Micro-Aerial Vehicles
Materials & Structures

Compiled by Dr Alan Hooper and Dr Eoin O’Keefe

Schloss Elmau, Garmisch-Partenkirchen, Germany.
22-24 September 2003
Micro-Aerial Vehicles Materials & Structures

1. REPORT DATE
23 JUL 2004

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Micro-Aerial Vehicles Materials & Structures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Schloss Elmau, Garmisch-Partenkirchen, Germany

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001689, EOARD-CSP-03-5073 Micro Air Vehicle Workshop., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

- a. REPORT unclassified
- b. ABSTRACT unclassified
- c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
20

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Proscribed by ANSI Std Z39-18
Where are we now?

- Simple platforms
- Mini rather than Micro
- Hobby shop materials
 - balsa wood; polystyrene foams; sticky tape
- Aero-modelling technology
- Lack of integration
Where do we need to be?

- Lighter weight
- Damage tolerant
- Reduced size
- Engineered joints
- Integrated design
- Multi-functional
- Designed for purpose
How do we get there?
Integrated system of systems

- **Drive/propulsion**
 - Rotors
 - Wings

- **Power**
 - Drive
 - Sensors
 - Actuation
 - Communication
 - Computation

- **Actuation/Effectors**
 - Control surfaces
 - Sensor deployment

- **Fuselage**
 - Integrate
 - Protect
 - Function

- **Communication**
 - Transmit
 - Receive

- **Computation**
 - Navigation
 - Decision making

- **Sensors**
 - Acoustic
 - Visual
 - Chemical

- **Actuation/Effectors**
 - Control surfaces
 - Sensor deployment

Materials & Structures

Schloss Elmau 22-24 Sept 2003

Dpqzshiu™ !R jfuR B114
The Technical Drivers [1]

To design, manufacture and deploy miniature airborne military platforms of typical size 20 - 150mm : [components ~0.1 to 10mm].

- Mass and volume efficient materials - specific strength, stiffness.....
- Structural forms - foams, spaceframes, anisotropy.....
- Robustness - shock resistance, self-healing.....
- Structural integration - stress/heat transfer, cross-talk.....
- Actuators - force, strain, bandwidth, power.....
- Biologically-inspired materials & mechanisms - nano, folding.....
The Technical Drivers [2]

- Material and structures characterisation - scaling, micro-testing...
- Multifunctional materials - integrated actuation, antennae, power.....
- Low observable treatments - acoustic, vis/IR, radar.....
- Machining and shaping - moulding, milling, MEMS.....
- Joining techniques - adhesives, snap-fit, electrical...
- Assembly / deployment / recovery - quick fit / release
- Affordability - materials, manufacture, re-use, commercial infrastructure.....
Military need

- Military need \Rightarrow Mission \Rightarrow Device performance \Rightarrow Device design \Rightarrow Structures \Rightarrow Materials
 - payload mass, range, speed, environment,
 - one-shot/re-use, loiter time......

- Leads to description of vehicles properties
- Leads to materials and structure requirements
- Mission scenarios needed to allow detailed directed materials and structures research and development
- Useful underpinning activities \Rightarrow ‘toolkit’
Mass and volume efficient materials

- Specific strength
- Specific stiffness
- Elasticity
- Specific conductivity
- Specific power density
- Thermal conductivity

- For all electric MAVs - primary power chain
Structural forms

- Foam core sandwich materials
- Novel core sandwich materials
- Space frames
- Curvilinear forms
- Anisotropy
- Micro-foamed polymer materials
 - reinforced (fibres, nano-platelets)
- Micro-foamed metals
 - syntactic, blown
Biological-inspiration

- Nano-composites
- Folding extensible structures
- Aeroelastic structures
 - anisotropic structures
- Curvilinear, foam core and space-frame
- Smooth ‘simple’ resilient outer surfaces
- Protection of vital systems
- Don’t attempt to copy nature, be inspired
Machining and forming processes

- Moulding - model kits - cheap, poor tolerances?
- Milling & ‘micro engineering’ - the watch industry
- MEMS - 2D / Quasi 3D

Joining

- Sub-component designs - integrated assemblies
- Fixing, snap-together - manufacture & operational assembly
- Adhesives - droplet size / wetting
- Weld / solder - heat affected zone
- Electrical - power & data
Structural integration

- Stress transfer
 - large surface to volume ratio
 - bond edges / heat affected zones
- Heat transfer
 - high power / compact device
- Layout restrictions
 - sensors / effectors
- Adverse interactions
 - cross-talk (proximity)
- Affordable manufacturing

Materials & Structures
Schloss Elmau 22-24 Sept 2003
Dpqzshiu!" !R jfuR B114
Multifunctional structures

• Integrated actuation - lubrication / gaps (dirt ingress)
• Antennae
• Energy storage
• Low observability
Actuators

- **High specific** force & strain, bandwidth…..
- Rotary, linear or reciprocating
- Power requirements

![Graph showing stress-strain product vs. frequency for different actuator types.]

Approximate area for MAV actuators

Materials & Structures

Schloss Elmau 22-24 Sept 2003

Dpqzshiu研究院 RjpfuR B114
Deployment systems

- Assembly / shape change for launch
 - automatic vs. hand assembly
 - latching actuation
- VTOL / cassette / hand / rolling launch
 - low shock launch to flight speed
 - pneumatic, ‘bungee’.....
- Munitions launch
 - high shock launch, flight to operational area
 - rocket, mortar, shell......
- Landing - rolling / net / crash.....

Materials & Structures
Schloss Elmau 22-24 Sept 2003
Dpqzshiu" !RjfuR B114
QinetiQ
Robustness

• Storage, transport, launch, collision, landing...
• Shock / impact resistance, self-healing, quick-release, spares kit.....
• Environmental robustness
[all weather operations....]
Affordability

- Materials
- Manufacturing
- Commercial infrastructure
- Production volume
- Dual-use
- Re-usability
- Repair
Some thoughts to remember

- Primary power train remains heaviest subsystem
 - how can we make this SIGNIFICANTLY lighter
- Nature has evolved competent MAVs
 - inspirational, but different ‘mission’
- Plethora of materials and structures that could be used
 - be selective, simple designs, simple lines if you can
- Think ‘multifunctionality’
- Small component engineering
 - need true 3D machining at 0.1 to 10mm range
- MAVS will crash, collide and be handled by people in a hurry
 - robust materials and designs - think of MAVs for 3yr olds!