International Conference on Thermal and Environmental Barrier Coatings

An international conference on "Thermal and Environmental Barrier Coatings" was held at the Swabian Conference Center, Irsee, Germany under the auspices of Engineering Conferences International and with partial financial support from both the Air Force Office of Scientific Research and the Office of Naval Research. The conference was the first international conference on the subject open to the materials community at large. Previous workshops had been held on specific research initiatives and, particularly in Europe, were related to National programs. The conference attracted scientists and engineers from twelve countries, as well as fourteen graduate students from the US and Europe, carrying out research on a variety of topics related to the performance of current thermal barrier systems and the development of new materials and techniques for future thermal barrier systems. The active participation of engineers from the major gas turbine companies (Rolls Royce, Ge, Pratt and Whitney, Siemens, Alstrom) as well as researchers in Government laboratories and academics in fundamental areas of science underpinning the application and development of thermal barrier coatings ensured a lively exchange of ideas and experience, as well as the identification of major areas of emphasis for future applications.
Report to

Air Force Office of Scientific Research

On

Conference

Thermal and Environmental Barrier Coatings

held

August 17-22nd, 2003

At

Kloster Irsee,
Swabian Conference Center,
Germany

David R. Clarke
Materials Department, College of Engineering
University of California, Santa Barbara

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
EXECUTIVE SUMMARY

An international conference on "Thermal and Environmental Barrier Coatings" was held at the Swabian Conference Center, Irsee, Germany under the auspices of Engineering Conferences International and with partial financial support from both the Air Force Office of Scientific Research and the Office of Naval Research.

The conference was the first international conference on the subject open to the materials community at large. Previous workshops had been held on specific research initiatives and, particularly in Europe, were related to National programs.

The conference attracted scientists and engineers from twelve countries, as well as fourteen graduate students from the US and Europe, carrying out research on a variety of topics related to the performance of current thermal barrier systems and the development of new materials and techniques for future thermal barrier systems. The active participation of engineers from the major gas turbine companies (Rolls Royce, GE, Pratt and Whitney, Siemens, Alstrom) as well as researchers in Government laboratories and academics in fundamental areas of science underpinning the application and development of thermal barrier coatings ensured a lively exchange of ideas and experience, as well as the identification of major areas of emphasis for future material systems. (These are listed in the section on recommendations that follows).

One of the major conclusions of the conference was the realization amongst many of the participants that an integrated materials systems approach will be essential in the development of more reliable, higher temperature capability thermal barrier systems for future applications. The high temperatures, the consequential inter-diffusion dynamics, and the severe temperature gradients result in strong coupling between the mechanical, thermal, chemical and optical properties of the materials over the life of coating and so are making the design of future coatings for both metallic and ceramic components one of the major challenges in aerospace materials.

No conference proceedings were issued but each participant received a copy of the abstracts.

10/4/2004
Conference Objectives

An important juncture has been reached in the development of thermal barrier coatings. "First generation" thermal barrier coatings, based on yttria-stabilized zirconia (YSZ), are already in widespread use both in propulsion turbine engines (marine and aerospace) and power generation gas turbines. Up to now, their functionality has largely been to extend the life of turbine components, such as blades, vanes and combustors, by reducing the metal surface temperatures by insulating their surfaces thermally. However, there is a growing recognition that to increase engine performance further, coatings capable of operating at considerably higher gas temperatures are required. This requires new coating materials with superior high-temperature capabilities. One of the objectives of the conference was to address the scientific challenges to the materials community required to identify such materials.

The challenges in identifying potential materials are numerous and range from the identification of oxide materials with unprecedented lower thermal conductivity at high temperatures, understanding the lateral strains associated with oxidation of multi-component alloys, understanding the driving forces for the observed morphological instability of systems consisting of multi-layer coatings, designing diffusion barriers and incorporating them during the manufacture of the coatings, and designing coatings that can resist both oxidation and corrosion. In addition, there is the challenge of developing mechanism-based fracture mechanics models and associated non-destructive testing methodologies for applying the scientific understanding in creating reliable models that can be used in industry. Progress has been made in some of these areas but in others the challenges are just being recognized and formulated. The interdisciplinary nature of these questions, their broad scope, ranging from ceramics to metals and interfaces, as well as the challenges involved in the developing a systems understanding to their inter-related behavior in a coating system makes this the most exciting scientific area in structural materials today. In addition to capturing the excitement in this vigorous new field of high-temperature materials, one of the Conference objectives was to clarify the specific materials challenges and the progress being made in addressing them.

It is now recognized that in addition to identifying potential new coating materials, there are formidable scientific challenges to the development of coating systems with superior high temperature capabilities. These challenges stem from the changes that can occur in response to the high temperatures and large temperature...
gradients to which future coatings will be subject. One of the objectives of the conference was to bring together scientists and engineers actively participating in these challenges with experts from related scientific fields needed to advance the field of coatings.

A fourth objective of the Conference was to consider the prospects for non-contact sensing of coatings, for instance to assess damage, local temperatures and aging of the coating microstructure.

Principal Findings and Recommendations

1. The cyclic oxidation life of current YSZ coatings is rarely limited by the degradation of the YSZ coating itself.
2. Current coatings either fail by morphological instabilities, such as “rumpling”, of the underlying bond-coat alloys or as a result of the thermally grown oxide (TGO), formed by oxidation of the bond-coat, attaining a “critical thickness” of about 6-8 microns.
3. These findings suggest that enhanced cyclic oxidation life with present YSZ coatings can be substantially increased by improving the oxidation resistance of the bond-coat alloys and by limiting the processes that drive “rumpling” instabilities.
4. Thus, one major recommendation is that greater effort be expended on understanding the basis of “rumpling” and the development of more oxidation-resistant bond-coat alloys.
5. Phase compatibility with the oxidation product formed on the boat-coat will limit the choice of potential low thermal conductivity oxides. Nevertheless, one approach may be to use an inner layer of YSZ, which is known to be phase compatible with alumina TGOs, and an outer layer of the new, lower conductivity oxide.
6. The maximum use temperature and times at temperatures for YSZ has yet to be determined with any accuracy as the kinetics of the transformation from the metastable form have not been established. Based on practical experience, however, it is felt that 500 hours at 1400°C is an upper limit for the purest of materials available.
7. New, lower thermal conductivity oxides that are stable to temperatures in excess of 1450°C for thousands of hours are required for the next generation engines.

8. Identification of such oxides will need to rely on physical intuition and insight as computational methods are not sufficiently advanced to handle multi-component oxides. Nevertheless, the development of such computational methods together with improved potentials for heavier elements is considered a necessary long-term goal.

9. Non-destructive techniques based on photostimulated luminescence from the TGO beneath the thermal barrier coating continue to show promise as practical probes of the damage produced by cyclic oxidation.

10. The development of these techniques into practical tools needs further support as coating vendors and engine companies do not consider it their business to develop tools.

11. Initial reports of doping YSZ coatings, as well as other potential coatings, such as the zirconate pyrochlores, with rare-earth ions to create luminescence sensing capabilities show potential for non-contact, \textit{in-situ} damage assessment, erosion thinning and, possibly, temperature measurement. The search is on to identify the particular rare-earth dopant that can be used for temperature monitoring whilst not degrading the life of the coating.

12. The use of luminescent dopants for sensing coating properties will need to move beyond the academic laboratories in order to be demonstrated as a viable methodology to industry and before they adopt it in practice.
Appendix A. Conference Announcement

Thermal and Environmental Barrier Coatings

To be held

August 17-22nd, 2003

At

Kloster Irsee,
Swabian Conference Center,
Germany

Organizing Committee

David Clarke (UC Santa Barbara), Carlos Levi (UCSB), Manfred Ruehle (Max Planck Institute, Stuttgart), Jerry Meier (U. Pittsburgh) and Tony Evans (UCSB).

Scientific Advisory Committee

Dr. Ram Darolia, GE Aircraft Engines, Cincinnati
Professor Tony Evans, University of California, Santa Barbara
Dr. Paul Follansbee, Howmet Corporation
Professor Maury Gell, University of Connecticut
Professor W. Kaysser, DLR, Germany
Professor Carlos Levi, University of California, Santa Barbara
Dr. Hikeada Matsubara, Japan Fine Ceramics Center, Japan
Professor John Nichols, Cranfield Institute of Technology, England
Dr. Mathias Oechsner, Siemens, Germany
Dr. G. Meier, University of Pittsburgh
Dr. R. Mevrel, ONERA, France
Professor Dr. M. Ruehle, Max Planck Insitut fur Metallforschung, Stuttgart
Professor Valter Sergo, University of Trieste, Italy
Professor Sanjay Sampath, Stony Brook, USA
Appendix B. Program

Session I. Introductory Session. Chair: M. Ruehle

08:45 – 09:00 Welcome
09:00 – 09:35 Michael Maloney, Pratt and Whitney
Historical Development of Thermal Barrier Coatings
09:35 – 10:10 Ram Darolia, GE Aerospace
Industrial Perspective of TBCs for Aerospace
10:10 – 10:40 Coffee Break
10:40 – 11:15 Stefan Lampenschafer, Siemens Power Systems
Industrial Perspective of TBCs for Power Generation
11:15 – 12:00 Anthony Evans, University of California, Santa Barbara
TBCs as Interacting Multilayer Systems
12:00 – 13:30 Lunch
13:30 Session II: Oxidation Issues. Chair: A. G. Evans
13:30 – 14:05 W. J. Quaddakers, Julich
Oxidation of MCrAl Bond Coats
14:05 – 14:40 Bruce Pint, Oak Ridge National Laboratory
Oxidation of PtNiAl Aluminides
14:40 – 15:10 Gerry Meier, University of Pittsburgh
Growth Strain Accompanying Oxidation
15:10 – 15:30 Afternoon Coffee Break
15:30 – 16:05 David Srolovitz, Princeton University
Stress Development During Growth of Oxide Scales
16:05 – 17:30 Round-Table Discussion on Oxidation Stresses
18:30 – 20:00 Dinner
20:00 – 21:00 Discussion: Future needs in understanding oxidation stresses
21:00 – 22:00 Social Hour

10/4/2004
Tuesday, 19th August

08:30 Session III: Mechanical Properties of TBC systems.
 Chair: C. Levi

08:30 – 09:05 Joachim Roesler, Technical University of Braunschweig
 Modeling TBC System Stresses and Failure

09:05 – 09:40 Bill Clyne, University of Cambridge
 *Microstructural and Property Changes in the Top Coat of
 Plasma-Sprayed Coatings During Service*

09:40 – 10:15 Kevin Hemker, John Hopkins University
 Bond Coat Mechanical Properties and Microstructural Evolution

10:15 – 10:45 Coffee Break

10:45 – 11:20 Daniel Balint, Harvard University
 Modeling of Oxide Undulation Growth

11:20 – 11:55 Alan Cocks, Leicester University
 Pegging Phenomena

12:00 – 13:30 Lunch

13:30 – 16:30 *Round-Table Discussion on Mechanical Properties, Rumpling
 and Oxidation-Induced Instabilities*

18:30 – 20:00 Dinner

20:00 Session IV. TBC Deposition Methods

20:00 – 20:35 Nitin Padture, University of Connecticut
 Solution Precursor Plasma Spray for depositing TBCs

20:35 – 21:10 David Wortman, General Electric Global Research Center
 Electron Beam Deposition of TBCs

21:10 – 22:30 *Round Table Discussion and Social hour*
Wednesday, 20th August

Session V: Thermal Conductivity Measurements and Models

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:05</td>
<td>Daniele Fournier, CNRS</td>
<td>Photothermal Experimental Techniques: Application to TBCs</td>
</tr>
<tr>
<td>09:05 - 09:40</td>
<td>Ted Bennett, University of California, Santa Barbara</td>
<td>In-situ Thermal Conductivity Measurements of Coatings</td>
</tr>
<tr>
<td>09:40 - 10:15</td>
<td>Dongming Zhu, NASA Glenn Research Center</td>
<td>Measuring Thermal Conductivity at High Temperatures</td>
</tr>
<tr>
<td>10:15 - 10:45</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:45 - 11:20</td>
<td>David Cahill, University of Illinois, Urbana</td>
<td>Heat Transport by Lattice Vibrations: Disorder and Interfaces</td>
</tr>
<tr>
<td>11:20 - 11:55</td>
<td>Simon Phillpott, Argonne National Laboratory</td>
<td>Multiscale Simulation of Thermal Transport</td>
</tr>
<tr>
<td>11:55 - 12:30</td>
<td>Ed Fuller, National Institute of Standards and Technology</td>
<td>Predicting Physical Properties From Microstructure</td>
</tr>
<tr>
<td>12:00 - 14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00 - 14:30</td>
<td>Poster Session: Recent Developments</td>
<td>Brief Presentations by authors: Two Foil Maximum</td>
</tr>
<tr>
<td>14:30 - 18:00</td>
<td>Poster Session with refreshments</td>
<td></td>
</tr>
<tr>
<td>18:30 - 20:00</td>
<td>Dinner</td>
<td></td>
</tr>
<tr>
<td>20:00 - 22:00</td>
<td>Round Table Discussions on Thermal Conductivity</td>
<td></td>
</tr>
</tbody>
</table>
Thursday, 21st August

Session VII: Diffusion and Phase Stability. Chair: J. Meier

08:45 – 09:20 J.-C. Zhao, General Electric Global Research Center
Efficient Exploration of Diffusion Multiples for Coating Design

09:20 – 09:55 Tresa Pollock, University of Michigan
Designing Bond-Coat / Superalloy Combinations

09:55 – 10:30 Carlos Levi, University of California, Santa Barbara
Phase Stability Studies

10:30 – 11:00 Coffee Break

11:00 – 12:00 Roundtable Discussion on Inter-diffusion and Phase Stability Issues

12:00 – 13:30 Lunch

Session VIII: Non-Destructive Evaluation and Future Coatings

13:30 – 14:05 Alan Atkinson, Imperial College, London
Piezo-spectroscopy Studies of TGO Stress and Damage Evolution

14:05 – 14:40 Ping Xiao, University of Manchester
Impedance Spectroscopy of TBCs

14:40 – 15:15 Maria Arana Antello, ALSTOM, Switzerland
Geometrical and Loading Conditions Affecting TBC Failure

15:15 – 15:30 Coffee Break

15:30 – 16:05 Joerg Feist, Southside Thermal Sciences
Designing “Smart” TBCs: Rare-Earth Activated Materials

16:05 – 16:40 Wolfgang Pompe, Technical University of Dresden
TBCs for Novel Applications

16:45 – 18:00 Roundtable Discussions on NDE and Lifetime Predictions

18:00 – 19:00 Organ Recital

19:00 – 22:00 Conference Banquet and Social Hour
Friday, 22nd August

07:00 – 08:15 Breakfast
08:30 – 10:30 Late Breaking Developments and Additional Discussions
10:30 – 11:00 Coffee Break and Departures
APPENDIX C. POSTER CONTRIBUTIONS

Bernd Baufeld, German Aerospace Center (DLR), Germany
Influence of Bond-Coat Rumpling on Evolution of Delamination Cracks

T. Wakui, J. Malzbender, E. Wessel and R. W. Steinbrech,
Institute for Materials and Processes in Energy Systems, Julich
Microstructural Aspects of Segmentation and Delamination Fracture in Plasma Sprayed Thermal Barrier Coatings

Eric Jordan, University of Connecticut
Measurement of Oxide Stress and Associated Failure Modes

Valerie Reita, University Pierre et Marie Curie
Thermal Characterization of New Generation Coatings by “Mirage” Effect

Takashi Goto, Institute for Metals Research, Tohoku University
High-Speed Deposition of YSZ Coatings by Laser CVD

Shunkichi Ueno, National Institute of Advanced Industrial Science and Technology
High temperature Water Vapor Corrosion Resistance of Silicon Nitride with Lu-Si-O EBC

Franziska Traeger, Forschungszentrum, Julich
Fracture Mechanical Model for the Life-Time Evaluation of Plasma-Sprayed TBCs

Doni Jayaseelan, Synergy Materials Research Center, AIST
Development of New Candidate EBC Materials

Xijia Wu, Institute for Aerospace Research, National Research Council, Canada
Microstructural Damage Evolution in a Plasma Sprayed TBC

Gilles Cardosi, ONERA
Stress State in a EB-PVD Thermal Barrier Coating

Yasuo Matsunaga, Japan Fine Ceramics Center
Oxidation Behavior of Bond Coatings for EB-PVD TBCs

Mineaki Matsumoto, Japan Fine Ceramics Center
EB-PVD TBC with Low Thermal Conductivity and High-temperature Stability

John Nychka, University of California, Santa Barbara
Quantifying Cation Grain Boundary Diffusion in Thermally Grown Alumina
Shuqi Guo, Shijie Zhu and Yutaka Kagawa, Institute for Industrial Science, U. Tokyo
Effect of Loading Rate and Hold Time on Hardness and Young’s Modulus of EB-PVD Thermal Barrier Coatings

Toru Tomimatsu, Shijie Zhu and Yutaka Kagawa, Institute for Industrial Science, University of Tokyo
Local Stress Distribution in Thermally Grown Oxide Layers of EB-PVD Thermal Barrier Coatings

Felicia Pitek, University of California, Santa Barbara
Phase Stability of Y^{3+} and Ta^{5+} Co-doped Zirconia for Thermal Barrier Coatings

V. Shemet, R. Anton, D. Sebold, W. J. Quadakkers and L. Singheiser, Forschungszentrum Julich
Oxidation Behavior of TBC Coated, Platinized MCrAlY Bond Coats During Thermal Cycling at 1000°C