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Abstract

As an emerging effective approach to nonlinear robust control, simplex sliding mode control demonstrates some

attractive features not possessed by the conventional sliding mode control method, from both theoretical and practical

points of view. However, no systematic approach is currently available for computing the simplex control vectors in

nonlinear sliding mode control. In this paper, chaos-based optimization is exploited so as to develop a systematic

approach to seeking the simplex control vectors; particularly, the flexibility of simplex control is enhanced by making

the simplex control vectors dependent on the Euclidean norm of the sliding vector rather than being constant, which

result in both reduction of the chattering and speedup of the convergence. Computer simulation on a nonlinear

uncertain system is given to illustrate the effectiveness of the proposed control method.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

As a powerful tool for solving complex control problems under significant uncertainties, sliding mode control

(SMC) has been widely studied and applied in different fields of engineering applications over the last 30 years. The

primary feature of sliding-mode control systems is that the feedback signal is discontinuous, switching on one or

more manifolds in the state space. When the system state crosses each discontinuity surface, the structure of the

feedback system is altered. Under certain circumstances, all motions in the neighborhood of the desired manifold are

directed towards the manifold and thus a sliding motion on a predefined subspace within the state space is estab-

lished, in which the system state repeatedly crosses the switching surface. During the sliding mode, the system

possesses high robustness against uncertainties of various kinds, such as parameter variations and external distur-

bances.

However, due to the use of discontinuous control signals, the sliding mode control inherently suffers from the

chattering problem. For an m-input system, the conventional sliding-mode control approach usually partitions the state

space into 2m regions and the control law will switch whenever the system state moves from one region to another. As a

consequence, unwanted high-frequency chattering motions are generated, which degrades the system performance in

general. To reduce the switching behaviour and circumvent the redundancy of control actions that occurs in the case of

the conventional component-wise sliding-mode control design procedure, Baida and Izosimov [1] proposed a new

algorithm, called the simplex sliding mode control (SSMC) scheme, which only partitions the state space into mþ 1

regions. Clearly, the number of regions is decreased and as a result the chattering problem can be improved. Besides,
* Corresponding author.
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SSMC is also an effective way to extend the sliding-mode control methodology to the multi-input case. The design of the

so-called simplex control for multivariable systems [2,3] is relatively straightforward in comparison with the conven-

tional SMC, and some successful applications of SSMC in practice have been reported [4].

SSMC differs in certain fundamental aspects from the conventional SMC. For instance, the state space is partitioned

into only mþ 1 regions, instead of 2m regions as is typical for conventional SMC, where m is the number of control

inputs. Furthermore, a distinct control vector is used in each region of the partition for the simplex control scheme, and

these mþ 1 control vectors satisfy the simplex property (to be defined later) in a reduced-order subspace whose origin

corresponds to the intersection of the surfaces Six ¼ 0, i ¼ 1; . . . ;m, which is the desired sliding mode hypersurface in

the state space. In addition, for this scheme (except for m ¼ 1) the surfaces of control discontinuity do not coincide with

the linear sliding hypersurfaces Six ¼ 0, i ¼ 1; . . . ;m, as is the case for conventional SMC; instead, there exist

mðmþ 1Þ=2 switching hypersurfaces for the control.

In other respects, the SSMC design methodology is similar, in principle, to the conventional SMC design. Having

first selected S ¼ ½ST
1 ST

2 � � � ST
m�

T to obtain some desired sliding-mode dynamics on the hypersurface Sx ¼ 0

(sliding phase design), choose next the control vectors so that the closed-loop system trajectory will be forced into a

sliding mode on that hypersurface (reaching phase design).

The simplicity and applicability of SSMC are so appealing that there have been some publications about how to

synthesize the SSMC law for linear time-invariant systems [5,6]; however, no systematic approach is currently available

for computing the simplex control vectors in nonlinear sliding mode control. In this paper, an innovative global

optimization method, chaos optimization, is exploited to develop a systematic approach to seeking the simplex control

vectors for nonlinear sliding mode control systems, which significantly extends the state-of-the-art advances of the

methodology.

The rest of the paper is organized as follows. In the next section, the simplex sliding mode control and the chaos

optimization are introduced. Section 3 presents the procedure for synthesizing the simplex sliding mode control law via

the chaos optimization. In Section 4, the proposed synthesis approach is simulated on an uncertain multi-input non-

linear system to confirm its validity. Finally, some concluding remarks are given in Section 5.
2. Preliminaries

2.1. Simplex-type nonlinear sliding-mode control

Considering a class of affine nonlinear systems:
_x ¼ f ðxÞ þ gðxÞu; ð1Þ
where x 2 Rn, u 2 Rm. Choose a manifold described by sðxÞ ¼ Hx ¼ 0, where sðxÞ 2 Rm, so that if the system trajectories

lie on the manifold, the behaviour of the system satisfies a prespecified control objective. Assume that a control signal is

designed so that it is capable of forcing the system trajectories from any initial state to reach the manifold in finite time

and then to slide on it.

Sliding-mode control (SMC) in the single-input case is quite straightforward and has been well developed. In

contrast, most methods of designing multi-input SMC for nonlinear uncertain systems are far from a simple gener-

alization of the standard single-input variable structure approach.

In order to provide a control strategy accomplishing the objective of steering sðxÞ to zero in the multi-input case,

consider the dynamic behaviour of the m-vector sðxÞ associated with system (1), namely,
_sðxÞ ¼ Hf ðxÞ þ HgðxÞu; ð2Þ
where the matrix ½HgðxÞ� is assumed to be always invertible.

A traditional way of extending the basic SMC strategy to the multi-input case consists of selecting the control signals

according to a component-wise procedure. This means that the control is designed so that each component of the vector

sðxÞ is related to the corresponding time derivative _sðxÞ by the so-called reaching condition. Consider for instance the

constant plus proportional rate reaching law [7]:
_s ¼ �Q signðsÞ � Ks; ð3Þ
where Q ¼ diagfq2i g, K ¼ diagfk2i g, i ¼ 1; . . . ;m function as the weighting matrices. The control law derived from (2)

and (3) becomes
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u ¼ �½HgðxÞ��1½Hf ðxÞ þ Q signðsÞ þ Ks�: ð4Þ
It is noteworthy that each component of the vector u is a linear combination of some discontinuous signals.

An alternative approach to multi-input nonlinear sliding-mode control is the simplex control [2,3]. The advantage of

the simplex control approach lies in the fact that the number of structures among which the controlled system switches

is reduced with respect to the component-wise case (mþ 1 instead of 2m). To introduce this method, the following

definitions are needed.

Definition 1. The set U ¼ fu1; u2; . . . ; umþ1g, where ui 2 Rm, i ¼ 1; 2; . . . ;mþ 1, are distinct and nonzero vectors, is said

to form a simplex in Rm if every subset of m vectors in U are linearly independent and there exist mþ 1 real and positive

constants fa1; a2; . . . ; amþ1g such that
Xmþ1

i¼1

ai ¼ 1 and
Xmþ1

i¼1

aiui ¼ 0: ð5Þ
This definition means that a simplex is a set of mþ 1 affinely independent vectors in Rm such that 0m is in the interior of

the convex hull of those vectors. For simplex-type nonlinear sliding-mode control, the following transformation is

performed:
r ¼ ½HgðxÞ��1sðxÞ: ð6Þ
Next, define the mþ 1 open regions in the m-dimensional r-space associated with such a simplex as
Xi ¼ r : r

(
¼

Xmþ1

j¼1;j6¼i

kjuj; kj > 0

)
; i ¼ 1; 2; . . . ;mþ 1: ð7Þ
Thus, each Xi is an infinite cone, with vertex at 0m, situated on the side of Rm opposite to ui.

Definition 2. Suppose that the set U ¼ fu1; u2; . . . ; umþ1g forms a simplex in the m-dimensional r-space. The simplex

control law is defined to be
u ¼ uðrÞ ¼ ui; for r 2 Xi: ð8Þ
Note that given a simplex U , the control switching surfaces for the simplex control law are defined by the boundaries of

Xi, which is apparently not accordant with the sliding manifold. The following theorem [2,3] investigates the stability

and convergence of the simplex nonlinear sliding mode control approach.

Theorem 1. Partition the r-state space into mþ 1 non-overlapping regions as (7). If the control is defined by (8), then the
origin r ¼ 0 is asymptotically stable and the convergence takes place in finite time.

From (6), it is clear that the above theorem guarantees the closed-loop system defined by (1) and (8) will achieve

the sliding mode in finite time, i.e., sðxÞ ¼ Hx ¼ 0. Note that the control is unique in each region, and each region is

uniquely determined by the choice of the simplex of control vectors.

2.2. Chaos optimization

Over the last decade, one has been experienced a resurgence of interest in the control systems society for new

methods of global optimization as well as the application of available global optimization algorithm to control systems

analysis and synthesis. This recent surge of interest is attributed to the fact that a number of problems in the field of

robust control may be directly restated as an optimization problem.

Genetic algorithm (GA) and simulated annealing (SA) are among the most popular tools for global optimization

[8,9]. By mimicking the metaphor of natural biological evolution, GA operates on a population of potential solutions

applying the principle of survival of the fittest to produce successively better approximations to a solution. Inspired by

the annealing process for metals during cooling, SA describes a family of iterative methods where every iteration

consists of taking a step in the parameter space with a probability that decays exponentially with an ‘‘energy’’ function

associated with the new parameter value.
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As derivative-free stochastic search methods for determining the solutions of an optimization problem, simulated

annealing and evolutionary computation both employ a stochastic mechanism to avoid being trapped in a local

optimum. On the contrary, the deterministic dynamics plays a central role in the method of chaos optimization [10].

Chaos, an apparently disordered behavior that is nonetheless deterministic, is a universal phenomenon that occurs in

many nonlinear systems. It is featured by highly unstable motion of deterministic systems in a bounded region of the

phase space. High instability means that the distance of two nearby orbits increases exponentially with time [11], which

is a result of the extreme sensitivity of chaotic systems to the initial conditions. The Lyapunov exponents quantify this

property. The magnitude of a Lyapunov exponent represents the principal rate of orbit divergence in the phase space.

For a one-dimensional dynamical system xiþ1 ¼ f ðxiÞ, the Lyapunov exponent k is defined as the long-time average of

the exponent with respect to an orbit:
k ¼ lim
N!1

1

N

XN�1

i¼0

log jf 0ðxiÞj: ð9Þ
Chaos is then characterized by the boundedness of the system trajectories with a positive Lyapunov exponent, which

implies that the average gradient of the map is greater than unity, and accordingly two nearby orbits in phase space

diverge at an exponential rate.

It was emphasized that the sensitivity to the initial value suggests the irregularity of the series fxig generated by chaos

[11]. Consider the ith number xi of the series. It may be possible that xj with j > i is quite close to xi. Unless xi ¼ xj
exactly, however, the part xi; xiþ1; xiþ2; . . . is very different from the part xj; xjþ1; xjþ2; . . . due to the sensitivity to the

initial difference.

Although the long-term behaviour of a chaotic system shows typical stochastic properties, chaos is not equivalent to

a random process. A chaotic motion can traverse every state in a certain region (called the chaos space) by its own

regularity, and every state is visited only once therefore no precise periodicity. The unique ergodicity and the irregu-

larity of the series generated by chaos make chaotic dynamics a potential candidate in the field of global optimization

[10]. In fact, it has been successfully applied in solving nonlinear programming problems [12] and improving the

performance of the GA [13].

In our study, the logistic mapping is used in chaos optimization to generate the chaotic time series. Consider the

equation of logistic mapping
xiþ1 ¼ 4xið1� xiÞ; ð10Þ
where xi is the chaotic variable. Its Lyapunov exponent is
k ¼ log 2 > 0: ð11Þ
It is well known that chaotic evolutions could be generated by Eq. (10), and the ergodic area (i.e., chaos space) is the

interval ð0; 1Þ. A general procedure of chaos optimization can be found in [10].
3. Synthesis of the simplex control law via chaos optimization

The simplex sliding mode control is based on a set of mþ 1 control vectors forming a simplex in Rm, and on the

corresponding switching of the controlled system from one to another among mþ 1 different structures. In other words,

this approach consists of the selection of a set of control vectors forming a simplex, along with a suitable switching

logic. Hence, the crux of simplex control is the choice of a proper set of simplex control vectors. Once they are

appropriately decided, the system state space will be partitioned into mþ 1 non-overlapping regions, and with each

region a particular control vector, among those of the simplex, is associated in such a way that the system trajectory is

forced to slide on a prespecified manifold.

In our study, the simplex control vectors were sought via chaos optimization. Contrary to the use of constant

simplex in the previous works, the simplex control vectors employed here is dependent on the Euclidean norm of the

sliding vector so that the control effort is proportional to the energy of the sliding vector, which results in reduction of

the chattering and speedup of the convergence. Clearly, the simplex control vectors include a total of m� ðmþ 1Þ
entries, where m is the number of system inputs.

It turns out to be much easier to describe the proposed method by working out a concrete example in detail, rather

than using some general statements with complicated formulas. For this purpose, consider the following uncertain

nonlinear system:
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_x1 ¼ aðx2 � x1Þ;
_x2 ¼ ðc� aÞx1 � x1x3 þ cx2;
_x3 ¼ x1x2 � bx3;

8<
: ð12Þ
where a ¼ 45, b 2 ½3:5; 11�, c 2 ½25; 31�. This nonlinear model is based on the chaotic Chen’s system [14], and it follows

from its bifurcation analysis [15] that this interval system remains to be chaotic when c is fixed to be 28. It has been

widely experienced that this chaotic system is relatively difficult to control as compared to the Lorenz system and

Chua’s system, which are all topologically non-equivalent, due to the prominent three-dimensional and complex

topological features of its attractor, especially its rapid change in velocity in the x3-direction.
The interval system (12) can be represented by a simple state-space equation of the form
_xðtÞ ¼ f0ðxÞ þ Df ðxÞ; xðtÞ 2 R3; ð13Þ
where _x ¼ f0ðxÞ the nominal system, which can be described by
_x1 ¼ a0ðx2 � x1Þ;
_x2 ¼ ðc0 � a0Þx1 � x1x3 þ c0x2;
_x3 ¼ x1x2 � b0x3;

8<
: ð14Þ
where a0 ¼ 45, b0 ¼ 7:25, c0 ¼ 28 and Df ðxÞ denotes the system perturbations. The controlled uncertain nonlinear

system is
_xðtÞ ¼ f0ðxÞ þ Df ðxÞ þ BuðtÞ; ð15Þ
where uðtÞ 2 R2 and
B ¼
0 0

1 0

0 1

0
@

1
A:
Given b ¼ b0 þ Db and c ¼ c0 þ Dc, the uncertainties can be decomposed into
Df ðxÞ ¼
0

Dc � ðx1 þ x2Þ
�Db � x3

0
@

1
A ¼

0 0

1 0

0 1

0
@

1
A � Dc � ðx1 þ x2Þ

�Db � x3

� �
¼ B � D~f ðxÞ: ð16Þ
Obviously, the uncertainties Df ðxÞ in system (15) satisfy the matching conditions, namely, Df ðxÞ is in the subspace

spanned by the column vectors of B. So, the system in sliding mode is robust to the system perturbations Df ðxÞ.
In order to find a sliding mode control law, uðtÞ 2 R2, which can guide the system state xðtÞ to track the prespecified

reference signal xrðtÞ, a sliding surface needs to be defined for the nominal system beforehand. The desired sliding

manifold can be obtained by using the method proposed in [16]:
SðeÞ ¼ fejsðe; tÞ ¼ HeðtÞ ¼ 0g; sðeÞ 2 R2; ð17Þ
where e ¼ x� xr is the tracking error vector for the desired trajectory xrðtÞ.
Then, one can start the procedure for synthesizing the simplex control vectors. Firstly, the performance index was

defined as
CðUÞ ¼
XN
i¼1

fksik þ lkDsikg; ð18Þ
where N is the duration of the simulation for evaluating the design, i the time index in simulation, si the sliding vector at
simulation step i, Dsi the change of the sliding vector and l a bias weighting factor between si and Dsi. The Dsi term can

be distinctively weighted to further suppress oscillations. The simplex control vectors will be decided to minimize the

performance index (18), where k � k denotes the Euclidean norm of a vector.

Since six components are involved in the simplex control vectors U ¼ fu1; u2; u3g, six initial chaotic variables,

c1;0; c2;0; . . . ; c6;0, 06 cj;0 6 1, j ¼ 1; 2; . . . ; 6, are selected randomly, and the fixed points 0.25, 0.5, 0.75 of the logistic map

cannot be used as initial variables. The lower bounds and upper bounds of the searched variables are denoted as lbdj

and ubdj, j ¼ 1; 2; . . . ; 6, and U � and C� are assumed to be the optima. The search procedure by chaos optimization

starts from n ¼ 0:
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Step 1: Chaotify the variables:
Substitute c1;n; c2;n; . . . ; c6;n the equation of (10) to generate six chaotic variables c1;nþ1; c2;nþ1; . . . ; c6;nþ1 via the

logistic map.
Step 2: Perform the transformation from the chaotic space to the solution space by using the following formula:
bj;nþ1 ¼ lbdj þ ðubdj � lbdjÞ � cj;nþ1; j ¼ 1; 2; . . . ; 6: ð19Þ
Step 3: Determine if K ¼ fj1; j2; j3g, where ji ¼ ½bi�2�1;nþ1; bi�2;nþ1�
T
, from a convex hull and the origin of r-space is

enclosed by the convex hull, i.e., O2 2 cofj1; j2; j3g; if not, then let n ¼ nþ 1 and return to step 1; if yes, then

K ¼ fj1; j2; j3g has formed a simplex.

Step 4: Compute the sliding vector s ¼ HeðtÞ and r ¼ ½HB��1s, and then assign the simplex U ¼ fu1; u2; u3g where ui ¼
ji � ksk, to be the control vectors.

Step 5: Decide to which open region, partitioned by the simplex control vectors U ¼ fu1; u2; u3g, the r belongs. In light

of the definition given by (7), this problem can be solved by minimizing the following objective function:
Ei ¼ r

����� �
Xmþ1

j¼1;j6¼i

kjuj
�����; i ¼ 1; 2; . . . ;mþ 1; ð20Þ

subject to the constraints of kj > 0. The MATLAB command Isqnonneg can be used to resolve this plain linear

programming problem in simulation. If there exist m coefficients kj > 0 such that Ei ! 0, then r 2 Xi.
Step 6: Apply the simplex control law (8) for tracking control of the nominal system (14) in the duration of the sim-

ulation.

Step 7: Compute the performance index Cnþ1 in (18), and assign the optima as follows:
If ðn ¼ 0Þ or ðCnþ1 6C�Þ then C� ¼ Cnþ1; U � ¼ Unþ1 else do nothing;

n ¼ nþ 1, and then return to step 1.
Repeating the above procedure, in finite time, one can get the optima C� and U �, which minimize the performance

objective (18).
4. Simulation study

In the simulation, the objective is to use two control inputs, uðtÞ 2 R2, to guide the state xðtÞ 2 R3 of system (1) to

match a prespecified reference signal xrðtÞ. Note that this is much more difficult than the tasks achieved before [17,18].

The reference trajectory xrðtÞ is specified as a closed orbit corresponding to a periodic solution of the unforced

Chen’s equation. Let the parameters of system (12) be a ¼ 45, b ¼ 1:5 and c ¼ 28, so that system (12) generates a

periodic solution [15]. Starting from the initial state xrð0Þ ¼ ½�1:7570;�1:9648; 7:9743�T, the three-dimensional phase

portrait and the time-domain response of the reference xrðtÞ are shown in Figs. 1 and 2, respectively.

For the purpose of controlling the nonlinear uncertain systems (1) by sliding mode control, the desired sliding

manifold was firstly constructed via the method proposed in [16]:
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Fig. 1. The reference orbit xrðtÞ, plotted in the x3 � x1 � x2 space.
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Fig. 2. The deterministic time series of the reference orbit xrðtÞ.
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SðeÞ ¼ fejsðe; tÞ ¼ HeðtÞ ¼ 0g; sðeÞ 2 R2;
where e ¼ x� xr and
H ¼ 4:1680 7:1120 9:6191
7:4080 9:7120 �3:4480

� �
: ð21Þ
Next, in light of the procedure presented in Section 3, the optimal simplex control vectors were sought via chaos

optimization. The upper bound and lower bound of the searched variables are chosen as lbdj ¼ �50 and ubdj ¼ 50, and

the procedure was performed for about 300 times. The result is U � ¼ fu1; u2; u3g, ui ¼ ji � ksk and
j1 ¼ ½0:0778; 47:1185�T;
j2 ¼ ½�49:992;�10:0773�T;
j3 ¼ ½26:2508;�3:5633�T:

ð22Þ
With the obtained simplex control vectors U �, the tracking control performance under the simplex sliding mode control

law (8) is visualized by Figs. 3–6, which shows that the trajectory of the controlled chaotic system is steered to the

reference signal with satisfactory performance.
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. 3. The controlled trajectory xðtÞ of Chen’s chaotic system to the reference orbit xrðtÞ, plotted on the x3 � x1 � x2 space.
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5. Conclusions

It is known that the simplex sliding mode control has made several important improvements over the conventional

sliding mode control for robust control of nonlinear dynamical systems, and yet the selection of the magnitudes and

directions of the control vectors in this method is usually determined by trial-and-error through simulation and/or

experimental testing. In this paper, a systematic controller design method based on chaos optimization has been

developed for simplex sliding mode tracking control for affine-type of uncertain nonlinear systems with multi-inputs.

This method provides a step-by-step routine for constructing the simplex control vectors for the nonlinear sliding mode

control, thereby resolving a long-lasting difficult technical problem in robust control. Computer simulation on a

nonlinear uncertain system has illustrated the effectiveness of the proposed design method.
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