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1. Objectives 

This project developed a new set of tools for multiscale signal and image modeling, processing, 
and analysis that are matched to singularity-rich data, such as transients and images with edges. 
Using a linguistic analogy, our models can be interpreted as grammars that constrain the wavelet 
vocabulary. Our investigation focused on probabilistic graph models (tree-based hidden Markov 
models) that accurately, realistically, and efficiently represent singularity structure in the wavelet 
domain. Grammar design was guided by a detailed study of the fine structure of singularities 
using Besov spaces and multifractal analysis. 

2. Research Findings 

Complex wavelet vocabulary 

Signal and image processing algorithms based on the fully decimated wavelet transform suffer 
from shift-variance, reducing their power considerably. Shift variance dilutes the power of any 
model for the wavelet coefficients because the model must tolerate the strong changes in wavelet 
coefficient structure as the signal is shifted. Hence, we developed models for the complex 
wavelet transform (CWT). The dual-tree CWT analyzes a signal or image in terms of two 
wavelets that are close to a Hilbert transform pair (90 degrees out of phase, like a cosine and 
sine). The complex magnitude of the CWT is very nearly shift-invariant and in 2-d also features 
improved angular resolution (six oriented subbands at multiples of 15 degrees over the standard 
wavelet transform's three). 



We extended our wavelet hidden Markov tree (HMT) modeling framework to the magnitude of 
the CWT. The complex HMT model is computationally efficient (with linear-time computation 
and processing algorithms) and applicable to general Bayesian inference problems as a prior 
density for images.   (See the Figures at the end of this report.) 

Modeling both the magnitude and phase of the complex wavelet transform enables us to perform 
coherent processing in the wavelet domain analogous to coherent processing in the Fourier 
domain. Our experiments indicate that large gains in denoising, classification, and compression 
performance should result. 

Edge geometry modeling 

The magnitude and phase of the complex wavelet transform have natural interpretations in terms 
of image edges. Given an edge passing through a complex wavelet's support, the magnitudes of 
the six complex wavelet coefficients at that scale and position can be interpolated to accurately 
indicate the angle of the edge. The phase of the largest magnitude coefficient indicates the 
edge's offset from center. This relationship has allowed us to build Markov models to describe 
the evolution of image edges in a multiscale fashion. (See the Figures at the end of this report.) 

Orthogonal complex wavelets 

The dual-tree CWT analyzes in terms of a tight frame of redundancy 2 in 1-d and 4 in 2-d. For 
maximum efficiency, it is reasonable to ask whether it is possible to construct useful complex 
wavelets with no redundancy. By "useful" we mean complex wavelets whose coefficients have 
easily modeled structure. Working in a 3-band (rather than the classical 2-band) filterbank 
structure, we have developed a new non-redundant CWT whose coefficients reflect the attractive 
properties of the redundant 2-band CWT. 

3.       Accomplishments 

Complex HMT denoising 

We successfully applied the complex wavelet HMT model in two relevant problems. In 
estimation ("denoising"), the complex wavelet HMT model outperformed all known wavelet 
denoising algorithms, including redundant wavelet thresholding (cycle spinning). A muUiscale 
maximum likelihood texture classification algorithm produces fewer errors with the new model 
than with a traditional real wavelet HMT. (See the Figures at the end of this report.) 

Edge geometry compression 

We developed a prototype image compression algorithm based on this framework that encodes 
the image geometry description and the residual texture information jointly in a rate/distortion 
optimal fashion. The algorithm outperforms the new JPEG2000 by a fairly significant margin 
(up to l-2dB in PSNR for "edgy" images). Indeed, we have proved that for a simple class of 
"piecewise smooth" cartoon images consisting of smooth (C^) regions delineated by smooth (C ) 
edges, that this algorithms is near-optimal in a rate/distortion sense. That is, the mean-squared 
error D of image approximation decays with the number of bits R as D{R) ~ C (N/\og N) . 



Finally, since the compressed bit stream contains explicit geometry information regarding edges, 
it could prove very useful for efficient image classification and data base searching. This new 
framework demands further investigation. (See the Figures at the end of this report.) 

Both of these innovations have been transferred to Texas Instruments for possible incorporation 
into next-generation wavelet-based image processing systems. 

4. Personnel Supported 

Richard Baraniuk (PI) 
Hyeokho Choi (senior researcher; equivalent to postdoc) 
Justin Romberg (graduate student) 

In addition NSF Graduate Fellow Michael Wakin contributed significantly to this effort at no 
charge to the grant. 
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5.2      Reviewed Conference Proceedings 

M. Wakin, J. Romberg, H. Choi, and R. G. Baraniuk, "Image Compression using a 
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35 more - see dsp.rice.edu/publications and dsp.rice.edu/~richb/bio.html 

6.        Interactions / Transitions 

6.1 Conference Presentations 

See above Conference Proceedings. 

6.2 Transitions 

Transitioned complex wavelet algorithms to Texas Instruments (Dr. Felix Fernandes, 
felixm.ti.com) and to Raytheon (Dr. Harry Schmidt). We also have posted software for many of 
these new algorithms on our web site at dsp.rice.edu/software 

7. Patent Disclosures 

None. 
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• Elected Fellow of the IEEE 
• Co-Author on Passive and Active Network Measurement Workshop Student Paper 

Award 
• Co-Author on IEEE Signal Processing Society Junior Paper Award (with M. S. 

Grouse and R. D. Nowak) 
• IEEE NORSIG Best Paper Award (with E. Monsen, J. Odegard, H. Choi, J. 

Romberg), 2001 
• George R. Brown Award for Superior Teaching (Rice, twice) 
• ECE Young Alumni Achievement Award (University of Illinois) 
• Charles Duncan Junior Faculty Achievement Award (Rice) 
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l-d complex biorthogonal wavelet, with even-symmetric real part (blue) 

and odd-symmetric imaginary part (red). 

2-d complex wavelets analyze at 6 different orientations, 
all multiples of 15 degrees 
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Our complex wavelet HMT demising algorithm outperforms all other 
wavelet denoising algorithms in the literature (figures are PSNR). 

Note especially the clean edges and ridges in the 
complex wavelet HMT (CHMT) estimate. 
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Our multiscale edge geometry model builds up smooth image edges from straight line segments 
(a la Donoho 's wedgelets). A multiscale Markov model on the segments enables a fast dynamic 

program on the wedgelet quad-tree to find the optical balance between the sparsity of the 
representation (a few large edge segments) and accuracy (requiring many small segments). 

Due to the Markov probability model, this method significantly outperforms Donoho's 
CART-based representation. 
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The CWT enables accurate and efficient algorithms for identifying edges and estimating their 
parameters. In this example, four square blocks from the image ortjhe left have been analyzed in 

terms of their CWT coefficients. Using the CWT magnitudes to estimate the edge orientations 
and the phases to estimate the ojfsets, we approximate these blocks bypiecewise constant 

wedgelets at right. 



state-of-the-art 
SFQ 

wavelet image 
coder 
(zoom) 

new 
WSFQ 

wavelet/wedgelet 
image coder 

(zoom) 

Comparison of state-of-the-art SFQ wavelet-based image coder versus the new WSFQ coder 
based on wavelets and wedglets (zoom). 
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