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1 Introduction 
STRONGMAN, for “Scalable Trust of Next Generation MANagement”, was a response to 

DARPA BAA 98-34 and focused on advanced boundary controls and risk management. A key 

technical goal of the proposal was increasing automation of the management of boundary 

controllers, such as gateways and firewalls, in the Internet. 

By automated management, we meant the translation of a high-level security policy into actions 

which support that policy at every relevant level of the information infrastructure. Thus, security 

policy must be reflected in decisions about trust of sources of information, for example in the 

acceptance of a remote invocation. Our belief is that the investigation of scalable automated trust 

management will lead to a huge leap forward in the ability of an organization to deploy an 

auditable error-free realization of network infrastructure meeting security policy goals. 

The basis of our approach was the KeyNote [BFIK99, BIK03] trust management system 

developed at Penn and AT&T Research Labs. KeyNote is a compact simplified representation of 

trust relationships based on the ideas of the AT&T PolicyMaker [BFL96, BFS98] system; trust 

relationships are specified in terms of a symbolic language which when executed results in 

exchanges of cryptographic credentials which map the trust relationships into allowed and 

disallowed actions. The deliverables from our proposed research included an architecture for 

scalable automated trust management [KIGS03], and an experimental prototype realization of 

that architecture for the IP Internet using the OpenBSD UNIX implementation. These 

deliverables and many more were achieved. A summary technical paper [KIGS03], which 

appears in the DARPA Information Survivability Conference and Exposition (DISCEX), has 

been sent electronically to DARPA and AFRL, and accompanies this final report. 

A supplemental letter proposal to DARPA was made in 2002 to further leverage the results of 

this work. In particular, we sought to work intensively on a red-teaming effort with Sandia 

National Laboratories, pursue further research in policy languages, and work with Johns Hopkins 

University on integrating KeyNote with their “Secure Spread” multicast system. 
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2 Management and Personnel 
The grant was set up with the University of Pennsylvania serving as the contractor, with a 

subcontract to AT&T Research, where investigators Blaze, Feigenbaum and Ioannidis were 

employed. While initially AT&T Research foresaw the need for post-Doctoral researchers, as the 

work evolved their research contributions became more direct and less managerial, thus some of 

this work shifted to Penn, resulting in the employment of Todd Miller to perform integration of 

KeyNote with the Apache system and the support of Vassilis Prevelakis (now an Assistant 

Professor at Drexel University) as a post-Doc. 

Smaller subcontracts at various points were made to the University of Maryland - College Park 

(W. Arbaugh, PI) and Columbia University (A. Keromytis, PI). The goal of the first of these was 

to investigate a secure bootstrap, which is a necessary component of an advanced boundary 

controller. The goal of the second was to enable A. Keromytis to continue his work on 

STRONGMAN after assuming a faculty position at Columbia University. 

The contract at Penn was managed by J. Smith as PI and D. Farber and M. Greenwald as Co-PIs. 

D. Farber was on the initial proposal and was unable to perform for part of the contract period 

due to his service as Chief Technologist of the Federal Communications Commission. M. 

Greenwald was added as a Co-PI at Penn due to his experience with firewall engineering at 

Stanford University, where he received his Ph.D. While STRONGMAN was ongoing, Dr. 

Feigenbaum left AT&T Research to join Yale University’s faculty; this had no impact on 

financial management of the project. 

3 Results versus original statement of work 
Our goals and major milestones were: 

1. The design and development of a high-level security-policy language. 

2. Creation of the necessary tools to translate from that language to KeyNote credential(s). 

3. Possible refinement of the KeyNote trust-management system after acquiring the 

necessary operational experience. 
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4. Design and implementation of tools for translating KeyNote credentials to application-

specific credentials. 

5. Implementation of such a proof-of-concept system based on the above architecture, 

utilizing existing firewall and network security capabilities (possibly modifying them in 

the process). 

Our assessment of our success against these goals is as follows: 

1. Several policy languages were created as part of A. Keromytis’s Ph.D. thesis at Penn. 

While these were extensions of KeyNote, they were application-driven, and centered on 

the requirements of boundary controllers and firewalls, as well as management of IPSec 

tunnels [BIK01], as anticipated in the proposal. Additional applications, such as 

CredentialBased File System [MPI+03] were unanticipated in the proposal, but 

demonstrate the generality and applicability of the basic ideas. 

2. These tools were relatively straightforward lexical analyzers and parsers to generate 

KeyNote. 

3. There was not extensive revision of KeyNote; the design and implementation proved 

adequately flexible. 

4. These translations were diverse. One translation was to IPSec configuration, another to 

Apache access controls, another to packet-filtering rules for pf [Har02] and ipf 

firewalls, and yet another to control access on hosts via system calls. 

5. Our proof-of-concept system was implemented and as it has evolved has greatly 

influenced existing practice. While the STRONGMAN architecture described in the 

associated document is a complete realization of the goal in the initial proposal, systems 

such as a “ShrinkWrap VPN” [PK02, PK03] security appliance and a “Distributed 

Firewall” [IKBS00] have embodied the concepts and in the latter case have served as a 

significant source of tech transfer. The distributed firewall work has spawned an 

energetic working group in the Internet community’s IETF called “DEFCON”, which 
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involves significant system vendors (e.g., Intel) in design and configuration of distribute 

firewall systems for new environments such as network processors. 

4 Letter Proposal Work and Results 
Three additional tasks were proposed in the Letter Proposal. These were: 

1. Work with a “Red Team” at Sandia National Laboratories to investigate the “ShrinkWrap 

VPN”, a single-board computer designed as a security appliance to be managed by the 

STRONGMAN policy management architecture. 

2. Work on further generalizations of policy expression languages to control aggregates of 

hosts and boundary controllers to deliver policy-controlled “Virtual Private Services”. 

3. Work on using KeyNote policies to control Secure Spread, a secure multicast system 

developed at Johns Hopkins University by Y. Amir. 

We can report on each item as follows: 

1. The ShrinkWrap VPN project supported Sandia National Laboratories efforts for a 

“design red team”; two complete systems were sent to Sandia and extensive 

documentation written and supplied. (These will be sent as attachments to this report to 

DARPA and to AFRL.) In additional, multiple teleconferences were used to explain the 

system and its goals and features, and to lay out questions to be addressed in the Red 

Teaming effort. This effort was set back initially by a change of personnel at Sandia, and 

once restarted in Spring/Summer 2002, was set back yet again by inadequate funds at 

Sandia to continue the study. The two systems built for Sandia use were returned to Penn 

by David Duggan, the Sandia Red Team leader. 

2. The Secure Spread integration was being investigated by Todd Miller, who had 

integrated KeyNote and the Apache web server, but was not completed due to lack of 

funds. 
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3. The Virtual Private Services effort has bloomed [IKIS03]. The system was based on the 

observation that the imposition of policy controls at both hosts [IBS02] and network-

embedded elements such as routers and firewalls permits policy-based control of the 

entire distributed system. For example, queries can only reach nodes to which policy 

allows them to be routed, and remote logins might be policy controlled to allow only 

strongly encrypted IPSec tunnels to log in remotely, to access selected files, etc. The 

unification of host and network access controls achieves Virtual Private Services; a paper 

has recently been accepted on this work [IKIS03] and an National Science Foundation 

proposal to extend the work to computational grids (“GRIDLOCK”, Joan Feigenbaum 

PI) has been funded under NSF’s Trusted Computing program, permitting the DARPA-

seeded work to extend to larger sets of science and engineering domains. 

5 Summary 
The main body of work proposed in the initial BAA 98-34 response was completed successfully 

and within budget. New directions were spawned both within and outside the context of 

STRONGMAN. Within, the letter proposal represents interesting directions that were exposed. 

Externally, the Internet Engineering Task Force DEFCON working group was stimulated by the 

distributed firewall work and represents effective technology transfer. Perhaps most importantly, 

the STRONGMAN project originated a variety of new approaches to managing groups of 

boundary controllers and other devices that gave rise to a whole new policy-directed paradigm. 

For example, while it preceded the DARPA “Dynamic Coalitions” program, STRONGMAN can 

be seen as providing intellectual roots for that approach. This is reinforced by the many 

presentations at Dynamic Coalitions PI meetings which use KeyNote and STRONGMAN as the 

baselines for their research in trust management and policy languages. 
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Appendix A: The STRONGMAN Architecture1 
Angelos D. Keromytis, Sotiris Ioannidis, Michael B. Greenwald and Jonathan M. Smith2 

Abstract 
The design principle of restricting local autonomy only where necessary for global robustness 

has led to a scalable Internet. Unfortunately, this scalability and capacity for distributed control 

has not been achieved in the mechanisms for specifying and enforcing security policies. This 

shortcoming must be overcome if end-to-end security mechanisms (such as IPSec or TLS) are to 

ever replace solutions of short-term convenience such as firewalls. 

The STRONGMAN (for Scalable TRust Of Next Generation MANagement) system offers three 

new approaches to scalability, applying the principle of local policy enforcement complying with 

global security policies. First is the use of a compliance checker to provide great local autonomy 

within the constraints of a global security policy. Second is a mechanism to compose policy rules 

into a coherent enforceable set, e.g., at the boundaries of two locally autonomous application 

domains. Third is the “lazy instantiation” of policies to reduce the amount of state that 

enforcement points need to maintain. 

We demonstrate the use of these approaches in the design, implementation, and measurements of 

a distributed firewall. Our experiments show that, under certain circumstances, performance can 

improve over the traditional firewall approach. 

1 Introduction 
Much of the Internet’s scalability has been achieved as a byproduct of intelligent application of 

the end-to-end design principle ([20, 6]), where properties that must hold end-to-end are 

provided by mechanisms at the end points. The resulting design keeps the network simple and 

allows great local autonomy in implementing these mechanisms. 

                                                 
1 This work was supported by DARPA under Contract F30602-99-1-512-MOD P0001. 
2 Angelos D. Keromytis is with the CS Department, Columbia University, Email: angelos@cs.columbia.edu. Sotiris 
Ioannidis, Michael B. Greenwald, Jonathan M. Smith are with the CIS Department, University of Pennsylvania, 
Email: sotiris@dsl.cis.upenn.edu, mbgreen@dsl.cis.upenn.edu, jms@dsl.cis.upenn.edu 
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Security for distributed applications is arguably an end-to-end property. By the end-to-end 

argument hosts should be responsible for the perceived security of “the internet.” However, 

several factors currently argue against this placement of functionality. First, policies must 

typically be specified at the granularity of administrative domains (e.g., a corporate network), 

and not only at the granularity of individual hosts. Second, some operating systems have been 

designed under the assumption that network security is mostly handled by third parties 

(firewalls), thus lacking enforcement mechanisms. Third, many security policies adopt the “hard 

shell, soft interior” approach, by granting more rights to “local” (and, by implication, trusted) 

machines and entities. 

 

Figure 1. A firewall’s bottleneck topology. 

This situation has led, for example, to the pervasive use of firewalls, which enforce a single 

security policy at network boundaries to protect multiple hosts behind the boundaries from 

certain classes of security problems. To implement the policy globally, the network topology 

must be restricted to pass all traffic through the firewall, as shown in Figure 1. Unfortunately, 

these firewalls have many negative consequences for Internet routing, flow control, and 

performance. Furthermore, when the firewall fails or is otherwise bypassed, the entire internal 
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network is at the mercy of the intruder (as was evidenced by the recent cases of corporate 

network infections by multi-vectored worms). 

Any alternative that attempts to avoid the performance bottleneck of a centralized firewall must 

support a simple (and consistent) specification of security policy for an entire administrative 

domain. In other words, there must be means of ensuring that the local enforcement actually 

conforms to the larger (“global”) policy. Since manual or semiautomatic configuration of nodes 

and protocols to conform to a global policy has been shown to be problematic and error-prone 

[13], automatic techniques relying on a single method of specification are desirable. 

To further complicate matters, experience has shown that no single mechanism exists that can 

address the security requirements of all applications and protocols. Therefore, multiple security 

mechanisms (with overlapping scopes, such as IPSec and SSL) are typically in use 

simultaneously in many networks. These multiple security mechanisms must present a single 

consistent system image to the administrator, else complexity of configuration will again result 

in errors. 

It may seem natural to generalize the solution proposed by distributed firewalls ([2, 14]) and 

design a “universal” high-level policy specification language. Such a language would, ideally, 

specify global policies that must be enforced across multiple heterogeneous domains. However, 

security policies are often application-dependent. “Universal” high-level policy languages tend 

to be feature-rich and complex, and are therefore clumsy and lead to mistakes. Furthermore, such 

languages often presume homogeneity, and cannot handle mixtures of multiple mechanisms/ 

languages for different parts of the same network. 

Therefore, we argue that the correct approach is an architecture that ties together multiple 

security mechanisms within a single system image, that supports many application-specific 

policy languages, that automatically distributes and uniformly enforces the single security policy 

across all enforcement points, and that allows enforcement points to be chosen appropriately to 

meet both security and performance requirements. Further, this architecture must scale with the 
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growth of the network in several dimensions, (number of users, hosts, protocols/applications, and 

security policies tying all these together). 

In this paper we propose an architecture, STRONGMAN, and argue that it meets these 

requirements. The main components of our architecture are the use of a policy compliance 

checker to provide great local autonomy within the constraints of a global security policy, a 

mechanism for composing policy rules into a coherent enforceable set, and “lazy instantiation” 

of policies to reduce the amount of data that enforcement points need to maintain. 

In the following sections we describe these three components and their use in the STRONGMAN 

architecture in more detail, discuss its instantiation in the form of a distributed firewall, and 

present some preliminary measurements which show that performance can improve in certain 

scenarios, relative to the traditional firewall approach. We then compare our approach with other 

work, and conclude the paper with some discussion on future directions. 

2 Our Approach 
Following our previous discussion, we have set certain requirements for our proposed system. 

First, it must handle growth in the number of users, applications, enforcement points, and rules 

pertaining to these. A corollary to this is that the most common operations (i.e., policy updates) 

must be very cheap. Second, security policies for a particular application should be specifiable in 

an application-specific language or application-specific extension. Third, administrators should 

be able to independently specify policies over their own domain: this should be true whether the 

administrator manages particular applications within a security domain, or manages a sub-

domain of a larger administrative domain. In other words, the system must support privilege 

delegation and hierarchical management. 

These requirements shape our design of the STRONGMAN architecture. An overview of the 

policy flow in our architecture is shown in Figure 2. It should be immediately clear that there is a 

distinction between high- and low-level policy. In particular, we envision a multiplicity of high-

level policy specification mechanisms (different languages, GUIs, etc.), all translating to the 

same lower-level policy expression language. A powerful, flexible, and extensible low-level 
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mechanism that is used as a common “policy interoperability layer” allows us to use the same 

policy model across different applications, without mandating the use of any particular policy 

front-end. This architecture has an intentional resemblance to the IP “hourglass,” and resolves 

heterogeneity in similar ways, e.g., the mapping of the interoperability layer onto a particular 

enforcement device, or the servicing of multiple applications with a policy lingua franca. 

 

Figure 2. KeyNote used as a policy interoperability layer. Policy composition in STRONGMAN 
does not depend on using the same compiler to process all the high-level policies. 

As the figure also implies, policy is enforced in a decentralized manner. STRONGMAN shifts as 

much of the operational burden as possible to the end users’ systems because traditional 

enforcement points are generally overloaded with processing requests and mediating access. In 

our architecture, we can have an arbitrary number of enforcement points, deployed at the 

granularity necessary to enforce very fine-grained access control. This, however, can lead to 

excessively large numbers of policy rules (in the worst case, the cross-product of the number of 

users, number of nodes, and number of services per node). In order to minimize the resources 



 

 13

consumed by policy storage and processing at each enforcement point, the low-level policy 

system supports “lazy instantiation” of policy. In other words, an enforcement point should only 

learn those parts of the global policy that it actually has to enforce as a result of user service 

access patterns. A further benefit of this approach is that policy may be treated as “soft state,” 

and thus be discarded by the enforcement point when resources are running low, and recovered 

when space permits or after a crash. 

Other important aspects of our architecture, not shown in Figure 2, include: 

• Independent policy specifications can be composed in a manner which does not violate any 

of them, because multiple independently-specified policies may be managed at a single 

enforcement point. 

• Users are identified by their public keys; (each user may have multiple keys, for different 

purposes/applications). These public keys are used in the context of various protocols to 

authenticate the users to specific services. This also helps prevent malicious users from 

tampering with policies provided to enforcement points via “lazy policy instantiation.” 

• The low-level policy system allows for decentralized and hierarchical management and 

supports privilege delegation to other users. Note that delegation allows any user to be 

treated as an “administrator” of her delegatees; conversely, administrators in such a system 

can simply be viewed as users with very broad privileges. This permits both decentralized 

management (different administrators/users are made responsible for delegating and 

potentially refining different sets of privileges), and collaborative networking (by treating the 

remote administrator as a local user with specific privileges she can then delegate to her 

users). Limited privileges can be conferred to administrators of other domains, who can then 

delegate these to their users appropriately; this allows for Intranet-style collaborations. 

Our architecture implements these design principles by using the KeyNote [3] trust-management 

system as a basis for expressing and distributing low-level security policy. In the next few 

subsections we give an overview of KeyNote, describe the policy translation and composition 
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mechanisms, and discuss how policy is distributed (and how “lazy instantiation” is implemented) 

in our system. 

2.1 KeyNote 

KeyNote is a simple trust-management system and language developed to support a variety of 

applications. Although it is beyond the scope of this paper to give a complete tutorial or 

reference on KeyNote syntax and semantics (for which the reader is referred to [3]), we review a 

few basic concepts to give the reader a taste of what is going on. 

The basic service provided by the KeyNote system is compliance checking; that is, checking 

whether a proposed action conforms to local policy. Actions in KeyNote are specified as a set of 

name-value pairs, called an Action Attribute Set. Policies are written in the KeyNote assertion 

language and either accept or reject action attribute sets presented to it. Policies can be broken 

up and distributed via credentials, which are signed assertions that can be sent over a network 

and to which a local policy can defer in making its decisions. The credential mechanism allows 

for complex graphs of trust, in which credentials signed by several entities are considered when 

authorizing actions. Users have a variety of credentials, for the different services and nodes they 

need to access. 

Each service that needs to mediate access, queries its local compliance checker on a per-request 

basis; (what constitutes a “request” depends on the specific service and protocol). The 

compliance checker can be implemented as a library that is linked against every service, as a 

daemon that serves all processes in a host, or as a network service. (This latter case requires 

provisions for secure communications between the policy enforcer and the compliance checker.) 

2.2 Policy Translation and Composition 

In our architecture, policy for different network applications can be expressed in various high-

level policy languages or systems, each fine-tuned to the particular application. Each such 

language is processed by a specialized compiler that can take into consideration such information 

as network topology or a user database and produces a set of KeyNote credentials. At the 

absolute minimum, such a compiler needs a knowledge of the public keys identifying the users in 



 

 15

the system. Other information is necessary on a per-application basis. For example, knowledge 

of the network topology is typically useful in specifying packet filtering policy: for web content 

access control, on the other hand, the web servers’ contents and directory layout are probably 

more useful. Our proof-of-concept languages, (examples are shown in Figure 3 and Figure 4,) 

use a template-based mechanism for generating KeyNote credentials. 

This decoupling of high- and low-level policy specification permits a more modular and 

extensible approach, since languages may be replaced, modified, or created without affecting the 

underlying system. 

Our architecture requires each high-level language or GUI to include a “referral” primitive. A 

referral is simply a reference to a decision made by another language/enforcement point 

(typically lower in the protocol stack). This primitive allows us to perform policy composition at 

enforcement time; decisions made by one enforcement mechanism (e.g., IPSec) are made 

available to higher-level enforcement mechanisms and can be taken into consideration when 

Figure 3. A high-level IPSec policy, enforced at the network layer. 

Figure 4. A high-level web access policy, enforced by the web server. 

allow USERGROUPS if file “/foo/bar.html” 

allow ANGELOS if 

directory “/confidential” and 

source in LOCALNETWORK 

permit KEY1 if 

using strong encryption and 

target in 192.168.1.0/24 

permit USERGROUP4 if 

using authentication and 

origin in LOCALNET and 

target in WEBSERVERS 
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making an access control decision. An example of this is shown in Figure 5. The only needed 

coordination between two policy domains is determining what kind of information (encoded in 

the referrals) needs to be generated and consumed respectively. 

To complete the composition discussion, all that is necessary is a channel to propagate this 

information across enforcement layers. In our system, this is done on a case-by-case basis. For 

example, IPSec information can be propagated higher in the protocol stack by suitably modifying 

the Unix getsockopt(2) system call; in the case of a web server and SSL, the information 

is readily available through the SSL data structures (since the SSL and the web access control 

enforcement are both done in the context of a single process address space). This approach is 

sufficient for policy interaction across network layers, but would not work for arbitrary policy 

domain interaction. 

2.3 Credential Management 

Following our design decision of shifting as much as possible of the operational burden away 

from the enforcement points and to the users’ systems, we make the users responsible for 

presenting the necessary credentials to the enforcement points they access. Thus, the 

enforcement points dynamically “learn” those parts of the global policy that are relevant to a 

particular request. It is in the interest of the user to present the correct credentials, in order to 

obtain service. 

Figure 5. Web access policy taking into consideration decisions made by 
the IPSec and SSL protocols. The information on USER-ROOT and 
LOCALNETWORK are specified in separate databases, which the compiler 
takes into consideration when compiling these rules to KeyNote 
credentials. 

allow USER-ROOT if 

directory “/confidential” and 

source in LOCALNETWORK and 

(application IPSec says “strong encryption” or 

application SSL says “very strong encryption”) 
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Compiled credentials are available to users through policy repositories. These credentials are 

signed by the administrator’s key and contain the various conditions under which a specific user 

(as identified by her key in the credential) is allowed to access a service. The translation of the 

policy rule in Figure 5 is shown in Figure 6. 

Users who wish to gain access to some service first need to acquire a fresh credential from one of 

the repositories. It is not necessary to protect the credentials as they are transferred over the 

network, since they are self-protected by virtue of being signed.3 Users then provide these 

credentials to the relevant service (web server, firewall, etc.) through a protocol-specific 

mechanism. For example, in the case of IPSec, these credentials are passed on to the local key 

management daemon which then establishes cryptographic context with the remote firewall or 

end system. In the case of firewalls in particular, the user’s system can either depend on a 

signaling mechanism (as is being developed at the IETF IP Security Policy Working Group) to 

detect their existence, or can statically analyze the KeyNote credentials to determine what 

actions need to be taken when trying to access specific services, networks, or end-systems. 

                                                 
3 It is possible to provide credential-confidentiality by encrypting each credential with the public key of the intended 
recipient. 

Figure 6. Translation of the policy rule from Figure 5 to a KeyNote 
credential. The public keys and the digital signature are omitted in the 
interests of readability. 

Authorizer: ADMINISTRATOR_KEY 

Licensees: USER_ ROOT KEY 

Conditions: app_ domain == “web access” && 

directory = “/confidential/.*” && 

(source_address <= “192.168.001.255” && 

 source_address >= “192.168.001.000”) && 

(ipsec-result == “strong encryption” || 

 ssl_result == “very strong encryption”); 

Signature: ... 
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It is also possible to pass KeyNote credentials in the TLS protocol. For protocols where this is 

not possible (e.g., SSH v1), an out-of-band mechanism can be used instead. We have used a 

simple web server script interface for submitting credentials to be considered in the context of an 

access control decision; credentials are passed as arguments to a CGI script that makes them 

available to the web server access control mechanism. To avoid DoS attacks, entries submitted in 

this manner are periodically purged (in an LRU manner). 

Since policy is expressed is terms of credentials issued to users, it need not be distributed 

synchronously to the enforcement points. As noted above, enforcement points do not need to 

store all credentials and rules; rather, they learn rules through “lazy policy instantiation” as users 

try to gain access to controlled resources. If needed credentials were discarded because of 

resource scarcity, the affected users will simply have to re-submit them with their next access. 

Adding a new user or granting more privileges to an existing user is simply a matter of issuing a 

new credential; (note that both operations are equivalent). The inverse operation, removing a 

user or revoking issued privilege, can be more expensive: in the simple case, a user’s credentials 

can be allowed to expire; this permits a window of access, between the time the decision is taken 

to revoke a user’s privileges and the time the relevant credentials expire. For those cases where 

this is adequate, there is no additional overhead. This argues for relatively short-lived credentials, 

which the users (rather, software on their systems) will have to re-acquire periodically. While 

this may place additional burden on the repositories, it is possible to arrange for credentials to 

expire at different times from each other, thus mitigating the effect on the infrastructure of 

multiple users (re-)acquiring their credentials at the same time, if the credentials are relatively 

long-lived. Given that a large number of digital signatures will have to be computed as a result of 

periodically issuing credentials, this is also desirable from a policy-generation point of view. 

For more aggressive credential revocation, other mechanisms have to be used. Although no 

single revocation mechanism exists that can be used in all possible systems, we note that any 

such mechanism should not increase the load or storage requirements on enforcement points. 

Thus, the most attractive approach is proofs of validity (acquired by the user from a “refresher” 

server, and provided to the enforcement point along with the credentials). The proofs of validity 
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can be encoded as KeyNote credentials that are injected in the delegation chain, as shown in 

Figure 7. While this approach is architecturally attractive, it places high load on the refresher 

servers. The validity verification mechanism may be specified on a per-credential basis, 

depending on the perceived risk of compromise and the potential damage done if that occurs. 

 

Figure 7. Proof of validity in the form of KeyNote credentials that delegate to the actual user, 
shown in (a). This approach requires no changes in the compliance checking mechanism or 
credential distribution. Furthermore, by using a proof of validity that applies to large numbers of 
users simultaneously, as shown in (b), we can greatly reduce the number of credentials that need 
to be periodically re-issued. 

Finally, since KeyNote allows arbitrary levels of delegation (through chains of credentials), it is 

possible for users to act as lower-level administrators and issue credentials to others. In this way, 

we can build a hierarchical and decentralized management scheme wherein the corporate 

network administrator authorizes branch administrators to manage their networks under some 

constraints. More interestingly, it is possible to view the administrator of another network as a 

local user; that administrator can handle access to the shared resources for the remote network 
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users, under the constraints specified in their credential, making easy the formation of so-called 

“extranets.” 

3 The Distributed Firewall 
To validate our design choices and experiment with the different aspects of our architecture, we 

implemented it in the context of a distributed firewall. A distributed firewall (as described in 

[14]) enforces a single central security policy at every endpoint. The policy specifies what 

connectivity, both inbound and outbound, is permitted. This policy is distributed to all endpoints 

where it is authenticated and then enforced, thus making security an end-to-end property. 

Distributed firewalls do not rely on the topological notions of “inside” and “outside” as do 

traditional firewalls. Rather, a distributed firewall grants specific rights to machines that possess 

the credentials specified by the central policy. A laptop connected to the “outside” Internet has 

the same level of protection as does a desktop in the organization’s facility. Conversely, a laptop 

connected to the corporate net by a visitor would not have the proper credentials, and hence 

would be denied access, even though it is topologically “inside.” 

In the example STRONGMAN distributed firewall, endpoints are characterized by their public 

keys and the credentials they possess. Thus, the right to connect to the http port on a company’s 

internal Web server is only granted to those machines having the appropriate credentials, rather 

than those machines that happen to be connected to an internal wire. With the advent of wireless 

LANs, such considerations are becoming extremely relevant. 

In our prototype, end hosts (as identified by their IP address) are also considered principals when 

IPSec is not used to secure communications. This allows local policies or credentials issued by 

administrators to specify policies similar to current packet-filtering rules. Such policies or 

credentials have no option but to implicitly trust the validity of an IP address as an identifier. In 

that respect, they are equivalent to standard packet filtering. The only known solution to this is 

the use of cryptographic protocols to secure communications. 

We should point out that the notions of a traditional and a distributed firewall are not 

incompatible. Traditional firewalls have an advantage over the distributed firewall in that they 
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offer convenient aggregation points for network traffic, on which services such as Denial of 

Service detection (or, more generally, intrusion detection) are easier to deploy and operate. 

Furthermore, a combination of traditional and distributed firewalls offers “defense in depth”, a 

well-established principle in physical security and the military world. 

3.1 Implementation 

Our OpenBSD-based implementation is composed of three components: (1) a set of kernel 

extensions, which implement the enforcement mechanisms; (2) a user level daemon process, 

which implements the distributed firewall policies; and (3) a device driver, which is used for 

two-way communication between the kernel and the policy daemon. Our prototype 

implementation totals approximately 1150 lines of C code, split equally among the three 

components. 

 

Figure 8. Block diagram of the distributed firewall implementation. 

Figure 8 shows a graphical representation of the system with all its components. The core of the 

enforcement mechanism lives in kernel space and comprises the filtering routines and the rule 

cache. The policy specification and processing unit lives in user space, inside the policy daemon 

process. Any incoming or outgoing IP packets go through the filter and are subject to the policy 
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rules. If none of the rules match, a request is generated and inserted in the policy context queue. 

From there, via the device driver, the policy daemon can get the request and respond 

accordingly. 

In the following three subsections, we briefly describe the various parts of the architecture, their 

functionality, and how they interact with each other. 

3.1.1 Kernel Extensions 

In the UNIX operating system, users create outgoing and allow incoming connections using a 

number of provided system calls. Since any user has access to these system calls, some 

“filtering” mechanism is needed. This filtering should be based on a policy that is set by the 

administrator, and any incoming or outgoing packet should be subject to it. 

In order to enforce our policy over every packet and yet have a simple and elegant design, we 

decided to filter IP traffic. To achieve this we added hooks in the ip_input() and 

ip_output() routines of the protocol stack (so policies can be enforced on both incoming and 

outgoing traffic) that will execute our filtering code. We created two data structures to assist us 

in this process. 

The first data structure, the rules cache, contains a set of rules that packets are compared against. 

If a match is found, the rule is followed to either accept or drop the packet. The second data 

structure is the policy context queue. A policy context is a container for all the information 

related to a specific packet. We associate a sequence number to each such context and then start 

filling it with all the information the policy daemon will need to make an access control decision. 

A request to the policy daemon comprises the following fields: a sequence number uniquely 

identifying the request, the ID of the user the connection request belongs to, the number of 

information fields that will be included in the request, the lengths of those fields, and finally the 

fields themselves. This can include source and destination addresses, transport protocol and 

ports, etc. Any credentials acquired through IPSec may also be added to the context at this stage. 

There is no limit as to the kind or amount of information we can associate with a context. We 
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can, for example, include the time of day or the number of other open connections of that user, if 

we want them to be considered by our decision-making strategy. 

Every packet is intercepted at the IP layer and checked against the rules cache. If a match is 

found, the rule is enforced. If no match is found, we enqueue a new request to the policy context 

queue. If we have already enqueued a request for the same class of packets, no further action is 

necessary. Each entry in the context queue also contains the last packet from that packet flow; if 

a positive decision is received from the policy daemon, the packet is re-queued for processing by 

the IP stack. 

3.1.2 Policy Device 

To maximize the flexibility of our system and allow for easy experimentation, we decided to 

make the policy daemon a user-level process. To support this architecture, we implemented a 

pseudo device driver, /dev/policy, that serves as a communication path between the user-

space policy daemon, and the modified system calls in the kernel. 

The policy daemon reads the device for pending requests in the policy context queue. It then 

handles the request and returns a new rule to the kernel by writing it to the device, as a result of 

which the appropriate entry is entered in the rules cache. 

It is possible to flush the rules cache. This is useful when the policy that needs to be enforced by 

the policy daemon is reloaded by the administrator; once the kernel cache is flushed, the new 

policies will take affect as applicable traffic (incoming or outgoing) is encountered. 

3.1.3 Policy Daemon 

The last component of our system is the policy daemon. It is a user-level process responsible for 

making decisions on whether to allow or deny connections. These decisions are based on policies 

that are specified by an administrator and credentials retrieved remotely or provided by the 

kernel. 

Local policies are initially read in from a file. Policies can be added and removed dynamically. 

The daemon can simply flush one or more entries from the rules cache in the kernel. This way, 
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subsequent packets will not match the existing rule set and the policy daemon will be queried for 

the new policy. In typical configurations, however, the local policies will simply specify the 

public key(s) of the administrator(s); any specific policies will have to be provided by the user or 

(optionally) retrieved from a remote repository. 

The daemon receives each request from the kernel by reading the policy device. The request 

contains all the information relevant to that connection. The daemon acts as a front-end for the 

KeyNote library, which is used to decide whether a request should be granted or not (as well as 

the “referral”). The decision is sent to the kernel, and the daemon waits for the next request. 

While the information received in a particular message is application-dependent, (in our case, 

relevant to the distributed firewall,) the daemon itself has no awareness of the specific 

application. Thus, it can be used to provide policy resolution services for many different 

applications, literally without any modifications. 

The “referral” can be provided through the getsockopt(2) API to any applications (such as 

a web server) that may need to make a decision based on the network layer’s security properties. 

We have implemented a module for Apache that does per-HTTP request access control, based on 

a different set of policies and credentials (issued by the web administrator), demonstrating the 

feasibility of the “referral” approach. 

3.2 Experimental Evaluation 

While the architectural discussion is largely qualitative, some estimates of system performance 

are useful. We performed several experiments, both of comparable node software (using IPF, a 

packet-filtering package implemented completely inside the kernel, used in many open-source 

systems,) and of varied topologies which demonstrate the value of maintaining consistent global 

security properties. 

Our test machines are x86 architecture machines running OpenBSD, and interconnected by 100 

Mbps Ethernet. More specifically, in the two-host tests, (source to sink), Alice is an 850 MHz 

PIII and serves as the traffic source. Bob, the traffic sink, runs the distributed firewall (DF) code 

and is a 400 MHz PII. 
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In the following tables, insecure means there is neither DF nor IPF running, IPF means we have 

IPF activated, cold cache means that we have DF running, but the rules cache is empty and we 

must go to the daemon every time to get the rules; this last scenario is useful in determining the 

cost of cache misses such as might be experienced in the case of a highly utilized service (e.g., 

an intranet web server with a small ratio of packets per independent user request). Warm cache 

means that the rules are in the cache (except for the first reference). 

Insecure 50.4 ms 
Cold cache 61.7 ms 
Warm cache 51.8 ms 
IPF 63.1 ms 

Figure 9. Average connection overhead for 100 TCP connections between Alice and Bob. 

Insecure 109.1 ms 
IPF 134.2 ms 

Figure 10. Average connection overhead measured for 100 TCP connections between hosts 
through a firewall. 

Insecure 0.273 ± 0.091 ms 
Cold cache 0.283 ± 0.089 ms 
Warm cache 0.282 ± 0.077 ms 
IPF 0.283 ± 0.124 ms 

Figure 11. Average roundtrip time for 200 ICMP ECHO-REQUEST messages. 

In Figure 9 we have a server application running on Alice; Bob runs a client which connects to 

the server 100 times using different TCP ports. This generates 200 rules (2 per connection, for 

incoming and outgoing packets). In the IPF case, those 200 rules are pre-loaded in the filter list. 

In the second experiment, Bob sent 200 ICMP ECHO-REQUEST messages to Alice; the results 

are shown in Figure 11. We include the standard deviation, as the measurements did vary 

slightly. These two experiments show us that the cost of compliance checking in our architecture 

is very small (within 3% of an insecure system, except for the TCP cold cache case which is 20% 

more expensive), and typically better than IPF. This means that an architecture with 

decentralized enforcement does not unduly affect end-system latency. 
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The measurements of Figure 12 have a server application running on Alice; a client running on 

Bob connects to Alice and transfers 100MB. It is clear that our system does not significantly 

affect network throughput; (the difference is on the order of 0.5%). 

Insecure 11,131 ms 
Cold cache 11,196 ms 
Warm cache 11,178 ms 
IPF 11,151 ms 

Figure 12. 100MB file transfer over TCP. 

In the experiment of Figure 13, we configured four 300-MHz PII systems interconnected via a 

100Mbps Ethernet hub. One of the four machines is connected to the “outside world” with 100 

Mbps Ethernet. In the outside world there is an 850 MHz machine (Alice). The “inside” three 

machines run a simple server accepting connections. The outside machine, through the gateway, 

makes 100 connections in a round robin fashion to the three machines. Measurements are given 

in the table of Figure 10. 

Using the same end-hosts, we eliminate the gateway machine, with each of the client machines 

running the distributed firewall and enforcing policy locally; (see Figure 14). The Ethernet hub is 

connected directly to the outside world; the rest of the configuration remains as in the previous 

experiment. To test the scalability of the distributed firewall, we varied the number of hosts that 

participate in the connection setup. As in the previous experiment, we formed 100 connections to 

the machines running the distributed firewall in a round robin fashion, each time varying the 

number of participating hosts. We make the assumption that every protected host inside a 

firewall contributes roughly the same number of rules, and in the classic centralized case the 

firewall will have to enforce the sum of those rules. Therefore, individual machines will have a 

smaller rule base than a central control point. 
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Figure 13. Test topology with intermediate firewall. 

 

Figure 14. Test topology without intermediate firewall. 

The measurements and the percentile overheads are given in Figure 15 and Figure 16. We have 

kept the total number of rules constant as in the IPF case, and spread them over an increasing 

number of machines. This experiment clearly demonstrates the benefit of eliminating 
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intermediate enforcement points, and pushing security functions to the endpoints: a two-fold 

improvement in performance compared to the centralized approach, in addition to the increased 

flexibility and scalability offered by our architecture. 

 1 Host 2 Hosts 3 Hosts 
Insecure 56.1 ms 53.1 ms 48.6 ms 
Cold cache 84.3 ms 62.1 ms 53.7 ms 
Warm cache 66.3 ms 58.0 ms 50.5 ms 

Figure 15. Average connection overhead for 100 TCP connections spread over one, 
two, and three hosts, respectively, using the distributed firewall. 

 1 Host 2 Hosts 3 Hosts 
Cold cache 50.3% 17.0% 10.4% 
Warm cache 23.0% 9.3% 3.8% 

Figure 16. Reduction of processing overhead of the distributed firewall as the 
number of hosts increases. The percentages represent the additional cost of the 
distributed firewall over the insecure case and are derived from Figure 15. 

In the IPF firewall experiments, the rules must be preloaded; in an experimental configuration 

such as we described (with ca. 200 rules) this is a non-issue. In large installations, however, the 

number of rules can easily reach 4,000-5,000, (e.g., for a financial institution with which we are 

familiar). In an environment where simple IP address checking is insufficient, each such rule has 

other information associated with it, (e.g., user public keys, acceptable encryption/authentication 

algorithms, other conditions for access). Thus, the storage requirements for network layer 

security policy could vary from 4MB to 100MB or more. This requirement would be imposed on 

all enforcement points of the same network, which would then be required to have persistent 

storage (so the policy survives crashes or power cycling). Furthermore, the enforcement points 

would have to sort through a large number of policies in trying to determine the access rights of 

any particular user. 
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Figure 17. Performance degradation of traditional packet-filtering firewalls as the number of rules 
increases. 

Figure 17 shows the performance degradation of IPF and PF (two other packet-filtering 

packages) as the number of total rules increases. This degradation is independent of the number 

of active rules in traditional firewalls, and occurs because all the policies have to be present at 

the firewall. In STRONGMAN, the number of rules the enforcement point has to consider at any 

time is independent of the number of rules it may potentially have to enforce. 

The key observation here is that not all users can (or do) access the same enforcement points at 

the same time; our architecture takes advantage of this fact, by only instantiating rules as-needed 

at an enforcement point. The rules are limited in our system to those needed to grant access to 

users actually requesting access. Thus, the security-related expended resources follow more 

closely the actual communication and transaction patterns of the network. Furthermore, only a 

small subset of rules (those provided by the user) need to be considered with each independent 

request, making processing cheaper than otherwise. 
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4 Related Work 
Traditional firewall work [5, 17, 21, 16, 7, 19] has focused on nodes and enforcement 

mechanisms, rather than overall network protection and policy coordination. 

In OASIS [11], policy coordination is achieved with a role-based system where each principal 

may be issued a name by one service on the condition that it has already been issued with some 

specified name of another service. Event notification is used to revoke names when the issuing 

conditions are not satisfied, thus revoking access to services that depended on that name. 

Credentials are limited to verifying membership to a group or role, and OASIS uses delegation in 

a very limited way, limiting decentralization. 

Firmato’s[l] “network grouping” language is locally customized to each managed firewall. The 

language is portable, but limited to packet filtering. It does not handle delegation or different, 

interacting application domains. Policy updates force complete reloads of the rulesets at the 

affected enforcement points, and the entire relevant policy ruleset must be available at an 

enforcement point. This causes scaling problems with respect to the number of users, peer nodes, 

and policy entries. A similar system [12] covers additional configuration domains (such as QoS). 

Differences are the policy description language and the method by which the rule set is pruned 

for any particular device. Other work in the same vein is described in [8] and [18]. 

Another approach to policy coordination [9] proposes a ticket-based architecture using mediators 

to coordinate policy between different information enclaves. Policy relevant to an object is 

retrieved by a central repository by the controlling mediator. Mediators also map foreign 

principals to local entities, assign local proxies to act as trusted delegates of foreign principals, 

and perform other authorization-related duties. Coordination policy must be explicitly defined by 

the security administrator of a system and is separate from access policy. 

Bonatti et al [4] propose an algebra that allows combination of authorization policies specified in 

different languages and issued by different authorities. The main disadvantage is the assumption 

that all policies and (more importantly) all necessary supporting information is available at a 

single decision point, a difficult proposition even within the bounds of an operating system. Our 
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observation here is that in fact the decision made by a policy engine can be cached and reused 

higher in the stack. Although the authors briefly discuss partial evaluation of composition 

policies, they do so only in the context of their generation and not on enforcement. 

The NESTOR architecture [15] defines a framework for automated configuration of networks 

and their components. NESTOR uses a set of tools for managing a network topology database. It 

then translates high-level network configuration directives into device-specific commands 

through an adaptation layer. Policy constraints are enforced by dedicated manager processes, 

which pose scaling problems. This approach has difficulty with decentralized administration and 

separation-of-duty concerns due to its view of the network through a central configuration 

depository. 

5 Concluding Remarks 
STRONGMAN is a new security policy management architecture. Its approach to scaling is local 

enforcement of global security policies. The local autonomy provided by compliance checking 

permits the architecture to scale comfortably with the Internet infrastructure. 

Our distributed firewall implementation on OpenBSD was used to quantify some benefits of 

STRONGMAN. As we have shown in Section 3.2, this implementation has higher throughput 

and better scalability than a baseline firewall constructed using IPF. It accommodates 

considerable complexity in policies: the policy compliance checker composes policy rules into a 

coherent enforceable set for each enforcement point, and lazy instantiation reduces the state 

required at enforcement points. The removal of topological constraints in firewall placement 

facilitates other Internet protocols and mechanisms. 

STRONGMAN is the first architecture for providing scalable access control services. Security 

enforcement is pushed to the endpoints, consistent with end-to-end design principles. Since the 

enforcement points are coupled only by their use of a common global policy, they possess local 

autonomy which can be exploited for scaling. 



 

 32

Among our goals for future work are experiments with a larger scale deployment, validating lazy 

evaluation on real traffic, and extending the uses of our system with new application-specific 

policy languages. 
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