

AFRL-IF-RS-TR-2004-286
Final Technical Report
October 2004

SCALABLE TRUST OF NEXT-GENERATION
MANAGEMENT (STRONGMAN)

University of Pennsylvania

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No.H582/J373

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2004-286 has been reviewed and is approved for publication

APPROVED: /s/
 GLEN E. BAHR
 Project Engineer

 FOR THE DIRECTOR: /s/
 WARREN H. DEBANY, Jr., Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Oct 04

3. REPORT TYPE AND DATES COVERED
Final Sep 99 – Mar 04

4. TITLE AND SUBTITLE

SCALABLE TRUST OF NEXT-GENERATION MANAGEMENT
(STRONGMAN)

6. AUTHOR(S)

Jonathan M. Smith

5. FUNDING NUMBERS
C - F30602-99-1-0512
PE - 61101E
PR - H582
TA - 34
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Trustees of the University of Pennsylvania
Office of Research Services
3451 Walnut St.
Philadelphia, PA 19104

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Rd.
Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-286

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Glen E. Bahr, IFGB, 315-330-3515, bahrg@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
STRONGMAN focused on advanced boundary controls and risk management, with the key goal of increasing
automation of the management of boundary controllers, such as gateways and firewalls, in the Internet. Automated
management would translate high-level security policy into actions which support that policy at every relevant level of
the information infrastructure. Investigation of scalable automated trust management should provide a huge leap
forward in the ability to deploy an auditable error-free network infrastructure meeting security policy goals. The
STRONGMAN approach used the KeyNote trust management system. Trust relationships are specified in terms of a
symbolic language, which when executed results in exchanges of cryptographic credentials that map the trust
relationships into allowed and disallowed actions. STRONGMAN deliverables included an architecture for scalable
automated trust management and an experimental prototype realization of that architecture for the IP Internet using the
OpenBSD UNIX implementation. The STRONGMAN project originated a variety of new approaches to managing
groups of boundary controllers and other devices that gave rise to a whole new policy-directed paradigm.

15. NUMBER OF PAGES
39

14. SUBJECT TERMS
KeyNote, advanced boundary controls, risk management, gateway, firewall, distributed
firewall, security policy, scalable automated trust management, compliance checking,
action attribute set

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents
1 INTRODUCTION..1

2 MANAGEMENT AND PERSONNEL...2

3 RESULTS VERSUS ORIGINAL STATEMENT OF WORK ..2

4 LETTER PROPOSAL WORK AND RESULTS..4

5 SUMMARY...5

REFERENCES...6

APPENDIX A: THE STRONGMAN ARCHITECTURE ...8

ABSTRACT ..8

1 INTRODUCTION ..8

2 OUR APPROACH..11
2.1 KeyNote ..14
2.2 Policy Translation and Composition...14
2.3 Credential Management ..16

3 THE DISTRIBUTED FIREWALL...20
3.1 Implementation ...21

3.1.1 Kernel Extensions ...22
3.1.2 Policy Device ..23
3.1.3 Policy Daemon..23

3.2 Experimental Evaluation...24
4 RELATED WORK...30

5 CONCLUDING REMARKS ...31

ACKNOWLEDGEMENTS...32

REFERENCES ...32

 ii

List of Figures
Figure 1. A firewall’s bottleneck topology...9

Figure 2. KeyNote used as a policy interoperability layer. Policy composition in
STRONGMAN does not depend on using the same compiler to process all the
high-level policies..12

Figure 3. A high-level IPSec policy, enforced at the network layer.15

Figure 4. A high-level web access policy, enforced by the web server.15

Figure 5. Web access policy taking into consideration decisions made by the IPSec
and SSL protocols. The information on USER-ROOT and LOCALNETWORK
are specified in separate databases, which the compiler takes into consideration
when compiling these rules to KeyNote credentials. ...16

Figure 6. Translation of the policy rule from Figure 5 to a KeyNote credential. The
public keys and the digital signature are omitted in the interests of readability.17

Figure 7. Proof of validity in the form of KeyNote credentials that delegate to the
actual user, shown in (a). This approach requires no changes in the compliance
checking mechanism or credential distribution. Furthermore, by using a proof
of validity that applies to large numbers of users simultaneously, as shown in
(b), we can greatly reduce the number of credentials that need to be periodically
re-issued...19

Figure 8. Block diagram of the distributed firewall implementation.21

Figure 9. Average connection overhead for 100 TCP connections between Alice and
Bob. ..25

Figure 10. Average connection overhead measured for 100 TCP connections between
hosts through a firewall. ..25

Figure 11. Average roundtrip time for 200 ICMP ECHO-REQUEST messages.25

Figure 12. 100MB file transfer over TCP. ...26

Figure 13. Test topology with intermediate firewall...27

Figure 14. Test topology without intermediate firewall. ..27

Figure 15. Average connection overhead for 100 TCP connections spread over one,
two, and three hosts, respectively, using the distributed firewall.28

Figure 16. Reduction of processing overhead of the distributed firewall as the number
of hosts increases. The percentages represent the additional cost of the
distributed firewall over the insecure case and are derived from Figure 15.28

Figure 17. Performance degradation of traditional packet-filtering firewalls as the
number of rules increases. ...29

 1

1 Introduction
STRONGMAN, for “Scalable Trust of Next Generation MANagement”, was a response to

DARPA BAA 98-34 and focused on advanced boundary controls and risk management. A key

technical goal of the proposal was increasing automation of the management of boundary

controllers, such as gateways and firewalls, in the Internet.

By automated management, we meant the translation of a high-level security policy into actions

which support that policy at every relevant level of the information infrastructure. Thus, security

policy must be reflected in decisions about trust of sources of information, for example in the

acceptance of a remote invocation. Our belief is that the investigation of scalable automated trust

management will lead to a huge leap forward in the ability of an organization to deploy an

auditable error-free realization of network infrastructure meeting security policy goals.

The basis of our approach was the KeyNote [BFIK99, BIK03] trust management system

developed at Penn and AT&T Research Labs. KeyNote is a compact simplified representation of

trust relationships based on the ideas of the AT&T PolicyMaker [BFL96, BFS98] system; trust

relationships are specified in terms of a symbolic language which when executed results in

exchanges of cryptographic credentials which map the trust relationships into allowed and

disallowed actions. The deliverables from our proposed research included an architecture for

scalable automated trust management [KIGS03], and an experimental prototype realization of

that architecture for the IP Internet using the OpenBSD UNIX implementation. These

deliverables and many more were achieved. A summary technical paper [KIGS03], which

appears in the DARPA Information Survivability Conference and Exposition (DISCEX), has

been sent electronically to DARPA and AFRL, and accompanies this final report.

A supplemental letter proposal to DARPA was made in 2002 to further leverage the results of

this work. In particular, we sought to work intensively on a red-teaming effort with Sandia

National Laboratories, pursue further research in policy languages, and work with Johns Hopkins

University on integrating KeyNote with their “Secure Spread” multicast system.

 2

2 Management and Personnel
The grant was set up with the University of Pennsylvania serving as the contractor, with a

subcontract to AT&T Research, where investigators Blaze, Feigenbaum and Ioannidis were

employed. While initially AT&T Research foresaw the need for post-Doctoral researchers, as the

work evolved their research contributions became more direct and less managerial, thus some of

this work shifted to Penn, resulting in the employment of Todd Miller to perform integration of

KeyNote with the Apache system and the support of Vassilis Prevelakis (now an Assistant

Professor at Drexel University) as a post-Doc.

Smaller subcontracts at various points were made to the University of Maryland - College Park

(W. Arbaugh, PI) and Columbia University (A. Keromytis, PI). The goal of the first of these was

to investigate a secure bootstrap, which is a necessary component of an advanced boundary

controller. The goal of the second was to enable A. Keromytis to continue his work on

STRONGMAN after assuming a faculty position at Columbia University.

The contract at Penn was managed by J. Smith as PI and D. Farber and M. Greenwald as Co-PIs.

D. Farber was on the initial proposal and was unable to perform for part of the contract period

due to his service as Chief Technologist of the Federal Communications Commission. M.

Greenwald was added as a Co-PI at Penn due to his experience with firewall engineering at

Stanford University, where he received his Ph.D. While STRONGMAN was ongoing, Dr.

Feigenbaum left AT&T Research to join Yale University’s faculty; this had no impact on

financial management of the project.

3 Results versus original statement of work
Our goals and major milestones were:

1. The design and development of a high-level security-policy language.

2. Creation of the necessary tools to translate from that language to KeyNote credential(s).

3. Possible refinement of the KeyNote trust-management system after acquiring the

necessary operational experience.

 3

4. Design and implementation of tools for translating KeyNote credentials to application-

specific credentials.

5. Implementation of such a proof-of-concept system based on the above architecture,

utilizing existing firewall and network security capabilities (possibly modifying them in

the process).

Our assessment of our success against these goals is as follows:

1. Several policy languages were created as part of A. Keromytis’s Ph.D. thesis at Penn.

While these were extensions of KeyNote, they were application-driven, and centered on

the requirements of boundary controllers and firewalls, as well as management of IPSec

tunnels [BIK01], as anticipated in the proposal. Additional applications, such as

CredentialBased File System [MPI+03] were unanticipated in the proposal, but

demonstrate the generality and applicability of the basic ideas.

2. These tools were relatively straightforward lexical analyzers and parsers to generate

KeyNote.

3. There was not extensive revision of KeyNote; the design and implementation proved

adequately flexible.

4. These translations were diverse. One translation was to IPSec configuration, another to

Apache access controls, another to packet-filtering rules for pf [Har02] and ipf

firewalls, and yet another to control access on hosts via system calls.

5. Our proof-of-concept system was implemented and as it has evolved has greatly

influenced existing practice. While the STRONGMAN architecture described in the

associated document is a complete realization of the goal in the initial proposal, systems

such as a “ShrinkWrap VPN” [PK02, PK03] security appliance and a “Distributed

Firewall” [IKBS00] have embodied the concepts and in the latter case have served as a

significant source of tech transfer. The distributed firewall work has spawned an

energetic working group in the Internet community’s IETF called “DEFCON”, which

 4

involves significant system vendors (e.g., Intel) in design and configuration of distribute

firewall systems for new environments such as network processors.

4 Letter Proposal Work and Results
Three additional tasks were proposed in the Letter Proposal. These were:

1. Work with a “Red Team” at Sandia National Laboratories to investigate the “ShrinkWrap

VPN”, a single-board computer designed as a security appliance to be managed by the

STRONGMAN policy management architecture.

2. Work on further generalizations of policy expression languages to control aggregates of

hosts and boundary controllers to deliver policy-controlled “Virtual Private Services”.

3. Work on using KeyNote policies to control Secure Spread, a secure multicast system

developed at Johns Hopkins University by Y. Amir.

We can report on each item as follows:

1. The ShrinkWrap VPN project supported Sandia National Laboratories efforts for a

“design red team”; two complete systems were sent to Sandia and extensive

documentation written and supplied. (These will be sent as attachments to this report to

DARPA and to AFRL.) In additional, multiple teleconferences were used to explain the

system and its goals and features, and to lay out questions to be addressed in the Red

Teaming effort. This effort was set back initially by a change of personnel at Sandia, and

once restarted in Spring/Summer 2002, was set back yet again by inadequate funds at

Sandia to continue the study. The two systems built for Sandia use were returned to Penn

by David Duggan, the Sandia Red Team leader.

2. The Secure Spread integration was being investigated by Todd Miller, who had

integrated KeyNote and the Apache web server, but was not completed due to lack of

funds.

 5

3. The Virtual Private Services effort has bloomed [IKIS03]. The system was based on the

observation that the imposition of policy controls at both hosts [IBS02] and network-

embedded elements such as routers and firewalls permits policy-based control of the

entire distributed system. For example, queries can only reach nodes to which policy

allows them to be routed, and remote logins might be policy controlled to allow only

strongly encrypted IPSec tunnels to log in remotely, to access selected files, etc. The

unification of host and network access controls achieves Virtual Private Services; a paper

has recently been accepted on this work [IKIS03] and an National Science Foundation

proposal to extend the work to computational grids (“GRIDLOCK”, Joan Feigenbaum

PI) has been funded under NSF’s Trusted Computing program, permitting the DARPA-

seeded work to extend to larger sets of science and engineering domains.

5 Summary
The main body of work proposed in the initial BAA 98-34 response was completed successfully

and within budget. New directions were spawned both within and outside the context of

STRONGMAN. Within, the letter proposal represents interesting directions that were exposed.

Externally, the Internet Engineering Task Force DEFCON working group was stimulated by the

distributed firewall work and represents effective technology transfer. Perhaps most importantly,

the STRONGMAN project originated a variety of new approaches to managing groups of

boundary controllers and other devices that gave rise to a whole new policy-directed paradigm.

For example, while it preceded the DARPA “Dynamic Coalitions” program, STRONGMAN can

be seen as providing intellectual roots for that approach. This is reinforced by the many

presentations at Dynamic Coalitions PI meetings which use KeyNote and STRONGMAN as the

baselines for their research in trust management and policy languages.

 6

References
[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust

Management System Version 2. Internet RFC 2704, September 1999.

[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. Proc. of the

17th Symposium on Security and Privacy, pp. 164-173. IEEE Computer Society

Press, Los Alamitos, 1996.

[BFS98] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in the PolicyMaker

Trust-Management System. Proc. of the Financial Cryptography ’98, Lecture Notes

in Computer Science, vol. 1465, pp. 254-274. Springer, Berlin, 1998.

[BIK01] M. Blaze, J. Ioannidis, and A.D. Keromytis. Trust Management for IPSec. Proc. of

Network and Distributed System Security Symposium (NDSS), pp. 139-151, February

2001.

[BIK03] Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Experience with the KeyNote

Trust Management System: Applications and Future Directions. May 2003.

[Har02] D. Hartmeier. Design and Performance of the OpenBSD Stateful Packet Filter (pf).

Proceedings of the USENIX Annual Technical Conference, Freenix Track, pp. 171-

180, June 2002.

[IBS02] Sotiris Ioannidis, Steven M. Bellovin, and Jonathan M. Smith. Sub-Operating

Systems: A New Approach to Application Security. Proceedings of the ACM SIGOPS

European Workshop, September 2002.

[IKBS00] S. Ioannidis, A.D. Keromytis, S.M. Bellovin, and J.M. Smith. Implementing a

Distributed Firewall. Proceedings of Computer and Communications Security (CCS),

pp. 190-199, November 2000.

 7

[IKIS03] S. Ioannidis, A. Keromytis, J. Ioannidis, and J. Smith. Design and Implementation of

Virtual Private Services. Proceedings, IEEE International Workshops on Enabling

Technologies. Infrastructure for Collaborative Enterprises (WETICE-03), 2003.

[KIGS03] Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald, and Jonathan M.

Smith. The STRONGMAN Architecture. Proceedings of the 3rd DARPA Information

Survivability Conference and Exposition (DISCEX III), April 2003.

[MPI+03] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John Ioannidis, Angelos D.

Keromytis, and Jonathan M. Smith. Secure and Flexible Global File Sharing.

Proceedings of the USENIX Annual Technical Conference, Freenix Track, June 2003.

[PK02] Vassilis Prevelakis and Angelos D. Keromytis. Designing an Embedded

Firewall/VPN Gateway. Proceedings of the International Network Conference (INC),

pp. 313-322, July 2002. (Best Paper Award).

[PK03] Vassilis Prevelakis and Angelos D. Keromytis. Drop-in Security for Distributed and

Portable Computing Elements. Emerald Journal of Internet Research. Electronic

Networking, Applications and Policy, 13(2), March/April 2003.

 8

Appendix A: The STRONGMAN Architecture1
Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald and Jonathan M. Smith2

Abstract
The design principle of restricting local autonomy only where necessary for global robustness

has led to a scalable Internet. Unfortunately, this scalability and capacity for distributed control

has not been achieved in the mechanisms for specifying and enforcing security policies. This

shortcoming must be overcome if end-to-end security mechanisms (such as IPSec or TLS) are to

ever replace solutions of short-term convenience such as firewalls.

The STRONGMAN (for Scalable TRust Of Next Generation MANagement) system offers three

new approaches to scalability, applying the principle of local policy enforcement complying with

global security policies. First is the use of a compliance checker to provide great local autonomy

within the constraints of a global security policy. Second is a mechanism to compose policy rules

into a coherent enforceable set, e.g., at the boundaries of two locally autonomous application

domains. Third is the “lazy instantiation” of policies to reduce the amount of state that

enforcement points need to maintain.

We demonstrate the use of these approaches in the design, implementation, and measurements of

a distributed firewall. Our experiments show that, under certain circumstances, performance can

improve over the traditional firewall approach.

1 Introduction
Much of the Internet’s scalability has been achieved as a byproduct of intelligent application of

the end-to-end design principle ([20, 6]), where properties that must hold end-to-end are

provided by mechanisms at the end points. The resulting design keeps the network simple and

allows great local autonomy in implementing these mechanisms.

1 This work was supported by DARPA under Contract F30602-99-1-512-MOD P0001.
2 Angelos D. Keromytis is with the CS Department, Columbia University, Email: angelos@cs.columbia.edu. Sotiris
Ioannidis, Michael B. Greenwald, Jonathan M. Smith are with the CIS Department, University of Pennsylvania,
Email: sotiris@dsl.cis.upenn.edu, mbgreen@dsl.cis.upenn.edu, jms@dsl.cis.upenn.edu

 9

Security for distributed applications is arguably an end-to-end property. By the end-to-end

argument hosts should be responsible for the perceived security of “the internet.” However,

several factors currently argue against this placement of functionality. First, policies must

typically be specified at the granularity of administrative domains (e.g., a corporate network),

and not only at the granularity of individual hosts. Second, some operating systems have been

designed under the assumption that network security is mostly handled by third parties

(firewalls), thus lacking enforcement mechanisms. Third, many security policies adopt the “hard

shell, soft interior” approach, by granting more rights to “local” (and, by implication, trusted)

machines and entities.

Figure 1. A firewall’s bottleneck topology.

This situation has led, for example, to the pervasive use of firewalls, which enforce a single

security policy at network boundaries to protect multiple hosts behind the boundaries from

certain classes of security problems. To implement the policy globally, the network topology

must be restricted to pass all traffic through the firewall, as shown in Figure 1. Unfortunately,

these firewalls have many negative consequences for Internet routing, flow control, and

performance. Furthermore, when the firewall fails or is otherwise bypassed, the entire internal

 10

network is at the mercy of the intruder (as was evidenced by the recent cases of corporate

network infections by multi-vectored worms).

Any alternative that attempts to avoid the performance bottleneck of a centralized firewall must

support a simple (and consistent) specification of security policy for an entire administrative

domain. In other words, there must be means of ensuring that the local enforcement actually

conforms to the larger (“global”) policy. Since manual or semiautomatic configuration of nodes

and protocols to conform to a global policy has been shown to be problematic and error-prone

[13], automatic techniques relying on a single method of specification are desirable.

To further complicate matters, experience has shown that no single mechanism exists that can

address the security requirements of all applications and protocols. Therefore, multiple security

mechanisms (with overlapping scopes, such as IPSec and SSL) are typically in use

simultaneously in many networks. These multiple security mechanisms must present a single

consistent system image to the administrator, else complexity of configuration will again result

in errors.

It may seem natural to generalize the solution proposed by distributed firewalls ([2, 14]) and

design a “universal” high-level policy specification language. Such a language would, ideally,

specify global policies that must be enforced across multiple heterogeneous domains. However,

security policies are often application-dependent. “Universal” high-level policy languages tend

to be feature-rich and complex, and are therefore clumsy and lead to mistakes. Furthermore, such

languages often presume homogeneity, and cannot handle mixtures of multiple mechanisms/

languages for different parts of the same network.

Therefore, we argue that the correct approach is an architecture that ties together multiple

security mechanisms within a single system image, that supports many application-specific

policy languages, that automatically distributes and uniformly enforces the single security policy

across all enforcement points, and that allows enforcement points to be chosen appropriately to

meet both security and performance requirements. Further, this architecture must scale with the

 11

growth of the network in several dimensions, (number of users, hosts, protocols/applications, and

security policies tying all these together).

In this paper we propose an architecture, STRONGMAN, and argue that it meets these

requirements. The main components of our architecture are the use of a policy compliance

checker to provide great local autonomy within the constraints of a global security policy, a

mechanism for composing policy rules into a coherent enforceable set, and “lazy instantiation”

of policies to reduce the amount of data that enforcement points need to maintain.

In the following sections we describe these three components and their use in the STRONGMAN

architecture in more detail, discuss its instantiation in the form of a distributed firewall, and

present some preliminary measurements which show that performance can improve in certain

scenarios, relative to the traditional firewall approach. We then compare our approach with other

work, and conclude the paper with some discussion on future directions.

2 Our Approach
Following our previous discussion, we have set certain requirements for our proposed system.

First, it must handle growth in the number of users, applications, enforcement points, and rules

pertaining to these. A corollary to this is that the most common operations (i.e., policy updates)

must be very cheap. Second, security policies for a particular application should be specifiable in

an application-specific language or application-specific extension. Third, administrators should

be able to independently specify policies over their own domain: this should be true whether the

administrator manages particular applications within a security domain, or manages a sub-

domain of a larger administrative domain. In other words, the system must support privilege

delegation and hierarchical management.

These requirements shape our design of the STRONGMAN architecture. An overview of the

policy flow in our architecture is shown in Figure 2. It should be immediately clear that there is a

distinction between high- and low-level policy. In particular, we envision a multiplicity of high-

level policy specification mechanisms (different languages, GUIs, etc.), all translating to the

same lower-level policy expression language. A powerful, flexible, and extensible low-level

 12

mechanism that is used as a common “policy interoperability layer” allows us to use the same

policy model across different applications, without mandating the use of any particular policy

front-end. This architecture has an intentional resemblance to the IP “hourglass,” and resolves

heterogeneity in similar ways, e.g., the mapping of the interoperability layer onto a particular

enforcement device, or the servicing of multiple applications with a policy lingua franca.

Figure 2. KeyNote used as a policy interoperability layer. Policy composition in STRONGMAN
does not depend on using the same compiler to process all the high-level policies.

As the figure also implies, policy is enforced in a decentralized manner. STRONGMAN shifts as

much of the operational burden as possible to the end users’ systems because traditional

enforcement points are generally overloaded with processing requests and mediating access. In

our architecture, we can have an arbitrary number of enforcement points, deployed at the

granularity necessary to enforce very fine-grained access control. This, however, can lead to

excessively large numbers of policy rules (in the worst case, the cross-product of the number of

users, number of nodes, and number of services per node). In order to minimize the resources

 13

consumed by policy storage and processing at each enforcement point, the low-level policy

system supports “lazy instantiation” of policy. In other words, an enforcement point should only

learn those parts of the global policy that it actually has to enforce as a result of user service

access patterns. A further benefit of this approach is that policy may be treated as “soft state,”

and thus be discarded by the enforcement point when resources are running low, and recovered

when space permits or after a crash.

Other important aspects of our architecture, not shown in Figure 2, include:

• Independent policy specifications can be composed in a manner which does not violate any

of them, because multiple independently-specified policies may be managed at a single

enforcement point.

• Users are identified by their public keys; (each user may have multiple keys, for different

purposes/applications). These public keys are used in the context of various protocols to

authenticate the users to specific services. This also helps prevent malicious users from

tampering with policies provided to enforcement points via “lazy policy instantiation.”

• The low-level policy system allows for decentralized and hierarchical management and

supports privilege delegation to other users. Note that delegation allows any user to be

treated as an “administrator” of her delegatees; conversely, administrators in such a system

can simply be viewed as users with very broad privileges. This permits both decentralized

management (different administrators/users are made responsible for delegating and

potentially refining different sets of privileges), and collaborative networking (by treating the

remote administrator as a local user with specific privileges she can then delegate to her

users). Limited privileges can be conferred to administrators of other domains, who can then

delegate these to their users appropriately; this allows for Intranet-style collaborations.

Our architecture implements these design principles by using the KeyNote [3] trust-management

system as a basis for expressing and distributing low-level security policy. In the next few

subsections we give an overview of KeyNote, describe the policy translation and composition

 14

mechanisms, and discuss how policy is distributed (and how “lazy instantiation” is implemented)

in our system.

2.1 KeyNote

KeyNote is a simple trust-management system and language developed to support a variety of

applications. Although it is beyond the scope of this paper to give a complete tutorial or

reference on KeyNote syntax and semantics (for which the reader is referred to [3]), we review a

few basic concepts to give the reader a taste of what is going on.

The basic service provided by the KeyNote system is compliance checking; that is, checking

whether a proposed action conforms to local policy. Actions in KeyNote are specified as a set of

name-value pairs, called an Action Attribute Set. Policies are written in the KeyNote assertion

language and either accept or reject action attribute sets presented to it. Policies can be broken

up and distributed via credentials, which are signed assertions that can be sent over a network

and to which a local policy can defer in making its decisions. The credential mechanism allows

for complex graphs of trust, in which credentials signed by several entities are considered when

authorizing actions. Users have a variety of credentials, for the different services and nodes they

need to access.

Each service that needs to mediate access, queries its local compliance checker on a per-request

basis; (what constitutes a “request” depends on the specific service and protocol). The

compliance checker can be implemented as a library that is linked against every service, as a

daemon that serves all processes in a host, or as a network service. (This latter case requires

provisions for secure communications between the policy enforcer and the compliance checker.)

2.2 Policy Translation and Composition

In our architecture, policy for different network applications can be expressed in various high-

level policy languages or systems, each fine-tuned to the particular application. Each such

language is processed by a specialized compiler that can take into consideration such information

as network topology or a user database and produces a set of KeyNote credentials. At the

absolute minimum, such a compiler needs a knowledge of the public keys identifying the users in

 15

the system. Other information is necessary on a per-application basis. For example, knowledge

of the network topology is typically useful in specifying packet filtering policy: for web content

access control, on the other hand, the web servers’ contents and directory layout are probably

more useful. Our proof-of-concept languages, (examples are shown in Figure 3 and Figure 4,)

use a template-based mechanism for generating KeyNote credentials.

This decoupling of high- and low-level policy specification permits a more modular and

extensible approach, since languages may be replaced, modified, or created without affecting the

underlying system.

Our architecture requires each high-level language or GUI to include a “referral” primitive. A

referral is simply a reference to a decision made by another language/enforcement point

(typically lower in the protocol stack). This primitive allows us to perform policy composition at

enforcement time; decisions made by one enforcement mechanism (e.g., IPSec) are made

available to higher-level enforcement mechanisms and can be taken into consideration when

Figure 3. A high-level IPSec policy, enforced at the network layer.

Figure 4. A high-level web access policy, enforced by the web server.

allow USERGROUPS if file “/foo/bar.html”

allow ANGELOS if

directory “/confidential” and

source in LOCALNETWORK

permit KEY1 if

using strong encryption and

target in 192.168.1.0/24

permit USERGROUP4 if

using authentication and

origin in LOCALNET and

target in WEBSERVERS

 16

making an access control decision. An example of this is shown in Figure 5. The only needed

coordination between two policy domains is determining what kind of information (encoded in

the referrals) needs to be generated and consumed respectively.

To complete the composition discussion, all that is necessary is a channel to propagate this

information across enforcement layers. In our system, this is done on a case-by-case basis. For

example, IPSec information can be propagated higher in the protocol stack by suitably modifying

the Unix getsockopt(2) system call; in the case of a web server and SSL, the information

is readily available through the SSL data structures (since the SSL and the web access control

enforcement are both done in the context of a single process address space). This approach is

sufficient for policy interaction across network layers, but would not work for arbitrary policy

domain interaction.

2.3 Credential Management

Following our design decision of shifting as much as possible of the operational burden away

from the enforcement points and to the users’ systems, we make the users responsible for

presenting the necessary credentials to the enforcement points they access. Thus, the

enforcement points dynamically “learn” those parts of the global policy that are relevant to a

particular request. It is in the interest of the user to present the correct credentials, in order to

obtain service.

Figure 5. Web access policy taking into consideration decisions made by
the IPSec and SSL protocols. The information on USER-ROOT and
LOCALNETWORK are specified in separate databases, which the compiler
takes into consideration when compiling these rules to KeyNote
credentials.

allow USER-ROOT if

directory “/confidential” and

source in LOCALNETWORK and

(application IPSec says “strong encryption” or

application SSL says “very strong encryption”)

 17

Compiled credentials are available to users through policy repositories. These credentials are

signed by the administrator’s key and contain the various conditions under which a specific user

(as identified by her key in the credential) is allowed to access a service. The translation of the

policy rule in Figure 5 is shown in Figure 6.

Users who wish to gain access to some service first need to acquire a fresh credential from one of

the repositories. It is not necessary to protect the credentials as they are transferred over the

network, since they are self-protected by virtue of being signed.3 Users then provide these

credentials to the relevant service (web server, firewall, etc.) through a protocol-specific

mechanism. For example, in the case of IPSec, these credentials are passed on to the local key

management daemon which then establishes cryptographic context with the remote firewall or

end system. In the case of firewalls in particular, the user’s system can either depend on a

signaling mechanism (as is being developed at the IETF IP Security Policy Working Group) to

detect their existence, or can statically analyze the KeyNote credentials to determine what

actions need to be taken when trying to access specific services, networks, or end-systems.

3 It is possible to provide credential-confidentiality by encrypting each credential with the public key of the intended
recipient.

Figure 6. Translation of the policy rule from Figure 5 to a KeyNote
credential. The public keys and the digital signature are omitted in the
interests of readability.

Authorizer: ADMINISTRATOR_KEY

Licensees: USER_ ROOT KEY

Conditions: app_ domain == “web access” &&

directory = “/confidential/.*” &&

(source_address <= “192.168.001.255” &&

 source_address >= “192.168.001.000”) &&

(ipsec-result == “strong encryption” ||

 ssl_result == “very strong encryption”);

Signature: ...

 18

It is also possible to pass KeyNote credentials in the TLS protocol. For protocols where this is

not possible (e.g., SSH v1), an out-of-band mechanism can be used instead. We have used a

simple web server script interface for submitting credentials to be considered in the context of an

access control decision; credentials are passed as arguments to a CGI script that makes them

available to the web server access control mechanism. To avoid DoS attacks, entries submitted in

this manner are periodically purged (in an LRU manner).

Since policy is expressed is terms of credentials issued to users, it need not be distributed

synchronously to the enforcement points. As noted above, enforcement points do not need to

store all credentials and rules; rather, they learn rules through “lazy policy instantiation” as users

try to gain access to controlled resources. If needed credentials were discarded because of

resource scarcity, the affected users will simply have to re-submit them with their next access.

Adding a new user or granting more privileges to an existing user is simply a matter of issuing a

new credential; (note that both operations are equivalent). The inverse operation, removing a

user or revoking issued privilege, can be more expensive: in the simple case, a user’s credentials

can be allowed to expire; this permits a window of access, between the time the decision is taken

to revoke a user’s privileges and the time the relevant credentials expire. For those cases where

this is adequate, there is no additional overhead. This argues for relatively short-lived credentials,

which the users (rather, software on their systems) will have to re-acquire periodically. While

this may place additional burden on the repositories, it is possible to arrange for credentials to

expire at different times from each other, thus mitigating the effect on the infrastructure of

multiple users (re-)acquiring their credentials at the same time, if the credentials are relatively

long-lived. Given that a large number of digital signatures will have to be computed as a result of

periodically issuing credentials, this is also desirable from a policy-generation point of view.

For more aggressive credential revocation, other mechanisms have to be used. Although no

single revocation mechanism exists that can be used in all possible systems, we note that any

such mechanism should not increase the load or storage requirements on enforcement points.

Thus, the most attractive approach is proofs of validity (acquired by the user from a “refresher”

server, and provided to the enforcement point along with the credentials). The proofs of validity

 19

can be encoded as KeyNote credentials that are injected in the delegation chain, as shown in

Figure 7. While this approach is architecturally attractive, it places high load on the refresher

servers. The validity verification mechanism may be specified on a per-credential basis,

depending on the perceived risk of compromise and the potential damage done if that occurs.

Figure 7. Proof of validity in the form of KeyNote credentials that delegate to the actual user,
shown in (a). This approach requires no changes in the compliance checking mechanism or
credential distribution. Furthermore, by using a proof of validity that applies to large numbers of
users simultaneously, as shown in (b), we can greatly reduce the number of credentials that need
to be periodically re-issued.

Finally, since KeyNote allows arbitrary levels of delegation (through chains of credentials), it is

possible for users to act as lower-level administrators and issue credentials to others. In this way,

we can build a hierarchical and decentralized management scheme wherein the corporate

network administrator authorizes branch administrators to manage their networks under some

constraints. More interestingly, it is possible to view the administrator of another network as a

local user; that administrator can handle access to the shared resources for the remote network

 20

users, under the constraints specified in their credential, making easy the formation of so-called

“extranets.”

3 The Distributed Firewall
To validate our design choices and experiment with the different aspects of our architecture, we

implemented it in the context of a distributed firewall. A distributed firewall (as described in

[14]) enforces a single central security policy at every endpoint. The policy specifies what

connectivity, both inbound and outbound, is permitted. This policy is distributed to all endpoints

where it is authenticated and then enforced, thus making security an end-to-end property.

Distributed firewalls do not rely on the topological notions of “inside” and “outside” as do

traditional firewalls. Rather, a distributed firewall grants specific rights to machines that possess

the credentials specified by the central policy. A laptop connected to the “outside” Internet has

the same level of protection as does a desktop in the organization’s facility. Conversely, a laptop

connected to the corporate net by a visitor would not have the proper credentials, and hence

would be denied access, even though it is topologically “inside.”

In the example STRONGMAN distributed firewall, endpoints are characterized by their public

keys and the credentials they possess. Thus, the right to connect to the http port on a company’s

internal Web server is only granted to those machines having the appropriate credentials, rather

than those machines that happen to be connected to an internal wire. With the advent of wireless

LANs, such considerations are becoming extremely relevant.

In our prototype, end hosts (as identified by their IP address) are also considered principals when

IPSec is not used to secure communications. This allows local policies or credentials issued by

administrators to specify policies similar to current packet-filtering rules. Such policies or

credentials have no option but to implicitly trust the validity of an IP address as an identifier. In

that respect, they are equivalent to standard packet filtering. The only known solution to this is

the use of cryptographic protocols to secure communications.

We should point out that the notions of a traditional and a distributed firewall are not

incompatible. Traditional firewalls have an advantage over the distributed firewall in that they

 21

offer convenient aggregation points for network traffic, on which services such as Denial of

Service detection (or, more generally, intrusion detection) are easier to deploy and operate.

Furthermore, a combination of traditional and distributed firewalls offers “defense in depth”, a

well-established principle in physical security and the military world.

3.1 Implementation

Our OpenBSD-based implementation is composed of three components: (1) a set of kernel

extensions, which implement the enforcement mechanisms; (2) a user level daemon process,

which implements the distributed firewall policies; and (3) a device driver, which is used for

two-way communication between the kernel and the policy daemon. Our prototype

implementation totals approximately 1150 lines of C code, split equally among the three

components.

Figure 8. Block diagram of the distributed firewall implementation.

Figure 8 shows a graphical representation of the system with all its components. The core of the

enforcement mechanism lives in kernel space and comprises the filtering routines and the rule

cache. The policy specification and processing unit lives in user space, inside the policy daemon

process. Any incoming or outgoing IP packets go through the filter and are subject to the policy

 22

rules. If none of the rules match, a request is generated and inserted in the policy context queue.

From there, via the device driver, the policy daemon can get the request and respond

accordingly.

In the following three subsections, we briefly describe the various parts of the architecture, their

functionality, and how they interact with each other.

3.1.1 Kernel Extensions

In the UNIX operating system, users create outgoing and allow incoming connections using a

number of provided system calls. Since any user has access to these system calls, some

“filtering” mechanism is needed. This filtering should be based on a policy that is set by the

administrator, and any incoming or outgoing packet should be subject to it.

In order to enforce our policy over every packet and yet have a simple and elegant design, we

decided to filter IP traffic. To achieve this we added hooks in the ip_input() and

ip_output() routines of the protocol stack (so policies can be enforced on both incoming and

outgoing traffic) that will execute our filtering code. We created two data structures to assist us

in this process.

The first data structure, the rules cache, contains a set of rules that packets are compared against.

If a match is found, the rule is followed to either accept or drop the packet. The second data

structure is the policy context queue. A policy context is a container for all the information

related to a specific packet. We associate a sequence number to each such context and then start

filling it with all the information the policy daemon will need to make an access control decision.

A request to the policy daemon comprises the following fields: a sequence number uniquely

identifying the request, the ID of the user the connection request belongs to, the number of

information fields that will be included in the request, the lengths of those fields, and finally the

fields themselves. This can include source and destination addresses, transport protocol and

ports, etc. Any credentials acquired through IPSec may also be added to the context at this stage.

There is no limit as to the kind or amount of information we can associate with a context. We

 23

can, for example, include the time of day or the number of other open connections of that user, if

we want them to be considered by our decision-making strategy.

Every packet is intercepted at the IP layer and checked against the rules cache. If a match is

found, the rule is enforced. If no match is found, we enqueue a new request to the policy context

queue. If we have already enqueued a request for the same class of packets, no further action is

necessary. Each entry in the context queue also contains the last packet from that packet flow; if

a positive decision is received from the policy daemon, the packet is re-queued for processing by

the IP stack.

3.1.2 Policy Device

To maximize the flexibility of our system and allow for easy experimentation, we decided to

make the policy daemon a user-level process. To support this architecture, we implemented a

pseudo device driver, /dev/policy, that serves as a communication path between the user-

space policy daemon, and the modified system calls in the kernel.

The policy daemon reads the device for pending requests in the policy context queue. It then

handles the request and returns a new rule to the kernel by writing it to the device, as a result of

which the appropriate entry is entered in the rules cache.

It is possible to flush the rules cache. This is useful when the policy that needs to be enforced by

the policy daemon is reloaded by the administrator; once the kernel cache is flushed, the new

policies will take affect as applicable traffic (incoming or outgoing) is encountered.

3.1.3 Policy Daemon

The last component of our system is the policy daemon. It is a user-level process responsible for

making decisions on whether to allow or deny connections. These decisions are based on policies

that are specified by an administrator and credentials retrieved remotely or provided by the

kernel.

Local policies are initially read in from a file. Policies can be added and removed dynamically.

The daemon can simply flush one or more entries from the rules cache in the kernel. This way,

 24

subsequent packets will not match the existing rule set and the policy daemon will be queried for

the new policy. In typical configurations, however, the local policies will simply specify the

public key(s) of the administrator(s); any specific policies will have to be provided by the user or

(optionally) retrieved from a remote repository.

The daemon receives each request from the kernel by reading the policy device. The request

contains all the information relevant to that connection. The daemon acts as a front-end for the

KeyNote library, which is used to decide whether a request should be granted or not (as well as

the “referral”). The decision is sent to the kernel, and the daemon waits for the next request.

While the information received in a particular message is application-dependent, (in our case,

relevant to the distributed firewall,) the daemon itself has no awareness of the specific

application. Thus, it can be used to provide policy resolution services for many different

applications, literally without any modifications.

The “referral” can be provided through the getsockopt(2) API to any applications (such as

a web server) that may need to make a decision based on the network layer’s security properties.

We have implemented a module for Apache that does per-HTTP request access control, based on

a different set of policies and credentials (issued by the web administrator), demonstrating the

feasibility of the “referral” approach.

3.2 Experimental Evaluation

While the architectural discussion is largely qualitative, some estimates of system performance

are useful. We performed several experiments, both of comparable node software (using IPF, a

packet-filtering package implemented completely inside the kernel, used in many open-source

systems,) and of varied topologies which demonstrate the value of maintaining consistent global

security properties.

Our test machines are x86 architecture machines running OpenBSD, and interconnected by 100

Mbps Ethernet. More specifically, in the two-host tests, (source to sink), Alice is an 850 MHz

PIII and serves as the traffic source. Bob, the traffic sink, runs the distributed firewall (DF) code

and is a 400 MHz PII.

 25

In the following tables, insecure means there is neither DF nor IPF running, IPF means we have

IPF activated, cold cache means that we have DF running, but the rules cache is empty and we

must go to the daemon every time to get the rules; this last scenario is useful in determining the

cost of cache misses such as might be experienced in the case of a highly utilized service (e.g.,

an intranet web server with a small ratio of packets per independent user request). Warm cache

means that the rules are in the cache (except for the first reference).

Insecure 50.4 ms
Cold cache 61.7 ms
Warm cache 51.8 ms
IPF 63.1 ms

Figure 9. Average connection overhead for 100 TCP connections between Alice and Bob.

Insecure 109.1 ms
IPF 134.2 ms

Figure 10. Average connection overhead measured for 100 TCP connections between hosts
through a firewall.

Insecure 0.273 ± 0.091 ms
Cold cache 0.283 ± 0.089 ms
Warm cache 0.282 ± 0.077 ms
IPF 0.283 ± 0.124 ms

Figure 11. Average roundtrip time for 200 ICMP ECHO-REQUEST messages.

In Figure 9 we have a server application running on Alice; Bob runs a client which connects to

the server 100 times using different TCP ports. This generates 200 rules (2 per connection, for

incoming and outgoing packets). In the IPF case, those 200 rules are pre-loaded in the filter list.

In the second experiment, Bob sent 200 ICMP ECHO-REQUEST messages to Alice; the results

are shown in Figure 11. We include the standard deviation, as the measurements did vary

slightly. These two experiments show us that the cost of compliance checking in our architecture

is very small (within 3% of an insecure system, except for the TCP cold cache case which is 20%

more expensive), and typically better than IPF. This means that an architecture with

decentralized enforcement does not unduly affect end-system latency.

 26

The measurements of Figure 12 have a server application running on Alice; a client running on

Bob connects to Alice and transfers 100MB. It is clear that our system does not significantly

affect network throughput; (the difference is on the order of 0.5%).

Insecure 11,131 ms
Cold cache 11,196 ms
Warm cache 11,178 ms
IPF 11,151 ms

Figure 12. 100MB file transfer over TCP.

In the experiment of Figure 13, we configured four 300-MHz PII systems interconnected via a

100Mbps Ethernet hub. One of the four machines is connected to the “outside world” with 100

Mbps Ethernet. In the outside world there is an 850 MHz machine (Alice). The “inside” three

machines run a simple server accepting connections. The outside machine, through the gateway,

makes 100 connections in a round robin fashion to the three machines. Measurements are given

in the table of Figure 10.

Using the same end-hosts, we eliminate the gateway machine, with each of the client machines

running the distributed firewall and enforcing policy locally; (see Figure 14). The Ethernet hub is

connected directly to the outside world; the rest of the configuration remains as in the previous

experiment. To test the scalability of the distributed firewall, we varied the number of hosts that

participate in the connection setup. As in the previous experiment, we formed 100 connections to

the machines running the distributed firewall in a round robin fashion, each time varying the

number of participating hosts. We make the assumption that every protected host inside a

firewall contributes roughly the same number of rules, and in the classic centralized case the

firewall will have to enforce the sum of those rules. Therefore, individual machines will have a

smaller rule base than a central control point.

 27

Figure 13. Test topology with intermediate firewall.

Figure 14. Test topology without intermediate firewall.

The measurements and the percentile overheads are given in Figure 15 and Figure 16. We have

kept the total number of rules constant as in the IPF case, and spread them over an increasing

number of machines. This experiment clearly demonstrates the benefit of eliminating

 28

intermediate enforcement points, and pushing security functions to the endpoints: a two-fold

improvement in performance compared to the centralized approach, in addition to the increased

flexibility and scalability offered by our architecture.

 1 Host 2 Hosts 3 Hosts
Insecure 56.1 ms 53.1 ms 48.6 ms
Cold cache 84.3 ms 62.1 ms 53.7 ms
Warm cache 66.3 ms 58.0 ms 50.5 ms

Figure 15. Average connection overhead for 100 TCP connections spread over one,
two, and three hosts, respectively, using the distributed firewall.

 1 Host 2 Hosts 3 Hosts
Cold cache 50.3% 17.0% 10.4%
Warm cache 23.0% 9.3% 3.8%

Figure 16. Reduction of processing overhead of the distributed firewall as the
number of hosts increases. The percentages represent the additional cost of the
distributed firewall over the insecure case and are derived from Figure 15.

In the IPF firewall experiments, the rules must be preloaded; in an experimental configuration

such as we described (with ca. 200 rules) this is a non-issue. In large installations, however, the

number of rules can easily reach 4,000-5,000, (e.g., for a financial institution with which we are

familiar). In an environment where simple IP address checking is insufficient, each such rule has

other information associated with it, (e.g., user public keys, acceptable encryption/authentication

algorithms, other conditions for access). Thus, the storage requirements for network layer

security policy could vary from 4MB to 100MB or more. This requirement would be imposed on

all enforcement points of the same network, which would then be required to have persistent

storage (so the policy survives crashes or power cycling). Furthermore, the enforcement points

would have to sort through a large number of policies in trying to determine the access rights of

any particular user.

 29

Figure 17. Performance degradation of traditional packet-filtering firewalls as the number of rules
increases.

Figure 17 shows the performance degradation of IPF and PF (two other packet-filtering

packages) as the number of total rules increases. This degradation is independent of the number

of active rules in traditional firewalls, and occurs because all the policies have to be present at

the firewall. In STRONGMAN, the number of rules the enforcement point has to consider at any

time is independent of the number of rules it may potentially have to enforce.

The key observation here is that not all users can (or do) access the same enforcement points at

the same time; our architecture takes advantage of this fact, by only instantiating rules as-needed

at an enforcement point. The rules are limited in our system to those needed to grant access to

users actually requesting access. Thus, the security-related expended resources follow more

closely the actual communication and transaction patterns of the network. Furthermore, only a

small subset of rules (those provided by the user) need to be considered with each independent

request, making processing cheaper than otherwise.

 30

4 Related Work
Traditional firewall work [5, 17, 21, 16, 7, 19] has focused on nodes and enforcement

mechanisms, rather than overall network protection and policy coordination.

In OASIS [11], policy coordination is achieved with a role-based system where each principal

may be issued a name by one service on the condition that it has already been issued with some

specified name of another service. Event notification is used to revoke names when the issuing

conditions are not satisfied, thus revoking access to services that depended on that name.

Credentials are limited to verifying membership to a group or role, and OASIS uses delegation in

a very limited way, limiting decentralization.

Firmato’s[l] “network grouping” language is locally customized to each managed firewall. The

language is portable, but limited to packet filtering. It does not handle delegation or different,

interacting application domains. Policy updates force complete reloads of the rulesets at the

affected enforcement points, and the entire relevant policy ruleset must be available at an

enforcement point. This causes scaling problems with respect to the number of users, peer nodes,

and policy entries. A similar system [12] covers additional configuration domains (such as QoS).

Differences are the policy description language and the method by which the rule set is pruned

for any particular device. Other work in the same vein is described in [8] and [18].

Another approach to policy coordination [9] proposes a ticket-based architecture using mediators

to coordinate policy between different information enclaves. Policy relevant to an object is

retrieved by a central repository by the controlling mediator. Mediators also map foreign

principals to local entities, assign local proxies to act as trusted delegates of foreign principals,

and perform other authorization-related duties. Coordination policy must be explicitly defined by

the security administrator of a system and is separate from access policy.

Bonatti et al [4] propose an algebra that allows combination of authorization policies specified in

different languages and issued by different authorities. The main disadvantage is the assumption

that all policies and (more importantly) all necessary supporting information is available at a

single decision point, a difficult proposition even within the bounds of an operating system. Our

 31

observation here is that in fact the decision made by a policy engine can be cached and reused

higher in the stack. Although the authors briefly discuss partial evaluation of composition

policies, they do so only in the context of their generation and not on enforcement.

The NESTOR architecture [15] defines a framework for automated configuration of networks

and their components. NESTOR uses a set of tools for managing a network topology database. It

then translates high-level network configuration directives into device-specific commands

through an adaptation layer. Policy constraints are enforced by dedicated manager processes,

which pose scaling problems. This approach has difficulty with decentralized administration and

separation-of-duty concerns due to its view of the network through a central configuration

depository.

5 Concluding Remarks
STRONGMAN is a new security policy management architecture. Its approach to scaling is local

enforcement of global security policies. The local autonomy provided by compliance checking

permits the architecture to scale comfortably with the Internet infrastructure.

Our distributed firewall implementation on OpenBSD was used to quantify some benefits of

STRONGMAN. As we have shown in Section 3.2, this implementation has higher throughput

and better scalability than a baseline firewall constructed using IPF. It accommodates

considerable complexity in policies: the policy compliance checker composes policy rules into a

coherent enforceable set for each enforcement point, and lazy instantiation reduces the state

required at enforcement points. The removal of topological constraints in firewall placement

facilitates other Internet protocols and mechanisms.

STRONGMAN is the first architecture for providing scalable access control services. Security

enforcement is pushed to the endpoints, consistent with end-to-end design principles. Since the

enforcement points are coupled only by their use of a common global policy, they possess local

autonomy which can be exploited for scaling.

 32

Among our goals for future work are experiments with a larger scale deployment, validating lazy

evaluation on real traffic, and extending the uses of our system with new application-specific

policy languages.

Acknowledgements
We would like to thank Daniel Hartmeier for permission to use Figure 17, which was taken from

[10].

References
[1] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: a novel firewall management toolkit.

Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 17-31, May 1999.

[2] S. M. Bellovin. Distributed Firewalls. ;login: magazine, special issue on security, November

1999.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust

Management System Version 2. Internet RFC 2704, September 1999.

[4] P. Bonatti, S. D. C. di Vimercati, and P. Samarati. A Modular Approach to Composing

Access Policies. Proceedings of Computer and Communications Security (CCS), pp. 164-173.

November 2000.

[5] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security: Repelling the Wily

Hacker. Addison-Wesley, 1994.

[6] D. D. Clark. The Design Philosophy of the DARPA Internet Protocols. Proc. SIGCOMM

1988, pp. 106-114, 1988.

[7] M. Greenwald, S. Singhal, J. Stone, and D. Cheriton. Designing an Academic Firewall.

Policy, Practice and Experience with SURF. Proc. of Network and Distributed System Security

Symposium (NDSS), pp. 79-91, February 1996.

 33

[8] J. D. Guttman. Filtering Postures: Local Enforcement for Global Policies. IEEE Security and

Privacy Conference, pp. 120-129, May 1997.

[9] J. Hale, P. Galiasso, M. Papa, and S. Shenoi. Security Policy Coordination for Heterogeneous

Information Systems. Proc. of the 15th Annual Computer Security Applications Conference

(ACSAC), December 1999.

[10] D. Hartmeier. Design and Performance of the OpenBSD Stateful Packet Filter (pf).

Proceedings of the USENIX Annual Technical Conference, Freenix Track, pp. 171-180, June

2002.

[11] R. Hayton, J. Bacon, and K. Moody. Access Control in an Open Distributed Environment.

IEEE Symposium on Security and Privacy, May 1998.

[12] S. Hinrichs. Policy-Based Management: Bridging the Gap. Proc. of the 15th Annual

Computer Security Applications Conference (ACSAC), December 1999.

[13] J. D. Howard. An Analysis of Security on the Internet 1989-1995. PhD thesis, Carnegie

Mellon University, April 1997.

[14] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith. Implementing a Distributed Firewall.

Proceedings of Computer and Communications Security (CCS), pp. 190-199, November 2000.

[15] A. Konstantinou, S. Bhatt, S. Rajagopalan, and Y. Yemini. Managing Security in Dynamic

Networks. Proceedings of the 13th USENIX Systems Administration Conference (LISA),

November 1999.

[16] B. McKenney, D. Woycke, and W. Lazear. A Network of Firewalls: An Implementation

Example. Proceedings of the 11th Annual Computer Security Applications Conference (ACSAC),

pp. 3-13, December 1995.

[17] J. C. Mogul. Simple and Flexible Datagram Access Controls for UNIX-Based Gateways.

Proceedings of the USENIX Summer 1989 Conference, pp. 203-221, 1989.

 34

[18] A. Molitor. An Architecture for Advanced Packet Filtering. Proceedings of the 5th USENIX

UNIX Security Symposium, June 1995.

[19] D. Nessett and P. Humenn. The Multilayer Firewall. Proc. of Network and Distributed

System Security Symposium (NDSS), pp. 13-27, March 1998.

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in System Design. ACM

Transactions on Computer Systems. 2(4):277-288, November 1984.

[21] D. Sherman, D. Sterne, L. Badger, S. Murphy, K. Walker, and S. Haghighat. Controlling

Network Communication with Domain and Type Enforcement. Proceedings of the 18th National

Information Systems Security Conference, pp. 211-220, October 1995.

