Electrodeposition of nanomaterials

W. Schwarzacher
H. H. Wills Physics Laboratory,
University of Bristol
Electrodeposition of Nanomaterials

Report Documentation Page

1. REPORT DATE
00 JUN 2003

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Electrodeposition of Nanomaterials

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Physics Laboratory, University of Bristol

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001697, ARO-44924.1-EG-CF, International Conference on Intelligent Materials (5th) (Smart Systems & Nanotechnology), The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
47

19a. NAME OF RESPONSIBLE PERSON

Form Approved
OMB No. 0704-0188

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Introduction:

Electrodeposition

• has long history
Miniature mask from Loma Negra, Moche culture, northern Peru: 100 B.C. – 800 A.D.

Au applied to Cu by displacement plating.

Introduction:

Electrodeposition

- has long history
- is an important current technology
Metal interconnects in ultra large scale integrated circuits

- electrodeposited Cu has replaced Al in ULSI
- higher conductivity – better electromigration resistance

Cu interconnects on IBM chip
Introduction:

Electrodeposition

- has long history
- is an important current technology
- will play pivotal role in nanofabrication
Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition
Topics:

• Controlling morphology
• The dual-damascene method
• Electroless deposition
• Multilayer electrodeposition
Why do electrodeposited thin films become rough?

AFM image of film electrodeposited from 0.3M CuSO$_4$ / 1.2M H$_2$SO$_4$, 4 mA cm$^{-2}$, $t=6$ mins
• Random fluctuations \rightarrow noise

• Surface tension leads to smoothening

$$\mu = \mu_{eq} + \Gamma \kappa \nu_m$$

• Can incorporate these ideas in equation of motion for surface e.g.

$$\partial h(x, t) / \partial t = -c \nabla^4 h(x, t) + \eta(x, t)$$
- Mass transport is by diffusion → *Laplacian instability*

Peaks grow faster than valleys
Further consequences of diffusion:

- Diffusion limited current $\propto -D \frac{C_{bulk}}{\delta}$
- δ depends on convection
Complex non-linear system *but* simple power law behaviour (scaling)

- *Local* roughness scales as $t^{\beta_{loc}}$.
- *Large-scale* roughness (w_{sat}) scales as $t^{\beta + \beta_{loc}}$.
• Can change current density, electrolyte concentration, temperature

• Only β_{loc} changes.

• β_{loc} depends on ratio of current to diffusion-limited current – Laplacian instability

This is a useful result:

- Only 5 numbers (scaling exponents and pre-factors) needed to describe roughness on any length-scale of film of any thickness

- 2 are invariant, 2 can be determined from a single film.
Example: deposition on patterned electrodes

- selective method
- widely used in microfabrication (‘through-mask plating’)
Example: deposition on patterned electrodes

Electrodeposited Co-Ni alloy pillars for patterned media studies. Patterning used interference lithography.

(Collaboration with C. A. Ross et al., M.I.T.)
Example: deposition on patterned electrodes

- edge \rightarrow greater current density
- what happens to roughness?
• Edge significantly rougher than centre:

• *but* same scaling exponent $\beta + \beta_{\text{loc}}$

*R. Cecchini, J. J. Mallett and W. Schwarzacher
Tools for controlling morphology:

- Pulse electrodeposition
- High current density for ‘on’-pulse → high nucleation density
- Complexing agents and additives
Influence of additives

- When textured substrate used, Cl⁻ has major effect

13.5 min

Cu-on-Si substrate
No Cl⁻
Influence of additives

- When textured substrate used, Cl\(^{-}\) has major effect

Cu-on-Si substrate
0.25mM Cl

13.5 min
Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition
Metal interconnects in ultra large scale integrated circuits

- Electrodeposited Cu has replaced Al in ULSI
- Higher conductivity – better electromigration resistance

Through-mask plating

1 patterning

2 electrodeposition

3 seed layer etching

Damascene plating

1 patterning

2 electrodeposition

3 planarization
‘Superfilling’ needed to avoid defects

Early stages of plating

- Subconformal

Late stages of plating

- Void
- Conformal
- Superconformal (‘superfilling’)
- Defect-free
- Seam
Requires appropriate additives

- 1.8 M H$_2$SO$_4$
- 0.25 M CuSO$_4$
- 1 mM NaCl
- 88 µM PEG (M$_w$=3,400) n=77
- ~5 µM SPS/MPSA

D. Josell, B. Baker, D. Wheeler, C. Witt and T.P. Moffat,
Simple model:

- Additives act to block deposition
- Additive diffusion to recesses slow

Unfortunately this model is wrong!
Curvature Enhanced Accelerator Coverage Mechanism

- Metal deposition rate *increases* with catalyst coverage
- Local catalyst coverage increases as local area decreases - converse also true.

Curvature Enhanced Accelerator Coverage Mechanism

- Initial condition - catalyst coverage $\theta = 0$
- Catalyst accumulates from reaction with precursors in electrolyte
Curvature Enhanced Accelerator Coverage Mechanism

- Catalyst coverage increases on bottom, concave surface, may decrease on top, convex corners.
- Deposition rate highest at bottom of feature.
Curvature Enhanced Accelerator Coverage Mechanism

- Catalyst coverage maximized on bottom surface
- Metal deposition rate at bottom is accelerated.
Curvature Enhanced Accelerator Coverage Mechanism

- Catalyst coverage maximized on bottom surface.
- Metal deposition is highest on bottom.
Curvature Enhanced Accelerator Coverage Mechanism

- Inversion of curvature
 ‘Bottom’ is above trench.
 ‘Momentum plating’

- Catalyst coverage θ decreases as bump area increases
Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition
No need for electrical contact to substrate!

- Conventional electrodeposition: electrons that reduce metal ions in solution supplied from external circuit
- Electroless deposition: electrons generated at substrate by chemical reducing agent
- Need catalytically active surface
Example: electroless Cu

Typical electrolyte: 0.04 M CuSO$_4$, 0.08 M EDTA (ethylenediaminetetraacetic acid - complexing agent), 0.24M HCHO (formaldehyde - reducing agent), 0.4 mM 2,2’-bipyridyl (stabilizer)

\[
2 \text{ HCHO} + 4 \text{ OH}^- \rightarrow 2 \text{ HCOO}^- + 2 \text{ H}_2\text{O} + \text{ H}_2 + 2 \text{ e}^- \\
\]

\[
\text{CuEDTA}^{2-} + 2 \text{ e}^- \rightarrow \text{Cu}^0 + \text{EDTA}^4_{\text{ADS}}
\]
Mixed potential theory

\[M^{z+} + ze \rightarrow M_{\text{lattice}} \]

catalytic surface

\[\text{Re}_{\text{solution}} \rightarrow \text{Ox}_{\text{solution}} + ne \]

catalytic surface

Oxidation

Potential

Reduction

log i

metal dissolution

metal deposition

electron generation

electron consumption
• Electroless deposition can deposit single metals e.g. Cu, Ni, Au or alloys e.g. CoFeB
• Despite versatility, under-exploited in nanotechnology

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition
Multilayer electrodeposition

- Use electrolyte containing ions of more than one metal: pulse deposition → multilayer

- Typical example: 0.05M Cu$^{2+}$; 2.3M Ni$^{2+}$; 0.4M Co$^{2+}$
 -0.2V → pure Cu
 -1.6V → ferromagnetic Co-Ni-Cu alloy
Multilayer electrodeposition

• For 1-2 nm layers, electrodeposited multilayers show Giant Magnetoresistance

• Even greater effect with multilayer nanowires prepared by template deposition:
Multilayer electrodeposition

- Over 110% GMR at 77K, over 55% at room temperature
Multilayer electrodeposition

- What happens as layer thickness further reduced?
- Multilayer → heterogeneous alloy

Electrodeposition Research Group
Multilayer electrodeposition

- Can control Cu-Ni alloy composition through lengths of Cu and Ni pulses

Electrodeposition Research Group
Application: alloy/alloy superlattice

$100 \times (\text{Cu}_{0.19}\text{Ni}_{0.81} \ 6\text{nm/ Cu}_{0.79}\text{Ni}_{0.21} \ 2\text{nm})$ alloy/alloy multilayer
Acknowledgments:

S. Huo, J. J. Mallet, R.Cecchini and P. Evans (Bristol)

T. P. Moffat (NIST)

Disclaimer: the information in this presentation is provided in good faith, but no warranty is made as to its accuracy.