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4.   Glossary.

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

CDMA Code Division Multiple Access

CRLB Cramer-Rao Lower Bound

DGPS Differential mode GPS

DOA Direction of Arrival

DSP Digital Signal Processor

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

EVD EigenValue Decomposition

GPS Global Positioning System

GS Gram-Schmidt (Orthoganalisation)

MCM Mutual Coupling Matrix

ML Maximum Likelihood

MSE Mean Square Error

MUSIC MUltiple SIgnal Classification

MVDR Minimum Variance Distortionless Response

PRN Pseudo-Random Noise

RMSE Root Mean Square Error

SNR Signal-to-Noise Ratio

UAV Uninhabited Air Vehicle

UCA Uniform Circular Array

ULA Uniform Linear Array

WSF Weighted Subspace Fitting
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5.    Introduction.

5.1   General.

For the U.S. Air Force better, more rapid decision-making is essential to achieving

virtually all joint war-fighting capabilities in the 21st century battle-space.   War-fighters must

be assured the capability to seamlessly acquire, store, distribute and protect their information.

Seamless communications span the globe; interconnecting command echelons, services, and

allies worldwide by implementing common transport protocols and dynamic network

management.   By focusing on wide bandwidth capabilities linked to the Air Force’s current

narrowband tactical systems, including mitigated modems to recover messages during nuclear

and naturally disturbed environments, the Air Force can provide the correct critical information

to the warrior anywhere in the world.  To achieve wideband seamless communications it is

essential to use smart conformal wideband (2 MHz – 2 GHz) antennas.    This has the added

benefit of resulting in fewer antennas being required on airplanes and Uninhabited Air Vehicles

(UAVs).

The University of Limerick has ongoing research in the general area of array signal

processing algorithms for smart antennas.  The principal general goal of this project is the

development of improved robust, stable and accurate algorithms for signal source bearing

estimations using sampled data taken from the sensors of phase array antennas on airplanes and

UAVs.  The particular goal is to investigate the feasibility of using Global Positioning System

(GPS) signals to facilitate "on-the-fly" auto-calibration of phase array antennas and to develop

a means of doing so.

5.2   Background.

While the potential benefits of phase array antennas are well known, with some of these

having been exploited in various applications for over 50 years, the developments in DSP

hardware and software are now making it feasible to exploit more and more of these benefits.

This has led to a renewed interest in the field of phase array antennas and to an upsurge in the

development of parameter estimation algorithms.   Good bibliographies can be found in Krim

& Viberg's review paper in 1996  [1] and in Dr. Tsoulos's paper [2].

A common thread running through the published literature dealing with DSP algorithm

development (some of these algorithms are quite ingenious, innovative and unique) is the use

of ideal array data models.  This avoids consideration of the more practical problems of real

dynamic array system characteristics and the resultant performance degradation.  These

A.A. Goacher
Demn
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performance-degrading characteristics are mainly the sensor gain/phase uncertainty, the sensor

location uncertainty, and the mutual coupling effect between the sensor array elements.   In this

project we are proposing to investigate the possibility of accounting for the real dynamic

antenna array characteristics by means of an "on-the-fly" auto-calibration system using GPS

signals to produce an accurate data array model.   If this is achievable, and there are good

reasons to believe it is, then signal parameter estimation by smart antennas could become a

two-stage process: 

(i)  auto-calibration to yield an accurate array data model and 

(ii)  the signal parameter estimation itself, using this accurate array data model, with one

of the more promising modern estimation algorithms (e.g. maximum likelihood or

subspace methods).

There are important benefits in military applications for this technology including range

extension, capacity enhancement, higher data rates, efficient management of energy resources

and better BER performance.   These will provide greater security of radio communication

channels and more accurate target or radio source pinpointing and tracking, with more accurate

control of antenna pattern nulls and peaks – an important attribute in jamming counter-

measures, both effecting and resisting jamming.

With its inherent adaptive capacity to enable dynamic narrow-cast radio

communications, this technology can contribute towards improvements in security, immunity

to interference and robustness of communication channels whether they be used for

telecommand, telecontrol, telemetry or multimedia data/voice/video exchange. 

5.3   Description of Problem.

The smartness in smart antennas lies mainly in the sophisticated signal processing

algorithms.   These have the task of extracting the required signal parameters of multiple signal

sources from the data received at the antenna array sensors. These parameters may be the

number of signal sources, the signal frequencies, the directions of arrival, polarisation, etc..

This is a non-trivial multi-dimensional estimation problem, and thus the necessary signal

processing algorithms are complex.   The complexity of these estimation algorithms is further

magnified when array model errors such as the inequality of sensor channel gain and phase

characteristics, sensor location errors, and the presence of inter-sensor mutual coupling are

included in the numerical model. 
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One way of reducing the complexity of the estimation algorithms is to characterise the

array model more accurately by estimating the net effect of the various errors and using this

real array model (as opposed to the ideal array model) in the parameter estimation.    This

requires signal sources with known parameters (frequency and location) covering the utilised

array manifold.    This calibration of the antenna array characteristics will lead to systems that

are able to realise more reliable, robust and accurate parameter estimation.    This project

proposes to take an important step in this direction by attempting to develop a capability of ‘on-

the-fly’ auto-calibration of a phase array antenna system using the known characteristics of

GPS signals when operating in an otherwise unknown signal environment.

The advantage accruing from this approach is that whatever the parameters are which

have to be estimated (directions of arrival, signal carrier frequencies etc.), the required smart

antenna signal processing algorithms can now use an accurate array data model.    Thus one

significant source of doubt in the accuracy of the estimated parameters is removed.   At the

same time, removing the need to attempt to allow for unknown changes in the antenna physical

characteristics since the ‘last’ calibration reduces the complexity of the estimation algorithm.

5.4   Project Objectives.

The main objective of this project was to develop an algorithm that will use the known

characteristics of GPS signals, which are received by the phase array antenna, to execute 'on-

the-fly' auto-calibration of the antenna array thus reducing errors due to unknown sensor

channel characteristics, array characteristics and mutual coupling effects.    A secondary

objective was to see how such an algorithm could then be combined with an appropriate

parameter estimation algorithm. 

A successful outcome to this research proposal would open the possibility of designing

a two-stage smart antenna signal-processing scenario for some smart antenna applications: 

a)  "on-the-fly" calibration of antenna array and sensor tuned receiver channels 

b)  estimation of the required unknown receive signal parameters.

 The result should be that the accuracy and speed of parameter estimation would be

much improved over that of existing approaches.
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6.   Global Positioning System (GPS).

6.1   Introduction.

GPS is a satellite based system which enables the positions of points on the ground or

in the air to be determined with high accuracy at any time of day or night independent of

weather conditions.    Over the past years GPS has gone from an exciting space-age prospect to

an invaluable asset in many fields such as engineering and surveying as well as all aspects of

navigation.    Currently GPS comprises a constellation of 24 satellites.   There are 4 satellites in

each of 6 equispaced orbits that have an inclination of 55º - see Fig 6.1.

Fig 6.1   Global Positioning System (GPS) Constellation.

GPS uses the principle of triangulation to calculate a user receiver’s position relative to

a set of known points.   These known points are the positions of the satellites (see Fig 6.2) as

they orbit the earth and broadcast their positions and a consistent time standard called GPS

System Time.   The receiver uses the location of each satellite, the system time, its clock biased

relative to GPS system time and the time of arrival of the signal to compute its distance from

each satellite.    More sophisticated user equipment also uses Doppler readings to aid in

computing the receiver velocity or to provide highly accurate navigation solutions.



Air Force Research Laboratory –EOARD           Contract No.F73001 F30602 99MV072

U. L. Antenna Research Group Page 11 of 75 Document ID: ARG-ARFL-PJ1.0/ VER 1.7

Fig 6.2   GPS Constellation – planar projection.

6.2   GPS Features.

The theory behind GPS can be quite easily understood without going into the complex

mathematics of the system.    The distance (range) between any satellite and receiver can be

calculated by measuring the time taken by a radio signal to travel from the satellite to the

receiver.    The geometry of the system is such that if three ranges are measured simultaneously

then the user can calculate his position using a computational technique known as resection.

However, in order to solve all of the mathematical unknowns four satellite ranges are generally

required.    These satellites must be visible to the receiver and also scattered across the sky in

such a way as to provide a good geometric arrangement with respect to the receiver.    As each

satellite transmits mutually exclusive signals it is possible to distinguish between information

received from different satellites.   Current GPS receivers can accept information from up to 8

different satellites simultaneously.    The type of information extracted from the signal and the

obtainable accuracy depends on the type of receiver used.

There are two categories of receiver - those capable of reading the code signal only and

those capable of reading both the code and the carrier phase signals simultaneously.   Both

types of receiver support two unique codes - the C/A (Coarse Acquisition) -code and the P

(Precise) -code.   The C/A-code is not very complex, is easy for a receiver to lock on to and is

available to all civilian users.   The P-code, on the other hand, although more difficult to

acquire, is more accurate.    Code only receivers can be used in one of two modes and the

accuracy achieved depends on the method of use.   In a stand-alone mode only one receiver is

Plane A 
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necessary in order to compute an approximate position by resection.   The positional accuracy

is generally good to ±20m, but it is only reliable to ±100m.   The American military, who

control the GPS satellites, have the ability to downgrade the satellite signal through a process

known as Selective Availability (SA) and it is this that limits the accuracy of code only

receivers.    Although SA degrades the determination of absolute positioning, it has little effect

on the relative position between two close receivers as the error in the received signals will be

similar in both receivers and thus cancel out.    Accuracies of ±1m can be obtained by using

two or more code-only receivers operating simultaneously; this is known as differential mode

GPS (DGPS).    In this mode of operation the resection solutions at each ground station can be

related to each other producing accurate co-ordinate differences between the two stations rather

than absolute positions.

Since metre level accuracy is inadequate for most surveying or engineering jobs a

second category of receivers, known as code and carrier phase receivers, must be used to

achieve the required accuracy.   These receivers are only designed for use in differential mode.

They record both the C/A-code and the P-code (when available) and also use the carrier phase

as a means of fine interpolation.   Each satellite transmits two carrier frequencies, L1 and L2,

and consequently there are two types of code and phase receiver available - single frequency,

which use the information available on L1 only, and dual frequency, which use both

frequencies.

6.3   GPS Signal Characteristics.

GPS satellite transmissions utilise direct sequence, spread spectrum (DSSS)

modulation.    DSSS provides the structure for the transmission of ranging signals and essential

navigation data such as satellite ephemeredes and satellite height.    The ranging signals are

pseudo-random noise (PRN) codes that binary phase shift key (BPSK) modulate the satellite

carrier frequencies.    These codes look like and have spectral properties similar to random

binary sequences, but are actually deterministic.    They have a predictable pattern that is

periodic and can be replicated by a suitably equipped receiver.    Each GPS satellite broadcasts

two PRN ranging codes; a ‘short’ C/A-code and a ‘long’ P-code.    The C/A-code has a period

of 1 msec and repeats constantly, whereas the P-code is a seven-day sequence that repeats every

Saturday/Sunday midnight.    At the time of writing the P-code is encrypted and is known as

the Y-code.    This Y-code is only accessible to selected users through the use of cryptography.
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 The GPS satellites transmit on two carrier frequencies called L1, the primary

frequency, and L2, the secondary frequency.    Each carrier frequency is modulated by the

navigation data message and then the spectrum spread by modulation with a PRN sequence

unique to the satellite.    All satellites transmit on the same two carrier frequencies, but their

signals to not interfere significantly because each has a unique PRN code and the PRN codes

are selected to be, as far as possible, uncorrelated with each other.   Because the PRN codes are

nearly uncorrelated, the signals from each satellite can be detected and separated using code

division multiple access (CDMA).    In order to track one satellite in common view with

several others using the CDMA technique, the receiver must replicate the PRN sequence for

the desired satellite along with the replica carrier signal, including Doppler effects.

Two carrier frequencies are transmitted to enable two-frequency users to measure the

ionospheric delay.    This delay effects the accuracy of the time measurement and can be

measured using two frequencies since this delay is related by a scale factor to the difference in

signal time-of-arrival for the two carrier frequencies.    Single-frequency (L1 only) users must

estimate the ionospheric delay using modeling parameters that are broadcast to the user in the

navigation message.

6.4   Using GPS to Calibrate Antenna Arrays.

GPS is a system that enables a user to calculate his position from the times-of-arrival of

the signals from a number of satellites.    It is a simple step, knowing the location of the user

and the positions of the various satellites in space, to calculate the directions-of-arrival (DOAs)

of the satellite signals.    It is the knowledge of these DOAs, in azimuth and elevation with

respect to the reference plane of the antenna array, that will enable the calibration of the

antenna array and thus reduce errors due to unknowns such as physical distortions and mutual

coupling effects.     Fig. 6.3 shows how four GPS satellites could be used as calibration sources

with known azimuth and elevation.
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Fig. 6.3   GPS Signals as Calibration Sources
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7.   Antenna Array Model.

7.1   Modelling the Antenna Array.

Consider an antenna array composed of M antenna sensors arbitrarily located in space

and assume that a signal s(t) impinges on the array.   Let τm be the propagation time delay of

the signal at the mth sensor, related to a fixed point.   Assuming that the antenna can be

modelled as a linear system and letting hm(t) be the impulse response of the mth sensor, then the

output of the mth sensor can be written as:

xm(t) = hm(t) α s(t - τm) + nm(t)

where αdenotes convolution and nm(t) is the additive noise, which is independent of the

signal.

Let signal s(t) be a modulated signal with carrier angular frequency ωc (= 2πfc) and

modulation amplitude a(t) and phase φ(t) such that:

s(t) =  a(t) cos(ωct + φ(t))

If the signal being considered is narrowband, i.e. the envelope variations, amplitude a(t)

and phase φ(t), of the signal vary slowly relative to the propagation time across the array, then:

a(t - τm) ≅ a(t),      φ(t - τm) ≅ φ(t)

Hence, we may write the received signal s(t) as:

s(t- τm) = a(t - τm) cos(ωc(t - τm) + φ(t - τm))

≅ a(t) cos(ωc(t - τm) + φ(t))

and the output of the mth sensor may be written as:

xm(t) = hm(t) α s(t - τm) + nm(t)

 ≅ hm(t) α a(t) cos(ωc(t - τm) + φ(t)) + nm(t)

The narrowband assumption is most often satisfied when the signal bandwidth is much

smaller than the carrier frequency and the signal propagation time across the array is smaller

than the inverse of the array aperture.    This assumption can also be satisfied for wideband

signals, such as in the case of CDMA, if the frequency response of each antenna sensor is

approximately flat over the signal bandwidth.    Using this narrowband assumption, the

propagation time delay across the array can be modelled as a simple phase shift and the signals

have bandpass characteristics about the centre frequency.    The complex representation of the

output of the mth sensor can then be given as:

Xm(t) = Hm(ωc) exp(-jωcτm) s(t) + nm(t)
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where Hm(ωc) is the frequency response of the mth sensor (i.e. the Fourier transform of

hm(t)).

Given the assumption that each antenna sensor can be modelled as a linear element, the

resultant sensor output signal is a superposition of the p individual signals received.   Here, we

introduce the parameter vector ηn (n = 1,2,…,p) to denote the collection of parameters, such as

bearing, elevation, frequency, polarisation and so on, associated with the nth signal.    The

impulse response and time delay of each sensor can be represented as a function of the

parameter vector ηn so that the data model for the mth sensor output can be rewritten as:

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )��
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+=+−=
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where the vector a(η) is referred to as the array response vector or steering vector and

is given by :

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]T
McM2c21c1 jexpHjexpHjexpH ηηηηηηηa τω−τω−τω−= �

and a(η) is a function of the parameter vector η,  η = [ η1
T, …, ηp

T]T.

If there are N (<M) elements (different parameters) in a(η), then η will trace an N-

dimensional surface in CM as η is varied over the parameter space.   This surface is referred to

as the array manifold and is denoted:

A = {a(η) : η ∈ θ}

where θ denotes the set of all possible parameter vectors of interest.

The noise process, n(t), is assumed to be a zero-mean, stationary random process and

the probability of distribution of the noise is assumed to be circular complex Gaussian, i.e. the

real and imaginary parts of n(t) are independent, and with the second order moments:

E{n(t)nH(τ)} = Q δ(t,τ)

E{n(t)nT(τ)} = 0  
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where E{.} and δ represent the statistical expectation and Kronecker delta function

respectively.    In this analysis, the background noise is assumed to be spatially white so that

the noise covariance matrix, Q, is a scaled identity matrix σ2I, where σ2 is the noise variance.

In this paper, since we are considering signals of known frequency, we are only

interested in the parameters of signal azimuth and elevation.    The array manifold can,

therefore, be described as:

A = {a(θ,φ) : θ,φ ∈ Θ}

which is a two-dimensional surface in space CM, where θ and φ denote the signal

azimuth and elevation respectively.

Thus, the output vector for the array can be rewritten as:

( ) ( ) ( ) ( )

( ) ( ) ( )tt,

tts,atX
p

1i
iii

nSφθA

n

+=

+φθ= �
=

where the steering vector: 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]T,j
iiM

,j
ii2

,j
ii1i

iiMcii2cii1c e,He,He,H, φθτω−φθτω−φθτω− φθφθφθ=φθ �ia

If we assume each array sensor has the same response, then H1(θn,φn) = HM(θn,φn) =

H(θn,φn).   Thus, a(θi,φi) is a function of τm only and can be written:

( ) ( ) ( ) ( ) ( )[ ]T,j,j,j
iiii

iiMcii2cii1c eee,H, φθτω−φθτω−φθτω−φθ=φθ �a

In the ideal case, the time delay at each element can be calculated for any θ and φ from

the array geometry and the signal frequency, and the calibration of the array depends only on

determining the sensor response H(θ,φ).

7.2   Modelling Systemic Errors.

Whilst, in the ideal case, the steering vector can be calculated from knowledge of the

array geometry, in practice there are a number of sources of error in any system.     These may

be grouped under two headings.

Firstly, there are errors in amplitude and phase in the tracking between the different

sensors and their associated circuitry.    These may be due to inherent imbalances between the

sensors and their associated circuitry (amplifiers, cables, digitisers, etc.) or they may be

changes in any part of the system due to temperature or aging effects.
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Consider p radiating sources observed by an array of M antenna sensors.   The signal

output of the mth sensor can be described by:

( ) ( ) ( )�
=

+ψ−τ−α=
p

1n
mmmnnmm tntstx

where sn(t) (n = 1, 2, …p) represents the received signals, αm and ψm are the gain and

phase delay associated with the mth sensor and its circuitry and τmn is the delay relative to a

reference point associated with the signal propagation from the nth source to the mth sensor.

In matrix notation the array output can be expressed as:

( ) ( ) ( ) ( )ttt NSφθ,ΓAX +=

where -

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

[ ]
( ) ( ) ( ) ( )[ ]NN21
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M

j
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j
1
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T
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,,,
errors phase and amplitude  thecontains eeediag

tntntn
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Mc2c1c

φθφθφθ=
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=

=

=
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21 �

�
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Secondly, there are mutual coupling effects between the antenna sensors that make up

the array.   When antenna sensors are in close proximity, typically less than half a wavelength,

the impedance and polar response of each sensor is affected by the electromagnetic coupling to

its adjacent sensors.   This will distort the radiation pattern of the array and hence modify the

array manifold.   The output of the mth sensor, in the absence of other sources of error, may

now be written as:

( ) ( ) ( ) ( )�
=

+φθ=
M

1i
ii,mm ,Ctx tNtSa

where Cm,i (i, m = 1, 2, …M) is the mutual coupling factor and models the mutual

coupling effect of the ith sensor on the mth sensor and ai(θ,φ) is the ith row of the steering matrix

A(θ,φ).

Thus, the output of the array is given by:

X(t) = C A(θ,φ) S(t) + N(t)

where C is an M x M complex matrix taking account of all effects due to mutual

coupling between sensors and is referred to as the Mutual Coupling Matrix.   In general, the

matrix C has no special structure; however, if the array is uniform, then the matrix will be

structured because coupling between adjacent sensors is common to sensors occupying a

similar position in the array and coupling between non-adjacent sensors may be ignored.
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When both types of error are considered the array output may be written as:

X(t) = Γ C A(θ,φ) S(t) + N(t)

      = A’(θ,φ) S(t) + N(t)

where A’ represents the actual steering matrix, allowing for all sources of error, at

frequency fc.   It is this matrix that will be calculated from GPS measurements and provide a

calibration of the antenna array.
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8.   Parameter Estimation Methods.

8.1   Introduction.

As shown in section 7.1, the output vector for a perfect array (i.e. ignoring amplitude or

phase imbalances and the effects of mutual coupling between array sensors) can be given by:

X(t) = A(θ,φ) S(t) + N(t)

where the array manifold A(θ,φ) can be calculated from the array geometry and the

operating frequency.

This means that, assuming the array manifold is unambiguous, it is possible, by suitable

processing of the received signal, to calculate the azimuth and elevation of the signal.    This

involves using spatial processing technology to generate a spatial data matrix from which the

desired parameters can be estimated by using an appropriate algorithm.

In this section we will review some of the main estimation methods; beamforming,

subspace-based methods and maximum likelihood methods.

8.2   Beamforming Techniques.

Digital beamforming is a product of merging antenna technology and digital signal

processing technology.   Early applications of digital beamforming were developed for sonar

and radar systems.    One of their major advantages is that all of the desired information being

carried by the signals may be extracted in the form of digital streams and made available for

processing in the beamformer.   Using this information and suitable algorithms, the

beamformer can be driven to produce different types of beams such as scanning beams,

multiple beams, shaped beams or beams with steered nulls.   There are many different

configurations that may be used to achieve these beamformins and Fig. 8.1 depicts a typical

beamformer structure.   The beamformer forms a linear combination of the antenna outputs,

first multiplying each output by a complex weight and then summing them together.
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Fig. 8.1   A typical beamformer structure.

8.2.1   Coventional Beamformer.

The conventional beamformer is a natural extension of classical Fourier-based

spectral analysis [3] to array data.   The beamformer maximizes the power of the array output

for a given input signal:

x(t) = a(θ,φ)s(t) + n(t)

If we want to maximize the output power from a specific direction (θ,φ) then, for the

conventional beamformer, the output of the beamformer at time t, y(t), is given by a linear

combination of the data at M antenna sensors at time t:

�
=

=
M

1m
m

H
m )t(xw)t(y

where xm(t) is the signal from the mth antenna sensor of the array and wm is the weight

applied to xm(t).   In vector form, this can be written as:

y(t) = wHx(t)

Hence, the problem of maximizing the output power is formulated as:

}),()t(sE{maxarg

)}t()t({Emaxarg

})t()t({Emaxarg)(Pmaxarg

222H2

w

HH

w

HH

ww

waw

wxxw

wxxww

σ+φθ=

=

=

Here we assume the noise is spatially white and the norm of w is constrained to |w|=1.

Then, the resulting solution is:

),(),(
),(

HBF
φθφθ

φθ=
aa

aw

and the classic beamforming spatial spectrum is given by:
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),(),(
),(ˆ),(P H

H

BF φθφθ
φθφθ=

aa
aRa

where R̂  is the estimation of the sample covariance matrix.

8.2.2   Constrained Beamformer (Capon Beamformer).

The conventional beamformer has the limitation that it cannot resolve two sources

spaced closer than the beamwidth of the array.   Modifications to improve this limitation have

been proposed by many researchers.   One of the best known is the constrained (or minimum

variance distortionless response –MVDR) beamformer proposed by Capon [4].    The

optimization problem for the output power is:

{ }
1),(  :such that

)t(Eminarg)(Pminarg
H

2H

ww

=φθ

=

aw

xww

The optimal w can be obtained by using the Lagrange multiplier technique:

),(ˆ),(
),(ˆ

1H

1

MVDR φθφθ
φθ=

−

−

aRa
aRw

and the Capon (MVDR) beamformer beam pattern is given by:

),(ˆ),(
1),(P

1HMVDR φθφθ
=φθ

− aRa

8.3   Subspace DOA Estimation Methods

Subspace, or eigen-structure, methods were developed from the spectral decomposition

of the covariance matrix, the so-called Pisarenko’s harmonic decomposition method, and were

first introduced via the MUSIC algorithm [5].   Many subspace, or eigen-structure, methods are

proposed in the literature due to its high-resolution property [6] [7] and the MUSIC algorithm

has been received more attention. 

8.3.1   Subspace Properties.

If d signals impinge on an antenna array comprising M sensors, then the array output

covariance matrix,

{ } ( ) ( ) IPAAXXR 2HH
xx ,,E σ+φθφθ==

where A(θ,φ) is the M × d steering matrix, P is the d × d signal covariance matrix.

Let d’ denote the rank of signal covariance matrix P.   Then, if d’< d some of the signals

are coherent, (i.e., one signal is a copy of another with a complex constant, such as multipath
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signals) and the signal covariance matrix P will not be full rank, d, but rather with rank d’. Let

the eigen-decomposition of Rxx be:

�
=

λ=
M

1k

*
kkkxx eeR

where the eigenvalues  are ordered as λ1 ≥ λ2 ≥ …≥ λM and are orthogonal and e*
kel  = δ

(k,l) due to the Rxx being Hermitean.  The rank of A(θ,φ)P A(θ,φ) is d’, and its null space has

M-d’ eigenvalues equal to σ2  with the remainder d’ eigenvalues larger than noise variance.

Then, Rxx can be partitioned as:

                                        Rxx=EsΛsEs*+ σ2 EnEn*            

where Λs = diag(λ1,λ2, …,λd’) and the corresponding space spanned by Es is called the

signal subspace and En is the noise subspace.

Subspace methods are based on the following observations:

                                   R(Es) ⊆ R(A(θ,φ))  and    Es ⊥ En

where R(⋅) denotes the range of space and ⊥ denotes “ orthogonal to”.

8.3.2   MUSIC (Multiple SIgnal Classification)

    MUSIC (Multiple SIgnal Classification) was one of the first subspace methods to be

introduced to the DOA estimation problem.   In the MUSIC method, it is assumed that the

signal covariance matrix, P, is full rank, which means d’  = d and that there are no coherent

signals coming to the array.    Due to R(Es) ⊆ R(A(θ,φ))  and Es ⊥ En , we have 

                  a*(θk,φk) En = 0                k=1, … , d         

and the noise space En is obtained by choosing the eigenvectors corresponding to the

(m-d) smallest eigenvalues of Rxx.   The MUSIC “spatial spectrum” is then defined as:

( ) ( ) ( )
( ) ( )φθφθ

φθφθ=φθ
,ˆˆ,

,,,P
H
nn

H

H

MUSIC aEEa
aa

The MUSIC estimates of the DOAs are obtained from the d largest peaks in the spatial

spectrum with searching in space {θ,φ}.  When d’< d, (i.e., there are coherent signals) the true

steering vectors are not orthogonal to the noise subspace.   The MUSIC algorithm cannot

handle this scenario and will not provide correct DOAs.

8.3.3   ESPRIT (Estimation of Signals Parameters via Rotation Invariance Techniques)

    ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) [7]

is a computationally efficient and robust method of DOA estimation.  This method is based on

a particular type of array geometry, which uses two identical arrays, see Fig. 8.2, to form
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matched pairs with an identical displacement vector, i.e., the second element of each pair ought

to be displaced by the same distance and direction relative to the first element.   If each

subarray has M sensors it is not necessary for the whole array to have 2M sensors as sensors

may be common between the two subarrays.   If two elements are separated by a displacement

d0 and the signals induced on the ith pair are denoted by xi(t) and yi(t), then we have:
ij

ii e)t(x)t(y µ=

where µI = 2πd0ξi/λc and ξi = sinθie-jφi , a measure of the DOA of the signal, and:

( )
( ) )t()t(,)t(

)t()t(,)t(

y

x

nΦsAy
nsAx
+φθ=

+φθ=

 where Φ is an M×M diagonal matrix, with its mth diagonal element given by:
mj

mm e µ=Φ

and A(θ,φ) is the M × N steering matrix (with N steering vectors corresponding to the N

directional sources),   s(t) denotes the N source signals induced on a reference antenna element,

and nx(t) and ny(t) denote the noise induced on the elements of two subarrays.

                                       

                                 Fig. 8.2    Illustration of ESPRIT array geometry

With eigen-decomposition applied to the correlation matrices Rxx and Ryy, two M×N

matrices, Exs and Eys, with their columns denoting the N eigenvectors corresponding to the

largest eigenvalues in the matrices Rxx and Ryy, are obtained.    They span the same N-

dimensional signal subspace and are related by:

xsys ΨEE =

where Ψ is a unique nonsingular transformation matrix.   Similarly, matrices A(θ,φ) and

A(θ,φ)Φ are related by another unique nonsingular matrix T, as the same signal subspace is

spanned by these steering vectors. So,                     

Exs= A(θ,φ)T    and     Eys = A(θ,φ)ΦT

If the signal steering matrix has full rank, i.e., rank{A(θ,φ)}=N, we have: 

AxV     Dontylet2 

Doublet 1 
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TΨT –1  = Φ

which implies that the eigenvalues of Ψ are equal to the diagonal element of the Φ

matrix and that the columns of T are eigenvectors of Ψ.   An eigen-decompostion of Ψ gives

its eigenvalues, and equating them to Φ leads to a DOA estimation.   If λn is an eigenvalue of

Ψ, then:

8.3.4   WSF (Weighted Subspace Fitting)

 The Weighted Subspace Fitting (WSF) approach [6] is a Maximum Likelihood (ML) -

like algorithm based on subspace decomposition which does not use the orthogonality between

the noise subspace and the steering vector directly.     Instead, it tries to fit an estimate of the

signal subspace to the parameters that are of interest using a ML-like minimization.  Due to

R(Es) ⊆ R(A(θ)), the WSF approach relies on the following criterion, which gives the best

weighed least squares fit of the subspaces Es and A(θ,φ):

where ||A||2w denotes Trace{AWA*}, and T is an arbitrary (d×d’) matrix.   The

weighting W is a (d×d’) Hermitean positive definite matrix.   It is possible to explicitly solve

the above equation with respect to T and the solution is given by:

and

where +⊥ −=−= AAIΠIΠ AA
 is the orthogonal projector onto the null-space of AH.

The estimate of (θ,φ) is obtained as the minimizing argument of V(θ,φ), i.e:

),(Vminarg)ˆ,ˆ(
,
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Different choices of the weighing matrix W lead to a whole class of estimates.  The

optimal weighting matrix Wopt can be given by
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The unknown quantities, Λs and σ2, can be replaced by their estimation, s

∧
Λ  and 2σ̂

respectively, without effecting the asymptotic properties of estimate.

 

8.4   Maximum Likelihood Estimation Method (MLEM)

    The Maximum Likelihood Estimation Method (MLEM) was introduced by Fisher [8]

as a general estimator in statistics and has now become a powerful estimator in the signal

processing area.    ML estimates have strong statistical properties and the ML estimator can

attain the Cramer-Rao Lower Bound (CRLB) asymptotically with the number of samples.   The

CRLB is a lower bound on the estimation error variance for any unbiased estimator.

From the array data model we made before, the array response data, X(t), given J

samples, becomes a stationary, zero-mean, complex Gaussian process with unknown

parameters (θ,φ), the direction of arrival of the signal, and  P the signal covariance matrix. The

probability density function is given by:

where (θ,φ) is the directional information, S(t) is the transmitted signal and σ2 is the

variance of the noise process.   The ML estimates of these unknowns are calculated as the

maximising arguments of p(X(t)/ (θ,φ),S(t), σ2), the rationale being that these values make the

probability of the observations as large as possible.   Alternatively, it is possible to minimize

the negative log-likelihood function that is given by: 

Obviously, the estimate for the signal waveform is:

where A+ is the pseudo-inverse of A.   To calculate σ2 it is necessary to take the

derivative of the log-likelihood function and set the result equal to zero, i.e:

If S(t) is substituted in the above equation, then:

where PA
⊥ = I – AA+ is the orthogonal projection matrix.
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The following non-linear optimization problem is then obtained as an estimator for

(θ,φ): 

                                               }{Trminarg)ˆ,ˆ( xxA
,

∧
⊥

φθ
=φθ RP

 Maximum Likelihood Estimation is a parametric method and hence its resolution is not

limited, as is the case for the conventional beamformer.  However, a multidimensional search is

required to find the estimates, resulting in a high computational complexity.  The ML estimator

presented here can be classified as a deterministic ML estimator, because the impinging

multipath rays of both the desired signal and the interferers are modelled deterministically.  It is

also possible to model the interfering sources as coloured Gaussian noise.  For the deterministic

model, the number of signal waveform parameters grows as the number of samples increases,

implying that they cannot be estimated consistently.

8.5   Conclusion.

In this section we have reviewed some of the main estimation methods that may be used

to simultaneously determine the DOAs of a number of signals.    In practice, however,

beamforming is of limited interest in DOA estimation as its resolution is limited to that of the

antenna array structure.   We will, therefore, for the remainder of this study concentrate on the

use of Subspace and Maximum Likelihood estimation methods to obtain the required DOAs.
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9.   Sensitivity Analyses of Parameter Estimation Methods

9.1   Effects of Model Errors and Sensitivity Analysis on Subspace Methods[26]

For the general model errors, the array response model can be represented as:

  where C is the mutual coupling matrix, which models the effect of mutual coupling

between antenna sensors within the array.   Γ  denotes a complex diagonal matrix which

includes the channel gain and phase errors such that Γii = αii + j φii.

    In subspace DOA estimation methods, the array output covariance matrix Rxx can be

partitioned into two subspaces, the signal subspace Es and the noise subspace En, using

eigenvalue decomposition, such that:

Rxx=EsΛsEs*+ σ2 EnEn*

and R(Es) ⊆ R(A(θ)), which means that the signal subspace Es is spanned by the array

manifold A(θ). 

When we consider array response errors, the array manifold becomes A’(θ), and

A’(θ)=C ⋅ Γ ⋅ A(θ) = C ⋅ α ⋅ φ ⋅  A(θ)

where A(θ) is the true array manifold; C is the mutual coupling matrix; α and φ are

diagonal matrices, the elements of which represent the gain and phase of each channel

respectively.   Therefore, the array manifold A(θ) will affect the orthogonality between the two

subspaces, Es and En.    In particular, due to the effects of the array model response errors, the

real array manifold A’(θ) is different from the ideal array manifold A(θ).   Thus the accuracy

and resolution of the DOA estimation will be degraded by the errors in the array manifold.   We

refer to the difference between the ideal and real array parameters as a model error.   For the

MUSIC algorithm, if vector γ denotes the real model parameters, e.g., channel gains α= [α1, α2,

… , αM]  or phase φ = [φ1, φ2, … , φM] and γ0  represents the nominal (ideal) parameters, the spatial

spectrum of MUSIC and DOA estimation will be:

without model errors, i.e., γ = γ0 , we can get the exact estimate of the true DOAs.

When γ≠γ0, the peaks of E(θ;γ) will no longer be the true DOAs and the accuracy of DOA

estimations can be degraded by even small model errors.   We will, therefore, consider the

effect of model errors on both accuracy and resolution of DOA estimations.
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9.1.1    Effects of Model Errors on the Accuracy of DOA Estimation.

We assume that the array correlation covariance matrix Rxx is exactly estimated, which

means having an infinite (or very large) number of independent samples (snapshots), and the

effect of model errors is sufficiently small so that the MUSIC spectrum has distinct peaks.

Considering only the effect of variations in real parameters, we can see how much the peaks

shift due to model error effects.    Let:

and

In the presence of two sources with true DOAs, θ1 and θ2, we perform the first-order

Taylor expansion to see how much the peak locations shift due to model errors and get the

angular deviation:

    where γ-γ0 is the model error.    Let us assume that:

   where µ is a random vector with zero mean and unit variance and σγ is a positive

scalar.   Thus, we can show that:

and the standard deviation:

 where ||⋅|| is the vector norm.
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where σDOA represents the mean square value of DOA errors caused by modeling errors

and N is the number of signals. We can see that the angular standard deviation will be

increased with σi.

9.1.2    Effects of Model Errors on Angular Resolution.

    When the model errors are sufficiently large, the algorithm will fail to resolve two or

more close sources, i.e. the model errors will affect the DOA resolution.   In this case, as the

model errors increase the valley between two peaks will become flattened and finally the two

peaks merge into one so that the algorithm loses angular resolution.

      The valley bottom between the two peaks given by E(θ,γ) can be seen as the

minimum of E(θ,γ) and thus we have: 

In general, the location of the valley bottom, θ*, will change with model error, γ.    This

fact complicates the analysis considerably.   To simplify the analysis, we assume that θ* is

constant and that θ*=θ0, where θ0=(θ1+θ2)/2.   This enables us to study F2(θ0,γ) rather than

F2(θ*(γ),γ).   Unfortunately, this is only true for uniform circular arrays and not for uniform

linear arrays in the presence of phase errors.    Thus the result of the first order analysis here

should be used for uniform circular arrays only.

    When θ*=θ0 and using the first-order Taylor expansion around γ0, the smallest norm

model error which will cause the MUSIC algorithm to fail is given by:

and the failure threshold of the MUSIC  algorithm is:

 where  M is the number of the sensors. 
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9.1.3   Conclusions from Sensitivity Analyses.

The following conclusions may be drawn from the sensitivity analyses with regard to

the sensitivity parameter, σDOA, and the failure threshold, σfail:

1) σDOA as a function of the source separation -

• As the number of array elements is increased, the sensitivity parameter σDOA will be

decreased.

• The sensitivity parameters for circular array gain, σgain
DOA, and phase, σphase

DOA, will

decrease almost linearly as the source separation ∆ increases, i.e. σgain
DOA ~1/∆, σphase

DOA ~ 1/∆.

• The sensitivity parameter for linear array gain, σgain
DOA, will decrease almost in the

same way as in the circular array. But the sensitivity parameter for phase is very small

(σphase
DOA<< 1) and will keep constant as the source separation ∆ increases. 

• For two adjacent signals, the sensitivity parameters for a linear array are smaller than

those for a circular array.

2) σDOA as a function of the element spacing (array aperture) - 

•The sensitivity parameter for linear array phase,σphase
DOA, is proportional to 1/d, where

d is the element spacing, and also σphase
DOA ~1/∆.   So we have σphase

DOA ~1/(d∆), where d and

∆ are the element spacing and source separation respectively.   Let δ be the ratio of the source

separation in degrees and the beamwidth, i.e. δ ~ (d∆), then:

σphase
DOA~1/δ

this equation shows that if the separation between two sources is same in terms of

beamwidth, a linear array will have the same phase sensitivity as a circular array and its gain

sensitivity, σgain
DOA, will  decreased as d increases in proportion to1/d⋅ k ( 2≤ k ≤2.5).

• The sensitivity parameters of a circular array, σgain
DOA and σphase

DOA will decrease

rapidly as the element spacing d increases, in proportion to 1/d⋅ k (2≤ k ≤2.5) also.

3) σfail as a function of source separation -

• The ways the peaks shift because of phase errors are different in linear and non-linear

arrays.    In a linear array phase errors cause the peaks to shift in the same direction by almost
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the same amount whereas, in a non-linear array the peaks move towards each other until they

eventually merge into one.

 • The failure threshold σfail is approximately proportional to ∆2, i.e., σfail ~ ∆2.

4)   σfail as a function of element spacing -

 • The gain failure threshold σgain
fail  is approximately proportional to d2, 

     i.e., σgain
fail ~ d2 and for a circular array, the phase failure threshold is given by

                                  σphase
fail ~ dk (2≤ k ≤ 3)

 • σgain
fail ~ δ2 and σphase

fail ~ δ2 dk-2 (circular array), where δ is ratio of the source

separation  to beamwidth.

Summarizing the results above, we get the following general conclusions:

Linear Array:    It has a low sensitivity to phase errors and a larger sensitivity to gain

errors, similar to a circular array.   When the source separation is small the sensitivity to phase

error is constant.

Circular Array:   The sensitivity to both gain and phase errors is inversely proportional

to the source separation and the failure threshold is approximately proportional to the square of

the source separation.  

As the array aperture (the number of elements) increases, the sensitivity of DOA

accuracy to model errors will decrease and the failure threshold will increase.

    These conclusions are only valid for the assumption that the data is infinite.  In the

finite data case, MUSIC is expected to fail in the presence of smaller model errors.  If the SNR

or the number of snapshots is too small, MUSIC will fail even in the absence of model errors.

9.2   Effects of Model Errors and Sensitivity Analysis on Maximum Likelihood

Methods 

The maximum likelihood DOA estimation is:

where   PA(θ)=A(θ)(AH(θ)A(θ))-1 AH(θ) is a projection operator and is spanned by the

columns of A(θ).   The maximum likelihood estimation of θ involves multiple dimensional

searching, i.e. in the N dimensional parameter space, if there are N signals coming to the array. 

}{Trmaxarg xx)(A RP θθ

∧
=θ
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Here we will discuss how the ML estimate performance is affected by the DOA

deviation, i.e. the error between estimates of the DOAs and the true DOAs caused by model

errors.

9.2.1  The Sensitivity of DOA Estimate Accuracy to Model Errors.   

In the presence of model errors, the array output covariance matrix is:

 where A(θ;γ)=[A(θ1;γ), A(θ2;γ), …, A(θN;γ)], and γ represents the error parameter, i.e.,

gain, phase or sensor location errors.

The ML method is to search for the maximum of the likelihood function:

where PA(θ;γ0)=A(θ;γ0)(A(θ;γ0)HA(θ;γ0))-1 A(θ;γ0)H.   When γ0 = γ, the peaks of

maximum likelihood function will correspond to the true DOAs.    Otherwise, if γ0 ≠ γ0 , the

peaks will be shifted  from the true DOAs.

Let the first-order derivative of the maximum likelihood function equal zero, we can

then get the maximum of the maximum likelihood function.   That is, let:

then,  setting  L1(θ;γ0)  = 0, we get the following relationship for the variation in the

DOA estimate versus the model errors:   

where (θ - θ0) is the deviation of the  estimate of the DOA and (γ-γ0) is the model error.

The norm of the DOA errors is given by:

where 

    

Let us assume that γ - γ0 = σγµ, where µ is a random vector with zero mean, unit

variance and σγ is a positive scalar.   Then
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Using the fact that tr{AB}= tr{BA}, it follows that: 

Note that tr{cov(θ-θ0)}/N is the average variance of the DOA errors, i.e.

Therefore, we have the DOA sensitivity of the ML algorithm to model errors,

and this angular deviation will increase as tr{M} increases.

9.2.2  Failure Threshold of ML Algorithm.

As the model error increases, the ML algorithm will fail to provide meaningful DOA

estimates if the peaks of the maximum likelihood function occur on the failure line

characterized by:

θ = αI

where I =[1,1]T and α is an arbitrary scalar.   We can then obtain:

This equation can be resolved non-uniquely for γ - γ0, given any value of α.    We

perform a singular value decomposition of 
00 ,

1 ),(L
γθγ∂
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The minimum norm solution of this under-determined set of equations could be

obtained by various matrix-solving routines.   We only need to find the smallest ||δ|| and

smallest ||γ-γ0||. Due to V1 being an orthogonal matrix, the norm of δ is same as the norm of γ-

γ0.    Thus, if we consider the effect of model errors on each element, the failure threshold of

the ML algorithm will be related to ||δ|| and we have the failure threshold of the ML algorithm

as:

Mfail

δ
=σ .
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10.    Selection of Estimation Method and Algorithm Development.

10.1   Selection of Estimation Method.

In section 8 of this report we reviewed the main methods of parameter estimation;

beamforming, subspace-based methods and maximum-likelihood methods.   In practice,

however, beamforming is of limited interest in DOA estimation as its resolution is limited to

that of the antenna array structure.   In section 9 of this report sensitivity analyses were

produced to investigate the effect of model errors on both Subspace methods and Maximum

Likelihood methods.    As a result of these analyses, it was decided that in the case of known

frequency an ML method would be considered and for unknown frequencies subspace methods

would be investigated, as these would give the best angular resolution while having a lower

computational complexity than ML methods.     A number of estimation algorithms using sub-

space methods were considered, with special emphasis on the solution of multi-parameter

estimations, and details follow in this section.

10.2   Algorithm Development.

In section 8.3 of this report we reviewed the basics of Subspace-based estimation

methods with reference to the MUSIC, ESPRIT and WSF methods in particular.   As part of

this project work has been carried out into using various subspace methods to estimate a

number of parameters simultaneously.    Maximum Likelihood methods were considered in

Section 8.4.

10.2.1    Maximum Likelihood Method.

We will consider an ML method to estimate the Mutual Coupling Matrix in the case of

known signal frequency. For the papers of mutual coupling modeling and previous work, see

[28],[30],[38],[43],[50],[51],[53],and[58]. 

We make the standard assumptions underlying the algorithms:

(1)  The signal and noise processes are stationary and ergodic over the observation

period.

(2)  The columns of A(θ) are linearly independent.

(3)  The noise is uncorrelated with the signal, and it has zero mean value.    Its

covariance matrix is full rank and is known except for a multiplication constant σ2.

(4)  The total number of sources is known (2 ≤ p ≤ M ) and the sources have the same

known frequency.
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 (5)  The MCM satisfies rank(C) = M which implies that rank (CA(θ)) = rank(A(θ)) = p

.

10.2.1.1    Estimation process

The algorithm proposed here consists of two estimation procedures: estimation of signal

directions of arrival {θn} and estimation of mutual coupling matrix C.

1.  Estimation of directions of arrival {θn}

Defining:

( ) ( ) ( )

( ) ( ) ( ) ...(10.1)                   jjˆ

jˆjQ

H
0

1
0

H
00

J

1j

2

0
00

1

XBBBS

SθACX

−

=

=

−= �

where ||∙|| denotes the Euclidean norm.   J is the number of samples (snapshots).   B0 =

C0A(θ0) denotes the array steering matrix with the effects of mutual coupling, C0
 and θ0

 are the

initial values of the mutual coupling matrix and DOAs respectively.

During this first step, the algorithm performs successive minimization operations on

each column of B0 and holds all of other columns and associated components of )j(0

∧
S  fixed.

Suppose that we perform the minimization with respect to the kth
 column vector, Q1 can be

written as:

( ) ( ) ( )�
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1 jˆjQ SbX     ….(10.2)

where b0(θk) is the kth
 column of B0 , )j(k0

∧
S is the kth component of )j(0

∧
S , and Xk(j) is

given by:
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k
0

00k SBXSθACXX −=−=   ….(10.3)

where )j(k
0S is a simplification of )j(0

∧
S  with the kth

 part replaced by zero.

The minimization of  (10.3) with respect to a0(θk), using (10.1) with B0 replaced by

b0(θk), is:
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where ( ) ( )k0
H

k0M θθ= bb

To maximize (10.4), we can search over the space of {θk} and finally get the directions

of arrival (DOAs) {θn}.   Based on these DOAs, we can reconstruct the new steering matrix

A(θ1) and put:

( ) ( ) ( )jjˆ H
01

1
01

H
0101 XBBBS −=

where B01 = C0
 A(θ1),  ][ p21

1
∧∧∧
θθθ= �θ .   The initial mutual coupling matrix C0

 of this

first step is fixed and we have to iterate and update C at the second step to approach the true

DOAs and MCM  C.

2. Estimation of the mutual coupling matrix C.

At this step, we can estimate the MCM with the DOAs{θn}provided by the last step.

Since we have new values for S01(j) and A(θ1),  Q can be written as:

( ) ( ) ( )�
=

−=
J

1j

2

01
1 jˆjQ SθCAX      ….(10.5)

Because C is an M ×M banded complex symmetric Toeplitz matrix in the case of a

uniform linear array or an M ×M complex circulant matrix in the case of a uniform circular

array and A(θ1)S01(j) is an M ×1 complex vector, the following two lemma [11?] will be

useful.

Lemma 10.1   For any M ×1 complex vector x and any M ×M banded complex

symmetric Toeplitz matrix B:

B.x = Q1(x).b

where the L ×1 vector b is given by:

bi = B1i,    i = 1, 2, …, L

where L is the highest super-diagonal that is different from zero.  The M ×L matrix

Q1(x) is given by the sum of the following matrices:

[ ]

[ ]
�
�
� ≥≥

=

�
�
� ≤+

=

+−

−+

otherwise            0

2qp     x

otherwise            0
1-Mqp     x

1qp
pq2

1qp
pq1

T

T

Lemma 10.2  For any M ×1 complex vector x and any M ×M complex symmetric

circulant matrix A:
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A.x = Q2(x).a

where the component of the L ×1 vector a is given by:

ai = A1i,    i = 1, 2, …, L

where L = M/2 +1when M is even and L = (M +1)/2 when M is odd. 

The M ×L matrix Q2(x) is given by the sum of the following four M ×L matrices:
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1qp
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T
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T

where l = M/2 for even M and l = (M +1)/2 for odd M .

Using Lemma 10.1 or Lemma 10.2, depending on the array configuration, we have:

( ) ( ) CWSθCA =jˆ
01

1

and:

1LxMxLGTCW =

where the L ×1 vector G is given by:

Gi  = C1i ,                    i = 1, 2,  ∙∙∙, L

by letting CW = TG, we can place the unknowns in the L ×1 vector G and the known

values in the M ×L matrix T.    Thus, (10.5) can be rewritten as:
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and we can now reconstruct the MCM C from vector G:
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10.2.1.2    Convergence check

During both the estimation steps, we check the convergence of (10.2) and  (10.5).

When both Q1
(k-1)  – Q1

(k)  ≤  ε and  Q(k-1)  – Q(k)  ≤  ε (ε  is a given threshold ), the algorithm

has converged and we get the estimation of the DOAs and the MCM C .   Otherwise, the

algorithm will be repeated between the two steps until Q1 and Q converge.   Note that the cost

functions, Q1 (Q1 ≥  0) and Q (Q ≥ 0), are convergent series and the convergence of  both is

guaranteed.

10.2.2    Iterative MUSIC Method

In [9], an iterative subspace method based on the MUSIC algorithm was presented to

deal with the estimation of DOAs and unknown mutual coupling as well as gain and phase

errors.   The algorithm first searches for peaks in the MUSIC spectrum, similarly to the original

MUSIC algorithm without mutual coupling, to get an estimation of the DOAs and then

estimates the mutual coupling.   This procedure is repeated several times and becomes a two-

step iterative optimization for the cost function [9]: 

where n

∧
E  are the noise eigenvectors, eigen-decomposed from the estimation of the data

covariance matrix R, C is the mutual coupling matrix and Γ is the gain and phase matrix, in

this case it is assumed that  Γ = I as only the mutual coupling is being considered.

Step 1:  Estimating the DOAs.

Search for the N highest peaks of the MUSIC spectrum defined by:

( ) ( ) 2

nmusic
ˆP

−
θ=θ CaE

where the initial mutual coupling matrix C can initially be chosen as an identity matrix

and the estimations of the DOAs are associated with the N highest peaks in the spectrum.

Step 2:  Estimating the Mutual Coupling Matrix

In this step, the vector a(θp) in the cost function Jc will be updated by the estimated

DOAs, {θp}(p =1, 2, …, N), and then the mutual coupling matrix C will be estimated by

minimizing the cost function Jc .

( )�
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θ=
N

1p

2

pnc aˆJ CΓE
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It can be shown that for a Uniform Linear array (ULA) the MCM, C, is Toeplitz and for

a Uniform Circular Array (UCA) the MCM is Circulant.   The cost function Jc can then be

written as: 

( ) ( )

( ) ( ) cQEEQc

CaEECa

�
�
�

�
�
�

=

θθ=

�

�

=

=

N

1p
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nn
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p

H
nn

HH
pc

pˆˆp
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where:

Q(p) = Q(a(θp))   and ci = C1i,  i = 1,2,…,L

and Q(X) and L are dependent on the array configuration.

The minimization of cost function Jc is a quadratic minimization problem under a linear

constrain where the MCM C is assumed to be unity on the main diagonal (Cii =1).   Thus using

Lagrangian multipliers, the constrained minimization problem can be solved as:

( ) 11T1ˆ −−−= WGWWGc

where G is the matrix:

( ) ( )�
=

=
N

1p

H
nn

H pˆˆp QEEQG

and vector W = [1 0 ∙∙∙0 ] represents the linear constraint.

Finally, the MCM C can be reconstructed from the estimated vector 
∧
c .   Note that the

cost function Jc will be decreased at each iteration and the convergence of the algorithm is

guaranteed.

10.2.3   Separable Sub-space Method

A following method for the joint estimation of signal frequencies, DOAs and sensor

mutual coupling was presented as a paper at the IEEE 34th Asilomar Conference on Signals,

Systems and Computers, October 29 - November 1, 2000, in Pacific Grove, California [10].

This paper is attached to this report as Appendix A.

Consider an array composed of M sensors with each sensor output being fed to a tap-

delay-line with m taps.   The delay between adjacent taps is t0.   Let Xl(t),  (l =1 ,2 , ∙∙∙,M ),

denote the output of the lth sensor at time t and X(t) = [x(t), ∙∙∙, x(t -(m -1)t0 )]T .
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Assume that p narrow-band sources with different frequencies and directions impinge

on the array and the incoming signals can be divided into D groups according to their

wavelength, i.e:

�
=

=
D

1k
kpp

where pk is the number of signals, from different directions, in the kth group, and whose

wavelength is λk (k =1 ,2 , ∙∙∙,D ).

The lth
 sensor (l =1 ,2 , ∙∙∙,M ) output vector maybe written as:

( ) ( ) ( ) ( )( ) ( ) ( )��
= =

+θωω=
D

1k

M

1i
lkkikki,ll ttCt NSbaX

                                       (k =1 ,2 , ∙∙∙,D, i =1 ,2 , ∙∙∙,M )

where, bi(θk) = [exp(-jωk τi (θk,1 )) ∙∙∙  exp (-j ωk τi (θk,pk ))] is a 1 × pk spatial steering

vector;  a(ωk) = [1    exp(-jωkt0 )  ∙∙∙  exp(-jωk(m -1)t0 )]T is an m × 1 temporal steering

vector; Cl,i (ωk) is the (l,i )th entry in the MCM which represents the mutual coupling effect

from other sensors on the lth sensor;  Sk(t ) = [Sk,1(t)  ∙∙∙  Sk,pk(t)]T
 is a pk × 1 signal vector

from the kth  group of narrow band sources and Nl  = [Nl(t)  ∙∙∙  Nl(t -(m -1)t0)]T
  is an m × 1

additive noise vector for the lth
 sensor.

Therefore, the array data model can be described as follows:
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is an M ×pk spatial steering matrix;  N(t) = [ N1(t)T   N2(t)T   ∙∙∙   NM(t)T]T is a Mm ×1

additive white Gaussian noise matrix;  the symbol  ⊗ denotes the Kronecker product and C(ωk)

(k = 1, 2, ∙∙∙, D) is the M ×M MCM.    For a ULA or UCA, C(ωk) is either a Toeplitz matrix

or a circulant matrix, respectively [9].

10.2.3.1    Subspace decompositions.

Assume that the number of signals p and the number of frequency groups, D, are

known.
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Define:
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where:
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and E (∙) denotes statistical expectation.   D
1hh }'{ =r  and p

1ll }'{ =η are the frequency and the

direction vectors respectively.   The range spaces spanned by the columns of these vectors are

contained or are equal to the range spaces of a(ω) and B(θ), respectively.   We have:

( ) ( )( ) ( ) ( )( )θ⊆′ω⊆′ Bηar RRRR lh       ,

and:

( ) ( )( ) ( ) ( )( )θ=′ω⊥′ Bηar RNRN lh      ,

where R (∙) and N (∙) denote the range space and null space.   As is well known,

subspace methods are based on the above geometrical relationships.   Therefore, we may use

correlation processing, in spatial and temporal dimensions respectively, to get the estimates of
D

1hh }'{ =r  and p
1ll }'{ =η  and then compute their null subspaces.   Finally, the frequencies, DOAs

and the MCM can be estimated with subspace methods by searching corresponding spaces.

10.2.3.2    Estimation algorithm.

Step 1.  Frequency Estimation.

(1) Estimation of the frequency vectors r’h and rh :

( )( ) ( )

( )H
h

2
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H
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where:
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2σ̂ is the estimate of the noise variance and N is the number of samples.

(2)   Gram-Schmidt (GS) orthogonalization and formation of the temporal projection

matrix Pω:

From the vector D
1hh }{ =′r , we can get D orthogonal vectors {qk}, (k  = 1,  …, D),  via GS

orthogonalization.   Let Qω = [q1 ,q2 , ∙∙∙, qD ], then compute the temporal projection matrix

Pω = I -Qω Qω H ,  which spans the null space of {a(ωk)},  (k = 1,  …, D).

(3)    Estimate the unknown frequencies with the temporal projection matrix Pω :

The frequencies {ωk}, (k = 1,  …,  D),  are estimated as the D largest peaks of the

function:

( )
( ) ( )ωω

=ω
ωaPa H

1P

by searching over the frequency sector of interest.

Step 2.   Direction and Mutual Coupling Estimation

(1) Estimation of direction vectors, η’l and ηl :
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(2)    By GS orthogonalization of  p
1ll}{ =

∧
η  , the p orthogonal vectors, p

1ll}{ =ζ  and spatial

orthogonal projection matrix Pθ  = I - Qθ Qθ H are obtained, where Qθ  = [ζ1  ζ2   …  ζ p ].

(3)    For each frequency {ωk}, (k = 1, 2, …, D),  estimated in Step 1, the directions θi k ,

(i k = 1 , 2 , ∙∙∙, pk ) and mutual coupling matrix C(ωk ) can be estimated by using the Iterative

MUSIC method described in section 10.2.2 with the following equations:
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 where ( ) ( ) ( )�
=

θ θθ=ω
k

k

kk

p

1i
i

H
ik DPDG  and w =  [1, 0, ∙∙∙, 0]T .    Using the properties of

Toeplitz and Circulant matrices and Lemmas 10.1 and 10.2, matrix ( )
kiθD  can be calculated

[11] by letting ( ) ( ) ( )cDBC
kk iik θ=θω  , i.e., the unknowns are placed in vector c and the known

values in the matrix D.

10.2.4    Alternating Iterative Method.

This section presents an alternating iterative based approach for the estimation of

DOAs, signal frequencies and corresponding array sensor gain/phase errors from the received

signals. The previous work, see [27],[41],[44],[47],[55], and [59]. The approach consists of

two parts: first estimate signal frequencies and then estimate the directions of arrival and the

corresponding gain/phase errors.   Since this multiple parameter estimation procedure is a non-

linear optimisation problem, the alternating iterativeness will be used to get the solution, i.e,

one can first estimate frequencies and DOAs based on supposing that the array gain/phase

errors are initially known, which can be determined from nominal or recently measured values,

and then estimate the array gain/phase errors with the estimated frequencies and DOAs.   This

procedure will be repeated until the cost function reaches a minimum.

10.2.4.1    Estimation procedure 

1)   Estimation of the signal frequencies ωk , (k = 1 … D).

Applying conventional frequency estimation methods, such as a periodogram or other

temporal spectral estimation methods [12], to the received signal matrix X, D signal

frequencies can be estimated.    For each estimated signal frequency, one can then estimate the

signal directions of arrival and the gain/phase matrix with the following iterative procedures. 

2)  Estimation of the DOAs θkn ,(n = 1 … pk).
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Suppose that the initial gain/phase matrix Γk
(0) is known; this could be based on either

the nominal gain/phase values or on any recent calibration information.   For the ith iteration,

the azimuth and elevation space, θk =[θ, φ] T, are searched with:

( )
( )

D,,2,1k

1D 2

k
)i(

kn

k
)i(

�=

θ
=θ

aΓE    …(10.6)

where En is a matrix whose columns are the eigenvectors corresponding to the smallest

eigenvalues of covariance matrix Rx = E{ X XH }.    Then, the pk peaks indicate the signal

directions of arrival, { } k

n

p

1n
)i(

k
ˆ

=
θ , at the ith iteration.

3)   Estimation of the gain/phase matrix Γk.

When the DOAs with frequency ωk have been estimated, the estimation of the

gain/phase matrix at that frequency,  Γk, becomes a constraint optimisation problem for the cost

function:
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kkk
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θω= �
=

aΓE

Since the gain/phase error matrix, Γk, is an M x M diagonal matrix and a(ωk, θkn) is an

M x 1 vector, we have:

( ) ( ) kkkkkk nn
,, δQaΓ θω=θω

where δk is a vector composed of the diagonal elements of Γk and matrix  Q(ωk, θkn) is

an M x M diagonal matrix whose diagonal elements are the elements of vector a(ωk, θkn).

    

Therefore, the cost function Lk can be rewritten as:
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with the optimisation constraint:

[ ]T
k 001          ,1 �== wwδ

The result of this minimization is given by:
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where:
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and finally:

{ })update(
k

)update(
k diag δΓ =    …(10.8)

10.2.4.2    Algorithm summary.

The alternating iterative method can be summarized as:

(1) Estimation of frequencies with conventional frequency estimation methods.

(2) Estimation of data covariance matrix:

�
=

=
J

1j

H
jjx J

1ˆ XXR

(3) Eigenvalue decomposition (EVD) of the covariance matrix Rx to separated

signal subspace Es and noise subspace En.

(4) Set i = 0 and set initial value of the gain/phase matrix Γk for each frequency ωk,

where k = 1, 2, …,  D. 

(5) For each estimated frequency ωk, the estimation of the directions of arrival can

be calculated using (10.6), where the pk peaks indicate the directions of arrival, θkn
(i)  (n=1, …,

pk).

(6)  Using (10.7) and (10.8), estimate the gain/phase matrix Γk
(i).

(7)  Compute the cost function Lk
(i) and the cost function  �

=
=

D

k
kLL

1

.    Repeat

steps (4) - (7) with updated DOAs  θkn
(i) ( n = 1, …,pk) and gain/phase matrix Γk

(i) until the

reduction in cost function  Lk
(i) -  Lk

(i+1) ≤ ε, ( where ε is a given threshold).   For D frequencies,

this procedure will be repeated D times until the cost function L reaches a minimum.

As the above estimation is a nonlinear alternative iterative optimisation procedure,

whether or not the iterative procedure converges to the global optimum depends on the choice

of initial values.   This method may converge to a local optimum.   To improve the

performance of convergence, we will introduce a simulated annealing algorithm and then

present a global optimisation method for the estimation of DOAs, frequencies and array

gain/phase error.
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10.2.5    Global Optimisation Based on Simulated Annealing

The joint DOA and frequency dependent gain/phase error estimation algorithm

proposed here is based on simulated annealing and consists of two parts.   The first is to form a

projection matrix from the covariance matrix and to then construct a spectral estimation matrix

and cost function from the projection matrix.    The second is to minimize the cost function by

simulated annealing.

10.2.5.1   The projection matrix and spectral-estimation matrix.

In Section 7 we have described the modified frequency-direction array response model

with unknown gain and phase errors.    Our work here is first to form an orthogonal projection

matrix P from the covariance matrix Rx.    Such a projection matrix can be formed from the p

principal eigenvectors of the covariance matrix.

On obtaining the projection matrix P, we can construct a spectrum-estimation matrix:

( )
( )[ ] ( )[ ]( )H,,Tr

1,,
θωAPθωAP

S
′′

=θωΓ

where:

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]DDD222111 ,,,, θωωθωωθωω=′ AΓAΓAΓθωA ����

is the modified frequency-direction steering matrix with the sensor gain/phase errors.

Because the trace of the spectral-estimation matrix contains information for the signal

frequencies, DOAs and array gain/phase errors, the estimation of all these variables may be

obtained by minimizing the cost function:

( ) ( )[ ] ( )[ ]( )
( )[ ] ( )[ ]( )�

=

ω′ω′=

′′=θωΓ
D

1k

H
kk

H

,,Tr

,,Tr,,

θAPθAP

θωAPθωAPL

The minimization of this cost function is a non-linear optimisation problem.   We will

utilize simulated annealing to perform a global optimisation. Regarding simulated annealing

and its applications, see papers, e.g [15],[18],[23],[36],[47],[49], [57]and [60]. 
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10.2.5.2   Global optimisation procedure

 As has been described above, the proposed algorithm consists of two parts; forming the

cost function from the spectrum-estimation matrix and then using simulated annealing to

minimize the cost function.    The global minimization procedure by simulated annealing can

be outlined as follows:

Initialization

             set annealing schedule )n,T()n,T( ff00 � ;

             generate ),,( 000 θωΓ  randomly;

             compute ),,(L 000 θωΓ ;  

 where

[ ][ ]{ }�
=

θωωΓθωωΓ=θωΓ
D

1k

H
kkkkkk ),()(),()(tr),,(L APAP    

  outer loop

          set i=1; 

              inner loop

                    from k=1 to ni  ;

                    generate random perturb ),,( kkk θωΓ ;

                    compute ),,(L kkk θωΓ ;

                    generate random number ξ   with ( 0 , 1 )  

                   uniform distribution ;

                   if ξ  < p or if ∆ > 0  ,  accept ),,( kkk θωΓ  ;        

                   where

                  ))Texp(,1min(p i∆−= ,

                  ),,(L),,(L kkk1k1k1k θωΓ−θωΓ=∆ −−− ,  

                  otherwise ,reject;

              end of inner loop;

             set ),,(L kkk θωΓ generated by inner loop to     

        ),,(L 000 θωΓ ;

         1ii +=      ; 

       repeat until  i  >  f  or according  to other stop  

       criterion to end outer loop.
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     In the above procedure, the kernel of the simulated annealing algorithm is to

determine the annealing schedule { }.)n,T()n,T( ff00 � ; where 0T  is the initial temperature,

)f,,2,1i(Ti �=  is the current control temperature, and )f,,2,1i(n i �= is the cycle number of

the inner loop.

     The random perturbation ),,( kkk θωΓ  generated at the kth repetition will be accepted

with probability p:

))Texp(,1min(p i∆−=

where:

),,(L),,(L kkk1k1k1k θωΓ−θωΓ=∆ −−−

and:

[ ][ ]{ }�
=

θωωθωω=θωΓ
D

1k

H
kkkkkk ),()(),()(tr),,(L APΓAPΓ

      If ∆  > 0, then accept ),,(L kkk θωΓ , otherwise accept ),,(L kkk θωΓ  with

probability )Texp(p i∆−= .

Repeating the above procedure can reach the global minimum (or approximately global

minimum) and the proof of convergence can be seen in [13, 14].

10.2.5.3    Algorithm summary.

The main procedure of the proposed algorithm may be summarized as follows:

1 )    Initialization  : 

Select the initial values for the signal frequencies { }0ω , directions { }0θ , and array error

matrix { }0Γ .    Usually the initial values can be selected randomly or from the last measured

values.

 2 )    Use all the available data vectors to estimate the data covariance matrix :

              �
=

=
J

1j

H
x )j()j(

J
1 XXR       ( j  =  1 ,  2 , ….  ,  J )

             where  J is the number of samples.

3 )    Form the orthogonal projection matrix P using eigenvalue decomposition (EVD)

of the data covariance matrix xR .

4)     Construct the spectral-estimation matrix S:

[ ][ ] ))(')('(tr
1),,( Hθω,PAθω,PA

S =θωΓ
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and the cost function:     

[ ] [ ][ ]{ }

[ ][ ]{ }�
=

ωωωω=

=
θωΓ

=θωΓ

D

1k

H
kkkk

H

),()(),(),(tr

)()(tr
),,(

1),,(L

θAPΓθAPΓ

θω,PA'θω,PA'
S

5)     Search ),,( θωΓ  by simulated annealing to minimize the cost function and get the

estimation of the signal frequencies, directions of arrival and array sensor errors (gains and

phases).



Air Force Research Laboratory –EOARD           Contract No.F73001 F30602 99MV072

U. L. Antenna Research Group Page 52 of 75 Document ID: ARG-ARFL-PJ1.0/ VER 1.7

11.    Simulation Results.

11.1   Convergence Properties.

As convergence is an important property for iterative estimation methods, the

convergence rates of the ML method of Section 10.2.1 and the IMUSIC method of section

10.2.2 are compared in the first example.   Consider a uniform linear array with 8 sensors, each

sensor separated by λ/2, with 2 equi-power narrow-band sources of known frequency located in

the far field of the array at directions θ1 = 30˚,  θ 2 = 45˚.   The signals are assumed to be

uncorrelated.   Additive noise is injected with a SNR of 30dB referenced to each signal source,

i.e.,

2
10/302 10/ IP =σ

500 snapshots of array data are accumulated.    The initial values for the DOAs were

chosen as θ1 = 35˚,  θ 2 = 50˚, and the initial mutual coupling matrix is chosen as an identity

matrix. Figure 11.1 shows the DOA estimation of   θ 2 = 45˚ during 35 iterations using the ML

and IMUSIC methods.

                       
        
Fig.11.1    The DOA estimation of the  θ =45 using the ML and IMUSIC methods versus the number of iterations

using a ULA of 8 sensors when two waves are incident from 35˚ and 45˚ and 500 snapshots are taken with a SNR =30dB

In comparison with the ML method, the IMUSIC method has a slower convergence rate

to the true DOA.

Figure 11.2 shows the Root Mean Square Error (RMSE) of the DOA estimation of a

signal arriving from 45˚ using the ML and IMUSIC methods for different SNRs.   In this

example, an 8 sensor ULA with element spacing λ/2 is used.   Two uncorrelated signals are
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incident from 35˚ and 45˚ and 100 snapshots are collected.   The SNR is varied from 5dB to

30dB and 30 Monte Carlo simulations are made for each simulation.    From Figure 11.2 it is

clear that the RMSE of the IMUSIC method is higher than that of the ML method but

approaches it asymptotically for high SNRs.

                                      

Fig.11.2    The RMSE of the DOA estimation of  θ  = 45˚ .for ML and IMUSIC methods versus SNR using a ULA of

8 sensors with signals incident from 35˚ and 45˚ taking 100 snapshots.  30 Monte Carlo simulations are made. 

11.2   DOA and Mutual Coupling Estimation with Unknown Frequencies.

For the DOA and mutual coupling estimation with multiple unknown frequencies the

Separable Sub-space Method described in section 10.2.3 was used.   A UCA with 8 sensors is

used for the simulation and four equal-power narrow-band sources centered with two different

signal frequencies are located at the far field.   The four signals have the following frequencies

and DOAs:

S(θ11, f1) = (30˚, 8.5 MHz), S(θ12 ,f1) = (60˚, 8.5 MHz),

S(θ21, f2) = (90˚, 6.5 MHz), S(θ22, f 2) = (120˚, 6.5 MHz)

Additive noise is injected with a SNR of 15 dB and 100 snapshots of array data are

accumulated.

Figure 11.3 shows the frequency estimation.   For each of the 2 estimated frequencies,

Figure 11.4 and Figure 11.5 show the spatial spectrums of the DOA estimations with both

unknown and estimated MCMs.
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Fig.11.3    Frequency estimation by separable dimension method using a UCA of 8 sensors.  Four signals with

frequencies (8.5 MHz, 6.5 MHz) are incident from (30˚, 60˚) and (90˚, 120˚) with 100 snapshots.   The SNR =15 dB.

Fig.11.4    The spatial spectrum for estimated MCM and unknown MCM at the estimated frequency f1 = 8.5 MHz

using a UCA of 8 sensors.   Four signals with frequencies (8.5 MHz, 6.5 MHz) are incident from (30˚, 60˚) and (90˚, 120˚)

with 100 snapshots.   The SNR =15 dB.

.
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Fig.11.5   The spatial spectrum for estimated MCM and unknown MCM at the estimated frequency f2 = 6.5 MHz

using a UCA of 8 sensors.   Four signals with frequencies (8.5 MHz, 6.5 MHz) are incident from (30˚, 60˚) and (90˚, 120˚)

with 100 snapshots.   The SNR =15 dB.

By inspecting the simulation results in Figures 11.4 and 11.5, it can be seen that the

mutual coupling effect does not greatly affect the frequency estimation but severely affects the

DOA estimation when using the separable dimension estimation method.

Fig.11.6   The contours of the 2D MUSIC spectrum for DOA and frequency with compensated MCM where the

dotted lines represent the true DOA and frequency pairs.

Compensated with the estimated MCM, the separable dimension estimation method can

estimate DOAs that are very close to the true DOAs.    Figure 11.6 shows the contours of the
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2D MUSIC spectrum for DOA and frequency with compensated MCM.   The dotted lines

indicate the true DOA/frequency pairs.

Fig.11.7   The MSE of DOA estimation of  θ =30˚ using separable dimension method versus SNR using a UCA of 8

sensors and 30 Monte Carlo simulations.   Four signals with frequencies (8.5 MHz, 6.5 MHz) are incident from (30˚, 60˚) and

(90˚, 120˚) with 100 snapshots.

                     Fig.11.8   The MSE of DOA estimation of  f = 8.5 MHz using separable dimension method versus SNR

using a UCA of 8 sensors and 30 Monte Carlo simulations.   Four signals with frequencies (8.5 MHz, 6.5 MHz) are incident

from (30˚, 60˚) and (90˚, 120˚) with 100 snapshots.

Figures 11.7 and 11.8 illustrate the mean square error (MSE) of the estimated DOA and

frequency, DOA =30˚ and f = 8.5 MHz, and also compare them to their theoretical lower
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bound.   In this example, the array and source scenarios are the same as the above example

except that 150 snapshots are taken.   The SNR is varied from 5 dB to 35 dB and 30 Monte

Carlo simulations are made for each test.

11.3  Array Sensor Gain/Phase Error Calibration.

To simulate the simultaneous estimation of frequency, DOA and sensor gain/phase

error the Alternating Iterative method of section 10.2.4 and the Global Optimisation using

Simulated Annealing of section 10.2.5 were considered.   For both simulations a UCA of 8

omnidirectional sensors is used.

11.3.1    Alternating Iterative Method

In this example four equal-power narrow-band sources are located in the far field of the

array with the frequencies and directions:

S(θ11, f1) = (30˚, 7.5 MHz), S(θ12 ,f1) = (58˚, 7.5 MHz),

S(θ21, f2) = (85˚, 5.5 MHz), S(θ22, f 2) = (115˚, 5.5 MHz)

The SNR was set at 20 dB and 100 data samples were accumulated.

                     

                         

Fig.11.9    MUSIC spectrum for the Alternating Iterative method after iterations 1,6,and 10 using a UCA of 8

sensors with two signals with frequency f 1 =7 .5 MHz incident from 30˚ and 58˚.   100 snapshots with SNR =20 dB
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Figures 11.9 and 11.10 show the MUSIC spectrums after iterations 1, 6 and 10 for the

different estimated frequencies, f = [7.5, 5.5] MHz, respectively.    It is clear from the results

that after 10 iterations, the array sensor gain/phase errors have been corrected and the estimated

DOAs are close to the true DOAs. 

                              

Fig.11.10    MUSIC spectrum for the Alternating Iterative method after iterations 1,6,and 10 using a UCA of 8

sensors with two signals with frequency f 2 =5 .5 MHz incident from 85˚ and 115˚.   100 snapshots with SNR =20 dB

11.3.2    Simulated Annealing Method.

Using the same array structure as the previous example, this uses a Simulated

Annealing algorithm to estimate the frequency and DOA of four signals in the presence of

sensor gain/phase errors.    Four equal-power narrow-band sources are located in the far field of

the array with the frequencies and directions:

S(θ11, f1) = (15˚, 5.5 MHz), S(θ12 ,f1) = (120˚, 5.5 MHz),

S(θ21, f2) = (150˚, 7.5 MHz), S(θ22, f 2) = (250˚, 7.5 MHz)

The SNR = 10 dB and 100 samples are accumulated.    Since the annealing schedule

(T0, n0) … (Tf, nf)  is a critically important element in the simulated annealing algorithm, the

annealing schedule should be selected carefully to guarantee that the cost function converges to
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the global optimum.   Note that for different optimization problems, the annealing schedule

selection will be different.   The annealing schedule consists of:

 Initial temperature T0:   A value T0 should is chosen that enables the system to climb

out of any local minimum.

 Equilibrium condition ni:   The equilibrium condition is met when a certain number of

inner circulations are accepted at that temperature.

 Temperature decrease Ti+1:   When each equilibrium state is reached, the temperature

will be decreased by a constant value. 

 Stop criteria Tf:   A certain number of outer circulations.  Also, a pre-determined

threshold may select it; when the cost function at the end of 2 consecutive accepted values is

less than this number, the outer circulation will stop and the cost function is assumed to have

reached its minimum.

Figures 11.11 and 11.12 show the results of the DOA and frequency estimations using

the simulated annealing method.   As can be seen, with random searching in DOA and

frequency space by the simulated annealing algorithm, the curves finally converge to the

corresponding DOAs and frequencies and the DOAs and frequencies are estimated

simultaneously.    8000 annealing iterations are shown in the graphs.    Figure 11.13 shows the

cost function for the simulated annealing method where the cost function curve moves to the

minimum from local stationary points.   This allows the algorithm to proceed and to find a

globally optimal solution.

Fig.11.11  DOA estimation using simulated annealing   A UCA of 8 sensors is used.  4 signals with frequencies, f1 =

7.5 MHz and f2 = 5.5 MHz are incident from (150˚, 250˚) and (15˚, 120˚).   100 snapshots with SNR =10dB.
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Fig.11.12   Frequency estimation using simulated annealing   A UCA of 8 sensors is used.  4 signals with

frequencies, f1 = 7.5 MHz and f2 = 5.5 MHz are incident from (150˚, 250˚) and (15˚, 120˚).   100 snapshots with SNR =10dB.

Fig.11.13   The cost function for the simulated annealing method
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12.    Conclusions.

12.1    Introduction.

This report is the final report of a project undertaken by the University of Limerick on

behalf of the Air Force Research Laboratory (AFRL/IFGA, Rome, NY) through the European

Office of Aerospace Research and Development.   The main objective of the project is to

investigate the possibility of using the known characteristics of GPS signals to calibrate smart

antenna arrays ‘on-the-fly’ and thus reduce the time taken to acquire and characterise other

unknown signals, especially in hostile environments.    This necessitates the development of

improved robust, stable and accurate estimation algorithms to process the data sampled from

the sensors of an antenna array.   In practice, it may be advantageous to utilise different

algorithms to handle different parts of the problem.

12.2    Antenna array model and systemic errors.

In section 7 it was shown that, for an ideal antenna array, the azimuth and elevation of

an unknown signal of known frequency can be calculated from the measured time delays at

each sensor by reference to the ideal antenna manifold; which is itself a function of the

individual sensor response and the array geometry.   In practice, however, the array manifold is

distorted by gain and phase errors between the sensors and their associated circuitry and mutual

coupling between array elements.   The gain and phase errors of the sensors are measured with

respect to a reference sensor and are independent of each other; they can be described as a

diagonal matrix.   The effects of mutual coupling are more complex as they are dependent on

the position of the sensor within the array.   The effects are best described using a matrix, the

Mutual Coupling Matrix (MCM), which in the usual case of symmetric arrays has a symmetric

structure; for a ULA the MCM is a banded Toeplitz matrix and for a UCA it is a circulant

matrix.

In particular, these errors are frequency dependent and thus severely degrade the

accuracy of spatial or spatio-temporal parameter estimations when handling multiple signals

with different frequencies.   In this study, therefore, much effort has been put into investigating

and proposing methods of estimating the gain/phase and mutual coupling errors in the situation

of both known and unknown signal frequencies.
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12.3    Parameter estimation methods.

For the case of signals with known frequency (as would be the case when using GPS

signals) a Maximum Likelihood method (section 10.2.1) and an Iterative MUSIC method

(which is a Subspace method) (section 10.2.2) were considered for the estimation of directions

of arrival (DOAs) and the MCM simultaneously.    Analysis of the effects of model errors and

sensitivity analysis (section 9) appeared to show that the Subspace method would be more

accurate.   However, when simulations were run, the ML method showed a faster convergence

to the actual value (section 11.1) and a lower RMSE.

For the case of multiple unknown frequency signals a Separable Dimension Subspace-

based method was considered (section 10.2.3) to simultaneously estimate the signal frequencies

and DOAs as well as the mutual coupling parameters.   With separable dimension processing

the spatial and temporal estimation problems are separated; the signal frequencies are first

estimated using a subspace method and then the DOAs and MCM are estimated at each of the

estimated frequencies.   In this way the computational complexity is relatively low and the

performance is satisfactory.   Two separable subspace algorithms were developed to

demonstrate the power of this approach – an Alternating Iterative method and a Global

Optimisation method based on Simulated Annealing.   This estimation procedure is a non-

linear, multi-dimensional optimisation problem and whether or not the algorithm can converge

to a global optimum depends on the choice of initial values.  When simulations were run

(section 11.3), both algorithms were shown to be capable of accurate frequency and DOA

estimation with effective correction of systematic errors.   The Global Optimisation method is

far more computationally intensive as well as being sensitive to the initial annealing

parameters; however, it does have the advantage of ensuring a high probability of convergence

to a global optimum whereas this cannot be guaranteed using the Alternating Iterative method.

12.4    The use of GPS signals to estimate the MCM and gain/phase errors.

Signals from GPS satellites are ideal for calibrating an antenna array because they are of

the same known frequency and, once the position and attitude of the array is known, the DOA

of each signal is known accurately and independent of array parameters.   This would enable an

ML algorithm, such as that developed in section 10.2.1, to rapidly estimate the MCM and

gain/phase errors; either as separate matrices or as an actual array manifold.   It might be

advantageous to carry out this calibration at both L1 and L2 so as to obtain some information

on the frequency dependence of the error matrices.
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Once we have obtained accurate MCM and gain/phase error matrices, they may be used,

with rough frequency correction if available, as initial conditions for using a separable

dimension algorithm (such as derived in sections 10.2.4 or 10.2.5) to estimate the frequency

and DOA of unknown signals.   Simulations in section 11 have shown that the speed of

convergence and accuracy of these estimation methods is very dependent on the initial

conditions.   The use of these improved initial conditions should, therefore, speed up the

estimation of the unknown parameters and increase the chance of attaining a global optimum.

This may enable the faster Alternating Iterative method to be used instead of the alternative

Global Optimisation using Simulated Annealing.   Alternatively it may lead to faster

convergence using Simulated Annealing; further investigation is necessary to evaluate the

advantages of more accurate initial conditions.

We have shown that GPS signals may be used to calibrate an antenna array by

estimating the MCM and gain/phase error matrix.   This would provide improved initial

conditions for algorithms used to estimate the frequency and DOA of unknown signals, thus

ensuring faster and more accurate estimations.
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7803-6514-3/00, pp605-609.

October 29 - November 1, 2000, in Pacific Grove, California. 

J. Mao, B. Champagne, M. O'Droma & K. Kwiat. Separable dimension subspace method for
joint signal frequencies, DOAs and sensor mutual coupling estimation’. 
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