Laser Ablation of Metal Doped Polymers with CO₂ Laser

EOARD Grant FA8655-03-1-3061

Properties of Laser Ablation Products of Delrin with CO₂ Laser

Wolfgang O. Schall

DLR – Institute of Technical Physics, Stuttgart, Germany
Laser Ablation of Metal Doped Polymers with CO2 Laser

DLR Institute of Technical Physics, Stuttgart, Germany

Approved for public release, distribution unlimited

See also ADM001699, EOARD-SPC 03-3061. The original document contains color images.
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 - 3-D expansion
 - Vacuum
 - Comparison of different sample types
 - Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
DLR - INSTITUTE OF TECHNICAL PHYSICS

German Aerospace Center

Astronautics
Traffic
Energy
Aeronautics

Institute of Technical Physics

HEL / COIL
SSL / NLO
Active opt. Systems

Studies & Concepts
Akquisition & Support
HOW IT ALL BEGAN ... (1998)

Bicycle Headlight Reflector
LIGHTCRAFT FLIGHT
ACKNOWLEDGEMENT

Our special thanks go to

Dr. Franklin B. Mead Jr. and Dr. Carl W. Larson
(AFRL – Propulsion Directorate, Edwards AFB, CA)

Dr. Ingrid Wysong (EOARD - London)

(and all the others in the background)

for making our research and this visit possible.
EXPERIMENTAL EQUIPMENT

Lightcraft
- Parabola with
 - Diameter: 10 cm
 - Focal Distance: 1 cm

Vacuum Tank
- Diameter: 80 cm
- Height: 110 cm

E-beam sustained CO₂ Laser
- Pulse Energy: 420 J
- Repetition Rate: 100 Hz
- Wavelength: 10.6 µm
- Pulse Length: 3 ... 12 µs

Institute of Technical Physics, Stuttgart, Germany
INVESTIGATIONS FOR EOARD (Phase I – 2002)

Comparison of measurement techniques and performance of US and German lightcraft.
INVESTIGATIONS FOR EOARD (Phase II – 2003)

Air breathing propulsion possible to altitudes of about 30 km!

With Delrin in vacuum $v_{ex} = 2400 \pm 200$ m/s

Institute of Technical Physics, Stuttgart, Germany
LASER LAUNCH SYSTEM DEVELOPMENT ROADMAP

Phase 1: Basic Research
- 16 Mio Euro

Phase 2: Pre-Prototype
- 85 Mio Euro

Phase 3: Commercial
- 275 Mio Euro

Timeline:
- 2004: Laboratory flight tests
- 2006: Free flight testing
- 2008: Launch of sounding rockets
- 2010: Launch of satellites
- 2012: Commercial operation

Laser Power (kW):
- Laboratory flight tests: 10
- Free flight testing: 100
- Launch of sounding rockets: 10,000
- Launch of satellites: 100,000

Cost:
- 2004: 16 Mio Euro
- 2006: 85 Mio Euro
- 2008: 275 Mio Euro
EXPERIMENTAL SETUP

Laser Pulse Profile

Sample
SAMPLE HOLDER

Guiding Tube for 1-D Expansion

Sample

Guiding Tube

- Diameter: 20 mm
- Length: 41 mm
- Inner diameter of Sample: 15.5 mm
SAMPLE FORMULATIONS

POM = PolyOxyMethylene = Polyacetal = Delrin®

POM + Al 0, 20, 40, 60 % by wt.
Epoxy + Al 0, 3, 5, 10, 17, 30, 40, 50 % by wt.
Epoxy + Mg 0, 3, 5, 10, 17, 30, 40 % by wt.

Others: Polybutadiene + Al, POM + Fe, POM + Ti
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 - 3-D expansion
 - Vacuum
 - Comparison of different sample types
 - Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
REPRODUCIBILITY

![Graph showing coupling coefficient vs pulse number (left) and impulse vs laser pulse energy (right).]

- **Left Graph:** Coupling Coefficient (N/MW) vs Pulse Number
 - Atmosphere Pressure: POM - 1D Expansion
 - Pulse Energy: 295 +/- 5 J
 - Data points for 0%, 20%, 40%, and 60% Al

- **Right Graph:** Impulse (mNs) vs Laser Pulse Energy (J)
 - Atmospheric Pressure: POM + Al
 - 1D Expansion
 - Data points for 0% and 40% Al

Shot to shot result on one sample *Scatter for individual shots*
ABLATED MASS IN AIR

Ablated Mass vs. Pulse Energy

Apparent Deposited Energy

→ Upper limit
EXAMPLE: LIMITS TO THE VELOCITY

Upper Limit: 8500 m/s
No air exhausted

Lower Limit: 1200 m/s
All air in tube exhausted
3-DIMENSIONAL EFFECTS

Mass Loss: 3-D vs. 1-D

Impulse: 3-D vs. 1-D
REDUCED PRESSURE

Ablated Mass vs. Pressure

Apparent Deposited Energy
Correct only in vacuum
REDUCED PRESSURE

Coupling Coefficient vs. Pressure

- Pulse Energy 280 J
- 1-D Expansion
- POM + Al

Apparent Jet Velocity

- Exhaust Velocity (m/s)
- Correct values

Jet Efficiency in vacuum < 0.03

Institute of Technical Physics, Stuttgart, Germany
Institute of Technical Physics, Stuttgart, Germany

Deposited Energy vs. Pulse Energy
Coupling Coefficient vs. Pulse Energy
Sample Comparisons - Ablated Mass

In Vacuum: Deposited Energy = \[
\begin{cases}
50 - 70 \text{ MJ/kg} & \text{POM + Al} \\
20 - 60 \text{ MJ/kg} & \text{Epoxy + Al} \\
30 - 90 \text{ MJ/kg} & \text{Epoxy + Mg}
\end{cases}
\]
SAMPLE COMPARISONS - Coupling Coefficient

Pulse Energy 200 J
SAMPLE COMPARISONS - Jet Velocity

Pulse Energy 200 J

\[\eta < 0.03 \]
COMPARISON WITH LIGHT CONCENTRATING STRUCTURE ("BELL NOZZLE") IN AIR – 200 J

Mass Loss per Pulse (mg)

- POM 0: 5 mg
- POM 40Al: 10 mg
- E1 17Al: 15 mg
- E1 17Mg: 20 mg

Impulse (mNs)

- POM 0: 200 N/MW
- POM 40Al: 100 N/MW
- E1 17Al: 200 N/MW
- E1 17Mg: 100 N/MW

Apparent Deposited Energy

- 20 ... 50 MJ/kg
- 100 MJ/kg

Coupling Coefficient

- 200 N/MW
- 100 N/MW
POWER PROFILES

POM + 40 % Al in air

40 J

Energy 40 J
Atmosphere: POM + 40% Al
Average over 4 pulses

Transmission

Signal

Reflection

0.000 0.002 0.004 0.006 0.008 0.010

0 2 4 6 8 10 12 14

40 J

Pulse Energy 120 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

Transmission

Signal

Reflection

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0 2 4 6 8 10 12 14

120 J

Pulse Energy 200 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

Transmission

Signal

Reflection

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0 2 4 6 8 10 12 14

200 J

Pulse Energy 280 J
Atmosphere: POM + 40% Al
Average over 4 Pulses

Transmission

Signal

Reflection

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0 2 4 6 8 10 12 14

280 J
OUTLINE

- Who is DLR – Institute of Technical Physics (TP)?
- Lightcraft Research at TP
- Experimental Setup and Sample Types
- Results: Flat samples in air
 - 3-D expansion
 - Vacuum
 - Comparison of different sample types
 - Tests with a light concentrating structure
- Scanning electron micrographs
- Conclusions and proposal
ELECTRON MICROSCOPE PICTURES

Before Laser Irradiation

POM + 20 % Al 400x

RE-Mode

POM + 40 % Al 400x

Institute of Technical Physics, Stuttgart, Germany
ELECTRON MICROSCOPE PICTURES

Before Laser Irradiation

Epoxy + 17% Al 1000x

RE-Mode

Epoxy + 17% Mg 100x
ELECTRON MICROSCOPE PICTURES

After Laser Irradiation

SE-Mode

POM – edge 100x

POM - center 100x
ELECTRON MICROSCOPE PICTURES

After Laser Irradiation

POM + 20 % Al - center 100x

SE-Mode 200 J vacuum

POM + 40 % Al 1500x
CONCLUSIONS

- Goals for $I_s = 800$ s not met
- In air \rightarrow accelerated air fraction unknown
 \rightarrow all related values are wrong
- In vacuum \rightarrow deposited energy goes up with increasing metal fraction, but coupling coefficient decreases
- Strong evidence for large energy loss in a decoupled laser absorption wave
- Nature and characteristics of absorption wave need investigation
- Can shorter pulse lengths help prevent decoupling?
PROPOSAL FOR NEW EXPERIMENTS

PD 1 2 3 4

Energy

Wave Velocity

Variation of pulse length 2 ... 12 µs

CO₂ Probe Laser

Sample

KCl Wedge

CO₂ Laser Pulse

PDt

PDi

PDr

Absorption TOF-measurement
THANK YOU

POM after laser irradiation 3000x