.clear();
for ( int i=0; i<k; i++ ){

XiD.push_back(0.0);
yLocal.push_back(0.0);

}//end for

double sum=0.0;

for ( int i=0; i<k; i++ ){
yLocal[i] = gamma(Dp[i]);
sum += yLocal[i];

}//end for

for ( int i=0; i<k; i++ )
XiD[i] = yLocal[i]/sum;

}//end function Dirichlet()

/************************************************************************
Function Poisson(): Returns Poisson RV. For small lamda (<=12) exploits
relationship with exponential. For lamda > 12, uses code as developed in
"Numerical Recipes", Press, et al.
*************************************************************************/
int RanV::Poisson( double lambda )
{

const double PI = 3.141592653589793238;
static double sq, alxm, g, oldl=(-1.0);
//oldl is a flag for whether lamda has changed since last call
int em;
double t, tm, y;

if ( lambda < 12.0 ) { //use direct method
if ( lambda != oldl ) {

oldl = lambda;
g = exp( -lambda ); //if lambda is new, compute exponential

}//end if
em = -1;
t = 1.0;
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do {
++em;
t *= mrand();

}while ( t > g );
}else {

if ( lambda != oldl ) {
oldl = lambda;
sq = sqrt( 2.0*lambda );
alxm = log( lambda );
g = lambda*alxm - gammln(lambda+1.0);

}//end if

do {
do {

y = tan( PI*mrand() );
tm = sq*y + lambda;

}while ( tm < 0.0 );

em = (int)floor(tm);
t = 0.9*(1.0+y*y)*exp( em*alxm - gammln(em+1.0) - g );

}while ( mrand() > t );
}//end else

return em;
}//end function Poisson()

//PRIVATE FUNCTION
//Returns the natural log of the Gamma function of xx for xx>0
double RanV::gammln( const double xx )
{

double x, y, tmp, ser;
static const double cof[6] = {76.18009172947146, -86.50532032941677,

24.01409824083091, -1.231739572450155, 0.001208650973866179,
-0.000005395239384953};

y = x = xx;
tmp = x + 5.5;
tmp -= (x+0.5)*log(tmp);
ser = 1.000000000190015;
for ( int j=0; j<6; j++ )

ser += cof[j]/++y;

return -tmp + log( 2.5066282746310005*ser/x );
}//end function gammln()
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//DATA HANDLING FUNCTIONS
/************************************************************************
Fuction getdata(): Retrieves data from file and stores in referenced
vector. Data files must be sequential and line, space, or tab delimited.
*************************************************************************/
void RanV::getdata( vector<double> &data, char* filename )
{

//open input file
ifstream inData( filename, ios::in );

//exit program if ifstream could not open file
if ( !inData ) {

cerr << "Data file could not be opened" << endl;
exit( 1 );

}//end if

//get data
data.clear();
double dvalue;

while ( inData >> dvalue )
data.push_back( dvalue );

//close file
inData.close();

}//end function getdata()

/************************************************************************
Fuction cmom(): Calculates 1st and 2nd central moments/population
mean and variance of vector of data.
*************************************************************************/
void RanV::cmom( vector<double> &d, double &mean, double &var )
{

//initialize variables
int n = d.size();
mean = 0.0;
var = 0.0;

//calculate population mean and variance
for ( int i=0; i<n; i++ )

mean += d[i];

mean /= n;
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for ( int i=0; i<n; i++ )
var += (d[i]-mean)*(d[i]-mean);

var /= (n-1);
}//end function cmom()

/************************************************************************
Fuction cov(): Calculates covariance for 2 vectors of data.
*************************************************************************/
void RanV::cov( vector<double> &d1, vector<double> &d2, double &cvar )
{

//initialize variables
int n1=d1.size(), n2=d2.size(), n;
n = min(n1,n2);

double mean1=0.0, mean2=0.0;

//calculate means for vectors
for ( int i=0; i<n; i++ ){

mean1 += d1[i];
mean2 += d2[i];

}//end for

mean1 /= n;
mean2 /= n;

//calculate covariance
for ( int i=0; i<n; i++ )

cvar += (d1[i]-mean1)*(d2[i]-mean2);

cvar /= (n-1);
}//end function cov()

/************************************************************************
Fuction quant(): Calculates specified quantiles for vector of data.
Supply data vector and vector with specified quantiles in (0,1). Returns
sorted data vector; quantile values in place of passed quantiles.
*************************************************************************/
void RanV::quant( vector<double> &dat, vector<double> &q )
{

//variables
int sd = dat.size();
int sq = q.size();
int loc;
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//find quantiles
sort( dat.begin(), dat.end() );
for ( int i=0; i<sq; i++ ){

loc = (int)ceil( q[i]*sd );
q[i] = dat[loc-1];

}//end for
}//end function quant()
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Appendix B

Source Code: BayesRV.cpp

The following is verbatim source code from BayesRV.cpp as described

in chapters 2 and 3.

//BayesRV.cpp, Patrick J. Munson, 25 Apr 05
//Member function definitions for class BayesRV
//generates specialized RVs for Bayesian analysis

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
#include "RanV.h"

using namespace std;

//constructor
BayesRV::BayesRV( int seed )
{

setSeed2( seed );
}//end RanV constructor

//assigns seed value to stream2 for use in RanV objects
void BayesRV::setSeed2( int s2 )
{

stream2 = ( s2 >= 1 && s2 <= 10000 ) ? s2 : 12;
}//end function setSeed

//PUBLIC FUNCTIONS
/************************************************************************
Function TRexpn(): Returns truncated exponential(a) random variate using
truncated uniform and the inversion method.
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*************************************************************************/
double BayesRV::TRexpn( double lambda, double a, double b )
{

//variables for truncated uniform
double TU, Ua, Ub;

RanV r(stream2); //RanV object for uniform variates

//Generate Uniform with inverted truncation limits
//We can remove 3 subtraction operations by inverting the limits
//and subtracting from 1
Ua = exp(-lambda*b);
Ub = exp(-lambda*a);
TU = r.unif(Ua,Ub);

//return truncated exponential
return( (-1.0/lambda) * log(TU) );

}//end function TRexpn()

/************************************************************************
Function TRbeta(): Returns truncated Beta(a,b) random variate using
auxilliary variable technique and Gibbs sampler.
*************************************************************************/
double BayesRV::TRbeta( double alpha, double beta, double a, double b )
{

//variables
double X, Y; //X given Y; Y is latent variable given X
double xCL; //truncation limit for conditional X

//initialize X
X = alpha / (alpha+beta);

RanV r(stream2); //RanV object for uniform variates

//different cases for beta=1, beta<1, and beta>1
if ( beta == 1.0 ) {

//simply return f(x) = a*x^(a-1)
X = TBx(alpha,a,b);

}else if ( beta < 1.0 ) {
//run Gibbs sampler for 5 iterations
for ( int i=0; i<5; i++ ) {

//obtain Y given X
Y = r.unif( 0.0,(pow( (1.0-X),(beta-1.0) )) );
//now obtain X given Y
xCL = 1.0 - pow( Y,(1.0/(beta-1.0)) );
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xCL = max( a,xCL );
X = TBx(alpha,xCL,b);

}//end for
}else if ( beta > 1.0 ) {

//run Gibbs sampler for 5 iterations
for ( int i=0; i<5; i++ ) {

//obtain Y given X
Y = r.unif( 0.0,(pow( (1.0-X),(beta-1.0) )) );
//now obtain X given Y
xCL = 1.0 - pow( Y,(1.0/(beta-1.0)) );
xCL = min( b,xCL );
X = TBx(alpha,a,xCL);

}//end for
}//end if else

return X;
}//end function TRBeta()

/************************************************************************
Function TRgamma(): Returns truncated gamma(a) random variate using
auxilliary variable technique and Gibbs sampler.
*************************************************************************/
double BayesRV::TRgamma( double alpha, double a, double b )
{

//variables
double X, Y; //X given Y; Y is latent variable given X
double bY; //to store new truncation limit for X given Y

//initialize X
X = alpha;

RanV r(stream2); //RanV object for uniform variates

//run Gibbs sampler for 5 iterations
for ( int i=0; i<5; i++ ) {

//obtain Y given X
Y = r.unif( 0.0,(exp( -X )) );

//now obtain X given Y
bY = -log( Y );
bY = min( b,bY );
//can use the same function (TBx) as in Beta
X = TBx(alpha,a,bY);

}//end for
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return X;
}//end function TRgamma

/************************************************************************
Function TRbiNorm(): Returns truncated bivariate normal random vector
using auxilliary variable technique and Gibbs sampler. Pass vector for
X values, mean vector, sigma matrix, and truncation matrix.
*************************************************************************/
void BayesRV::TRbiNorm( double X[], double Mu[], double Sig[][2], double A[][2] )
{

//variables
double x1L[2], x2L[2]; //uniform limits, X given Y is U(a,b)
double B1[2], B2[2]; //B is used to calculate X limits
double xM1, xM2; //stores (X-mu) to simplify calculations
double Sinv[2][2]; //for storing Sig inverse
double Sa, Sb, Sc, Sd; //values of Sig inverse--simplified eqns
double Y, Ya, Yb; //stores Y and its truncation limits
Yb = 10000.0; //right limit for Y given X is infinity

//initialize X and xM
X[0] = Mu[0];
X[1] = Mu[1];
xM1 = X[0] - Mu[0];
xM2 = X[1] - Mu[1];

/**********************************************************************
//for Damien(2001) example only
A[1][0] = 0.5 - sqrt( 1-(X[0]-0.5)*(X[0]-0.5) );
A[1][1] = 0.5 + sqrt( 1-(X[0]-0.5)*(X[0]-0.5) );
A[0][0] = 0.5 - sqrt( 1-(X[1]-0.5)*(X[1]-0.5) );
A[0][1] = 0.5 + sqrt( 1-(X[1]-0.5)*(X[1]-0.5) );
**********************************************************************/

//calculate the inverse of the Sig matrix
inv2x2(Sig,Sinv);
Sa = Sinv[0][0];
Sb = Sinv[0][1];
Sc = Sinv[1][0];
Sd = Sinv[1][1];

RanV r(stream2); //RanV object for uniform variates

//run Gibbs sampler for 5 iterations
for ( int i=0; i<5; i++ ) {
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//first obtain Y given X
Ya = Sa*xM1*xM1 + (Sb+Sc)*xM1*xM2 + Sd*xM2*xM2;
Y = TRexpn(0.5,Ya,Yb);

//for X1
//solution of quadratic eq Y > (X-Mu)’[SigInv](X-Mu)
B1[0] = (1.0/(2.0*Sa)) * ( -xM2*(Sb+Sc) -

sqrt( 4*Sa*(Y-xM2*xM2*Sd) + xM2*xM2*(Sb+Sc)*(Sb+Sc) ) ) + Mu[0];
B1[1] = (1.0/(2.0*Sa)) * ( -xM2*(Sb+Sc) +

sqrt( 4*Sa*(Y-xM2*xM2*Sd) + xM2*xM2*(Sb+Sc)*(Sb+Sc) ) ) + Mu[0];
//truncation limits for X given Y
x1L[0] = max( A[0][0],B1[0] );
x1L[1] = min( A[0][1],B1[1] );
//now obtain X1
X[0] = r.unif(x1L[0],x1L[1]);
//recalculate xM1
xM1 = X[0] - Mu[0];

/**********************************************************************
//for Damien(2001) example only
A[1][0] = 0.5 - sqrt( 1-(X[0]-0.5)*(X[0]-0.5) );
A[1][1] = 0.5 + sqrt( 1-(X[0]-0.5)*(X[0]-0.5) );
**********************************************************************/

//for X2
//solution of quadratic eq Y > (X-Mu)’SigInv(X-Mu)
B2[0] = (1.0/(2.0*Sa)) * ( -xM1*(Sb+Sc) -

sqrt( 4*Sa*(Y-xM1*xM1*Sd) + xM1*xM1*(Sb+Sc)*(Sb+Sc) ) ) + Mu[1];
B2[1] = (1.0/(2.0*Sa)) * ( -xM1*(Sb+Sc) +

sqrt( 4*Sa*(Y-xM1*xM1*Sd) + xM1*xM1*(Sb+Sc)*(Sb+Sc) ) ) + Mu[1];
//truncation limits for X given Y
x2L[0] = max( A[1][0],B2[0] );
x2L[1] = min( A[1][1],B2[1] );
//now obtain X2
X[1] = r.unif(x2L[0],x2L[1]);
//recalculate xM2
xM2 = X[1] - Mu[1];

/**********************************************************************
//for Damien(2001) example only
A[0][0] = 0.5 - sqrt( 1-(X[1]-0.5)*(X[1]-0.5) );
A[0][1] = 0.5 + sqrt( 1-(X[1]-0.5)*(X[1]-0.5) );
**********************************************************************/

}//end for
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}//end function TRbiNorm

//PRIVATE FUNCTIONS
/************************************************************************
Function TBx(): Returns X given Y in the truncated Beta and truncated
Gamma examples. Here F(x) = (x^alpha-a^alpha)/(b^alpha-a^alpha) with
X on the set (a,b).
*************************************************************************/
double BayesRV::TBx( double &alpha, double &a, double &b )
{

//variables
double U, tmp;

RanV r(stream2); //RanV object

U = r.mrand();

tmp = U*(pow(b,alpha)-pow(a,alpha)) + pow(a,alpha);

//return X, given latent variable Y, for truncated Beta and Gamma
return( pow(tmp,(1.0/alpha)) );

}//end function TBx()

//calculate and return the inverse of a 2x2 matrix
void BayesRV::inv2x2( double In[][2], double Out[][2] )
{

double detIn; //for storing the determinant of In[][]

detIn = In[0][0]*In[1][1] - In[0][1]*In[1][0];
//calculate the inverse and return
Out[0][0] = In[1][1]/detIn;
Out[0][1] = -In[0][1]/detIn;
Out[1][0] = -In[1][0]/detIn;
Out[1][1] = In[0][0]/detIn;

}//end function inv2x2()
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Appendix C

Header File: RanV.h

The following is the verbatim header file RanV.h as described in chap-

ter 2.

//RanV.h
//Includes declarations for classes RanV and BayesRV
#ifndef RANV_H
#define RANV_H

//Declaration of class RanV, member functions are defined in RanV.cpp
class RanV {

public:

//DEFAULT CONSTRUCTOR
RanV( int = 12 );
//set seed
void setSeed( int );

//UNIFORM
double mrand();
double unif( double a, double b );
void mrandst( std::vector<double> &, int str );
void mrandgt( std::vector<double> &, int str );

//NONUNIFORM
double stdnorm();
double norm( double mu, double sig2 );
double logn( double mu, double sig2 );
double expn( double lambda );
double weibull( double shape, double scale );
int bern( double p );
int binom( int n, double p );
void multnom( std::vector<double> &mp, std::vector<int> &Xi );
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double ChiSquare( int df );
double gamma( double alpha );
double beta( double a1, double a2 );
void Dirichlet( std::vector<double> &Dp, std::vector<double> &XiD );
int Poisson( double lambda );

//DATA HANDLING
void getdata( std::vector<double> &, char* );
void cmom( std::vector<double> &, double &mean, double &var );
void cov( std::vector<double> &, std::vector<double> &, double &cvar );
void quant( std::vector<double> &, std::vector<double> & );

private:

//Seed variable
int stream;

//Gamma functions: depends on alpha
double gam1( double alpha1 );
double gam2( double alpha2 );

//for use in Poisson()
double gammln( const double xx );

};//end class RanV

//Declaration of class BayesRV, member functions are defined in BayesRV.cpp
class BayesRV {

public:

BayesRV( int = 12 );
void setSeed2( int );

double TRexpn( double lambda, double a, double b );
double TRbeta( double alpha, double beta, double a, double b );
double TRgamma( double alpha, double a, double b );
void TRbiNorm( double X[], double Mu[], double Sig[][2], double A[][2] );

private:

int stream2;

double TBx( double &, double &, double & );
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void inv2x2( double [][2], double [][2] );

};//end class BayesRV

#endif
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