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ABSTRACT 
 
 
 
This thesis surveys existing reliability management and improvement techniques, 

and describes how they can be applied to small unmanned aerial vehicles (SUAVs). 

These vehicles are currently unreliable, and lack systems to improve their reliability. 

Selection of those systems, in turn, drives data collection requirements for SUAVs, which 

we also present, with proposed solutions.  

This thesis lays the foundation for a Navy-wide SUAV reliability program. 
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EXECUTIVE SUMMARY 
 
 
 

Small UAVs will be used with growing frequency in the near future for military 

operations. As SUAVs progress from being novelties and toys to becoming full members 

of the military arsenal, their reliability and availability must begin to approach the levels 

expected of military systems. They currently miss those levels by a wide margin. 

The military has wide experience with the need for reliability improvement in 

systems, and in fact developed or funded the development of many of the methods 

discussed in this thesis. These methods have not yet been applied to SUAVs. 

The projection of reliability experience from manned piloted aviation to UAVs 

has led to overestimation of the UAV reliability. Real and urgent operational demands in 

the Persian Gulf, Kosovo, and Afghanistan have highlighted the very low levels of 

reliability of UAVs compared to manned air vehicles. 

To make a decision, one needs analytical support. Analytical support requires 

models. Models require good data. Good data requires systems to collect and archive it 

for easy retrieval. When I began this thesis, I thought that good data on SUAV reliability 

would be easily available for analysis. I was mistaken. That is why the majority of this 

thesis has discussed data collection systems and argued that some (but not all) need to be 

applied to SUAVs. For ease of implementation, we adapted forms from commercial use 

for FMECA and FRACAS systems for SUAVs, and constructed a very detailed FTA for 

a typical SUAV. This work is more typical of a reliability engineering thesis, but was 

necessary to enable any operational analysis. 

With the existing crude data on one UAV system, I was able to perform a crude 

analysis using a reliability growth model based on Duane’s postulate. With good data, the 

Navy will be able to do much more, as outlined in the thesis. 

The DoD Reliability Primer is currently under extensive revision. In the 

meantime, this thesis can serve as a survey of the reliability methods that are applicable 

to SUAVs and as template for the implementation of FMECA, FTA, and FRACAS 



 xx

methods for reliability improvement for SUAVs. As with all surveys, it has depended on 

the work of the original authors, which I have borrowed liberally and documented 

extensively. The adaptation of these methods for SUAVs is the original contribution of 

this thesis. 

I observed developmental tests of SUAVs in the course of writing this thesis. I 

can personally attest that no appropriate methods of data collection, archival, or analysis 

are currently being used, and that these methods are desperately needed by the SUAV 

community if it is to progress beyond the novelty stage. I strongly recommend their 

adoption by NAVAIR. 

This thesis makes an initial examination of the real problem of SUAV reliability. 

Primarily it is a qualitative approach, which illuminates some of the problem’s aspects. 

Collecting real data from SUAV systems will formulate reliability databases. 

Quantitative reliability analysis may then follow and result in detailed information about 

reliability improvement, but only if the collection systems outlined here are implemented 

to provide the data for analysis. 
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I. INTRODUCTION 

A. BACKGROUND (UAVS, SUAVS) 

1. UAV – Small UAV 
One hundred years after the Wright brothers’ first successful airplane flight, 

aircraft have been proven invaluable in combat. Unfortunately, airplanes have also 

contributed to the loss of operator life. Many pilots have been killed attempting to 

accomplish their mission, to become better pilots, and to test new technologies. The 

development of uninhabited or unmanned aerial vehicles (UAVs) raises the possibility of 

more efficient, secure, and cost effective military operations.1 

The UAV puts eyes out there in places we don’t want to risk 
having a manned vehicle operate. Sometimes it’s very dull, but necessary 
work—flying a pattern for surveillance or reconnaissance. UAVs can go 
into a dirty environment where there’s the threat of exposure to nuclear, 
chemical or biological warfare. They are also sent into dangerous 
environments—battle zones: Dull, Dirty, Dangerous. The primary reason 
for the UAV is the Three D’s.2 

The history of UAVs started in 1883 when Douglas Archibald attached an 

anemometer to the line of a kite. Archibald managed to obtain differential measures of 

wind velocity at altitudes up to 1,200 feet. In 1888, Arthur Batat made the first aerial 

photograph in France, after installing a camera on a kite. The first use of UAVs built for 

military purposes was during WWII by the Germans. The well-known flying bombs V-I 

and V-II showed that unmanned aircraft could launch against targets and create a 

destructive effect. In the 1950s, the US developed the Snark. It was an unmanned 

intercontinental range aircraft designed to supplement Strategic Air Command’s manned 

bombers against the Soviet Union. Snark, V-I and V-II destroyed themselves as they hit 

their targets. In fact, these were early versions of today’s cruise and ballistic missiles.3 
                                                 

1 Clade, Lt Col, USAF, “Unmanned Aerial Vehicles: Implications for Military Operations,” July 2000, 
Occasional Paper No. 16 Center for Strategy and Technology, Air War College, Air University, Maxwell 
Air Force Base. 

2 Riebeling, Sandy, Redstone Rocket Article, Volume 51, No.28, “Unmanned Aerial Vehicles,” July 
17, 2002, Col. Burke John, Unmanned Aerial Vehicle Systems project manager, Internet, February 2004. 
Available at: http://www.tuav.redstone.army.mil/rsa_article.htm 

3 Carmichael, Bruce W., Col (Sel), and others, “Strikestar 2025,” Chapter 2, “Historical Development 
and Employment,” August 1996, Department of Defense, Internet, February 2004. Available at: 
http://www.au.af.mil/au/2025/volume3/chap13/v3c13-2.htm 
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In the US, the need to perform reconnaissance (RECCE) missions by UAVs came 

after the realization that these missions are extremely dangerous and mentally fatiguing 

for the pilot. The U2 Dragon Lady planes used to be the state-of-the-art platforms for 

RECCE missions. They were slow, with a maximum speed of 0.6 Mach, and cruised at 

an altitude between 70 and 90,000 feet.4 In May 1960 the Soviets captured a U2 plane. 

The pilot, Gary Powers, confessed to the black bird program, created by President 

Eisenhower to monitor the development of Soviet intercontinental ballistic missiles after 

the launch of Sputnik-I. The U2 flights over Russia were suspended. Spy satellites filled 

their gap. In 1962, another U2 was hit by a Soviet anti-air missile while on a RECCE 

mission in Cuba. The pilot was killed in the crash. As a result of these incidents, the first 

unmanned RECCE “drone”, the AQM-34 Lighting Bug, was made by the Ryan 

Aeronautical Company in 1964. The term “drone” became slang among military 

personnel for early-unmanned vehicles. It was a byword of the DH.82B Queen Bee, 

which was a dummy target for anti-aircraft gunner training.5 

The Lightning Bug was based on the earlier Fire Bee. It operated from 1964 until 

April 1975, performing a total of 3,435 flight hours in RECCE missions that were too 

dangerous for manned aircraft, especially during the Vietnam War. Some of its most 

valuable contributions were photographing prisoner camps in Hanoi and Cuba, providing 

photographic evidence of SA-2 missiles in North Vietnam, providing low-altitude battle 

assessment after B-52 raids, and acting as a tactical air launched decoy.6 

In 1962, Lockheed Martin began developing the D-21 supersonic RECCE drone, 

the Tagboard. It was designed to be launched from either the back of a two-seat A-12, 

which was under development at the same time, or from the wing of a B-52H. The drone 

could fly at speeds greater than 3.3 Mach, at altitudes above 90,000 feet and had a range 

                                                 
4 The Global Aircraft Organization, US Reconnaissance, “U-2 Dragon Lady,” Internet, February 2004. 

Available at: http://www.globalaircraft.org/planes/u-2_dragon_lady.pl 
5 Clark, Richard M., Lt Col, USAF, “Uninhabited Combat Aerial Vehicles, Airpower by the People, 

For the People, But Not with the People,” CADRE Paper No. 8, Air University Press, Maxwell Air Force 
Base, Alabama, August 2000, Internet, February 2004. Available at: http://www.maxwell.af.mil 
/au/aupress/CADRE_Papers/PDF_Bin/clark.pdf 

6 Ibid. 
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of 3,000 miles. The project was canceled in 1971 together with the A-12 development 

due to numerous failures, high cost of operations, and bad management.7 

In addition to the RECCE role, Teledyne Ryan experimented with strike versions 

of the BQM-34 drone, the Tomcat. They investigated the possibility of arming the 

Lightning Bug with Maverick electro-optical-seeking missiles or electro-optically-guided 

bombs Stubby Hobo. Favorable results were demonstrated in early 1972 but the armed 

drones were never used during the Vietnam War. Interest in the UAVs was fading by the 

end of the Vietnam War.8 

In the 1973 Yom Kippur War, the Israelis used UAVs effectively as decoys to 

draw antiaircraft fire away from attacking manned aircraft. In 1982, UAVs were used to 

obtain the exact location of air defenses and gather electronic intelligence information in 

Lebanon and Syria. The Israelis also used UAVs to monitor airfield activities,  changing 

strike plans accordingly.9 

2. The Pioneer RQ-210 
The US renewed its interest in UAVs in the late 1980s and early 90s, with the 

start of the Gulf War. Instead of developing one from scratch, the US acquired and 

improved the Scout, which was used by the Israelis in 1982 against the Syrians. The 

outcome was the Pioneer, which was bought by the Navy to provide cheap unmanned 

over the horizon targeting (OTHT), RECCE, and battle assessment. The Army and 

Marines bought the Pioneer for similar roles and six Pioneer systems were deployed to 

SW Asia for Desert Storm. 

Compared to the Lightning Bug, the Pioneer is slower, larger, and lighter, but 

cheaper. The average cost of the platform was only $850K, which was inexpensive 

relative to the cost of a manned RECCE aircraft. 11 With its better sensor technology, the 
                                                 

7 Carmichael. 
8 Ibid. 
9 Ibid. 
10 The material of this section is taken (in some places verbatim) from GlobalSecurity.org, “Pioneer 

Short Range (SR) UAV,” maintained by John Pike, last modified: November 20, 2002, Internet, May 2004. 
Available at: http://www.globalssecurity.org/intell/systems/pioneer.htm 

11 National Air and Space Museum, Smithsonian Institution, “Pioneer RQ-2A,” 1998-2000, revised 
9/14/01 Connor R. and Lee R. E., Internet, May 2004. Available at: http://www.nasm.si.edu/research 
/aero/aircraft/pioneer.htm 
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Pioneer can deliver real-time battlefield assessment in video stream, a huge improvement 

compared to the film processing required for the Lightning Bugs. 

By 2000, after 15 years of operations, the Pioneer had logged more than 20,000 

flight hours. Apart from Desert Storm it was used in Desert Shield, in Bosnia, Haiti, 

Somalia, and for other peacekeeping missions. The Navy used the Pioneer to monitor the 

Kuwait and Iraqi coastline and to provide spotting services for every 16-inch round fired 

by its battleships. 

Pioneer can give detailed information about a local position to a battalion 

commander. Joint force commanders wanted to see a bigger, continuous picture of the 

battlefield, but space-based and manned-airborne RECCE platforms could not satisfy 

their demand for continuous situational awareness information. In response to that need 

and in addition to tactical UAVs (TUAVs) like the Pioneer, the US began to develop a 

family of endurance UAVs.  

Three different platforms compose the endurance UAV family: Predator, Global 

Hawk, and Dark Star. 

a. The Predator RQ-112 
Predator is a by-product of the CIA-developed Gnat 750, also known as 

the TierII or medium altitude endurance (MAE) UAV. It is manufactured by General 

Atomics Aeronautical Systems and costs about $3.2M to $4.5M per platform.13 Its 

endurance was designed to be greater than 40 hours with a cruising speed of 110 knots 

and operational speed of 75 knots using a reciprocating engine with a 25,000-foot ceiling 

and 450-pound payload. Predator can carry electro-optical (EO) and infrared (IR) 

sensors. It also collects full-rate video imagery and transmits it in near real-time via 

satellite, other UAVs, manned aircraft or line-of-sight (LOS) data link. More importantly, 

Predator is highly programmable. It can go from autonomous flight to manual control by 

a remote pilot. 

                                                 
12 The material for this section is taken (in some places verbatim) from: Carmichael. 
13 Ciufo, Chris A., “UAVs:New Tools for the Military Toolbox,” [66] COTS Journal, June 2003, 

Internet, May 2004. Available at: http://www.cotsjournalonline.com/2003/66 
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Except for Pioneer, Predator is the most tested and commonly used UAV. It was 

first deployed to Bosnia in 1994, next in the Afghan War of 2001, and then in the Iraqi 

war of 2003. 

Used as a low altitude UAV, Predator can perform almost the same tasks as 

Pioneer: surveillance, RECCE, combat assessment, force protection, and close air 

support. It can also be equipped with two laser-guided Hellfire missiles for direct hits at 

moving or stationary targets. During operation Enduring Freedom in Afghanistan, 

Predators were considered invaluable to the troops for scouting around the next bend of 

the road or over the hill for hidden Taliban forces. 

Used as a high altitude UAV, the Predator can perform surveillance over a wide 

area for up to 30 to 45 hours. In Operation Iraqi Freedom, Predators were deployed near 

Baghdad to attract hostile fire from the city’s anti-air defense systems. Once the locations 

of these defense systems were revealed, manned airplanes eliminated the targets. 

b. The Global Hawk RQ-414 
A TierII+ aircraft, Global Hawk is a conventional high-altitude endurance 

(CHAE) UAV by Teledyne Ryan Aeronautical. A higher performance vehicle, it was 

designed to fulfill a post-Desert Storm requirement for high resolution RECCE of a 

40,000 square nautical mile area in 24 hours. It can fly for more than 40 hours and over 

3,000 miles away from its launch and recovery base carrying a synthetic aperture radar 

(SAR) and an EO/IR payload of 2,000 pounds at altitudes above 60,000 feet at a speed of 

340 knots. The cost of a Global Hawk is about $57M per unit.15 

c. The Dark Star RQ-316 
The Tier III stealth or low observable high altitude endurance (LOHAE) 

RQ-3 UAV was the Lockheed-Martin/Boeing Dark Star. Its primary purpose was to 

image well-protected, high-value targets. Capable of operating for more than eight hours 

at altitudes above 45,000 feet and a distance of 500 miles from its launch base, it was 

designed to meet a $10M per platform unit cost. Its first flight occurred in March 1996; 

                                                 
14 The material for this section is taken (in some places verbatim) from: Carmichael. 
15 Ciufo.  
16 The material for this section is taken (in some places verbatim) from: Carmichael. 
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however, a second flight in April 1996 crashed due to incorrect aerodynamic modeling of 

the vehicle flight-control laws. The project was cancelled in 1999.17  

For the characterization code RQ-3 the "R" is the Department of Defense 

designation for reconnaissance; "Q" means unmanned aircraft system. The "3" refers to it 

being the third of a series of purpose-built unmanned reconnaissance aircraft systems.18  

3. RQ-5 Hunter19 
Initially engaged to serve as the Army’s short range UAV system for division and 

corps commanders at a cost of $1.2M per unit,20 the RQ-5 Hunter can carry a 200 lb load 

for more than 11 hours. It uses an electro-optical infrared (EO/IR) sensor, and relays its 

video images in real-time via a second airborne Hunter over a line-of-site (LOS) data 

link. It deployed to Kosovo in 1999 to support NATO operations. Production was 

cancelled in 1999 but the remaining low-rate initial production (LRIP) platforms remain 

in service for training and experimental purposes. Hunter is to be replaced by the Shadow 

200 or RQ-7 tactical UAV (TUAV). 

4. RQ-7 Shadow 20021 
The Army selected the RQ-7 Shadow 200 in December 1999 as the close range 

UAV for support to ground maneuver commanders. It can be launched by the use of a 

catapult rail and recovered with the aid of arresting gear, and remain at least four hours 

on station with a payload of 60 lbs. 

5. RQ-8 Fire Scout22 
The RQ-8 Fire Scout is a vertical take-off and landing (VTOL) tactical UAV 

(VTUAV). It can remain on station for at least three hours at 110 knots with a payload of 

200 lb. Its scouting equipment consists of an EO/IR sensor with an integral laser 

                                                 
17 GlobalSecurity.org, “RQ-3 Dark Star Tier III Minus,” maintained by John Pike, last modified: 

November 20, 2002, Internet, May 2004. Available at: Available at: http://www.globalsecurity.org 
/intell/systems/darkstar.htm 

18 Ibid. 
19 The material for this section is taken (in some places verbatim) from: Office of the Secretary of 

Defense (OSD), “Unmanned Aerial Vehicles Roadmap 2000-2025,” April 2001, page 4. 
20 Ciufo. 
21 The material for this section is taken (in some places verbatim) from: OSD 2001, page 5. 
22 The material for this section is taken (in some places verbatim) from: OSD 2001, page 5. 
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designator rangefinder. Data is relayed to its ground or ship control station in real time 

over a LOS data link and a UHF backup that could operate from all air capable ships. 

6. Residual UAVs Systems23 
The US military maintains the residual of several UAV programs that are not 

current programs for development but have recently deployed with operational units and 

trained operators. BQM-147, Exdrones, is an 80-lb delta wing communications jammer 

and was deployed during the Gulf War. From 1997 to 1998 some of them were rebuilt 

and named Dragon Drone and deployed with Marine Expeditionary units. Air Force 

Special Operations Command and Army Air Maneuver Battle Lab are also conducting 

experiments with Exdrones. 

Some hand-launched, battery powered FQM-151 Pointers have been acquired by 

the Marines and the Army since 1989 and were employed in the Gulf War. Pointers 

performed as test platforms for various miniaturized sensors and have performed 

demonstrations with the Drug Enforcement Agency, National Guard and Special 

Operations Forces. 

7. Conceptual Research UAV Systems24 
The various service laboratories have developed a number of UAVs to research 

special operational needs and concepts. The Marine Corps Warfighting Laboratory is 

exploring three such concepts. The Dragon Warrior or Cypher II is intended to fly over 

the shore on fixed-wing mode flight and then, after removing its wings, converts into a 

hovering land platform design for urban operations. 

Marines have converted a K-Max helicopter to a UAV in order to explore the 

Broad Area Unmanned Responsible Resupply Operations. This concept is for ship-to-

shore resupply by UAVs. 

Battery-powered Dragon Eye is a mini-UAV (2.4 foot wingspan and 4 lbs) 

developed as the Navy’s version for the Over-The-Hill RECCE Initiative and the 

Marines’ Interim Small Unit Remote Scouting System requirement. The Dragon Eye can 

be carried in a backpack, and hence is given the name of Backpack UAV.  

                                                 
23 Ibid, page 6. 
24 Ibid, pages 7-8. 
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Sponsored by the Defense Threat Reduction Agency, the Counterproliferation 

(CP) Advance Concept Technology Demonstrations (ACTD) envisions deploying several 

mini-UAVs like the Finder from a larger Predator UAV to detect chemical agents and 

relay the results back through Predator.  

The CP ACTD is designed to address the growing need to provide 
a military capability for “precision engagement” of weapons of mass 
destruction (WMD) related facilities. In order to accomplish this objective, 
the CP ACTD will develop, integrate, demonstrate and transition to the 
warfighters, operationally mature technologies that potentially address the 
unique requirements to enhance the joint counterforce mission to hold 
WMD-related facilities at risk. The driving CP counterforce requirements 
include enhancing the ability to predict and to control collateral effects 
and to provide prompt response and reliable kill.25 

Besides the Dragon Eye and Finder mentioned above, the Naval Research 

Laboratory (NRL) has built and flown several small and micro-UAVs. Definition for 

these airframes will follow. The Naval Air Warfare Centre Aircraft Division 

(NAWC/AD) maintains a small UAV test and development team and also operates 

various types of small UAVs. 

8. DARPA UAV Programs26 
The Defence Advanced Research Projects Agency (DARPA) is sponsoring five 

major creative UAV programs: 

a. The Air Force X-45 UCAV, which was awarded to Boeing in 1999. The 

mission for the UCAV is Suppression of the Enemy Air Defences (SEAD). The platform 

will cost one third as much as a Joint Strike Fighter (JSF) to acquire and one quarter as 

much  to operate and support (O&S). The X-45A, with a maximum speed of 1000km/h, 

was designed to carry two 500 kg bombs using radar absorbing materials, and was first 

flown in June 2002. 

b. The UCAV-Navy X-46/X-47 is a similar program for the equivalent 

Navy version of a UCAV that can be carrier-based. Apart from SEAD missions, RECCE 

and strike will be among the platform’s capabilities. The X-47A Pegasus by Northrop 
                                                 

25 Department of Defense, Director of Operational Test & Evaluation, “Missile Defense and Related 
Programs FY 1997 Annual Report,” February 1998, Internet, February 2004. Available at: 
http://www.fas.org/spp/starwars/program/dote97/97cp.html 

26 The material for this section is taken (in some places verbatim) from: OSD 2001, pages 8-9. 
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Grumman successfully flew in March 2003 using modified GPS coordinates for 

navigation. 

c. The Advanced Air Vehicle (AAV) program includes two rotorcraft 

projects: 

(1)  The Dragon Fly Canard Rotor Wing, which will demonstrate 

vertical take-off-and-land (VTOL) capability and then transition to fixed wing flight for 

cruise. 

(2)  The A160 Hummingbird, which uses a hingeless rigid rotor to 

perform high endurance flight of more than 24 hours at a high altitude of more than 

30,000 feet.  

d. DARPA is exploring various designs of micro-air vehicles (MAVs), 

which are less than six inches in any dimension. The Lutronix Kolibri and the Microcraft 

Ducted Fan rely on an enclosed rotor for vertical flight, while the Lockheed Martin 

Sanders Microstar and the AeroVironment Black Window and E-Wasp are fixed-wing 

horizontal fliers.  

9. Other Nation’s UAVs 
In FY00 some 32 nations manufactured more than 150 models of UAVs, and 55 

countries operate some 80 types of UAVs, primarily for RECCE missions. 

Derivatives of the Israeli designs are the Crecerelle used by the French Army, the 

Canadair CL-289 used by the German and French Armies and the British Phoenix. The 

Russians use the VR-3 Reys and the Tu-300 and the Italians the Mirach 150.27  

10. NASA 
In the civilian sector, NASA has been the main agency concerned with 

developing medium and high-altitude long endurance UAVs. The agency has been 

involved with two main programs “Mission to Planet Earth” and “Earth Science 

Enterprise” for environmental monitoring of the effects of global climatic change. During 

the late 80s, NASA started to operate high-altitude manned aircraft, but later decided to 

develop a UAV for high-altitude operations. NASA constructed the propeller driven 
                                                 

27 Petrie, G., Geo Informatics, Article “Robotic Aerial Platforms for Remote Sensing,” Department of 
Geography &Topographic Science, University of Glasgow, May 2001, Internet, February 2004. Available 
at: http://web.geog.gla.ac.uk/~gpetrie/12_17_petrie.pdf 
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Perseus between 1991 and 1994 and Theseus, which was a larger version of Perseus, in 

1996. 

In 1994 NASA started its Environmental Research Aircraft and Sensor 

Technology (ERAST) program. As a result, NASA has operated the Altus and Altus II 

since 1998. Their operating ceilings are 45,000 to 65,000 feet using turbocharged 

engines. 

The development of solar powered UAVs is also being supported and funded by 

NASA. The idea, development, and construction was initiated by the Aerovironment 

company, which has been involved in the construction of solar-powered aircraft for 20 

years. Solar Challenger, HALSOL, Talon, Pathfinder, Centurion, and Helios with a 

wingspan of 247 feet, were among the solar-powered UAVs during those efforts.28 

New technologies like regenerative fuel-cell-powered UAVs are underway. These 

allow UAVs to fly for weeks or months, reducing the costs of missions so as to deliver a 

maximum return on investment per flight. NASA will also support the development of 

such technology.29 

11. What Is a UAV?30 
The distinction between cruise missile weapons and UAV weapon systems is 

sometimes confusing. Their main differences are: 

a. UAVs are designed to be recovered at the end of their flight while cruise 

missiles are not. 

b. A warhead is tailored and integrated into a missile’s airframe while any 

munitions carried by UAVs are external loads. 

According to 1-02 DoD Dictionary, a UAV is 

A powered, aerial vehicle that does not carry a human operator, 
uses aerodynamic forces to provide vehicle lift, can fly autonomously or 
be piloted remotely, can be expendable or recoverable, and can carry a                                                  

28 Ibid. 
29 UAV Rolling News, “New UAV work for Dryden in 2004,” June 12, 2003, Internet, February 2004. 

Available at: http://www.uavworld.com/_disc1/00000068.htm 
30 The material for this section is taken (in some places verbatim) from: Office of the Secretary of 

Defense (OSD), “Unmanned Aerial Vehicles Roadmap 2002-2027,” December 2002, Section 1, 
“Introduction.” 
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lethal or non-lethal payload. Ballistic or semi ballistic vehicles, cruise 
missiles, and artillery projectiles are not considered unmanned aerial 
vehicles.31 

12. Military UAV Categories 
UAVs can be classified according to different criteria such as mission type, sensor 

type, performance, and control system. Remote Piloted Vehicles (RPVs) and autonomous 

UAVs are two distinct groups based on their different control systems. They have many 

common features but the main difference is that an RPV follows the data-link commands 

of a remote station for the specific air mission. In other words, it is a “dumb” vehicle, 

which can carry sensors and relay data. UAVs can be further classified according to their 

mission as Reconnaissance Surveillance and Target Acquisition (RSTA) UAVs, Combat 

UAVs (UCAVs), and others. According to the way they are launched, they can be 

classified as hand-launched, rail-launched, rocket-launched and airfield-launched. 

We also classify military UAVs in three main categories, considering their ceiling 

as their driver characteristic: Tactical UAVs (TUAVs), Medium-Altitude Endurance 

UAVs (MAE UAVs), and High-Altitude Endurance UAVs (HAE UAVs).32 

a. Tier I or TUAVs are inexpensive with an average cost of 100K$FY00, 

with a limited payload of around 50 kg, a LOS permitted range of the ground control 

station, and endurance of approximately four hours. In general, they are rather small with 

an average length of two meters and their maximum ceiling is around 5,000 feet. Pioneer 

is a typical example. This category is also referred to as “Battlefield UAVs” and can be 

divided in three subcategories: 

(1) Micro UAVs (MUAVs) are very small UAVs in sizes 6 to 12 

inches.33 The Aerovironment Wasp is an example of this category.34 

                                                 
31 Ibid. 
32 Tozer, Tim, and others, “UAVs and HAPs-Potential Convergence for Military Communications,” 

University of York, DERA Defford, undated, Internet, February 2004. Available at: http://www.elec.york 
.ac.uk/comms/papers/tozer00_ieecol.pdf 

33 Pike, John, Intelligence Resource Program, “Unmanned Aerial Vehicles (UAVS),” Internet, March 
2004. Available at: http://www.fas.org/irp/program/collect/uav 

34 The material for this part of section is taken (in some places verbatim) from: OSD 2002, Section2, 
“Current UAV programs.” 
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(2) Mini UAVs have a span up to four feet. They provide the 

company/platoon/squad level with an organic RSTA capability out to 10 Km. The 

Aerovironment Dragon Eye is an example of this category.35 

(3) Small UAVs (SUAVs) have a size greater than four feet in 

length. “SUAV is a low-cost and user-friendly UAV system.” It is a highly mobile air 

vehicle system that among other potentials allows the small warfighting unit to set the 

foundation to exploit battlefield information superiority.36 

b. Tier II or MAE UAVs are larger than TUAVs, more expensive, with an 

average cost of 1M$FY00, and have enhanced performance. Their payload can reach 300 

kg, their endurance is 12 or more hours, and their ceiling is up to 20,000 feet. Predator is 

a typical example of a MAE UAV. 

c. Tier II Plus or HAE UAVs can be large craft with an endurance of more 

than 24 hours, payload capacities of more than 800 Kg and a ceiling of more than 30,000 

feet. Their average cost is about 10M$FY00. Global Hawk is a typical example of HAE 

UAV. 

d. Tier III Minus or LOHAE UAVs can be large crafts with an endurance 

of more than 12 hours, payload capacities of more than 300 Kg, and a ceiling of more 

than 65,000 feet. Dark Star was a typical example of LOHAE UAV. 

13. Battlefield UAVs 
Here are two descriptions of the use of UAVs in training and combat. 

a. Story 1. Training at Fort Bragg 
“FDC this is FO adjust fire, over”. “FO this is FDC adjust fire, 

out”. “FDC grid 304765, over”. “FO grid 304765, out”. “FDC two tanks 
in the open, over”. “FO that’s two tanks in the open, out”. Then about 30 
seconds later, “FO shot, over”. “FDC shot, out”. “FO splash, over”. “FDC 
splash, out”. Fort Bragg, N.C. (April 5, 2001). 

Communications like these can normally be heard during a live-fire 
training exercise between the forward observers (FO) and the Marines at 
the fire direction control centre (FDC), but during exercise Rolling 

                                                 
35 Ibid. 
36 NAVAIR, “Small Unmanned Aerial Vehicles,” undated, Internet, February 2004. Available at: 

http://uav.navair.navy.mil/smuav/smuav_home.htm 
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Thunder, the 3rd Battalion, 14th Marines used a different type of forward 
observer. 

Instead of a few Marines dug in a forward position, a UAV 
controlled by the Marines from the Marine fixed-Wing Unmanned Vehicle 
Squadron 2 (VMMU-2), Cherry Point, N.C., gave the calls for fire. 

The UAV is a remote-controlled, single-propeller plane with a 
wing span of 17 feet and an overall length of 14 feet. Inside the body of 
the plane is a camera that allows the pilots to see and to identify targets, 
according to Cpl. Tim Humbert, team non-commissioned officer, VMU-2. 

“This was an excellent training opportunity for us,” said Capt. 
Konstantine Zoganas, battalion fire direction officer, 3rd Bn., 14th Marines, 
Philadelphia, Pa. “There aren’t many units who get the opportunity to train 
with this equipment.” 

For this mission, the UAV, which was flying at around 6,000 to 
8,000 feet, was used to identify targets. They then looked at that data and 
turned it into a fire mission, which was sent to the Marines on the gun line. 
Once the Marines on the gun line blasted their round toward the target, the 
UAV was used to adjust fire. “After using the UAV, I think it is equal to, 
if not better than, a forward observer,” said Zoganas. “A forward observer 
has a limited view depending on where he is at, but a UAV, being in the 
air, has the ability to cover a lot more area,” said Zoganas. “I think the 
UAV’s capabilities are underestimated, it is a great weapon to have on the 
modern battlefield.”37 

2. Story 2. Desert Shield/Storm Anecdote 
Surrenders of Iraqi troops to an unmanned aerial vehicle actually 

happened. All of the UAV units at various times had individuals or groups 
attempt to signal the Pioneer, possibly to indicate a willingness to 
surrender. However, the most famous incident occurred when USS 
Missouri (BB 63), using her Pioneer to spot 16-inch gunfire, devastated 
the defences of Faylaka Island off the coast of Kuwait City. Shortly 
thereafter, while still over the horizon and invincible to the defenders, the 
USS Wisconsin (BB 64) sent her Pioneer over the island at low altitude. 
When the UAV came over the island, the defenders heard the obnoxious 
sound of the two-stroke engine since the air vehicle was intentionally 
flown low to let the Iraqis know that they were being targeted. 
Recognizing that with the “vulture” overhead, there would soon be more 
of those 2,000-pound naval gunfire rounds landing on their positions with 
the same accuracy, the Iraqis made the right choice and, using 

                                                 
37 Zachany, Bathon A., Marine Forces Reserve, “Unmanned Aerial Vehicles Help 3/14 Call For and 

Adjust Fire,” Story ID Number: 2001411104010, April 5, 2001, Internet, February 2004. Available at: 
http://www.13meu.usmc.mil/marinelink/mcn2000.nsf/Open document 
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handkerchiefs, undershirts, and bed sheets, they signalled their desire to 
surrender. Imagine the consternation of the Pioneer aircrew who called the 
commanding officer of Wisconsin and asked plaintively, “Sir, they want to 
surrender, what should I do with them?”38 

14. Battlefield Missions 
Reconnaissance is a “mission undertaken to obtain, by visual or other detection 

methods, information about the activities and resources of an enemy; or to secure data 

concerning the meteorological, hydrographical geographical characteristics of a particular 

area.” This task is about gathering general information about an enemy or an area. 

Surveillance is the “specific and systematic observation of a particular area or target for a 

short or extended period of time.”39 

UAVs have been used for the above missions since their inception. They can also 

be used for target acquisition, target designation and battle damage assessment (BDA). 

Due to their small size, they can operate more discreetly than their manned counterparts, 

allowing target acquisition to occur with less chance of counter-detection. “The 

surveillance UAV can be used to designate the target for a precision air and/or artillery or 

missile strike while providing near real-time battle damage assessment to the force or 

mission commander.”40 In that way, useless repeat attacks on a target could be avoided as 

well as wastage of munitions. 

Battlefield UAVs are appropriate UAVs for all of the above missions. In the 

beginning of the 1950s, UAVs like the Northrop Falconer had been developed for 

battlefield reconnaissance with little or no combat service. Later the Israelis were the 

early developers of the operational use of battlefield UAVs in the early 1980s in southern 

Lebanon operations. Their successes with battlefield UAVs drew international 

attention.41 

                                                 
38 The Warfighter’s Encyclopedia, Aircraft, UAVs, “RQ-2 Pioneer,” August 14, 2003, Internet, 

February 2004. Available at: http://www.wrc.chinalake.navy.mil/warfighter_enc/aircraft/UAVs/pioneer 
.htm 

39 Ashworth, Peter, LCDR, Royal Australian Navy, Sea Power Centre, Working Paper No6, “UAVs 
and the Future Navy”, May 2001, Internet, February 2004. Available at: http://www.navy.gov.au 
/spc/workingpapers/Working%20Paper%206.pdf 

40 The material for the above part of section is taken (in some places verbatim) from: Ashworth. 
41 Goebel, Greg,/ In the Public Domain, “[6.0] US Battlefield UAVs (1),” Jan 1, 2003, Internet, 

February 2004. Available at: http://www.vectorsite.net/twuav6.html 
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We can distinguish two broad categories of battlefield UAVs; the “combat 

surveillance” UAV and the “tactical reconnaissance” UAV. 

a. Combat Surveillance UAVs42 
The function of combat surveillance UAVs is to observe everything on a 

battlefield in real-time, flying over the battle area, and relaying intelligence to a ground-

control station. In general, they are powered by a small internal combustion two-stroke 

piston engine, known as a “chain saw” because of its characteristic noise. An autopilot 

system with a radio control (RC) back-up for manual operations directs the platform from 

pre-takeoff programmed sets of waypoints. In most cases, the program is set up by 

displaying a map on a workstation, entering the coordinates, and downloading the 

program into the UAV. Navigation is always verified by a GPS and often by an INS 

system as well. 

Combat surveillance UAVs normally use the autopilot to get on station 

(above the operating area) and then operate in manual mode by RC to find or detect 

potential targets. As a result, only LOS ranges are permitted, due to the limitations of the 

RC transmitter signals.  

Sensors are generally housed in a turret underneath the platform and/or are 

integrated into the platform’s fuselage. They usually feature day-night imagers and in 

many case a laser designator, SIGINT packages, or Synthetic Aperture Radar (SAR).  

Larger UAVs have fixed landing gear that are used for takeoff and landing 

purposes on small airstrips. Larger UAV can also be launched by special rail launcher 

boosters and recovered by parachute, parasail or by flying into a net. Smaller UAVs may 

be launched by a catapult and recovered in the same way or by landing in plain terrain 

without any use of landing gear. 

b. Tactical Reconnaissance UAVs43 
Tactical Reconnaissance (TR) UAVs are usually larger and in some cases 

jet powered with extended range and speed. Like the combat surveillance UAVs, they are 

equipped with an autopilot with RC backup. Their primary mission is to fly over 

                                                 
42 The material for this section is taken (in some places verbatim) from: Goebel. 
43 Ibid. 
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predefined targets out of line of sight, and take pictures or relay near real-time data to the 

ground-control station via satellite links. 

A UAV of this type can usually carry day-night cameras and/or Synthetic 

Aperture Radar (SAR). The necessary communication equipment is usually located on 

the upper part of the platform’s fuselage. A TR UAV can also be launched from runways 

or small airstrips, an aircraft, and/or by special rail launcher boosters, and be recovered 

by parachute. 

The exact distinction between the two types of battlefield UAVs and other 

types of UAVs is not clear. Some types are capable of both missions. A small combat 

surveillance UAV may be the size of “a large hobbyist RC model plane.” It can be “used 

to support military forces at the brigade or battalion level and sometimes they are called 

‘mini UAVs.’ Their low cost makes them suitable for ‘expendable’ missions.” 

 

B. PROBLEM DEFINITION 

1. UAVs Mishaps 
According to the Office of Secretary of Defense “UAV Roadmap” the mishap rate 

for UAVs is difficult to define: 

Class A mishap rate (MR) is the number of significant vehicle 
damages or total losses occurring per 100,000 hours of fleet flight time. As 
no single U.S. UAV fleet has accumulated this amount of flying time, 
each fleet’s MR represents its extrapolated losses to the 100,000-hour 
mark. It is expressed as mishaps per 100,000 hours. It is important to note 
that this extrapolation does not reflect improvements that should result 
from operational learning or improvement in component technology.44 

 

A Pentagon report said that crashes and component failures are 
increasing the cost of UAVs and restrict their availability for military 
operations.45 

                                                 
44 OSD 2002, Appendix J, page 186. 
45 Peck, Michael, National Defense Magazine, May 2003, Feature Article, “Pentagon Unhappy About 

Drone Aircraft Reliability, Rising Mishap Rates of Unmanned Vehicles Attributed to Rushed 
Deployments,” Internet, February 2004. Available at: http://www.nationaldefensemagazine.org/article. 
cfm?Id=1105 
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The reliability issue has sparked controversy and concern that UAVs are 

becoming too expensive. There is a wide-spread notion that UAVs are simply 

expendables and cheap vehicles, something like diapers that are used once and discarded. 

The truth is that these are costly components of expensive systems.  

To get a view of the problem, we see that the 2002 crash rate for Predator was 

32.8 crashes per 100,000 flight hours, and for 2003 it was 49.6 until May. The accident 

rate for the Global Hawk was 167.7 per 100,000 flight hours on May 2003.46 

Nevertheless, commanders can take greater risks with UAVs without worrying 

about loss of life. These risks would not be taken with manned aircrafts. For example, the 

recently updated MR for the F-16 was 3.5 per 100,000 flight hours. According to DoD 

data, the MR for the RQ-2A Pioneer was 363 while the MR for the RQ-2A dropped to 

139. For the RQ-5 Hunter it was 255 for pre-1996 platforms, and has dropped to 16 since 

then. For the Predator RQ-1A, it was 43 and for the RQ-1B it was 31.47 

2. What is the Problem? 
Currently a network experiment series named Surveillance and Tactical 

Acquisition Network (STAN) is being conducted by the Naval Postgraduate School 

(NPS) at Camp Roberts, with SUAVs as the sensor platforms and the primary source of 

information. SUAV programs are currently of great interest to the Fleet, Special Forces, 

and other interested parties and are receiving large amounts of funding. There is a great 

deal of concern about the reliability of SUAVs because a lot of problems have emerged 

in testing. Reliability must be improved. 

This thesis documents these problems. At the CIRPAS site at McMillan Field in 

Camp Roberts on September 11 and 12, 2003, I observed flight, communication, search 

and detection, and target acquisition tests, using two different types of SUAV platforms, 

XPV-1B TERN and Silverfox, an experimental program funded by the office of Naval 

Research. Incidents regarding reliability that occurred during that time include: 

                                                 
46 Peck, Michael, National Defense Magazine, May 2003, Feature Article, “Pentagon Unhappy About 

Drone Aircraft Reliability, Rising Mishap Rates of Unmanned Vehicles Attributed to Rushed 
Deployments,” page 1, Internet, February 2004. Available at: http://www.nationaldefensemagazine.org 
/article.cfm?Id=1105 

47 Peck. 
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a. During the pre-takeoff checks in the runway end, an engine air-intake 

filter failed (due to broken support lock wire hole). The problem was obviously due to 

engine vibrations. There was no spare part filter or any other means to repair the failure, 

so it was replaced with another TERN platform’s air filter.  

Result: the mission was delayed for thirty minutes. 

b. During the start engine procedure, a starting device failed. The failure 

was due to a loose bolt and the starting device could not start the engine. After ten 

minutes delay, the bolt was tightened.  

Result: the procedure was delayed for ten minutes. 

c. After two and a half hours of flight operation on a TERN platform and 

while in flight, the engine stalled at 500 feet. The SUAV ran out of fuel. 

Result: loss of one TERN platform. 

d. At the pre-takeoff checks on a Silverfox platform, recalibration of an 

engine’s rpm was necessary (probably because it was during the initial flight after 

replacing the old engines with new).  

Result: five-minute delay. 

e. During the operations on Silverfox platforms, many bad sensor signals 

were received (especially using the CCD camera) probably due to ground-control station 

antennas or due to LOS constraints. 

Result: Missions lost their search and detection capability  

f. After Silverfox’s landings (calculated crashes) in the field (not on a 

runway), extensive cleaning of the interior of the platform due to weeds, soil and debris 

that entered the vehicle from the front engine opening was needed. 

Result: At least twenty minutes cleaning was needed after such landings. 

The next step for STAN experiment was at the CIRPAS site at McMillan Field in 

Camp Roberts from May 2 to May 6, 2004. I observed flight, communication, search and 

detection, and networking tests, using the XPV-1B TERN on May 2 and 3. Incidents 

regarding reliability that occurred during that time include: 
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a. During the assembly checks in the hangar on May 2, major software 

problem was detected. Repairing was not possible by the team members.  

Result: the platform was unable to operate at all. 

b. During the test flight operation of the next platform the same day, the 

engine stalled at 1000 feet and led to a platform crash. 

Result: loss of platform. 

c. On May 3, after one hour of flight operation, the third platform and 

while in flight, an autopilot software malfunction was occurred that led to a platform auto 

hard landing in the ground.48  

Result: loss of one more TERN platform. 

d. During landing of the next TERN platform and after two hours in flight 

operation the front tire delaminated on May 5.49 Probably due to operator error, the 

damage was impossible to be repaired by the team members.  

Result: loss of platform. 

e. On May 6, after one hour of operation flight and while in flight, a right-

wing servo failure occurred that result in loss of platform control and then to a platform 

crash.50  

Result: loss of platform.  

3. What is the Importance of the Problem? 
It is most notable that SUAVs are not technologically sophisticated enough to 

warn the operator that the vehicle is under attack and/or under critical failure (such as out 

of fuel), cannot operate under unfavorable weather conditions, and have a low level of 

reliability, which degrades their role in military operations. Even though SUAVs cost 

very little compared to other systems, such as observers, helicopters, planes and satellites, 

it is essential that small UAV missions be carried out with an acceptable level of 

                                                 
48 Gottfried, Russell, LCDR (USN), Unmanned Vehicle Integration TACMEMO, 5-6 May Recap, e-

mail May 7, 2004. 
49 Ibid. 
50 Ibid. 
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reliability, operability, and reusability. In that way, they can become dependable systems 

and be used in the battlefield with other systems. 

4. How Will the Development Teams Solve the Problem without the 
Thesis? 

Trial and error and/or test, analyze and fix (TAAF) are the methods being used to 

overcome failures for the Silverfox system. Being in the experimental phase, it is the 

easiest but most time consuming way.  

For the other system (TERN) that has been operational for almost two years, an 

extended trial period is presently being conducted. From it, conclusions can be made for 

future system improvements and operational usages. Other experimental systems can also 

contribute to quantitative assessments of readiness and availability. 

5. How Will This Thesis Help? 
This thesis provides a tool to consider reliability issues by developing a system 

for tracking data that could be improve reliability for SUAV systems. 

6. How Will We Know That We Have Succeeded 
Verification and validation of the proposed solutions and methods by NAVAIR 

and the other interested parties will indicate the accuracy and the effectiveness of the 

framework suggested by this thesis. 

7. Improving Reliability 
UAV reliability is the main issue preventing the FAA from relaxing its 

restrictions on UAVs flying in civilian airspace and for foreign governments to allow 

overflight and landing flights. Improved reliability or simply knowing actual mishap rates 

and causes will enable risk mitigation and eventual flight clearance. 

Efforts toward improving UAV reliability are required, but how can this best be 

accomplished? The answer is by spending money, but we can be more specific. More 

redundancy of flight control-systems may increase reliability, but there is another trade 

off. The absence of components needed for manned aircraft makes UAVs cheaper, but 

this also degrades their reliability. If reliability is sacrificed, then high attrition will 

increase the number of UAVs needed and so the cost will rise again.  



21 

By focusing on flight control systems, propulsion, and operator training, which 

account for approximately 80% of UAVs mishaps, we can increase reliability.51 

Redundancy in on-board systems is not easily added, especially to small UAVs. Weight 

and volume restrictions are very tight and that can lead to expensive solutions. But then if 

we make UAVs too expensive, we cannot afford to lose them. 

We can categorize UAVs by their volume, by their usage, by their endurance or 

by their capabilities and type of operations, but we can also view each UAV system as a 

unique case. We can analyze the system according to its functional components and do a 

Failure Mode and Effect Analysis (FMEA). That is the first step for further 

implementation of a reliability tracking and improvement method such as FRACAS, 

Failure Mode Effect and Criticality Analysis (FMECA) or even an implementation of 

MSG-3, if it is more suitable. I discuss these methods, in details, later. 

Reliability by itself is a measure of effectiveness (MOE). In order to keep track of 

reliability I develop some measures of performance (MOP), and by using them we can 

determine the results of our reliability corrective actions, if any. We can also keep track 

of our system’s ability to be maintained, and if we consider the operational requirements 

and logistic data, then we can evaluate its availability as well. Definitions and a 

discussion of reliability are included in Appendix D. 

8. Area of Research 
This study provides a basis for conducting reliability tracking for SUAVs to 

improve techniques and methodologies that increase SUAVs readiness. To achieve this, 

existing methodologies of controlling reliability, FMEA and reliability centered 

maintenance (RCM) with maintenance steering group-3 (MSG-3) are analyzed and 

compared. Finally, a criticality analysis provides a method for SUAV operators to 

account for and to mitigate risk during operations.  

                                                 
51 Peck. 
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II. RELATED RESEARCH 

A. EXISTING METHODS 
The following section, presents and analyzes existing general methods of failure 

tracking and analysis, as well as the existing reliability centered maintenance method that 

has been used by the civil aviation industry. A comparison between them, focusing on 

small UAV (SUAV) application, is also presented. 

1. General: FMEA, FMECA and FTA  

a. Introduction to Failure Mode and Effect Analysis (FMEA) 
Well-managed companies are interested in preventing or at least 

minimizing risk in their operations, through risk management analysis. “The risk analysis 

has a fundamental purpose of answering the following two questions:  

• What can go wrong?  

• If something does go wrong, what is the probability of it happening and 

what are the consequences?”52 

To answer these questions, previously forensic techniques were used. 

Today the focus has changed. “The focus is on prevention.”53 

FMEA is one of the first systematic techniques for failure analysis. “An 

FMEA is often the first step of a system’s reliability study.”54 It incorporates reviewing 

components, assemblies and subsystems to identify failure modes, causes and effects of 

such failures. FMEA is a systematic method of identifying and preventing product and 

process failures before they occur. It is focused on preventing defects, enhancing safety, 

and increasing customer satisfaction.  

                                                 
52 Stamatis, D. H., Failure Mode and Effect Analysis: FMEA from Theory to Execution, American 

Society for Quality (ASQ), 1995, page xx. The above part of section is a summary and paraphrase (in some 
places verbatim) of “Introduction.” 

53 Ibid, page xxi. 
54 Hoyland, A., and Rausand, M., System Reliability Theory: Models and Statistics Methods, New 

York: John Wiley and Sons, 1994, page 73. 



24 

The purpose of FMEA is preventing process and product problems before 

they occur.55 Used in the design and manufacturing process, FMEAs reduce cost and 

efforts by identifying product and process improvements early in the development phase 

when it is easier, faster and less costly to make changes. Formal FMEAs were first 

conducted in the aerospace industry in the mid 60’s, when looking at safety issues. 

Industry in general (automotive particularly) adapted the FMEA for use as a quality 

improvement tool. 

“FMEA is a specific methodology to evaluate a system, design, process or 

service, for possible ways in which failures (problems, errors, risks, and concerns) can 

occur.”56 For each of the failures identified, an estimate is made for its occurrence, 

severity, and detection. Then an evaluation is made for the necessary action to be taken, 

planned, or ignored. The effort focuses on minimizing the probability of failure or the 

effect of failure. This approach can be technical or nontechnical. Technical is the 

quantitative way, in other words, the way in which we determine, express, and measure 

the quantity of something. Nontechnical is the qualitative way, which is relative to, or 

involves the quality of something. For both ways, the focus is on the risk one is willing to 

take. In that way, FMEA becomes a systematic technique using engineering knowledge, 

reliability, and organizational development techniques.57 

b. Discussion 
FMEA, as a qualitative analysis, is better carried out during the design 

stages of the system. “The purpose is to identify design areas where improvements are 

needed to meet reliability requirements.”58 It provides an important basis for design 

reviews and inspections. It can be carried out using the bottom-up or the top-down 

approach. With the bottom-up approach or hardware approach, FMEA starts at the 

component level and expands upward. When the expansion is from the system level 

downwards, then the top-down or functional approach is being used. Most FMEA are 

                                                 
55 McDermott, E. R., Mikulak, J. R, and Beauregard, R. M., The Basics of FMEA, Productivity Inc., 

1996, page 4. 
56 Stamatis, page xxi. 
57 Stamatis, page xxii. The above part of section is a summary and paraphrase (in some places 

verbatim) of “Introduction.” 
58 Hoyland, page 74. 
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carried out according to the bottom-up approach. However, for some systems adopting 

the top-down approach can save time and effort.59 

In order to have a formal FMEA process, accurate data is key. Given 

accurate data, one can make the proper assumptions and calculations, producing an 

accurate FMEA process. Accurate data presume a comprehensive quality system 

implementation. Without accurate data “on a product or process, the FMEA becomes a 

guessing game, based on opinions rather than actual facts”. Implementing a quality 

system assures standard procedures and proper documentation and thus yields reliable 

data.60 

“The basic questions to be answered by FMEA are 

(1) How can each part of the system possibly fail? 

(2) What mechanisms might produce these modes of failure? 

(3) What could the effects be if the failures did occur? 

(4) Is the failure in the safe or unsafe direction? 

(5) How is the failure detected? 

(6) What inherent provisions are provided in the design to compensate for 

the failures?”61 

There are at least four prerequisites we must understand and must consider 

while conducting FMEA:  

(1) All problems are not the same and not equally important. 

(2) Know the customer (end user). 

(3) Identify the function’s purpose and objective. 

(4) When doing an FMEA, it must be prevention oriented.62 
                                                 

59 Hoyland, page 76. The above part of section is a summary of “Bottom-up versus Top-down 
Approach.” 

60 McDermott, page 4. The above part of section is a summary of “Part of a Comprehensive Quality 
System.” 

61 Hoyland, page 76. 
62 Stamatis, page xxii-xxiii. 
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Definitions of terms related to failure and failure modes are presented in 

Appendix C. 

c. FMEA: General Overview  
For a system, a FMEA “is an engineering technique used to define, 

identify and eliminate known and/or potential failures” before they reach the end user.63 

A FMEA may take two courses of action. First, using historical data there may be an 

analysis of data for similar products or systems. Second, inferential statistics, 

mathematical modeling, simulations, and reliability analysis may be used concurrently to 

identify and define the failures. A FMEA, if conducted properly and appropriately, will 

provide the practitioner with useful information that can reduce the risk load in the 

system. It is one of the most important early preventive actions in a system, which can 

prevent failures from occurring and reaching the user. “FMEA is a systematic way of 

examining all the possible ways in which a failure may occur. For each failure, an 

estimate is made of its effect on the system, of its seriousness of its occurrence, and its 

detection.” As a result, corrective actions required to prevent failures from reaching the 

end user will be identified, thereby assuring the highest durability, quality and reliability 

possible in the system. 64 

d. When is the FMEA Started?65 

As a methodology used to maximize the end user’s satisfaction by 

eliminating and/or reducing known or potential problems, FMEA must begin as early as 

possible, even if all the facts and information are not yet known. After FMEA begins, it 

becomes a living document and is never really complete. It uses information to improve 

the system and it is continually updated as necessary. Therefore, an FMEA should be 

available for the entire system life. 

                                                 
63 Stamatis, page 25. 
64 Stamatis, page 26. The above part of section is a summary and paraphrase (in some places verbatim) 

of “FMEA: A General Overview.” 
65 The material from this section is taken (in some places verbatim) from: Stamatis, page 29, “When is 

the FMEA Started?” 
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e. Explanation of the FMEA66 
Identification and prevention of known and potential problems from 

reaching the end user is the essence of an FMEA system. One of the assumptions that 

must be made is that problems have different priorities. Finding or setting priorities is 

important because that is the main issue, which drives the methodology. Three 

components help define the priority of failures: occurrence, severity and detection. 

Occurrence is the frequency of the failure. Severity is the 
seriousness (effects) of the failure. Detection is the ability to detect the 
failure before it reaches the customer. To define the value of these 
components, the usual way is to use numerical scales called risk-criteria 
guidelines. These guidelines can be qualitative and/or quantitative.67 

If the guideline is qualitative, then it must follow the theoretical expected 

behavior of the potential component. For occurrence the expected behavior follows a 

normal distribution because frequencies tend to be like that over time. For severity, the 

expected behavior is lognormal. This is due to the fact that failures, which do occur, 

should cause annoyance, and they are not usually critical or catastrophic. So the guideline 

should follow a right-skewed distribution. For detection, the expected behavior is that of 

a discrete distribution. This is expected due to the fact that there is more concern if the 

failure is found by the end user than finding it during the manufacturing phase in the 

production facilities. So the guideline should follow a distribution with a gap between 

values. 

If the guideline is quantitative, it must be specific. It is not necessary for 

the guideline to follow a theoretical distribution.  

Ranking for the criteria usually has a value based on 1 to 10 scales. It 

provides ease of interpretation, accuracy, and some precision in the quantification of the 

ranking. Ranking using scales from 1 to 5, if used, offers convenience but does not give 

an accurate “quantification because it reflects a uniform distribution.”68 

                                                 
66 The material from this section is taken (in some places verbatim) from: Stamatis, page 33, 

”Interpretation of FMEA.” 
67 Stamatis, page 33. 
68 Stamatis, page 35. 
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The failure’s priority is represented through the risk priority number 

(RPN), which is the product of occurrence times severity times detection. The value of 

RPN is used only to rank order the concerns of the system. If there are more than two 

failures with the same RPN, we first address the failure with the higher severity and then 

with the higher detection. Severity comes first because it has to do with the effects of the 

failure. Detection is next because user dependency is more important than the failure 

frequencies. 

The objective for product/design FMEAs is to reveal product problems 

that will result in safety hazards, malfunctions or shortened product life. FMEAs can be 

conducted at each phase in the design process (initial design, prototype, final design) or at 

the production process while it is occurring. “How can the product fail?” is the basic 

question asked in design FMEAs.69 

f. The Eight Steps Method for Implementing FMEA70 
The eight steps of the method are: 

(1) Select the team: The team should be “cross-functional and 

multidisciplinary and the team members must be willing to contribute.” After the team 

has been identified, it prioritizes the opportunities for improvement. 

(2) Do the functional block diagram: The first step for every 

attempt to solve any problem is to become familiar with the subject to ensure that 

everyone on the FMEA team has the same understanding of the process and the 

production phases. A blueprint, an engineering drawing, or a flowchart review is 

necessary. If it is not available, the team needs to create one. Team members should see 

the product or a prototype and walk through the production process exactly. A block 

diagram of the system provides an overview and a working model of the relationships 

and interactions of the system’s subsystems and components. 

                                                 
69 McDermott, page 25. The above part of section is a summary and paraphrase (in some places 

verbatim) of “Product/Design.” 
70 The material from this section is taken (in some places verbatim) from Stamatis, pages 42-44, “The 

Process of Conducting an FMEA,” and McDermott, pages 28-42, “The FMEA Worksheet.” 
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(3) Collect data: The team begins to collect and categorize data. 

Then they should start filling the FMEA forms. The failures identified are the failure 

modes of the FMEA. 

(4) Brainstorm and prioritize potential failure modes: Important 

issues of the problem are recognized by the team. The team can now begin thinking about 

potential failure modes that could affect the product function, quality or manufacturing. 

Brainstorm sessions place all ideas out on the table. The objective is to create dozens of 

ideas. The ideas should be organized by grouping them into similar categories. Grouping 

can be done by the type of failure, (e.g. mechanical, electrical, communication etc) or the 

seriousness of the failure. At that step, the FMEA team reviews the failure modes and 

identifies the potential effects of any failure. This step is like an “if-then statement” 

process. If that failure occurs, then what are the consequences? 

(5) Analysis: Assign a severity, occurrence and detection rating for 

each effect and failure mode. The sequence from data to information to knowledge to 

decision is followed. The analysis could be qualitative or quantitative and anything may 

be used (cause and effect analysis, mathematical modeling, simulation, reliability 

analysis etc). At this step, severity, occurrence, and detection ratings must be estimated. 

Those ratings are based on a 10-point scale, with number 1 being the lowest and 10 the 

highest in importance. Establishing clear and concise descriptions for the points on each 

of the scales is important so that all team members have the same understanding of the 

ratings.  

(a) The severity rating estimates how serious the effect 

would be if a given failure did occur. Each effect should be given its own severity rating, 

even if there are several effects for a single failure mode.  

(b) The most accurate way to determine the occurrence 

rating is by using actual failure data from the product. When this is not possible, failure 

mode occurrence must be estimated. Knowing the potential cause of failure can produce a 

better estimate. Once the potential causes have been identified for all of the failure 

modes, an occurrence rating can be assigned, even without failure data.  
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(c) By assigning the detection rating, we estimate how 

likely we are to detect a failure or the effect of a failure. We start by identifying controls 

that may detect a failure or the effect of a failure. In case there are no controls, the 

likelihood of detection will be low and the item would receive a high rating (9-10). 

(6) Results: Results are derived from the analysis. RPNs must be 

calculated and all FMEA forms are completed. The RPN is the product of severity, times 

occurrence, times detection for all of the items. The total RPN is the sum of all RPNs. 

This number is used as a metric to compare the revised total RPN against the original 

RPN, once the recommended actions have been introduced. From the highest RPN to the 

smallest, we can now prioritize the failure modes. A Pareto Chart or other diagram helps 

to visualize the differences between the various ratings and enables decision regarding on 

which items to work. Usually it is useful to set a threshold RPN such that everything 

above that point is addressed. 

(7) Confirm, evaluate and measure: After the results have been 

recorded, confirmation, evaluation, and measurements of the success or failure are done. 

Using an organized process, we can identify and implement actions to eliminate or reduce 

the problem of high-risk failure modes. It is very common to manage a reduction on a 

high-risk failure mode. After doing that, we refer back to the severity occurrence and 

detection ratings. Often the easiest approach to make a process or product improvement is 

to increase detectability of the failure, thus lowering the detection rating. This is not the 

best approach because increasing failure-detectability only makes it easier to detect 

failures once they occur. Reducing severity is important, especially in situations leading 

to injuries. The best way for improvement is by reducing the likelihood of the occurrence 

of the failure. And if it is highly unlikely that a failure will occur, there is less need for 

detection measures. Evaluation answers the question: “Is the situation better, worse or the 

same as before?” 

(8) Do it all over again: The team must pursue improvement until 

the failures are completely eliminated, regardless of the answer from Step 7, because 

FMEA is a process of continual improvement. The long-term goal is to eliminate or 

mitigate every failure completely. The short-term goal is to minimize the effects of the 
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most serious failures, if not eliminate them. Once action has been taken to improve the 

product, new ratings should be determined and a resulting RPN calculated. For the failure 

modes that have been corrected, there should be a reduction in the RPN. Resulting RPNs 

and total RPNs can be organized in diagrams and compared with the original RPNs. 

There is no target RPN for FMEAs. It is up to the organization to decide on how far the 

team should pursue improvements. Failures happen sooner or later. The question is how 

much relative risk the team is willing to take. The answer, again, depends on 

management and the seriousness of failure. 

g. FMEA Team 
“A team is a group of individuals who are committed to achieving 

common organizational objectives.” They meet regularly to identify, to solve problems, 

and to improve processes. They work and interact openly and effectively together and 

produce the desired results for the organization. “Synergy,” which means that “the sum of 

the total is greater than the sum of the individuals,” is the characteristic of a team. 71 

“One person typically is responsible for coordinating the FMEA process 

but all FMEAs are team-based.” Team members “bring a variety of perspectives and 

experiences to the project.” They are “formed when needed and disbanded” after the 

FMEA is completed. 72 The first priority for the team is to define the scope of FMEA. A 

clear definition of the product or process to be studied should be written and understood 

by all team members. 

h. Limitations Applying FMEA73 

(1) “FMEA analysis may be very effective when applied to a 

system in which system failures most probably are the results of single-component 

failures.” In that way, “each failure is considered individually as an independent 

occurrence.” So, an FMEA is not the best approach for analyzing systems with a fair 

degree of redundancy (dependency). For such systems, a Fault Tree Analysis (FTA) is a 

better alternative. 

                                                 
71 Stamatis, pages 85-88. The above part of section is a summary and paraphrase (in some places 

verbatim) of “What Is a Team?” and “Why Use a Team?” 
72 McDermott, page 15. The above part of section is a summary and paraphrase (in some places 

verbatim) of “The FMEA Team.” 
73 Hoyland, page 80, the above part of section is a summary of “Applications.” 
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(2) FMEA gives inadequate attention to human errors because the 

focus is on hardware failures. 

(3) The amount of insignificant work that must be done is also a 

disadvantage. Component failures, including those with insignificant consequences, are 

examined and documented. For large complex systems with a high degree of redundancy, 

the amount of trivial and unnecessary work is huge. 

i. FMEA Types 
Generally there are four types of FMEA: System, design, process and 

service. In the SUAV case, we deal with the system and design FMEA. Failure modes are 

caused by system deficiencies in the functions of the system. Deficiencies include 

interactions among subsystems and elements of the system.  

j. System and Design FMEA74 
We focus on system/design FMEA once we begin to analyze the reliability 

for SUAVs. A system FMEA is usually accomplished in steps, which “include 

conceptual design, detailed design and development, and testing and evaluation.” 

Establishing a system FMEA, uses a system engineering process as well as a product 

development methodology, or research and development, or a combination of all these. 

During the early stages of development, the main focus is to 

• Turn an operational need into a demand for system performance 

parameters and system configuration through “the use of an interactive 

process.” 

• “Integrate related technical parameters and assure compatibility of 

physical, functional, and program interfaces” optimizing the total system. 

• “Integrate reliability, maintainability, engineering support, human factors, 

safety, liability, security, and other related specialties into the total 

engineering effort.”  

                                                 
74 The material from this section is taken (in some places verbatim) from: Stamatis, pages 101-129, 

“System FMEA,” “Design FMEA.” 
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The first step in conducting the system FMEA is a feasibility study to find 

solutions to a problem. The outcome of the system FMEA is an initial design with a 

baseline configuration and operational specifications. 

Design FMEA is a method of “identifying potential or known failure 

modes and providing corrective actions” before the production line starts. Initial sample 

runs or prototype runs and trial runs are excluded. The milestone for the first production 

run is important because after that point any modification and/or change in the design it 

would be a major problem due to the amount of effort, time and cost required to do the 

changes in that stage. The design FMEA is a “dynamic process” involving the 

implementation of numerous “technologies and methods to produce an effective design.” 

This result will be an input for the process, and/or the service FMEA.  

The first step in conducting the design FMEA should be a “feasibility 

study and/or a risk-benefit analysis.” The objective of this early stage is to optimize the 

system, which means to maximize the system quality, reliability and maintainability, and 

minimize cost. The outcome of the design FMEA is a preliminary design, which can be 

used as baseline configuration and functional specifications.  

k. Analysis of Design FMEA75 
There are two main methods of design: design-to-cost and design-to-

customer requirements. In the first approach, the main goal of the design is to keep costs 

within a certain budget. This is also called value-engineering analysis and it is suitable 

for commercial products with minimum safety standards. In the design-to-customer 

requirements approach, the primary designer’s concern is to satisfy the customer’s 

requirements and safety and regulatory obligations. This is common for products related 

with military applications and with high safety standards. 

A design FMEA starts with two requirements: 

• Identifying the appropriate form, and 

• Identifying the rating guidelines 

                                                 
75 Stamatis, page 129-130. 



34 

The form and the rating guidelines for the design FMEA (or any kind of 

FMEA) are not standardized. Each one performing FMEA makes his own forms and 

rating guidelines, which correspond to the project’s special requirements and 

characteristics, as well as the designer’s vision and experience.  

There are also two ways that the rating guidelines can be formulated: The 

qualitative method and the quantitative method. In both cases, the numerical values can 

be from 1 to 5 or 1 to 10, which is most common.  

An example of design FMEA form is in Table 1. The form is divided into 

three parts. The first part with item numbers from 1 to 10 is the introduction part. The 

second part of the form includes items 11 to 24 which are the body items of any design 

FMEA. The third part items 25 and 26 concern authority and responsibility of the FMEA 

team. Definition of terms is in Appendix A. 
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(1) Subsystem Name (4) Supplier Involvement (8) FMEA Date 

(2) Design Responsibility (5) Model/Product (9) FMEA Revision Date 

(2A) The Head of the System Design Team (6) Engineering Release Date (10) Part Name 

(3) Involvement of Others (7) Prepared by Page___of___Pages 

 
Actions Results 

 
    (24) 

(11) 
Design 

Function 

(12) 
Potential 
Failure 
Mode 

(13) 
Potential 
Effect(s) 

of 
Failure 

(14)  
Critical 

Characteri
stics 

(15) 
S      
E     
V 

(16) 
Potential 
Cause(s) 
of Failure 

(17) 
O 
C 
C 

(18) 
Detection 
Method 

(19) 
D     
E 
T 

(20) 
R 
P 
N 

(21) 
Recommended 

Action 

(22) 
Responsible Area 

or Person and 
Completion Date (23) 

Action 
Taken 

S
E
V 

O
C
C 

D
E 
T 

R
P   
N 

                 

 
(25) Approval Signatures (26) Concurring Signatures 

 

 
Table 1. An Example of Design FMEA (From Stamatis, page 131)
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l. FMEA Conclusion 
Technology can develop complex systems today. UAVs are an example of 

the increased automation built into a complex system. To be able to develop these 

systems efficiently, a number of appropriate system development processes can be used. 

Implementing such a process from the early stages of design is important for total 

development, cost, and time. 

The objective of a FMEA is to look for all the ways a system or product 

can fail. Failure occurs when a product or system does not function as it should, or when 

the user makes a mistake. Failure modes are ways in which a product or process can fail. 

Each failure mode has a potential effect. Some effects are more likely to occur than 

others. Each effect has a risk associated with it. The FMEA process is a way to identify 

failure modes effects and risks within a process or product, and eliminate or reduce them. 

The most important reason for conducting an FMEA is the need to 

improve. FMEAs have a positive impact because of their preventive role. The purpose of 

FMEA is preventing system and product problems before they occur. Used in the design 

and manufacturing process, they reduce cost and efforts by identifying product and 

system improvements early in the development phase when it is easier, faster and cheaper 

to make changes. 

m. Other Tools76 

(1)  Fault Tree Analysis (FTA).  This is a reasoned-conclusion 

“analytical technique for reliability and safety analysis used for complex dynamic 

systems.” It provides an “objective basis” for further analysis and changes. It was 

developed in 1961 by Bell Telephone Company and is widely used in many applications 

in industry. FTA is a logical tree in which the “various combinations of possible events” 

are represented graphically. It shows the “cause and effect relationships” between a 

single failure and its causes. At the top of the tree is the failure, and the various 

contributing causes are at the bottom branches of the tree. “The FTA always supplements 

the FMEA.” 

                                                 
76 The material from this section is taken (in some places verbatim) from Stamatis, pages 51-67, 

“Relationships of FMEA and Other Tools.” 
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This thesis develops a FTA for SUAVs. FTA process outline 

follows: 

(a) Identify the system fault state(s) or undesired events. 

The top event must be quantifiable, definable, noticeable, controllable and inclusive from 

the lower events. 

(b) Proceed with Fault tree construction. Determine the 

level to which the examination should be conducted and fully describe all events that 

immediately caused this event. With each lower level fault, describe its immediate causes 

until a component level failure or human error is exposed. 

(c) Fault tree analysis is the last step in which we must 

determine the minimal cut sets for tree simplification and the probability of each input 

event. For the AND logic gates the probability of the output is the product of the inputs 

probabilities while for the OR logic gates it is the sum if and only if the events are 

mutually exclusive. Finally we must determine the top event probability. 

(2) Functional flow diagrams or block diagrams “illustrate the 

physical or functional relationships” within a system under analysis. They are used to 

give a quick and comprehensive view of the system design requirements illustrating 

series and parallel relationships, hierarchy and other relationships among the system’s 

functions. The types of block diagrams used in FMEA are: 

(a) System Diagrams, used for identifying relationships 

between major components and other system components in large systems composed of 

several assemblies or subsystems, 

(b) Detail Diagrams, used for identifying relationships 

between each part within an assembly or subsystem, and  

(c) Reliability Diagrams, used for identifying the series 

dependence or independence of major components, subsystems or detail parts in 

achieving required functions.  

(3) FMA.  “Failure mode analysis (FMA) is a systematic approach 

to quantify failure modes, failure rate and root causes of known failures.” FMA is based 
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only on historical field and process data. It is a diagnostic tool because it concerns itself 

with only known and/or occurred failures. “Both FMA and FMEA deal with failure 

modes and causes.” FMA may be conducted first and then the outcome becomes input for 

the FMEA.  

(4) FMECA, FAMECA.  An FMEA becomes (FMECA or 

FAMECA) Failure Mode, Effects and Critically Analysis if criticalities are assigned to 

the failure mode effects.77 An analysis like that identifies any faulty components in the 

system so their reliability, or safety of operation, can be improved early enough so the 

designer can make corrections and set limitations in the design. FMECA results may also 

be useful when modifying the system and for maintenance planning. In a complex system 

all components cannot be redesigned. The most critical components are scientifically 

selected, and only these should be improved. FMECA is usually conducted during the 

design phase of a system. 

(5) FMCA.  “Failure mode and critical analysis (FMCA) is a 

systematic approach to quantify failure modes, rates and root causes from a criticality 

perspective.78” It is similar to the FMEA in all other details. An FMCA analysis is used 

“where the identification of critical, major and minor characteristics is important.” By 

focusing on criticality one can identify the single-point failure modes, which are a human 

error or hardware failure that can result in an accident. 

(6) QFD.  Quality function deployment (QFD) is a systematic 

methodology that unites the various working groups within a corporation and guides 

them to focus on customer’s choices, demands and expectations. QFD “encourages a 

comprehensive, holistic approach to product development.” It is a tool that interprets the 

customer’s requirements, through specific characteristics, manufacturing operations and 

production requirements. QFD and FMEA have much in common. They both target 

continual improvement by eliminating failures and looking for customer satisfaction. 

Usually, QFD occurs first and based on the results FMEA follows. 

                                                 
77 Hoyland, page 74. 
78 Stamatis, page 62. 
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(7) RCM. 79  Reliability-centered maintenance (RCM) has its roots 

in the aviation industry.80 Airlines and airplane manufacturers developed the RCM 

process in the late 1960’s. The initial development work was started by North American 

civil aviation industry. The airlines at that time began to realize that existing maintenance 

philosophies were not only too expensive but very dangerous as well. In 1980, an 

international civil aviation group developed an inclusive basis for different maintenance 

strategies. This basis is known as the Maintenance Steering Group-3 (MSG-3) for the 

aviation industry.81  

The earliest view of failure in the 1930’s was that as products aged, 

due to wear and tear, they were more likely to fail. So the best way to optimize system 

reliability and availability was by providing maintenance on a routine basis. During 

World War II, awareness about infant mortality led to the widespread belief in the 

“bathtub curve”. In that case, overhauls or component replacements should be done at 

fixed time intervals to optimize system reliability and availability. This is based on the 

assumption that most systems operate reliably for a period of “X” and then wear out. 

Keeping records on failures enables us to determine “X” and take preventive actions just 

before deterioration starts. This model is true for certain types of simple systems and 

some complex ones with age-related failure modes. However, after 1960, due to 

complexity of the systems, research revealed that six failure patterns actually occur in 

practice. Data collection and analysis will enable NAVAIR to determine which apply to 

SUAVs. 

(a) The bathtub curve. It begins with high 

occurrence/incidence of failure, which is the infant mortality, followed by constant or 

gradually increasing conditional probability of failure, and ends up in a wear-out zone 

due to age. 

                                                 
79 The material from this subsection is taken (in some places verbatim) from: Aladon Ltd, Specialists 

in the application of Reliability-Centered Maintenance, “Reliability Centred Maintenance-An 
Introduction,” Internet, February 2004. Available at: www.aladon.co.uk/10intro.html 

80 Hoyland, page 79. 
81 Aladon Ltd, Specialists in the application of Reliability-Centered Maintenance, “About RCM,” 

Internet, February 2004. Available at: www.aladon.co.uk/02rcm.html 
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(b) Constant or slowly increasing conditional probability of 

failure, ending in a wear-out zone. 

(c) Slowly increasing conditional probability of failure, but 

no recognizable wear-out zone. 

(d) A low conditional probability of failure when the system 

is new and then a rapid increase to a constant level. 

(e) A constant conditional probability of failure at all ages. 

(f) A high infant mortality during the early period and then 

constant or slowly decreasing conditional probability of failure. 

The above six failure patterns are illustrated in the next figure. 

 

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age

Fa
ilu

re
 R

at
e

Age(a) (d)

(e)(b)

(c) (f)  
Figure 1.   The Six Failure Patterns 
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The idea of RCM is based on the realization that what users want depends 

on the operating context of the system. So RCM is “a process used to determine what 

must be done to ensure that any physical asset continues to do what its users want it to do 

in its present operating context.” The RCM process asks seven questions about the 

system under review. Any RCM process should ensure that all of the following seven 

questions are answered satisfactorily in the sequence shown below: 

• What are the functions and associated desired performance standards of 

the system in its present operating context? (Functions). 

• In what ways can it fail to fulfill its functions? (Functional failures). 

• What causes each functional failure? (Failure modes) 

• What happens when each failure occurs? (Failure effects). 

• In what way does each failure matter? (Failure ramifications) 

• What should be done to predict or prevent each failure? (Proactive tasks 

and task intervals). 

• What if a convenient solution cannot be found? (Default actions) 

Definitions of terms related to functions, functional failures, failure 

modes, and failure effects are presented in appendix C. 

(8) TAAF.  The Test-Analyze And Fix (TAAF) philosophy is 

accomplished in an iterative manner by conducting tests, collecting data, analyzing data, 

making the appropriate modifications and starting the tests again. The process starts by 

conducting tests on the prototypes. The failure data are collected and the causes are 

sought. Corrective actions are then taken to reduce the occurrence of future failures. The 

same process is repeated until the tests results are acceptable. 

Some characteristics of TAAF process are 

• All failures are fully analyzed. 

• Actions are taken in the design and/or production phase to ensure that 

failures do not recur. 
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• Tests are done at high level since improvements at that level have the 

maximum effect on system reliability. 

• Corrective actions must be taken as soon as possible on all components in 

the development program. 

In general, TAAF is a time consuming and costly reliability growth 

process, which resembles the spiral method of project development.82 

(9) FRACAS.  A Failure Reporting Analysis and Corrective Action 

system (FRACAS)83  or Data Reporting Analysis and Corrective Action System 

(DRACAS) is commonly referred as a “closed loop reporting system.” Implemented for a 

program during production, integration, testing, and field deployment phases, it allows 

for the collection and analyses of reliability and maintainability data for the hardware and 

software items. For a successful reliability improvement program, all failures should be 

considered. Every hardware and software failure, including the most simplistic ones, such 

as those caused by loose nuts and bolts or loose cables, should be investigated. Corrective 

action for each one should be developed. The manufacturer can use FRACAS results to 

“incorporate the corrective actions into the product.” 84 We develop a FRACAS for 

SUAVs in this thesis. 

2. Manned Aviation Specific: RCM, MSG-3 

a. Introduction to RCM 
Reliability centered maintenance (RCM) originated in the aviation 

industry in the late 60s. In the mid 70s, the US Department of Defense wanted to know 

more about aviation maintenance. As a result, Stanley Nowlan and Howard Heap of the 

United Airlines wrote a report titled “Reliability Centered Maintenance.” It was 

published in 1978, and it is still one of the most important documents in the history of 

physical asset management.85 RCM is “a process used to determine what must be done to 

                                                 
82 Blischke, R. W., and Murthy D. N. Prabhakar, Reliability Modeling, Prediction, and Optimization, 

John Wiley & Sons, 2000, page 547-548. 
83 Pecht, M., Product Reliability Maintainability and Supportability Handbook, CRC Press, 1995, 

page 322. 
84 Ibid, page 324. 
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ensure that any physical asset continues to do what its users want it to do in its present 

operating context.”  

b. The Seven Questions 
The RCM process answers seven questions about the system under review. 

Any RCM process should ensure that all of the following seven questions are answered 

satisfactorily and are answered in the sequence shown below: 

(1) What are the functions and associated desired performance 

standards of the system in its present operating context (functions). 

(2) In what ways can it fail to fulfill its functions? (Functional 

failures) 

(3) What causes each functional failure? (Failure modes) 

(4) What happens when each failure occurs? (Failure effects) 

(5) In what way does each failure matter? (Failure ramifications) 

(6) What should be done to predict or prevent each failure?  

(7) What if a preventative approach cannot be found? (Default 

actions) 

While defining the functions and desired standards of performance of a 

system, the objectives of maintenance are defined. Defining functional failures enables 

exact explanation of the meaning of failure. The functions and functional failures were 

addressed by the first two questions of the RCM process. The next two questions 

identified the failure modes, which are more likely to cause each functional failure, and to 

find out the failure effects associated with each failure mode. This is done by performing 

an FMEA for each functional failure.86  

c. RCM-287 

                                                 
85 Moubray, John summarized by Sandy Dunn, Plant Maintenance Resource Center, “Maintenance 

Task Selection-Part 3,” Revised September 18, 2002, Internet, May 2004. Available at: http://www.plant-
maintenance.com/articles /maintenance_tak_selection_part2.shtml 

86 The material from this part of section is taken (in some places verbatim) from: Aladon Ltd, 
“Introduction.” 

87 The material from this section is taken (in some places verbatim) from: Aladon Ltd, “About RCM.” 
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Nowlan and Heap’s report and MSG-3 have been used as a basis for 

various military RCM standards and for non-aviation derivatives. Of these, by far the 

most widely used is RCM-2. 

RCM-2 is a process used to decide what must be done to ensure that any 

physical asset, system or process continues to perform exactly as its user wants it to. The 

process defines what users expect from their assets in terms of 

(1) Primary performance parameters such as output, throughput, 

speed, range and carrying capacity, and 

(2) Risk (safety and environmental integrity), quality (precision, 

accuracy, consistency and stability), control, comfort, containment, economy, customer 

service and so on. 

The second step in the RCM-2 process is to identify the ways the system 

can fail, followed by an FMEA to associate all the events that are likely to cause each 

failure. 

The last step is to identify a suitable failure management policy for dealing 

with each failure mode. These policy options may include predictive maintenance, 

preventive maintenance, failure finding, or changing the design and/or configuration of 

the system. 

The RCM-2 process provides rules for choosing which of the failure 

management policies is technically appropriate and presents criteria for deciding the 

frequency of the various routine tasks.  

d. SAE STANDARD JA 1011 
RCM-2 complies with SAE Standard JA 1011 or “Evaluation Criteria for 

Reliability-Centered Maintenance (RCM) Process.” It was published in August 1999 by 

the Society of the Automotive Engineers (SAE). It is a brief document setting out the 

minimum criteria that any process must include to be called an RCM process when 

applied to any particular asset or system.88  

                                                 
88 The material from this section is taken (in some places verbatim) from: Aladon Ltd, “About RCM.” 
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The standard says that in order to be called an “RCM” process, a process 

must get satisfactory answers to the seven questions above, which must be asked, in that 

particular order. The rest of the standard identifies the information that must be gathered, 

and the decisions that must be made in order to answer each of these questions 

satisfactorily. 89 

e. MSG-390 
In July 1968, Handbook MSG-1, “Maintenance Evaluation and Program 

Development,” was developed by various airlines and air manufacturers’ representatives. 

Decision logic and airline/manufacturer procedures for scheduled maintenance 

development for the new Boeing 747 were the main part of the document. 

In the 1970’s the “Airline/Manufacturer Maintenance Program Planning 

Document” or MSG-2 was released. It was a universal document that updated the 

decision logic for the latest aircraft. 

In 1979, after a decade of MSG-2 implementation, “experience and events 

indicated” that MSG procedures needed updating. In addition, new generation aircraft 

maintenance requirements, new regulations on maintenance programs, the high price of 

fuel and spare parts greatly influenced maintenance program development. Various areas 

that where “most likely candidates for improvement” were the difficulty of the decision 

logic, the clarity of the difference between economic and safety issues, and the 

effectiveness of the hidden functional failures solutions. 

With the participation and combined efforts of the Federal Aviation 

Authority (FAA), Civil Aviation Administration from the UK (CAA/UK), the American 

Engineering Association (AEA), US and European aircraft engine manufacturers, 

airlines, and the US Navy created the MSG-3 document. 

                                                 
89 The material from the above part of section is taken (in some places verbatim) from: Athos 

Corporation, Reliability-Centered Maintenance Consulting, “SAE RCM Standard: JA 1011, Evaluation 
Criteria for RCM Process,” Internet, February 2004. Available at: http://www.athoscorp.com/SAE-
RCMStandard.html 

90 The material from this section is taken (in some places verbatim) from: Air Transport Association of 
America, “ATA MSG-3, Operator/Manufacturer Scheduled Maintenance Development, Revision 2002.1,” 
Nov 30, 2001, pages 6-8. 
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Some of the major improvements presented by MSG-3 as compared to 

MSG-2 were 

(1) For systems and powerplant treatment: 

(a) MSG-3 provides a “more rational procedure for task 

definition” and “linear progression through the decision logic.” 

(b) “MSG-3 logic took a top-down or consequence of 

failure approach.” At the beginning, the functional failure was evaluated for the 

consequences of failure and was assigned one of two basic categories, safety or 

economic. 

(c) Further classification established sub-categories based 

on “whether the failure was evident to or hidden from the operating crew.” 

(d) “Task selection questions were arranged in a sequence” 

so that the “most easily accomplished task, was considered first.” If the task was not 

applicable or effective, then “the next task in sequence was considered, down to and 

including possible redesign.” 

(2) Structures treatment, “fatigue, corrosion, accidental damage, 

age exploration” and other considerations were incorporated in the logic diagram. 

(3) “MSG-3 recognized the new damage tolerance rules and the 

supplemental inspection programs and provided a method by which their purpose could 

be adapted to the Maintenance Review Board (MRB) process instead of relying on type 

data certificate restrains.” The MRB is discussed in Appendix B. 

(4) MSG-3 logic was “task-oriented and not maintenance process 

oriented.” With the task-oriented concept, “one would be able to view the MRB 

document and identify the initial scheduled maintenance for a given item.” Definitions 

for the MRB are in appendix B. 

(5) Servicing/lubrication was included as part of the logic diagram 

to emphasize its severity. 
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(6) Treatment of hidden functional failures was more thorough 

because of their distinct separation from the evident functional failures. 

(7) “The effect of concurrent or multiple failures was considered.” 

(8) “Structures decision logic no longer contained a specific 

numerical rating system.” 

f. MSG-3 Revision91 
In 1987, after seven years of MSG-3 experience, the first revision was 

undertaken and released, and in 1993 revision two followed. In 2001, MSG-3 revision 

2001 was incorporated and in 2002, revision 2002 was issued and is now in effect. 

MSG-3 is intended to facilitate the development of initial 
scheduled maintenance. The remaining maintenance (that is non-
scheduled or non-routine maintenance) consists of maintenance actions to 
correct discrepancies noted during scheduled maintenance tasks, other 
non-scheduled maintenance, normal operation or data analysis. 

The analysis process identifies all scheduled tasks and intervals based on 

the aircraft’s certificated operating capabilities. 

“The management of the scheduled maintenance development activities” 

should be accomplished by an Industry Steering Committee (ISC), which consists of 

members from representatives of operators, and prime airframe and engine 

manufacturers. “The ISC should see that the MSG-3 process identifies 100% 

accountability for all Maintenance Significant Items (MSI’s) and Structural Significant 

Items (SSI’s).” 

An MSI is an item that has been identified by the manufacturer whose 

failure 

• can affect ground or flight safety, and/or 

• is undetectable during operation time, and/or 

• could have significant operational and/or economic impact.92 

                                                 
91 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 9-13. 
92 ATA MSG-3, page 87. 
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A SSI is any “element or assembly,” related to significant flight, ground, 

pressure or control loads. An SSI failure could affect the structural integrity of the 

aircraft.93 

“One or more working groups, composed of specialist representatives 

from the participating operators, the prime manufacturer and the Regulatory Authority, 

may be constituted.” The ISC will approve analyses, technical data and information, 

which will be “consolidated into a final report for presentation to the Regulatory 

Authority.” 

g. General Development of Scheduled Maintenance94  
For each new type of aircraft, it is necessary to develop scheduled 

maintenance prior to its introduction into airline service. The MSG-3 (revision 2002) 

document has the primary purpose “to develop a proposal to assist the Regulatory 

Authority in establishing initial scheduled maintenance tasks and intervals for new types 

of aircraft and/or powerplants.” The intention is to maintain and to enhance the inherent 

“safety and reliability levels of the aircraft.” As operating experience is gained, the 

operator may make additional adjustments to maintain and to enhance safety and 

reliability. 

The objectives of efficient aircraft scheduled maintenance are 

• To ensure the inherent safety and reliability levels of the aircraft; 

• “To restore safety and reliability to their inherent levels when deterioration 

has occurred;” 

• “To obtain the information needed for design improvement of those items 

whose inherent reliability proves insufficient;” 

• To achieve the above goals at a minimum total cost. 

From the above objectives, obviously, scheduled maintenance can only 

prevent deterioration of inherent levels. If the inherent levels are unsatisfactory, then 

redesign is necessary to achieve the desired safety and reliability levels. 
                                                 

93 Ibid, page 89. 
94 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 14-16. 
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Scheduled maintenance consists of two groups of tasks: 

(1) “A group of scheduled tasks to be accomplished at specified 

intervals. The objectives of these tasks are to prevent deterioration of the inherent safety 

and reliability levels of the aircraft.” They may include lubrication/servicing (LU/SV), 

operational/visual check (OP/VC), inspection/functional check (IN/FC), restoration (RS) 

and discard (DS). 

(2) A group of non-scheduled tasks that result from the scheduled 

tasks accomplished at specified intervals, and reports of malfunctions usually created by 

the operating crew and data analysis. The objectives of these tasks are to bring the aircraft 

to a desired condition. 

An efficient program schedules only those tasks necessary to meet the 

fixed objectives. Additional tasks, which will increase cost without any significant 

improvement in reliability, are not scheduled. The MSG-3 document “describes the 

method for developing the scheduled maintenance” using a “guided logic approach.” The 

logic flow of analysis is “failure-effect oriented” while the result must be a task-oriented 

program. Items with no scheduled task specified may be monitored by an operator’s 

reliability program. Finally, assumptions that can result in a change must be documented. 

h. Divisions of MSG-3 Document95 
The working portions of MSG-3 are contained in four sections. They are a 

section for System/Powerplant, including components and Auxiliary Power Units 

(APU’s); a section for aircraft structure; a section for zonal inspection; and finally a 

section for lightning/high intensity radiated field (L/HIRF) analysis. “Each section 

contains its own explanatory material and decision logic diagram, and it may be used 

independently of other MSG-3 sections.” 

In the following sections (i through p), Aircraft Systems/Powerplant 

Analysis is further discussed because it obviously has the closest potential relationship 

with SUAVs applications. 

i. MSI Selection96 
                                                 

95 The material from this section is taken (in some places verbatim) from: ATA MSG-3, page 16. 
96 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 22-23. 
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Progressive logic diagram is the evaluation technique applied to each 

maintenance significant item (MSI) using the technical data available. An MSI may be a 

system, a subsystem, module, component, accessory, unit or part. In general, the 

evaluations are based on the item’s functional failures and causes of the failure. 

Before MSG-3 logic can be applied to an item, the aircraft’s significant 

systems and components must be identified. Then using the top-down approach MSIs 

must be identified. To select MSIs, the process is as follows: 

(1) The manufacturer divides the aircraft into the main functional 

areas, Air Transport Association (ATA) systems, and subsystems. This division continues 

“until all the aircraft’s replaceable components have been identified.” 

(2) “The manufacturer establishes the list of items to which MSI 

selection questions will be applied.” 

(3) Those questions applied to the items in the lists are 

(a) “Could failure be undetectable or not likely to be 

detected by the operating crew during normal duties?” (Detectability) 

(b) Could failure affect safety on ground or in flight? 

(Safety part of severity) 

(c) “Could failure have a significant operational impact?” 

(Operational part of severity) 

(d) “Could failure have a significant economic impact?” 

(Economic part of severity) 

(4)  Subsequent analysis. 

(a) If at least one of the above four questions is answered 

with “yes,” MSG-3 analysis is required. “An MSI is usually a system or subsystem,” and 

in most cases is “one level above the lowest level identified” on (1). “This level is 

considered the highest manageable level; i.e. one that is high enough to avoid 

unnecessary analysis, but low enough to be properly analyzed.” 
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(b) For those items for which all four questions are 

answered with a “no,” MSG-3 analysis is not required. “The lower level items should be 

listed to identify those that will not be further assessed.” This list must be reviewed and 

approved by the Industry Steering Committee (ISC). 

(5) The resulting list for the highest manageable level items is 

considered the “candidate MSI list” and is presented by the manufacturer to the ISC. The 

ISC reviews and approves this list, which is passed to the working groups (WGs). 

(6) The WGs review the candidate MSI list in order “to verify that 

no significant items have been overlooked, and that the right level for the analysis has 

been chosen.” By applying MSG-3 analysis, the WGs can “validate the selected highest 

manageable level or propose modification of the MSI list to the ISC.” 

j. Analysis Procedure97 
For each MSI, the following must be identified: 

• Function(s), the “normal characteristic actions of an item” 

• Functional Failure(s), the failure of an item to perform its planned 

function(s) 

• Failure Effect(s), the result of a functional failure 

• Failure Cause(s), the reason for the functional failure occurrence 

Analysis should take special care to “identify the functions of all 

protective devices,” and include economic and safety related tasks in order to “produce 

initial scheduled maintenance tasks and intervals.” Vendor recommendations (VR) that 

are available should be “considered and discussed in the WGs meetings and accepted if 

they are applicable and effective.” 

A preliminary work sheet, prior to applying the MSG-3 logic diagram to 

an item, clearly defines the MSI, its function(s), functional failure(s), failure cause(s) and 

additional data for each item. 

k. Logic Diagram98 

                                                 
97 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 23-24. 
98 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 24-25. 
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The decision logic diagram, illustrated in Figure 2 and 3, assists in 

analyzing systems in general and powerplant items in particular. The logic flow follows a  

top-down approach and answers the “yes” or “no” questions giving the direction of the 

analysis flow after each answer. 

There are two levels in the decision analysis: 

“(1) Level 1 requires the evaluation of each functional failure in 

order to determine the failure effect category; i.e. safety, operational, economic, hidden 

safety or hidden non-safety. 

(2) Level 2 then takes the failure cause(s) for each functional 

failure into account for selecting the specific type of task(s).”  

In Level 2, regardless of the answer to the first question about 

lubrication/servicing (LU/SV), the next task selection question must always be asked. 

When following the hidden or evident safety effects path, all successive questions must 

be asked. In the remaining categories that follow the first question, a “yes” answer 

permits exiting the logic. 

Default logic concerns areas paths that do not affect safety. If there is no 

“adequate information to a clear ‘yes’ or ‘no’ to the questions in the second level, then 

default logic dictates a ‘no’ answer.” “No,” as an answer in most cases, provides a more 

conservative and/or costly task. 
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Figure 2.   Systems Powerplant Logic Diagram Part1 (After ATA MSG-3, page 18) 
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Figure 3.   Systems Powerplant Logic Diagram Part2 (After ATA MSG-3, page 20) 
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l. Procedure 
This procedure requires consideration of the functional failures, 

failure causes, and the applicability or effectiveness of each task. Each 
functional failure processed through the logic will be directed into one of 
five failure effect categories: 99 

• Safety 

• Operational 

• Economic 

• Hidden safety 

• Hidden non-safety100 

m. Fault Tolerant Systems Analysis101 
“In MSG-3 analysis, a fault tolerant system is one that has redundant 

elements that can fail without impacting safety or operating capability.” These faults are 

not very noticeable to the operating crew and the aircraft’s safety and airworthiness is not 

impaired. So, “functional failures, in fault tolerant systems, are hidden non-safety.” The 

“fault-tolerant” faults can be “detected by interrogation of the system.” 

The method for analyzing MSIs that include fault-tolerant functions has 

the following steps: 

• “The manufacturer identifies and lists all functions, highlighting those that 

are fault-tolerant.” 

• The basis for identifying fault-tolerant functions must be provided. 

• “For non-fault-tolerant functions, the standard analysis process must be 

used.” 

• “For fault-tolerant functions, the WGs must determine and select an 

applicable and effective task and interval, based on the available data from 

the manufacturer.” 
                                                 

99 ATA MSG-3, page 25. 
100 Ibid, page 21. 
101 The material from this section is taken (in some places verbatim) from: ATA MSG-3, page 26. 
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n. Consequences of Failure in the First level102 

There are four first-level questions. 

(1)  Evident or Hidden Functional Failure.  Question: “Is the 

occurrence of a functional failure evident to the operating crew during the performance of 

normal duties?” 

The intention for this question is to separate the evident from the 

hidden functional failures. The operating crew is the pilots and air crew on duty. The 

ground crew is not part of the operating crew. A “yes” answer indicates the functional 

failure is evident and leads to Question 2. A “no” answer indicates the functional failure 

is hidden and leads to Question 3. 

(2)  Direct Adverse Effect on Safety.  Question: “Does the 

functional failure or secondary damage resulting from the functional failure have a direct 

unfavorable effect on operating safety?” 

A direct functional failure or resulting secondary damage 

“achieves its effect by itself, not in combination with other functional failures.” If the 

consequences of the failure condition would “prevent the continued safe flight and 

landing of the aircraft and/or might cause serious or fatal injury to human occupants,” 

then safety should be considered as unfavorably affected. A “yes” answer indicates that 

this functional failure must be considered within “the Safety Effects category” and task(s) 

must be developed accordingly. A “no” answer indicates the effect is either “operational 

or economic” and leads to question 4. 

(3)  Hidden Functional Failure Safety Effect.  Question: “Does the 

combination of a hidden functional failure and one additional failure of a system related 

or back-up function have an adverse effect on operating safety?” 

This question is asked of each hidden functional failure, identified 

in Question 1. A “yes” answer indicates that there is a “safety effect and task 

development must proceed in accordance” with the hidden-function safety-effects 

category. A “no” answer indicates that there is a “non-safety effect and will be handled in 

accordance” with hidden-function non-safety effects category. 

                                                 
102 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 26-30. 
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(4)  Operational Effect.  Question: “Does the functional failure 

have a direct unfavorable effect on operating capabilities?” 

In this question, considerations must be taken concerning the 

operating restrictions, correction prior to further dispatch, and abnormal or emergency 

procedures from the flight crew. A “yes” as an answer means that the effect of the 

functional failure has an unfavorable effect on operating capability, and task selection 

will be handled in evident operational effects category. A “no” as an answer means that 

there is an economic effect and should be handled in accordance with evident economic 

effects category. 

o. Failure Effect Categories in the First Level103 
After the analysts have answered the applicable first-level questions, “they 

are directed to one of the five effect categories.” 

(1)  Evident Safety:  The Evident Safety Effect category concerns 

the safety operation assurance tasks. “All questions in this category must be asked.” In 

case no effective task(s) results from this category analysis, “redesign is mandatory.” 

(2)  Evident Operational:  In this category, a task is “desirable if it 

reduces the risk of failure to an acceptable level.” Analysis requires the first question 

(LU/SV) to be answered and regardless of the answer, to proceed to the next level 

question. From that point a “yes” as an answer completes the analysis and “the resultant 

task(s) will satisfy the requirements.” If all answers are “no,” then no task has been 

generated and if operational penalties are severe, redesign may be desirable. 

(3)  Evident Economic:  In that category, a task(s) is desirable if its 

cost is less than the repair cost. Analysis has the same logic as the operational category. If 

all answers are “no,” then no task has been generated and if economic penalties are 

severe, a redesign may be desirable. 

(4)  Hidden Safety:  “The hidden function safety effect requires a 

task(s) to assure the availability necessary to avoid the safety effect of multiple failures.” 

All questions must be asked and “if there are no tasks found effective, then redesign is 

mandatory.” 

                                                 
103 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 31-38. 
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(5).  Hidden non-Safety:  “The hidden function non-safety category 

indicates that a task(s) may be desirable to assure the availability necessary to avoid the 

economic effects of multiple failures.” Analysis has the same logic as the operational 

category. If all answers are “no,” no task has been generated and if economic penalties 

are severe, a redesign may be desirable. 

p. Task Development in the Second level104 
For each of the five-effect categories, task development is used in a similar 

manner. “It is necessary to apply the failure causes for the functional failure to the second 

level of the logic diagram” for the task resolution as in Table 2. There are six possible 

task follow-on questions in the effect categories. 

(1)  Lubrication/servicing (in all categories).  Question: “Is the 

lubrication or servicing task applicable and effective?” 

“Any act of lubrication or servicing for the purpose of maintaining 

the inherent design capabilities” is considered. 

(2)  Operational/visual check (hidden functional failure categories 

only).  Question: “Is a check to verify operation applicable and effective?” 

“The operational check is a task to determine that an item is 

fulfilling its intended purpose.” It is a failure-finding task and does not require 

quantitative tolerances. “A visual check is an observation to determine that an item is 

fulfilling its intended purpose.” It is also a failure-finding task and does not require 

quantitative tolerances. 

(3)  Inspection/functional check (All categories).  Question: “Is an 

inspection or functional check to detect degradation of function applicable and 

effective?” 

An inspection could be general and visual, detailed with surface 

cleaning or elaborate access procedures, special detailing with excess surface cleaning 

and substantial access and disassembly procedures. “A functional check is a quantitative 

check to determine if one or more functions of an item performs within specified limits.” 

                                                 
104 The material from this section is taken (in some places verbatim) from: ATA MSG-3, pages 31-47. 
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(4)  Restoration (All categories).  Question: Is a restoration task to 

reduce the failure rate applicable and effective? 

Restoration is the “work necessary to return the item to a specific 

standard.” The scope of each assigned restoration task has to be clearly specified. 

(5)  Discard (All categories).  Question: Is a discard task to avoid 

failures or reduce the failure rate applicable and effective? 

Discard is the “removal from service of an item at a specified life 

limit.” It is a typical task applied to single celled parts such as cartridges, canisters, 

filters, engine disks, etc. 

(6)  Combination (Safety categories only).  Question: Is there a 

task or combination of tasks applicable and effective? 

All possible paths must be analyzed since this is a safety category 

question.  

 



60 

 
Task Applicability Safety 

Effectiveness 
Operational 
Effectiveness 

Economic 
Effectiveness 

Lubrication 
or Servicing 

The replenishment 
of the consumable 
must reduce the 
rate of functional 
deterioration. 

The task must 
reduce the risk of 
failure.  

The task must 
reduce the risk 
of failure to an 
acceptable level. 

The task must be 
cost effective (i.e., 
the cost of the 
task must be less 
than the cost of 
the failure 
prevented) 

Operational 
or Visual 
Check 

Identification of 
failure must be 
possible. 

The task must 
ensure adequate 
availability of the 
hidden function 
to reduce the risk 
of a multiple 
failure. 

No applicable. The task must 
ensure adequate 
availability of the 
hidden function, 
to avoid economic 
effects of multiple 
failures and must 
be cost effective. 

Inspection 
or 
Functional 
Check 

Reduced resistance 
to failure must be 
detectable, and 
there exists a 
reasonably 
consistent interval 
between a 
deterioration 
condition and 
functional failure. 

The task must 
reduce the risk of 
failure to assure 
safe operation 

The task must 
reduce the risk 
of failure to an 
acceptable level. 

The task must be 
cost effective  

Restoration The item must 
show functional 
degradation 
characteristics at 
an identifiable age, 
and a large 
proportion of units 
must survive to 
that age. It must be 
possible to restore 
the item to a 
specific standard 
of failure 
resistance. 

The task must 
reduce the risk of 
failure to assure 
safe operation. 

The task must 
reduce the risk 
of failure to an 
acceptable level. 

The task must be 
cost effective 

Discard The item must 
show functional 
degradation 
characteristics at 
an identifiable age, 
and a large 
proportion of units 
must survive to 
that age. 

The safe life limit 
must reduce the 
risk of failure to 
assure safe 
operation. 

The task must 
reduce the risk 
of failure to an 
acceptable level. 

An economic life 
limit must be cost 
effective. 

  
Table 2. Task Selection Criteria (After ATA MSG-3, page 46) 
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3. Comparison of Existing Methods 

a. RCM 
It is clear that maintenance activity must help ensure that the inherent 

levels of safety and reliability of the aircraft are maintained.  

The days of doing maintenance just for the sake of maintenance or 
because it makes us “feel good” are past. Studies have revealed that 
technicians performing maintenance based on “trivial knowledge” rather 
than the air carrier’s approved maintenance program have generated 
errors. In other cases, technicians performing approved maintenance that 
was not necessary have also generated maintenance errors. Each time we 
provide technicians access to an aircraft, we also provide the potential for 
that technician to inadvertently induce an error.105  

We may say in simple words that the RCM goals are to: 

• Ensure realization of the equipment’s inherent safety and reliability. 

• Restore equipment’s safety and reliability to required levels when 

deterioration occurs. 

• Obtain the information necessary for design improvements where inherent 

reliability is insufficient. 

• Accomplish these goals at a minimum total life-cycle cost. 106 

The RCM logic is simply to: 

• Determine the function of the system/component; 

• Find out what the functional failures are; 

• Evaluate the consequences of each failure; and, 

• Assign the least expensive but adequate maintenance task to prevent each 

failure.107 
                                                 

105 Nakata, Dave, White paper, “Can Safe Aircraft and MSG-3 Coexist in an Airline Maintenance 
Program?”, Sinex Aviation Technologies, 2002, Internet, May 2004. Available at: http://www.sinex.com/ 
products/Infonet/q8.htm 

106 The above part is taken (in some places verbatim) from: Nakata. 
107 The above part is taken (in some places verbatim) from: National Aeronautics and Space 

Administration (NASA), “Reliability Centered Maintenance & Commissioning,” slide 5, February 16, 
2000, Internet, May 2004. Available at: http://www.hq.nasa.gov/office/codej/codejx/Intro2.pdf 
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b. Conducting RCM Analysis 
Some managers, who see RCM as a quick, cheap and easy route to 

obtaining the particular maintenance policies they are seeking, frequently overrule junior 

staff taking part in RCM analysis. This is a poor approach to the conduct of any analysis. 

RCM is better conducted by a review group, which may involve senior staff alongside 

more junior staff. An experienced analyst with a developed background in RCM and in 

managing groups should lead it. If the group functioning is wrong, it is improper to blame 

RCM for what project management is failing to achieve.108  

c. Nuclear Industry & RCM109 

The initial maintenance programs in US nuclear power plants were 

developed in conventional fashion, mainly depending on vendor recommendations. 

“Continuing efforts to enhance safety and reliability” resulted in “utility management at 

some plants” questioning if the overall outcome was a “significant degree of over-

maintenance.” By the early 80s, the nuclear power industry seemed to be “faced with a 

choice of either generating power or doing the prescribed planned maintenance (PM).” 

They were seeking a way to reduce the PM workloads without impairing safety or 

reliability. This is the same type of question applicable to SUAV maintenance. 

The Electric Power Research Institute (EPRI) became aware of the 

Nowlan & Heap report on RCM published in 1978. However, after the initial applications 

of RCM, many plants developed their own methods for maintenance optimization, which 

deviated from RCM principles. “They took the view that high levels of redundancy in 

their safety systems, high levels of regulations imposing failure-finding tasks, and the 

fairly simple mission of the power generating systems at such plants could validly 

support certain simplifications of the methodology.” They also took the view that in older 

plants the existing experience had found all potential failure modes, and there was a very 

detailed record keeping conducted by the nuclear power industry. So “they felt that the 

function analysis and the FMEA steps embodied in the RCM process could be 

simplified.” 
                                                 

108 The above part is taken (in some places verbatim) from: Clarke Phill, “Letter to the Editor of New 
Engineer Magazine regarding Professor David Sherwin at ICOMS 2000,” question 10, August 2000, 
Internet, May 2004. Available at: http://www.assetpartnership.com/downloads.htm-13k 

109 The material from this section is taken (in some places verbatim) from: Moubray, page 3. 
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“The most abbreviated approach,” recommended by EPRI in TR-105365 

in September 1995, “modified the RCM process by setting up a list of simple functional 

questions,” without further functional analysis, the question is whether the component 

failure leads to: 

(1) plant trip (shutdown), 

(2) power reduction of more than 5% (degradation), 

(3) loss of a safety function, 

(4) plant transient (recoverable), 

(5) personnel hazard, or 

(6) delay in start-up (mission delay)? 

“These processes achieved their limited objectives in the nuclear industry” 

and they led to a very substantial reduction in the PM workload without impairing safety 

or reliability. Effects (1), (2), (3), and (5) are noticeable in SUAV operations. Event (4) is 

rarely tracked. Event (6) occurs routinely but rarely recorded. 

d. RCM in NAVAIR110 
“As reported by US Naval Air Command (NAVAIR), current operation 

and support (O&S) costs for naval aviation weapon systems consume 50 to 60 percent of 

the Navy’s total operating account” with a tendency to increase every year by a rate of 5 

percent.  

NAVAIR, which was one of the sponsors of the original Nowlan & Heap 

report, found that some vendors were using all sorts of unique and custom-made 

processes, which they described as “RCM processes,” to develop maintenance programs 

for equipment that they were selling to NAVAIR. “In this age of ‘do more with less,’ 

there is a problem that has infected the discipline of physical asset management. In the 

interest of saving time and money, corrupted versions of RCM, versions that 

                                                 
110 The material from this section is taken (in some places verbatim) from: Regan, Nancy, RCM Team 

Leader, Naval Air Warfare Center, Aircraft Division, “US Naval Aviation Implements RCM,” undated, 
Internet, February 2004. Available at: http://www.mt-online.com/articles/0302_navalrcm.cfm 
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irresponsibly shorten the process, continue to flood the market. These tools are 

incorrectly called RCM.” 

These wayward RCM processes led NAVAIR to approach the Society of 

Automobile Engineers (SAE) as a recognized standard-setting institution with close 

relations to the US Military and to the aerospace industry, and SAE JA 1011 was 

published in August 1999. It is a brief document setting out all the minimum criteria that 

any process must include to be called an RCM process when applied to any particular 

asset or system.111 

When NAVAIR initially implemented RCM in some systems, the 

economic savings included, on average: 

• Scheduled maintenance reduced by 75 percent per year. 

• Consumable usage decreased 88 percent per year. 

• Disposal of hazardous material decreased 84 percent per year.  

e. RCM in Industries Other Than Aviation and Nuclear Power112 

RCM has been applied in many industrial sites in many countries. “These 

applications have embodied the performance of several thousand RCM analyses.” RCM 

applications have not been successful in every case. It can be said to have failed in about 

one-third of the cases. None of the initiatives that failed was due to technical reasons but 

for organizational ones. The two most common reasons for failure are 

(1) The head internal sponsor of the effort “quit the organization or 

moved to a different position before the new ways of thinking embodied in the RCM 

process” could be absorbed. 

(2) The internal sponsor and/or the consultant, who was the acting 

change agent, “could not generate sufficient enthusiasm for the process,” so it was not 

applied in a way which would yield results. 

                                                 
111 The material from the above part of section is taken (in some places verbatim) from: Aladon Ltd, 

“About RCM.”  
112 The material from this section is taken (in some places verbatim) from: Moubray, page 5. 
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Of course, the other two-thirds have been successful. There is “a high 

correlation between the success rate of RCM-2 (MSG-3) applications and the change 

management capabilities of the consultants involved.” For example, the (British) Royal 

Navy (RN), which is a major user of SAE-compliant RCM, “has come to understand that 

the capabilities of individual consultants are as important as the track record of their 

employers.” So the “RN now insists on interviewing at great length every RCM 

consultant that is at their disposal” to verify the commercial sincerity of the employers. 

When discussing RCM, both the economic benefits and the question of 

risk are considerations. For the economic benefits in some cases, “the payback period has 

been measured in days and sometimes one or two years.” The normal period is weeks to 

months. “These economic benefits flow from improved plant performance”  mostly, 

although in some cases users (especially military) have achieved very substantial 

“reductions in direct maintenance costs”.  

It is often said that RCM “is a good tool for developing maintenance 

programs in ‘high risk’ situations” and that “some equipment items have such low impact 

on business risk that the effort required to perform RCM analysis on them is greater than 

the potential benefits.” The truth is that “no physical asset or system can be deemed to be 

‘low risk’ unless it has been subjected at the very least to a zero-based FMECA” that 

proves it is in fact low risk. 

(1) From the results of thousands of RCM-2 (MSG-3) analyses that 

are being performed around the world, and incidents in supposedly “low risk,” some 

industries have avoided very serious business consequences. 

(2) On average about 4% of the failure modes have direct safety or 

environmental implications. Frequently, findings showed that as many as 25% of the 

failure modes are not currently receiving any form of preventive maintenance. Most of 

those failure modes concern protective devices that had not been receiving proper 

attention prior to the RCM-2 analysis. 

About the supposedly “low risk” industries: automobile and food plants 

are frequently said to be “low risk,” and therefore not worth strict and rigorous analysis. 
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The truth is that you cannot characterize these industries as low risk as the following 

examples indicate: 

(1) The boiler that exploded during a maintenance inspection at 

Ford’s River Rouge plant in Detroit in February 1999, killing six and shutting the plant 

down for 10 days, 

(2) The failure of the Firestone tires on Ford Explorers, which has 

been charged to the design, the operating pressure and to manufacturing process failures. 

These failures put the existence of Firestone as a company at risk, 

(3) The failure of a filter used in the Perrier water bottling in 

France, leading to the recall of thousands of Perrier products and an enormous cost to the 

company. 

Although rare events, it is wrong to characterize a task or a component or a 

failure as “low risk,” especially if all failure modes had not being considered. 

f. FMEA and RCM113 
“An FMEA, usually conducted in the design phase of an equipment or 

system, can also be used as a tool for analysis in RCM.” While defining the functions and 

desired standards of performance of an asset, the objectives of maintenance with respect 

of that asset are defined. Defining functional failures enables us to explain what we mean 

by “failed.” These two issues were addressed by the first two questions of the RCM 

process. The next two questions seek to identify the failure modes that are reasonably 

likely to cause each functional failure and to find out the failure effects associated with 

each failure mode. This is done by performing an FMEA for each functional failure. An 

FMEA contains: 

• Description and detection for each failure mode 

• Cause and effects of each failure 

• Probability of failure (occurrence) 

• Criticality of failure (severity) 

                                                 
113 The material from this section is taken (in some places verbatim) from: NASA, slide 13. 



67 

• Corrective/preventive measures 

FMEA is the key to a successful commissioning program. For newly 

developed systems with not much experience gained by the developing parties, 

insufficient oversight, and many unknown potential circumstances, requirements are not 

standard and certain. Requirements in systems under development, like the UAVs, are a 

matter of research, experience and technology advances. 

g. FMECA 
Trying to perform an FMEA to a new system under development, such as 

SUAVs, is not an easy task because a lot of details keep changing. Instead, an FMECA is 

better since critical issues are those considered first priority. FMECA is a first-step effort 

that can be done in such a case.  

h. FTA, FMEA, FMECA114 
“The question to be addressed when considering the most appropriate 

system analysis tool is whether to conduct a FMECA/FMEA or a FTA.” The most 

obvious answer to that decision making question is “it depends”. The “criticality of a 

mission and/or personnel safety” matters are the primary driving concern and the initial 

reason for a FTA. The FTA’s target is “finely focused” to a point compared to that of a 

FMECA’s which is not focused only to one point but to a broader area.  

“If there are many different areas of concern and all of them need to be 

revealed, then a FMECA is more effective because it has a greater chance of finding the 

critical failure modes.” If only a single event or a few events that can be clearly defined 

are of crucial concern, then FTA is favored.  

The desire for either a qualitative and/or a quantitative analysis is not the 

distinguishing factor for selecting a FTA or a FMECA/FMEA. Either approach can give 

qualitative or quantitative results. The following table gives guidance for choosing 

between FTA and FMECA/FMEA. 

                                                 
114 The material from this section is taken (in some places verbatim) from: Reliability Analysis Center 

(RAC), Fault Tree Analysis (FTA) Application Guide, 1990, pages 8-10. 
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FTA vs FMECA Selection Criteria FTA 
Preferred 

FMECA/
FMEA 
Preferred 

Safety of personnel or public as the primary concern X  
A small number of explicitly defined “top events” X  
Inability to clearly define a small number of “top events”  X 
Mission completion is of critical importance X  
Any number of successful missions  X 
“All possible” failure modes are of concern  X 
“Human errors” contributions are of concern X  
“Software errors” contributions are of concern X  
A numerical “Risk evaluation” is the primary concern X  
System is highly complex and interconnected X  
System with linear architecture and little human or software 
intervention 

 X 

System is not repairable X  
 

Table 3. FTA and FMECA/FMEA (After RAC FTA, page 10) 
 

i. FTA115 
For any reliability program, FTA is an effective tool. It is a quick way of 

“understanding the causes of a system’s inherent problems” and also a way to “identify 

potential safety hazards during the design phase.”  

Tailoring the FTA to fit the specific type of analysis that is necessary for a 

certain scope requires two decisions. The selection of the “top event,” which is the target 

upon which the FTA is to focus is the first decision, and the concern of whether the 

analysis is about to yield qualitative or quantitative or both types of results is the second 

decision. 

j. RCM Revisited 
“RCM is better in the operating and support phase of the life cycle of a 

system” This is true when considering how and why RCM was created. For example, 

airplanes were used from the beginning of the previous century. The general concept of 

the airplane has been known for many years. Legal requirements and special regulations 

controlling manned-aviation have also been in place for many years. Thus, in this case, 

                                                 
115 The material from this section is taken (in some places verbatim) from: RAC FTA, pages 9-11. 
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RCM provided solutions to certain manned-aviation problems mainly related to 

operations and maintenance issues with safety and economics as backgrounds. Similarly, 

many other industries also employed RCM to solve such problems. 

By definition, RCM is a methodology for determining the most cost-

effective maintenance strategy for a given item of equipment taking into account its 

operating environment. When a product is in design phase, the designers have little 

historical experience so the whole effort is focused on developing something that works 

and is not focused on cost-effective strategies. The following table gives guidance for 

choosing between MSG-3 and FMEA/FMECA. 

 
FMEA/FMECA vs MSG-3 Selection Criteria MSG-3 

Preferred 
FMEA/ 
FMECA 
Preferred 

Safety of personnel or public as the primary concern X  
Top-down approach of failure analysis X  
Bottom-up approach of failure analysis  X 
System is highly complex and interconnected X  
Early design and development phase  X 
Implementation cost  X 
Implementation timescale  X 
Economy issues are of critical importance X  
“All possible” failure modes are of concern X X 
“Human errors” contributions are of concern X X 
“Software errors” contributions are of concern X  
Systems with little human and a lot of software intervention X  
First tool for initial failure analysis  X 
Available for the entire system life-cycle (long-term) X  
Available for the entire system life-cycle (short-term)  X 
Implementation effort  X 
Operational phase X  
Conducted by experienced personnel  X  
Training requirements X  
Extensive and conclusive X  
System with linear architecture and little human or software 
intervention 

 X 

 
Table 4. MSG-3 and FMECA/FMEA 
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k. UAVs, SUAVs versus Manned Aircraft 
The primary difference between manned piloted aircraft and UAVs is that 

piloted aircrafts rely on the presence of humans to detect (sense) and respond to changes 

in the vehicle’s operation. The human can sense the condition of the aircraft, say with 

unusual vibration that may indicate structural damage or impending engine failure. 

Humans can sense events within and outside the vehicle, gaining what is known as 

“situational awareness.”  

For manned military aviation the philosophy is pilot and aircraft-oriented. 

The valuable life of the pilot who spends so much time in studies, training, and gaining 

the experience of hundreds of flight hours, is the number one factor. The expensive, state-

of-the-art multi-mission-capable aircraft is the number two factor. For UAVs, the 

philosophy is mission and cost-oriented. Different missions require different systems, 

different platforms with different capabilities. It is also desired that the cost should 

remain as low as possible. Technology helps to achieve both those goals for UAVs. 

Better, cheaper technologies can be adapted very easily and very quickly to UAVs. 

UAVs can be remotely piloted (“controlled”) from the ground. It is 

difficult for the pilot (operator) to feel and sense having the same or better situational 

awareness than if he was piloted a manned aircraft. For SUAVs, specifically, volume, 

weight, cost, duration of flight, and sensor capabilities are the primary factors of interest. 

Personnel safety is approached differently than manned aviation. With costs starting from 

$15K up to $300K per platform, SUAVs are considered expendables, but reusables, and 

treated accordingly. Thus SUAV reliability is low since they are designed to be 

inexpensive and have a relatively short life circle. 

During the last few years, commanders no longer want their SUAVs to be 

“toys” that uncertainly expand their capabilities. Commanders want their SUAVs to be 

operationally effective assets to help win battles. “Operationally, the same case may be 

made for ensuring the missions are completed if we rely on UAVs to accomplish mission 

critical tasks once done using manned assets.”116  

                                                 
116 Clough, Bruce, “UAVS-You Want Affordability and Capability? Get Autonomy!” Air Force 

Research Laboratory, 2003. 
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There are some facts about SUAV systems that require consideration: 

(1) They are potentially valuable on battlefields. 

(2) Unreliability creates operational ineffectiveness. 

(3) SUAV design philosophy remains mission and cost oriented. 

(4) Software and hardware reliability improvement is desirable. 

(5) Tracking reliability of SUAVs provides insight on operational 

availability. Currently, there is not any system to track SUAVs reliability in use. 

(6) Most of the SUAVs are not maritime systems; they are in design phase 

or operational testing.  

(7) Sensor and miniaturization technology for SUAVs changes rapidly. 

(8) Systems are not highly complex. 

(9) The new unmanned aviation “community” has started to develop; 

experience operating SUAVs has just started to accumulate. 

(10) Human factors for the GCS are critical since they are the linkage 

between the system and its effective employment. 

l. Conclusions-Three Main Considerations about UAV- RCM  
The reliability tracking and improvement system for SUAVs must be 

inexpensive, easily and quickly adapted, and implemented by a few, relatively  

inexperienced personnel. It must also cover the entire system’s issues of hardware, 

software and human factors. The safety requirements for personnel apply only to the 

ground operators and maintainers and the main source of data for hidden failures during 

flight can only be provided by telemetry. Finally, because sensor technology is rapidly 

developing and easily implemented due to low cost, the reliability tracking and 

improvement system for SUAVs must be easily adaptable to changes. 

From the above we can construct the following table which summarizes 

the basic differences between the MSG-3 and FMEA/FMECA methods with respect to 

SUAVs: 
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SUAVs 

R
C

M
 

M
SG

-3
 

FM
E

A
/ 

FM
E

C
A

 

1 Reliability improvement needed X X 
2 Mission and cost oriented  X 
3 Operational testing and development phase  X 
4 Rapid changes in technology  X 
5 Inexpensive and easily adapted methodology   X 
6 Telemetry is used a lot (Hidden failure difficult to identify)  X 
7 Safety for operating personnel is not a critical issue  X 
8 Experienced personnel difficult to find  X 
9 Human factors for GCS is critical X X 

 
Table 5. Comparing RCM MSG-3 and FMEA/FMECA for SUAVs. 

 

So, the main considerations about RCM implementation for SUAVs are: 

(1) Safety has an important role in RCM methodology because of 

the nature of civil aviation. The primary goal for civil aviation is to transport people and 

goods safely. Safety standards and strict rules are the top priority and, so they become a 

priority in RCM analysis. For industries where RCM has been applied, safety has almost 

the same role as in the aviation case because of strict regulations and standards for the 

operators and the employees. In the UAV case, however, there are no people onboard, so 

safety for travelers and crew is not as critical an issue. 

(2) In the RCM process, the key factor for the initial identification 

of the hidden failure is the flight crew. In the UAV case, there is no crew aboard and so 

there is no chance for crew to sense hidden failures. The only indication that might be 

available is the platforms’ control sensors reading while in-flight and the system’s 

performance while a platform is tested on the ground prior to take-off. 

(3) Experience gained in civil aviation cannot be applied directly to 

UAVs. 

From the above it is clear that RCM MSG-3 is not suitable for 

SUAVs. These leaves fault tree analysis and FMEA as the remaining methods. We 

develop both in detail for the SUAV in the subsequent chapters of this thesis. 
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B. SMALL UAV RELIABILITY MODELING 
During recent urban operations in Iraq and Afghanistan, SUAVs that provide 

over-the-hill or around-the-corner information were invaluable for operating teams. Some 

systems have been tested with very good results, but controversy surrounds the 

capabilities of such systems. A generic SUAV system must provide military forces with 

real-time around the clock surveillance, target acquisition, and battle assessment. Such a 

system must be capable of detecting any desired tactical information in a designated 

sector. 

Each service component (Navy, Army, and Marines) requires versatile, easy to 

handle, and user-friendly systems that enable the commander to conduct reconnaissance 

on the battlefield in real-time. SUAVs are being seriously considered for this role. This 

entails a small-scale operation over a city block, or more extensive surveillance missions. 

Requirements of the system include locating and identifying targets, then relaying the 

information to a higher command. The detection accuracy should be sufficient to select 

and to deploy weapons, and then to maintain contact after engagement with such 

weapons. The system must be able to survey a large area rapidly using multiple platforms 

simultaneously. The configuration of the system should enhance the fighting capabilities 

of the force, minimizing the time for precise control movements and maximizing 

mobility, robustness and functionality. Due to previous experience with similar systems, 

reliability and interoperability are most important considerations. 

1. System’s High Level Functional Architecture  
As illustrated in Figure 4, SUAV battlefield systems high-level architecture 

consists of the following: 

(1). Platform(s) 

(a) Navigation with Global Positioning System (GPS) and Inertial 

Navigation System (INS) 

(b) Flight control with remote manual, semi-auto, and full-auto 

(autonomous) mode of operation 



74 

(c) Onboard computer (OBC) 

(d) Payload with the appropriate sensors for the type of mission 

(2). Ground control station (GCS) with command, monitor and support 

capabilities.117 This may be shipboard or land-based. 

Navigation
GPS
INS

Onboard Computer
Hardware, Software,

Peripherals

Flight Control
(remote manual,

semi auto,
autonomous
operation)

Payload
Sensors

Platform

Ground Control Station
Monitor

Command

Communication
Channels

 
Figure 4.   High Level Architecture of a SUAV System (After Fei-Bin) 

 

For more detailed system architecture, refer to Figure 5: 

                                                 
117 Fei-Bin, Hsiao, and others, ICAS 2002, 23rd International Congress of Aeronautical Sciences, 

proceedings, Toronto Canada, 8 to 13 September, 2002, Article: “The Development of a Low Cost 
Autonomous UAV System”, Institute of Aeronautics National Cheng Kung University Tainan, TAIWAN 
ROC. 
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Figure 5.   Simple Block Diagram of a SUAV System 
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For the platform’s configuration, weight and volume are critical factors because 

of the limited size and the flight characteristics of the platform. The system is a complex 

one and reliability plays an important role for the operational effectiveness of the system. 

In general, there are two ways to increase reliability: Fault tolerance and fault 

avoidance.118 

(1) Fault tolerance can be accomplished through redundancy in hardware 

and/or in software. The disadvantage is that it increases the complexity of an already 

complex system, as well as increasing equipment costs, volume, weight, and power 

consumption. 

(2) Fault avoidance can be accomplished by improving reliability of 

certain components that constitute the system. In general, those components that 

contribute the most to reliability degradation are the most critical for fault avoidance.  

The SUAV system cannot implement fault tolerance, at least for the platforms, so 

fault avoidance is the better approach. To achieve this, at first we must conduct an FMEA 

in order to define and to identify each subsystem function and its associated failure 

modes for each functional output. 

In order to proceed in the FMEA, as analysts we will need the following: 

(1) System definition and functional breakdown, 

(2) Block diagram of the system, 

(3) Theory of operation, 

(4) Ground rules and assumptions, 

(5) Software specifications. 

As a second step, we conduct a criticality analysis in order to identify those 

mission critical elements that cause potential failures and weaknesses. 

                                                 
118 Reliability Analysis Center (RAC), Reliability Toolkit: Commercial Practices Edition. A Practical 

Guide for Commercial Products and Military Systems Under Acquisition Reform, 2004, page 115. 
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To perform these analyses, we will use the qualitative approach due to lack of 

failure rate data and a lack of the appropriate level of detail for part configuration.119 

2. System Overview 
The airborne system comprises the aerial platform and an onboard system. The 

ground system comprises a PC and a modem to communicate with the airborne system. 

All the onboard hardware is packed in a suitable model platform powered by a 1.5 

kilowatts (kw) aviation fuel (JP-5) engine with a wingspan of 1.5 meters (m) and a 

fuselage diameter of 12 centimeters (cm). The sensor’s payload is about two kilograms 

(kg). 

The onboard computing system is being developed on a PC based single-board-

computer. The onboard computer (OBC) is a multi-tasking real time operating system. 

The OBC can obtain data from the GPS, the INS, the communication system and the 

onboard flight and mission sensors. It computes the flight control and navigation 

algorithms, commands the sensor payload, and stores and downlinks data to the GCS in 

near real-time operation. 

The GCS PC is the equivalent of a pilot’s cockpit. It can display in near real time 

the status of the flying UAV or UAVs including: 

• UAV(s) position and GCS position 

• Speed 

• Altitude 

• Course 

• Attitude and system health in visual pilot-like instruments 

• The actual position can also be displayed on an electronic moving map. 

• Output from the mission sensors such as near real time imagery displayed 

from various types of cameras like CCD, infrared (IR) and others. 

                                                 
119 Reliability Analysis Center (RAC), Failure Mode, Effects and Criticality Analysis (FMECA), 

1993, pages 9-13. 
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3. System Definition 
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Figure 6.   Simple Block Functional Diagram of a SUAV System 
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Using the diagram in Figure 6, we give the following functional definitions to 

each element in the diagram. 

Platform Structure: The flying physical asset responsible for integration of all 

the necessary equipment for the mission profile. 

Antennas: Responsible for conducting the transmitted and received signals 

to/from the GCS and passing them from/to transmitters or receivers and the appropriate 

communication hardware and software. 

Payload, Cameras and Other Sensors: The actual physical assets for the type of 

desired mission consisting mainly of cameras and other special sensors like NBC agent 

detectors, magnetic disturbance, detectors, and much more. 

GPS: The primary navigation system based on a satellite network known as the 

Global Positioning System. 

INS: The support navigation system based on the inertial calculations of current 

speed and course in order to provide an accurate platform fix that will be used for piloting 

the platform and for target tracking. 

Engine: The unit responsible for providing mechanical power be used in 

conjunction with the propeller to provide thrust to the platform. 

Battery: The electric power supply asset for the entire platform’s equipment 

service. 

Flight Controls: The necessary flight sensors, like pittot tubes, hardware, 

ailerons, elevators, rudder, the relevant servo units and the flight controller together with 

the right software for manual, semi-auto and autonomous flight. 

Proper Software: The necessary software for platform mission control. 

Landing Gear: Responsible for platform mobility in ground during takeoff and 

landing. Not mandatory for use. 

Fuel Tank: Storage of fuel necessary for engine operation. 
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GCS: The manned shipboard or land-based component of the system responsible 

for command, control communication and support system center. 

GCS Flight Controls: The GCS hardware and software for flight controls. 

Sensors Control: Main factor responsible for mission performance. Manually 

operated with auto capabilities. 

Screen Output: The outcome of the systems’ performance presented on a 

monitor with all the relevant information for the mission and the system. 

GCS Antennas: Conducts the transmitted and received signals to and from the 

platform and other centers related to the mission and passes them to/from transmitters or 

receivers and the appropriate communication hardware and software. 

GCS Proper Software: The necessary software for GCS mission control. 

Battery Charger: Charges the platform battery. 

Start-up Device: Responsible for the initial start up of the engine’s platform prior 

to takeoff. 

Spare Parts: Necessary items for operating and supporting the system. 

Power Supply: Generator and batteries that provide the GCS electric power. 

Personnel: A pilot, a load/sensor operator, and maintainers who man the system 

for one shift. 

Launching Device: Launches the platform. 

Landing Auto Recovery Unit: Provides auto guidance to the platforms for auto-

landings.  

4. System Critical Functions Analysis 
The SUAV essential functions analysis can be seen in Table 6. 
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 Flight  
1 Provide structural integrity x x x x x x x 
2 Provide lift and thrust  x x x x x  
 Provide controlled flight  
3        Manual control  x x x x x  
4        Semi auto  x x x x x  
5        Auto  x x x x x  
6 Navigate   x x x x  
7 Provide power to control 

and navigation equipment 
x x x x x x  

8 Withstand environmental 
factors (mainly wind) 

  x x x x  

 Mission  
9 Start systems x       
10 System’s backup x      x 
11 Communications  x x x x   
12 Line of sight   x x x x  
13 Provide power to sensors 

and communications 
  x x x x  

14 Detect, locate and identify 
targets 

  x x x   

15 Provide data   x x x   
16 Provide video image   x x x   
17 Monitor system’s functions x x x x x x x 
 

Table 6. System’s Essential Functions Analysis 

 



82 

5. System Functions 
The mission phase consists of the following functions: 

• Launch the platform 

• Fly the platform 

• Control, Command and Communicate with the platform 

• Control, Command and Communicate with the platform sensors 

• Perform surveillance and reconnaissance 

• Detect targets 

• Identify targets 

• Classify targets 

• Track targets 

• Perform battle assessment 

• Know platform’s position 

• Sustain flight mission for a certain time at a certain altitude at a certain 

speed and on a certain course 

• Return to base and land safely  

• Service the platform at a certain time and set it ready for the next mission 

These functions are the primary drivers for software development and among the 

factors for the hardware selection. 

6. Fault Tree Analysis 

In the following fault-tree analysis of a SUAV system a top-down analysis has 

been used to reveal the failure causes. The sub-analyses end with a circle, which means 

that further analyses are needed at a more detailed level, or end with a diamond, which 

means that the analysis stops there. Due to a lack of data, only the mechanical engine 

failure has been analyzed at more than one level. Using that analysis we formulate a 

model to use as an example for further analysis.  
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7. Loss of Mission 
The first attempt for the fault-tree analysis should be the loss of the mission tree. 

The reasons for mission loss may be: 

(1) Loss of platform 

(2) Loss of GCS 

(3) Unable to locate platform (loss of platform’s position) 

(4) Inappropriate mission for the sensors (wrong choice of sensors) 

(5) Sensor(s) failure 

(6) Unable to launch platforms for various reasons, such as weather or 

launching device failure 

(7) Unable to communicate with the platform 

(8) Loss of the operator(s) 

(9) Loss of the onboard platform’s or GCS’s computer 

(10) For out-of-the system reasons, such as weather conditions or 

situational reasons. 

Figure 7 illustrates the tree analysis for loss of mission. 
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Figure 7.   Loss of Mission 
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8. Loss of Platform 
The reasons for loss of platform may be: 

(1) Loss of platform’s structural integrity 

(2) Loss of platform’s lift 

(3) Loss of thrust 

(4) Loss of platform’s control 

(5) Loss of GCS 

(6) Loss of platform’s position 

Figure 8 illustrates the tree analysis for loss of platform. 
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Figure 8.   Loss of Platform 
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9. Loss of GCS 
The reasons for loss of GCS may be: 

(1) GCS software failure 

(2) Loss of OBC 

(3) Loss of GCS power 

(4) Loss of GCS communication 

(5) Loss of GCS personnel 

(6) Environmental reasons (e.g. heavy weather conditions, earthquake) 

(7) Fire 

Figure 9 presents the tree analysis for loss of GCS. 
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Figure 9.   Loss of GCS 
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10. Loss of Platform’s Structural Integrity 
The reasons for loss of platform’s structural integrity include fuselage, wing, or 

empennage related problems, which could be due to: 

(1) Fracture  

(2) Pressure overload 

(3) Thermal weakening 

(4) Delamination or fiber buckling 

(5) Structural connection failure or 

(6) Operator error. 

Figure 10 contains the fault-tree analysis for loss of platform’s structural integrity. 
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Figure 10.   Loss of Structural Integrity 
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11. Loss of Lift 
Reasons for loss of lift may be: 

(1) Loss of thrust 

(2) Operator error, or 

(3) Loss of wing surface, which could be due to loss of right or left wing 

surface, which in turn could be due to: 

(a) Fracture removal 

(b) Pressure overload 

(c) Thermal weakening 

(d) Delamination or fiber buckling 

(e) Structural connection failure or 

(f) Operator error 

Figure 11 shows the fault-tree analysis for loss of lift. 
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Figure 11.   Loss of Lift 
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12. Loss of Thrust 
Reasons for loss of thrust may be: 

(1) Loss of engine control 

(2) Operator error 

(3) Loss of propeller that could be due to: 

(a) Propeller structural failure 

(b) Propeller disconnection 

(c) Operator error 

(4) Loss of engine, which could be due to: 

(a) Engine failure 

(b) Engine stalling, which could be due to: 

((1)) Failure of fuel system 

((2)) Operator error 

((3)) Air filter failure 

((4)) Air filter clogged 

((5)) Engine control failure 

Figure 12 shows the tree analysis for loss of thrust. 
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Figure 12.   Loss of Thrust 
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13. Loss of Platform Control 
Reasons for loss of control may be: 

(1) Loss of lift 

(2) Loss of control channel 

(3) Loss of power, which could be due to: 

(a) Total loss of platform’s power 

(b) Loss of control unit power 

(4) Loss of aileron forces that could be due to: 

(a) Loss of left wing aileron force that could be due to: 

((1)) Loss of onboard computer (OBC) 

((2)) Disruption of control cables 

((3)) Loss of servo unit 

((4)) Loss of aileron surface 

(b) Loss of right-wing aileron force for the same as the left-wing 

aileron reasons 

(5) Loss of rudder force for the same as the left-wing aileron reasons 

(6) Loss of elevator force for the same as the left-wing aileron reasons 

Figure 13 illustrates the tree analysis for loss of platform’s control. 
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Figure 13.   Loss of Platform’s Control 
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14. Loss of Platform Position 
Reasons for loss of platform position may be: 

(1) Loss of line of sight (LOS) 

(2) Loss of INS backup 

(3) Loss of GPS unit 

(4) Loss of GPS antenna 

(5) Loss of GPS signal 

(6) Platform failure to transmit 

Figure 14 shows the tree analysis for loss of platform’s position: 
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Figure 14.   Loss of Platform’s Position 
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15. Loss of Control Channel 
The reasons for loss-of-control channel may be: 

(1) Operator or pilot control panel failure 

(2) Loss of LOS 

(3) Failure of control receiver 

(4) Failure of GCS control transmitter 

(5) Loss of power, which could be due to: 

(a) Loss of platform’s power 

(b) Loss of GCS power 

(6) Loss of platform control antenna, which could be due to: 

(a) Antenna disconnection 

(b) Short-circuit in antenna 

(c) Antenna failure 

(d) Structural damage 

(7) Loss of GCS control antenna the same as reasons for loss of  platform 

control antenna  

Figure 15 illustrates the tree analysis for loss of control channel. 
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Figure 15.   Loss of Control Channel 
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16. Engine Control Failure 
Engine control failure may be caused by: 

(1) Disruption of control cables 

(2) Loss of OBC 

(3) Loss of LOS 

(4) Loss of servo unit 

(5) Carburetor failure 

(6) Engine failure 

The fault-tree analysis for engine control failure can be seen in Figure 16. 
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Figure 16.   Engine Control Failure 
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17. Engine Failure 
The reasons for engine failure may be: 

(1) Mechanical engine failure 

(2) Excessive engine vibration 

(3) Fuel/air improper mixture 

(4) Improper fuel 

(5) Engine fire 

(6) Loss of lubrication, which could be due to: 

(a) Gas and lubricant improper mixture 

(b) Excessive engine temperature rise 

(c) Improper lubricant 

The fault-tree analysis for engine failure can be seen in Figure 17. 

 



102 

Engine Failure

E1

O
R

Engine
Fire

Excessive
Engine

Vibrations

Fuel/Air
Improper
Mixture

Loss of
Lubrication

Gas/
Lubricant
Improper
Mixture

Improper
Lubricant

Improper
Fuel O

R

Excessive
Engine

Temperature
Rise

Mechanical
Engine Failure

E3

 
 

Figure 17.   Engine Failure 
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18. Failure of Fuel System 
The reasons for fuel system failure may be: 

(1) Failure of engine fuel system, which could be due to: 

(a) Fuel pump line failure 

(b) Fuel pump failure 

(c) Fire 

(d) Penetration of fuel lines 

(e) Carburetor failure 

(2) Loss of fuel supply, which could be due to: 

(a) Fuel tank lines failure 

(b) Fire and/or explosion 

(c) Fuel depletion 

(d) Penetration of fuel lines 

(e) Penetration of fuel tank 

(f) Hydrodynamic ram 

The fault-tree analysis for fuel system failure can be seen in Figure 18. 
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Figure 18.   Fuel System Failure 
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19. Loss of Platform Power 
The reasons for loss of platform power may be: 

(1) Wiring short-circuit 

(2) Fuse failure that could be due to: 

(a) Circuit problem 

(b) Improper fuse 

(3) Battery failure that could be due to: 

(a) Battery discharge 

(b) Improper battery 

(c) Battery disconnection 

(d) Battery short-circuit 

(e) Battery exhaustion 

(f) Battery not fully charged 

Figure 19 illustrates the fault-tree analysis for loss of platform power. 
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Figure 19.   Loss of Platform Power 
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20. Loss of GCS Power 
Reasons for loss of GCS power may be: 

(1) Wiring short-circuit 

(2) Fuse failure that could be due to: 

(a) Circuit problem 

(b) Improper fuse 

(3) Main and auxiliary power failure 

(4) Power disconnection 

(5) Loss of GCS generator 

Figure 20 shows the fault-tree analysis for loss of GCS power. 
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Figure 20.   Loss of GCS Power 
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21. Operator Error 
Reasons for operator error may be: 

(1) Inadequate personnel training 

(2) Personnel fatigue 

(3) Personnel frustration and lack of experience 

(4) Inadequate man machine interface 

(5) Operator’s wrong reaction to failure 

(6) Misjudgment due to environmental reasons (mainly weather) 

(7) Poor documentation of procedures 

(8) Poor workload balance resulting in task saturation with resulting loss 

of situational awareness 

(9) Ergonomics (Human factors) of GCS 

Figure 21 illustrates the fault-tree analysis for operator error. 
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Figure 21.   Operator Error 
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22. Mechanical Engine Failure 
Reasons for mechanical engine failure may be: 

(1) Bad material of engine parts: 

(a) Engine block  

(b) Cylinder head  

(c) Connecting rod(s)  

(d) Piston(s)  

(e) Piston rings 

(f) Bearings 

(g) Crankshaft 

(2) Normal engine wear 

(3) Bad manufacture of engine parts 

(4) Bad design of the whole engine or engine parts 

(5) Insufficient or bad maintenance 

(6) Carburetor failure 

(7) Inappropriate engine operation 

(8) Overheating 

(9) Crash damage, which is due to operator’s error 

(10) Engine vibrations. 

Figure 22 shows the fault-tree analysis for mechanical engine failure. 
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Figure 22.   Mechanical Engine Failure 



113 

23. Engine Vibrations 
Reasons for engine vibrations may be: 

(1) Broken piston 

(2) Bearing failure 

(3) Broken piston rings 

(4) Bad manufacture of engine parts like: 

(a) Cylinder head  

(b) Connecting rod(s)  

(c) Piston(s)  

(d) Piston rings 

(e) Bearings 

(f) Crankshaft 

(5) Bad design of the whole engine or engine parts 

(6) Improper engine mounting 

(7) Lack of propeller balancing 

Figure 23 shows the fault-tree analysis for engine vibrations. 
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Figure 23.   Engine Vibrations 
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24. Overheating 
Reasons for engine overheating may be: 

(1) Broken piston rings 

(2) Bearing failure 

(3) Bad manufacture of engine parts like: 

(a) Cylinder head  

(b) Connecting rod(s)  

(c) Piston(s)  

(d) Piston rings 

(e) Bearings 

(f) Crankshaft 

 (4) Bad design of the whole engine or engine parts 

(5) Dirty cooling surfaces 

(6) Bad lubricant 

(7) Engine operating too fast due to: 

(a) Improper propeller size 

(b) Improper engine adjustments 

(c) Inappropriate fuel 

(8) Bad material of engine parts 

Figure 24 illustrates the fault-tree analysis for engine overheating. 

 



116 

Overheating

E4

O
R

Bad Lubricant

Bad
Material

Bad
Manufacture

Bad
Design

Broken
Piston
Rings

Engine Operating
too Fast

Bearing
Failure

Dirty Cooling
Surfaces

O
R

Improper
Propeller

Size
Improper
Engine

Adjustments

Inappropriate
Fuel

 
 

Figure 24.   Overheating 
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25. Inappropriate Engine Operation 
Reasons for inappropriate engine operation may be: 

(1) Improper engine adjustment, mounting, disassembly 

(2) Inappropriate fuel/lubricant mixture 

(3) Improper propeller size 

(4) Inappropriate fuel and/or lubricant 

(5) Engine stall (during flight) 

(6) Bad carburetor adjustments 

(7) Inappropriate engine cleaning and/or storage after flights 

(8) Inappropriate lean runs (starting after a long period of storage without 

any precautions) such as rusted bearings, seized connecting rod or piston, dry piston rings 

(9) Propeller stops abruptly (due to external reason) while turning. 

The fault-tree analysis for inappropriate engine operation can be seen in Figure 

25. 
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Figure 25.   Inappropriate Engine Operation 
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26. Follow-on Analysis for the Model 
The occurrence of the top event is due to different combinations of basic events. 

A fault tree provides useful information about these combinations. In this approach, we 

introduce the concept of the “cut set.” A cut set is “a set of basic events” whose 

occurrences result in the top event. A cut set is said to be a “minimal cut set” if any basic 

event is removed from the set and the remaining events no longer form a cut set.120 

For example, Figure 26 shows that the set {1, 2, 3, and 4} is a cut set because if 

all of the four basic events occur, then the top event occurs. 
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Figure 26.   Example for Cut Set. (After Kececioglu, page 223) 

                                                 
120 Kececioglu, D., Reliability Engineering Handbook Volume 2, Prentice Hall Inc., 1991, page 222. 
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This is not the minimal cut set, however, because if the basic event 1 or basic 

event 2 is removed from this set, the remaining basic events {1, 3 and 4} and {2, 3 and 4} 

still form cut sets. These two sets are the minimal cut sets in that example. 

In the SUAV case, there is an absence of AND gates. Only OR gates are present. 

For example, trying to find the minimal cuts for engine failure, gates in the following 

diagrams are involved: 

(1) Engine failure diagram (E1) 

(2) Mechanical engine failure (E3) 

(3) Engine vibrations (E5) 

(4) Operator error (L5) 

(5) Overheating (E4) 

(6) Inappropriate engine operation (E6) 

Naming the gates G1, G2, up to G8,we number each basic event related to each of 

the gates. For example, in the engine failure diagram we have gate G1 with the following 

basic events: 

(1) Mechanical engine failure that corresponds to gate G2 in Diagram E3. 

(2) 1G1, engine fire 

(3) 2G1, improper fuel 

(4) 3G1, fuel/air improper mixture 

(5) 4G1, excessive engine vibrations 

(6) G3, the gate that corresponds to loss of lubrication 

(a) 1G3, improper lubricant  

(b) 2G3, excessive engine temperature raises 

(c) 3G3, gas/lubricant improper mixture 

Working in the same way we end up with the diagram in Figure 27. 
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Figure 27.   Engine Failure Combined Diagram 
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According to the MOCUS algorithm, which generates the minimal cut sets for a 

fault tree in which only AND and OR gates exist, an OR gate increases the number of cut 

sets while an AND gate increases the size of a cut set.121 MOCUS “algorithm is best 

explained by an example.”122 In the following paragraph, the steps of MOCUS algorithm 

were followed to determine the minimal cut sets. 

Locating the uppermost gate, which is the OR gate G1, we replace the G1 gate 

with a vertical arrangement of the inputs to that gate. Were it an AND type, then we 

should have replaced it with a horizontal arrangement of the inputs to that gate. 

Continuing in the next level to locate the gates, and replacing them in the above-

prescribed way yields Table 7. 

                                                 
121 Kececioglu, page 222. 
122 Hoyland, page 88. 
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1 2 3 4 5 …… …… Last 
G1 1G1 1G1 1G1    1G1 
 2G1 2G1 2G1    …… 
 3G1 3G1 3G1    4G1 
 4G1 4G1 4G1    1G2 
 G2 1G2 1G2    …… 
 G3 2G2 2G2    6G2 
  3G2 3G2    1G3 
  4G2 4G2    …… 
  5G2 5G2    …… 
  6G2 6G2    …… 
  G4 1G4    …… 
  G5 …..    …… 
  G6 7G4    …… 
  G7 1G5    …… 
  1G3 ……     
  2G3 9G5     
  3G3 1G6     
   ……     
   7G6     
   G8     
   1G7     
   ......     
   11G7     
   1G3    …… 
   2G3    …… 
   3G3    3G8 
        
        
        

 
Table 7. Cut Set Analysis. (After Kececioglu, page 229) 

 

In the last column of table 7, we have the set of minimal cuts for the engine 

failure, which is ({1G1},{2G1},{3G1},{4G1},{1G2},{2G2},…,{1G8},{2G8},{3G8}). 

The reason for the set of one element sets is the OR gates and the absence of AND gates. 

An equivalent approach for the MOCUS algorithm starts from the lowermost 

gates. It replaces an OR gate with the union (+) sign and a AND gate with the intersection 

(*) sign, and after all the expressions are obtained, it continues the procedure to the gates 
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one step above from the lowermost gates. It continues in this way until the expression for 

the top event is obtained.123 

Following this algorithm, we have to end up with the same result as the MOCUS 

algorithm, given as an expression of intersections and unions. In our case, we end up 

with: E1= 1G1+2G1+3G1+4G1+1G2+2G2….+1G8+2G8+3G8. The equivalent to that 

expression diagram is given in Figure 28. 
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Figure 28.   Equivalent Diagram 

                                                 
123 Kececioglu, page 230. 
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Trying to find the equivalent representation to a block diagram, we end up with a 

“chain like” representation that can be seen in Figure 29. A fault-tree representation of a 

system can be converted into a block-diagram representation by replacing the AND gates 

with parallel boxes and the OR gates with boxes in series. 124 
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Figure 29.   Equivalent Block Diagram 

 

In a series structure, the component with the lowest reliability is the most 

important one. We can compare that with a chain. A chain is never stronger than its 

weakest link. So the most important element for reliability improvement is the one with 

the lowest reliability.125 Reliability for a series system can be also explained by the use of 

Structural Functions, which is summarized in Appendix D. 

27. Criticality Analysis 
For the criticality matrix, we need a metric for the severity-of-failure effect, so we 

can use the designations in Table 8. 

 
Description Classification Mishap definition 
Catastrophic I System or platform loss 
Critical II Major system damage 
Marginal III Minor system damage 
Minor IV Less than minor system 

damage. 
 

Table 8. Classification of Failures According To Severity (After RAC FMECA, page 
26) 

                                                 
124 Blischke, page 220. 
125 Hoyland, page 197. 
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Due to the absence of historic lack of data, it is appropriate to use a qualitative 

approach for the classification of failures according to their occurrence number which is 

the overall probability of failure during the item operating time internal, as illustrated in 

Table 9.126 

 

Level Occurrence Description Occurrence 
number 

A Frequent High probability of 
occurrence 

>0.20 

B Reasonably probable Moderate probability 
of occurrence 

>0.10  and 
<0.20 

C Occasional Occasional 
probability of 
occurrence 

>0.01  and 
<0.10 

D Remote Unlikely probability 
of occurrence 

>0.001  and 
<0.01 

E Extremely Unlikely Essentially zero <0.001 

 

Table 9. Classification of Failures According To Occurrence 

 

From our previous analysis for engine failure using FTA, we ended up with the 

following reasons: 

a. Excessive engine vibrations 

b. Fuel/air improper mixture 

c. Improper fuel 

d. Engine fire 

e. Gas and lubricant improper mixture 

f. Excessive engine temperature rise 

g. Improper lubricant 

h. Inadequate personnel training 

                                                 
126 RAC FMECA, page 60. 
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i. Personnel fatigue 

g. Operator’s frustration and lack of experience 

k. Inadequate man machine interface 

l. Operator’s wrong reaction to failure 

m. Environmental reasons 

n. Misjudgment due to environmental reasons (mainly weather) 

o. Poor documentation of procedures 

p. Poor workload balance resulting in task saturation with resulting loss of 

situational awareness 

q. Ergonomics (Human factors) of GCS 

r. Bad material 

s. Normal engine wear 

t. Bad manufacture 

u. Bad design 

v. Insufficient maintenance 

w. Carburetor failure 

x. Broken piston 

y. Bearing failure 

z. Improper engine mounting 

aa. Lack of propeller balancing 

bb. Broken piston rings 

cc. Bearing failure 

dd. Dirty cooling areas 

ee. Improper propeller size 
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ff. Improper engine adjustments 

gg. Broken piston rings 

hh. Engine stalls (during flight) 

ii. Bad carburetor adjustments 

jj. Inappropriate engine cleaning and/or storage after flights 

kk. Inappropriate lean runs such as rusted bearings, seized connecting rod 

or piston 

ll. Propeller stops while turning. 

From the above, we can derive the following issues about an engine failure 

criticality analysis, initially based on our own experience and judgment due to lack of 

tracking by current operators: 
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Number Issue ID Probability of 
occurrence 

Severity of 
failure effect 

1 Excessive engine vibrations L1 D II 
2 Engine fire L2 D I 
3 Fuel type L3 D III 
4 Lubricant type L4 D III 
5 Fuel/air mixture adjustment L5 C III 
6 Gas and lubricant mixture L6 D III 
7 Personnel training P1 C II 
8 Operator’s frustration P2 C II 
9 Personnel experience P3 B III 
10 Poor documentation of procedures P4 C II 
11 Poor workload balance P5 C II 
12 Ergonomics of GCS P6 C II 
13 Misjudgment P7 B II 
14 Environmental reasons P8 C II 
15 Man machine interface P9 D III 
16 Maintenance P10 D II 
17 Engine adjustments P11 C III 
18 Usage P12 B II 
19 Manufacture P13 D III 
20 Software failure S D II 
21 Material M1 D I 
22 Hardware failure M2 E III 
23 Design M3 D II 
24 Engine wear M4 D II 
25 Carburetor M5 C II 
26 Piston M6 E II 
27 Bearing M7 C I 
28 Piston rings M8 E I 
29 Propeller size PR E II 
30 Engine temperature T1 D II 
31 Cooling areas T2 D II 

 
Table 10. Qualitative Occurrence and Severity Table 
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Our next step is to construct the criticality matrix based on the previous 

qualitative analysis table: 
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Figure 30.   Engine Failure Criticality Matrix. (After RAC FMECA, page 33) 
 

“The criticality matrix provides a visual representation of the critical areas” of our 

engine failure analysis.127 Items in the upper most right corner of the matrix require the 

most immediate action and attention because they have a high probability of occurrence 

and a catastrophic or critical effect on severity. Diagonally toward the lower left corner of 

the matrix, criticality and severity decreases. In case the same severity and criticality, 
                                                 

127 RAC FMECA, pages 33-34. 
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exists for different terms, safety and cost are the driving factors of the analysis. For 

SUAVs, we do not take safety under great consideration because we are dealing with 

unmanned systems, but we do have to consider cost. 

Table 11 shows the results from our analysis: 

 

Number Issue ID Probability of 
Occurrence 

Severity of 
Failure 
Effect 

1 Misjudgment P7 B II 
2 Usage P12 B II 
3 Bearing M7 C I 
4 Personnel training P1 C II 
5 Operator’s frustration P2 C II 
6 Personnel experience P3 B III 
7 Poor documentation of procedures P4 C II 
8 Poor workload balance P5 C II 
9 Ergonomics of GCS P6 C II 
10 Environmental reasons P8 C II 
11 Carburetor M5 C II 
12 Fuel/air mixture adjustment L5 C III 
13 Engine adjustments P11 C III 

 
Table 11. Results from Engine Failure Criticality Analysis. The most critical issues are 

highlighted. 
 

28. Interpretation of Results 
From the above, it is obvious how important the human factor is. The way the 

user operates the system: the ability to make the right decisions, frustration, training, 

experience, poor workload balance among the operators and poor documentation of 

procedures are among the most critical factors for our engine failure mode. The way the 

user maintains the system, also related to training and experience, the ability to adjust the 

engine and the fuel-air mixture properly are also among the critical contributors for 

engine failure mode. 

The importance of the bearing and carburetor are clearly shown. Those two parts 

are the most critical among all the parts composing the engine, according to our analysis. 
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Finally, environmental reasons conclude the most critical of the issues that could 

result in an engine failure. 
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III. DATA COLLECTIONS SYSTEMS 

A. RELIABILITY GROWTH AND CONTINUOUS IMPROVEMENT 
PROCESS  
SUAVs do not have a FRACAS system. In this section of the thesis we construct 

one. The FRACAS system is addressed to the Program Manager of any SUAV type 

during the phase of design, development or operation. 

1. Failure Reporting and Corrective Action System (FRACAS)128  
“The basic measure of FRACAS effectiveness is its ability to function as a 

closed-loop coordinated system” in identifying and repairing product and/or process 

failure modes, and identifying, implementing and verifying a corrective action to prevent 

repetition of the failure. “As a result, early elimination of causes of failure or trends,” 

greatly improves reliability. 

At each stage of product development, the closed-loop FRACAS should collect 

and evaluate information for each failure incident, as shown in Figure 31.  

 

                                                 
128 The material for this section is taken (in some places verbatim) from: RAC Toolkit, pages 284-289, 

and: National Aeronautics and Space Administration (NASA), “Preferred Reliability Practices: Problem 
Reporting and Corrective Action System (PRACAS),” practice NO. PD-ED-1255, Internet, February 2004. 
Available at: http://klabs.org/DEI /References/design_guidelines/design_series/1255ksc .pdf 
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Replacement

13

 
 
Figure 31.   Closed-loop for FRACAS (After NASA, PRACAS, page 2) 
 

In order to conduct FRACAS, we need to follow a FRACAS flow and evaluation 

checklist: 

a. Failure Observation  
In the first step, we identify that a failure incident has occurred and we 

notify all required personnel about the failure. 
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b. Failure Documentation 
We record all relevant data describing the conditions in which the failure 

has occurred. A detailed description of the failure incident as well as supporting data and 

equipment operating hours is needed. 

c. Failure Verification 
If the failure is permanent, then we verify the incident by performing tests 

for failure identification. If the failure is not permanent, then we verify the incident by 

uncovering the conditions in which the failure has occurred. Finally, if the failure cannot 

be verified, we pay close attention to the reoccurrence of failure. 

d. Failure Isolation 
For failures that were verified, we perform testing and troubleshooting to 

isolate their causes. Isolating failure can identify a defective part or parts of the system, 

or it can relate the incident to other reasons, like operator’s error, test equipment failure, 

improper procedures, lack of personnel training, etc. 

e. Replacement of Problematic Part(s) 
For the above failures, we replace the problematic part or parts with a 

known good one and replicate the conditions under which the failure has occurred. By 

testing, we confirm that the current part (or parts) has been replaced. If failure reappears 

we repeat failure isolation in order to determine the cause of failure correctly. We have to 

tag the replaced part or parts, including all relevant documentation and data. 

f. Problematic Part(s) Verification 
We have to verify the problematic part(s) independent of the system. If the 

failure cannot be confirmed then we have to review failure verification and isolation to 

determine the right failure part(s). The isolation of the failure to the lowest possible level 

of the system’s decomposition is the key to reveal the root failure cause. 

g. Data Search 
In this step, it is necessary to look up historical databases and reports for 

similar or identical failure documentations. Databases could be from the implementation 

of FRACAS methodology itself or could be from a FMEA or other technical reports. 

Failure tendencies or patterns, if any, must be evaluated because they may reveal 
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defective lots of parts, or bad design, or bad manufacturing, or even bad usage. This is 

obviously absent for SUAV systems. 

h. Failure Analysis 
A failure analysis to determine the root failure cause follows next. The 

depth and the extension of failure analysis depend on the criticality of the mission, the 

system’s reliability impact and the related cost. The outcome of failure analysis should be 

specify failure causes and identify any external causes. 

i. Root-Cause Analysis 
This answers the question, “what could have been done to prevent 

failure?” It focuses more on the true nature of failure, which could be due to: 

• Overstress conditions 

• Design error 

• Manufacturing defect 

• Unfavorable environmental conditions 

• Operator or procedural error, etc 

j. Determine Corrective Action 
In this phase, we have to develop a corrective action. We have to rely on 

the failure analysis and root-cause analysis results and our solution should prevent 

reappearance of the failure in the long term in order to be effective. Corrective actions 

could be: 

• System redesign 

• Part(s) redesign 

• Selection of different parts or suppliers 

• Improvements in processes 

• Improvements in manufacturing etc 

k. Incorporate Corrective Action and Operational Performance Test 

Now, we can incorporate the identified corrective action in the failed 

system and perform initial baseline tests as a start in order to verify the desired 

performance. After the first successful results, our tests should become operational tests 

including conditions under which the failure had occurred. After the documentation of all 

test results, we can compare the pre-failure test results to identify alterations in baseline 
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data. Testing should be sufficient enough to give us the confidence level that the original 

failure mode has been successfully eliminated from reoccurring. For large-scale 

incorporation of a corrective action, verifying the action is first needed to avoid 

unnecessary delays and expenses. 

l. Determine Effectiveness of Corrective Action 
We have to verify that our corrective action: 

• Has successfully corrected the failure 

• Has not created or induced other failures 

• Has not degraded performance below acceptable levels 

If the original failure reoccurs, we have to repeat the FRACAS process 

from the beginning to determine the correct root cause. 

m. Incorporate Corrective Action into All Systems 
After verifying our corrective action in one system, we can implement our 

solution to all similar systems. We have to keep the FRACAS procedure running in order 

to track, document, report, and determine the correct root cause and the corrective action 

necessary for all failure modes that appear. Corrective actions involve changes to 

procedures, alterations to processes and personnel training, so tracking is necessary to 

assure that the new versions were implemented correctly and not confused with old ones. 

2. FRACAS Basics 
Basically, the system must provide exact information on: 

a. What was the failure?  

b. How did the failure occur? 

c. Why did the failure occur? 

(1) Was it an equipment or part design error? 

(2) Was it an equipment or part manufacturer workmanship error? 

(3) Was it a software error? 

(4) Was it a test operator error? 

(5) Was it a test procedure or equipment error? 

(6) Was it an induced failure? 
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d. How can we prevent such failures from reoccurring? 

From all the above we can simplify the procedure to the next checklist shown in 

Figures 32 and 33. 

Start

Failure Observation
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Documentation

Failure
Permanent

?

Failure
Recoverable

?

Do Tests to Verify
Failure Identification

Determine Failure
Conditions to Verify
Failure Identification

Failure Cannot
Verified.
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Reoccurrence.

For verified failures,
perform necessary
testing to isolate
cause of failure.

Replace problematic parts.
Identify failure conditions.
Perform tests to verify
problematic part
replacement
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Repeats

?

YES

NO

YES

YES

NO

NO

NO

Tag Problematic
part(s)

Verify the Failure of
the Part(s),
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Part(s)

Verified ?

YES

Go to
page 2/2  

 
Figure 32.   FRACAS Methodology Checklist page 1/2 



139 

Data Search

Failure Analysis

Root-Cause
Analysis

Determine
Corrective Action

Incorporate
Corrective Action

and do Operational
Performance Tests

Document results
Verify desired performance

Determine
Effectiveness of

Corrective Action

Does Original
Failure Reoccur

?

Incorporate
Corrective Action
into all Systems of

the Same Kind

Continue
Implementation of

FRACAS

YES NO

    Inputs from:
Historic databases
FRACAS implementation
FMEA
Technical reports

Specify failure causes
Address identification of
external causes

What could have happened to prevent failure ?

Document corrective action

Verify that our corrective action has:
1. Successfully corrected the failure
2. Not induced other failures
3. Not degraded performance below
acceptance levels

From
page 1/2

R
ep

ea
t F

R
A

C
A

S

 
Figure 33.   FRACAS Methodology Checklist page 2/2 
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3. FRACAS Forms 
I have developed forms to implement the FRACAS methodology for SUAVs: 

a. Failure report as shown in Table 12 and 13 

b. Failure analysis report as shown in Table 14129 

c. Corrective action verification report as shown in Table 15 

d. Tag to problematic part as shown in Table 16. 

e. Failure Log-Sheet as shown in Table 17. 

During recent operations experimenting with the Surveillance and Tactical 

Acquisition Network (STAN) project at Camp Roberts, observers identified reliability 

and operational availability issues for SUAVs. As a result, I developed these forms for 

use during upcoming operations with the XPV 1-B TERN SUAV system.130 

These forms were presented to a VC-6 team for use during the STAN experiment 

during May 2004. The effort to implement these forms was not successful. The primary 

reason was lack of personnel training related to the FRACAS system itself, the form 

filling, and the general concept of reliability. The secondary reason was lack of 

coordination and control to fill these forms. It was obvious that a member of the 

operating team, assigned with the extra task to coordinate and control the proper data 

entry for the forms, was needed. 

“It is preferable to attempt to communicate the ‘big picture,’ so that each team 

member is sensitive to failure detection” and identification, and “the appropriate 

corrective action process.” 131 Nevertheless, it is typical especially in military 

applications to have overall control, so a centralized FRACAS administration within a 

team or teams is needed. 

The forms cover all aspects of SUAV design, development, production and 

operation with emphasis to experienced operation or test teams. All forms are addressed 

                                                 
129 RAC Toolkit, page 290. 
130 Gottfried.  
131 RAC Toolkit, page 284. 
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to the operating or test team. The Failure Analysis Report form is also addressed to the 

design and development team. 

Using the forms we can collect information and data to the level of detail 

necessary to identify design and/or process deficiencies that should eliminated, preferably 

before the SUAV released to its users in the battlefield. For that reason the forms can be 

used for other systems as well as SUAVs. 

The characteristics of the forms are: 

a. Simple and easy to implement even by one or two persons 

b. Brief in meanings and implementation time (time oriented) 

c. Suitable for cheap systems like SUAV (cost oriented) 

d. Focused on elimination of fault reoccurrence 

e. Generates data collection that can be used as data-base source 

There are no known forms of FRACAS or any other reliability tracking system 

that have been used for SUAV testing or operation in the past.  

4. Discussion for the Forms Terms 
Most of the terms in those forms are self-explanatory. Some discussion follows 

for some of them. 

a. For the Initial Failure Report in Table 12: 

(1) Total Operating Hours, in position (8), is the cumulative 

operation hours for the SUAV system 

(2) Current Mission Hours, in position (9), is the operation hours 

from the beginning of the current mission that the fault was been detected 

(3) Description of Failure, in position (15), is the full description of 

the observed failure. 

(4) Supporting data, in position (16) all available telemetry data 

related to the failure time must be listed. In position (16a) Environmental 

Parameters/Conditions, is the list of environmental conditions and parameters available 
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like temperature, wind speed, humidity/precipitation, cloudiness, lightning, and fog, icing 

condition, proximity to sea or desert or inhabited area. In position (16b) System 

Parameters/Conditions, is a list of system conditions and parameters like, flight altitude, 

platform speed, engine RPM, fuel level, battery status, communication status, LOS 

availability. 

(5) Actions for Failure Verification, in position (17), is a 

description of the operators’ actions that verify the failure. 

(6) Affected Subsystems, in positions (18) to (22) and (23) to (27) 

are references for the effected subsystems of the SUAV system, during the failure 

incidence. 

(7) System Condition after Failure, in position (29) is a description 

of the system general condition after the failure. For example, “platform crashed due to 

loss of control.” 

b. For the Failure Report continued in Table 13: 

(1) Problematic Parts Recognized, in position (16) is a list of the 

affected parts that have been recognized after the failure. 

(2) Problematic Parts Replaced, in position (17) is a list of the parts 

that have been replaced after the failure in an effort to isolate the failure cause. 

(3) Root Failure Cause, in position (18) is an estimate or the 

outcome of the previous efforts to isolate the failure cause. 

(4) Previous Similar or Same Cases (if any), in position (29) is a 

reference to similar or same failure cases based on historical data or other accurate 

sources. 

(5) Background, in position (30) is all background information 

related to the failure. For example it could be an explanation of a sensor subsystem, or a 

software function. 

c. For the Failure Analysis Report in Table 14: 
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(1) History, in position (31) is a complete description of the 

observed failure and all the events that followed. 

(2) Analysis, in position (32) is the failure analysis based on data, 

drawings and blueprints, manuals, and opinion from experts, designers, and operators. 

(3) Conclusions, in position (33) are the analysis outcome. 

(4) Corrective Action/Recommendation, in position (34) is the 

result of that form. This is the recommended solution to the problem. 

d. For the Corrective Action Verification Report: 

(1) Operating Hours after Previous Failure, in position (13), is the 

cumulative operation hours after the previous failure which resulted in corrective action 

taken for the SUAV system. 

(2) Tests for Corrective Action Verification Made, in position (17), 

is a reference to all tests that have been made to verify that the recommended solution is 

correct. 

(3) Alterations from Baseline Data, in position (22), is a list of all 

alteration from the initial data readings, after the implementation of the recommended 

solution. 

(4) Corrective Action Taken, in position (21), is a statement about 

the corrective actions that have been taken in order to solve the problem. 

e. For the Failure Log-Sheet: 

All entries in the Log-Sheet, like Date, Time, Number, Initial 

Report Number and Failure Description, must be consistent to the relevant entries in the 

other forms. In that way we can easily track the failure cases when is needed. 

In all forms, except the Log-Sheet form, there is a term for Comments. It covers 

any other detail that the operator or the tester estimates that is relevant to the failure and 

warrants mention.  
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1. No Form type: 

Initial Failure Report 
2. Page 1 of 
_____ 

3. Project ID 
 
 
 

4. System 5. Serial 
No 

6. Detected 
During 

7. Failure 
Date, Time 

8.Total 
Operating Hours 

9. Current 
Mission Hours 

10. Reported by 
 
 
 

11. Verified by 12. System 
Operated by: 

13. Type of System’s 
Mission 

14. Type of Failure 
(permanent/recoverable) 
 

15. Description of Failure 
 
 
 
 
 
 
 
16. Supporting Data: 
     a. Environmental Parameters/Conditions 
 
 
 
 
 
     b. System Parameters/Conditions 
 
 
 
 
 
17. Actions for Failure Verification 
 
 
 

18. Name 19. Reference Drawings 20. Part No 21. Manufacturer 22.Serial No 

AF
FE

C
TE

D
 

SU
BS

YS
TE

M
S 

23. Name 24. Reference Drawings 25. Part No 26. Manufacturer 27.Serial No 

28. Quick Failure Assessment (if any) 
 
 
29. System Condition after Failure 
 
 
 
30. Comments 
 
 
 
31. Prepared by 
 
 

32 Date 33 Checked (reliability) 34.Date 35. Problem No 

36. Checked (engineering) 
 
 

37. Date 38. Checked (program) 39. .Date 40. Distribution 

 
Table 12. Initial Failure Report Form 
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1. No Form type: 

Failure Report (Continued) 
2. Page 1 of 
_____ 

3. Project ID 
 
 
 

4. System 5. Serial 
No 

6. Detected 
During 

7. Failure Date, 
Time 

8.Total 
Operating Hours 

9. Current 
Mission Hours 

10. Reported by 
 
 
 

11. Verified by 12. System 
Operated by: 

13. Type of System’s 
Mission 

14. Number of Failure 
 

15. Description of Failure (brief) 
 
 
 
16. Problematic Parts Recognized: 
 
 
 
 
17. Problematic Parts Replaced: 
 
 
 
 
18. Root Failure Cause 
 
 
 
 

19. Name 20. Reference Drawings 21. Part No 22. Manufacturer 23.Serial No 

PR
O

BL
EM

AT
IC

 P
AR

T(
S)

 
 

24. Tagged 
by: 

25. Failure Verified 
by(reliability) : 

26. Failure Verified by 
(engineering) : 

27. Failure Verified by 
(program) : 

28. System Condition 
after Replacement: 
 
 
 

29. Previous Similar or Same Cases (if any) 
 
 
30. Background 
 
 
 
31. Comments 
 
 
 
 
321. Prepared by 
 
 

33. Date 34. Checked (reliability) 35. Date 36. Problem No 

37. Checked (engineering) 
 
 

38. Date 39. Checked (program) 40. Date 41. Distribution 

 
Table 13. Failure Report Continuation Form 
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1. No Form type: 

Failure Analysis Report 
2. Page 1 of 
_____ 

3. Project ID 
 
 

4. System 5. Serial 
No 

6. Test Level 7. Failure Date 8. Operating Hours 9. Reported 
by 

MAJOR 
COMPONENT OR 
UNIT 

10. Name 11. Reference 
Drawings 

12. Part No 13. Manufacturer 14.Serial No 

15. Name 16. Reference Drawings 17. Part No 18. Manufacturer 19.Serial No 

SU
B 

AS
SE

M
BL

Y 
 

20. Name 21. Reference Drawings 22. Part No 23. Manufacturer 24.Serial No 

PA
RT

(S
) 

 

25. Name 26. Reference Drawings 27. Part No 28. Manufacturer 29.Serial No 

30. Related MRs and PINs 
 
31. History 
 
 
 
 
 
 
32. Analysis 
 
 
 
 
 
 
 
 
33. Conclusions 
 
 
 
 
34. Corrective Action/Recommendation 
 
 
 
35. Corrective Action by 36. Document No 

 
37. Corrective Action 
Effectiveness 
 

38.Prepared by 
 
 

39. Date 40. Approval (reliability) 41.Date 42. Problem No 

43. Approval (engineering) 
 
 

44. Date 45. Approval (program) 46. .Date 47. Distribution 

 
Table 14. Failure Analysis Report Form (From RAC Toolkit, page 290) 
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1. No Form type: 

Corrective Action Verification Report 
2. Page 1 of 
_____ 

3. Project ID 
 
 

4. System 5. Serial 
No 

6. Test Level 7. Failure Date 8. Total Operating 
Hours 

9. Reported 
by 

10. Initial Failure 
Report form Number 
 
 

11. Failure Report 
Continue form Number 

11. Failure 
Analysis 
Report 

12. Current 
Mission Hours 
Before Failure 

13. Operation 
Hours after 
Previous Failure 
 
 

14.Number of 
Corrective 
Action Taken 

16. Related Drawings, Documents, Other Data 
 
17. Tests for Corrective Action Verification Made 
 
 
 
 
18. Test Conditions 
     a. Environmental Conditions 
 
 
 
 
     b. System Condition 
 
 
 
 
19. Test Results 
 
 
 
20. Alterations from Baseline Data. 
 
 
 
21. Corrective Action Taken 
 
 
 
 
22. Comments 
 
 
 
 
 
23. Corrective Action Taken by 24. Date 25. Document No 

 
26. Corrective Action 
Effectiveness 

27. Prepared by 
 
 

28. Date 29. Approval (reliability) 30. Date 31. Problem No 

32. Approval (engineering) 
 
 

33. Date 34. Approval (program) 35. Date 36. Distribution 

 
Table 15. Correction Action Verification Report Form 
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1. No Form type: 

Tag to Problematic Part 
2. Page 1 of 
_____ 

3. Project ID 
 
 

4. System 5. Serial 
No 

6. Detected 
During 

7. Failure Date 8. System’s Total 
Operating Hours 

9. Reported 
by 

10. Initial Failure 
Report form Number 
 
 

11. Failure Report 
Continue form Number 

12. Failure 
Analysis 
Report 

13. Corrective 
Action Verification 
Report 
 
 

14. Operation 
Hours after 
Previous 
Failure 
 
 

15. Total 
Number of 
Failures. 

16. Failure Description 
 
 
 
 
17. Failure Relevant Documentation 
 
 
 
 
 
 
 
18. History 
 
 
 

19. Name 20. Reference drawings 21. Part No 22. Manufacturer 23.Serial No 

PR
O

BL
EM

AT
IC

 P
AR

T 

24. Tagged 
by: 

25. Failure Verified 
by(reliability) : 

26. Failure Verified by 
(engineering) : 

27. Failure Verified by 
(program):  

28. System 
Condition after 
Replacement: 
 
 
 

29. Comments 
 
 
30. Verified by 31. Date 32. Document No 

 
33. Corrective Action 
Effectiveness 

34. Prepared by 
 
 

35. Date 36. Approval (reliability) 37. Date 38. Problem No 

39. Approval (engineering) 
 
 

40. Date 41. Approval (program) 42. Date 43. Distribution 

 
Table 16. Tag to Problematic Part Form 
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Form type: 

Failure Log-Sheet 
 

1.
 N

um
be

r 

2.
 D

at
e 

3.
 T

im
e 

4. Operator 5. Failure Description (brief) 

6.
 R

ep
or

te
d?

 7. Initial 
Report 
Number 

8. Initials 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

9. Checked by 10. Date 11. Mission Description 

 
Table 17. Failure Log-Sheet 

 
Use of these forms will allow detailed analysis of the causes of failure and 

detailed modeling of reliability by subsequent analysts. 
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5. Reliability Growth Testing 132 
It is almost certain that prototypes or new designs will not initially meet their 

reliability goals. Implementation of a reliability enhancement methodology such as 

FRACAS is the only way to overcome the initial problems that may surface in the first 

prototype performance tests and later. Therefore, failures are identified, and actions taken 

to correct them. As the procedure continues, corrective actions become less frequent. 

After a reasonable amount of time, one must check whether reliability has improved, and 

estimate how much additional testing is needed. 

Duane observed that there is a relationship between the total operation time (T) 

accumulated on a prototype or new design and the number of failures (n(T)) since the 

beginning of operation. 133 If we plot the cumulative failure rate (or cumulative mean 

time between failures MTBFc ) n(T)/T versus T in a log-log scaled graph, the observed 

data tends to be a linear regardless of the type of equipment under consideration.  

Duane’s plots provide a rough estimate of the increment of the time between 

failures. It is expected that time between failures at the early stages of development will 

be short. But soon after the first corrective actions they will gradually become longer. As 

a consequence Duane’s plots will show a rapid reliability improvement in the early stages 

of development. After the first corrective actions the reliability improvement would be 

less rapid. After a corrective action we can see whether there is a reliability improvement 

or not. So we can have a measure of effectiveness of our corrective actions, which 

corresponds to the growth of reliability. 

                                                 
132 The material for this section is taken (in some places verbatim) from: Lewis, E. E., Introduction to 

Reliability Engineering, Second Edition, John Wiley & Sons, 1996, pages 211-212. 
133 Duane, J. J., “Learning Curve Approach to Reliability Modeling,” Institute of Electrical and 

Electronic Engineers Transactions on Aerospace and Electronic Systems (IEEE. Trans. Aerospace) 2563, 
1964. 
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Figure 34.   Duane’s Data Plotted on a Log-log Scale. 
 

Figure 33 illustrates a Duane’s data plot for a hypothetical system. Because of the 

straight line we get: ln[ ( ) / ] ln( )n T T T bα= ⋅ +  and then: 
ln[ ( ) / ] [ ln( ) ] ( ) /n T T T b be e n T T e Tα α⋅ += ⇔ = ⋅  (1 ) (1 )( )  if  b bn T e T K T K eα α+ +⇔ = ⋅ = ⋅ = , and so 

finally we have (1 )( )n T K T α+= ⋅ . Alpha (α) is the growth rate or the change in MTBF per 

time interval over which change occurred and K is a constant related with the initial 

MTBF. 

a. If α=0, there is no improvement in reliability because the straight line is 

parallel to the cumulative operating hours axis, which means that there is no change in 

the cumulative failure rate. 

b. If α<0, then the cumulative failure rate decreases, and the expected 

failures become less frequent as T increases. Therefore reliability increases. 
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c. If α=-1, ( ) constantbn T K e= = = . Therefore the number of failures is 

independent of time T. We can assume that α=-1 is the theoretical upper limit for 

reliability growth. 

d. If α>0, then the cumulative failure rate increases, and the expected 

failures become more frequent as T increases. Therefore reliability decreases. 

From (1 )( )n T K T α+= ⋅  we have: ( ) /n T T K T α= ⋅  which is the reciprocal of 

cumulative MTBF. And so the testing time required to achieve a given failure rate 

(MTBF), is ( )
1

K MTBF α
−

⋅ .  

6. Reliability Growth Testing Implementation 
In order to implement the above-mentioned methodology, we may consider the 

system as an entity and as a set of entities. In the first case, we just count all systems 

failures and the operational hours related to each failure. In the second case, we may 

consider that the system is the composition of: 

a. Propulsion and power 

b. Flight control and navigation 

c. Communication and sensors 

d. GCS (Human in the loop) 

e. Miscellaneous. 

Each failure can be assigned to one of the above categories and therefore we have 

to keep track of five different reliability tendencies. 

 

B. RELIABILITY IMPROVEMENT PROCESS  

1. UAVs Considerations  

For a reliability improvement process application in SUAVs we can consider the 

following: 

a. There is no officially accepted future system concept of operations for 

SUAVs. 
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b. There are many classified and unclassified reports published on many 

different types of SUAVs. 

c. Many systems have been tested and there are plans for future tests in 

battlefield environments and in deployments with the fleet. 

(1). The EWASP SUAV system.134 

(2). The XPV-1B TERN UAV system135  

(3). The Sea ALL (Sea Airborne Lead Line) SUAV system which is 

a variety of the USMC Dragon Eye UAV.136 

d. There is a real operational need for SUAVs during deployments of the 

fleet. For example, due to an urgent requirement to maintain a continuous recognized 

maritime picture of the Carrier Strike Group vital area, small UAVs are needed to assist 

the limited existing maritime patrol aircrafts. For that reason, a request for the SUAV 

Archangel to be used onboard USS Enterprise CSG has been released.137 

e. There is a real problem regarding the reliability of those systems. UAVs 

in general have roughly up to 100 times the failure rate of manned aircrafts, and SUAVs 

are even more failure prone than larger ones. The US Office of the Secretary of Defense’s 

UAV Roadmap, which was released in May 2003, recommends that more research be 

made into low Reynolds-number flight regimes, investigations be carried out for 

enhancing UAV reliability and therefore availability. It also recommends the 

incorporation and development of all-weather practices into UAV designs.138 

                                                 
134 Morris Jefferson, Aerospace Daily, December 8, 2003, “Navy To Use Wasp Micro Air Vehicle To 

Conduct Littoral Surveillance.” 
135 Message from COMMMNAVAIRSYSCOM to HQ USSOCOM MACDILL AFB FL, March 26, 

2004, “UAV Interim Flight Clearance for XPV-1B TERN UAV System, Land Based Concept of Operation 
Flights.” 

136 Sullivan Carol, Kellogg James, Peddicord Eric, Naval Research Lab, January 2002, Draft of 
“Initial Sea All Shipboard Experimentation.” 

137 Undated message from Commander, Cruiser Destroyer Group 12 to Commander, Second Fleet, 
“Urgent Requirement for UAVs in Support of Enterprise Battle Group Recognized Maritime Picture.” 

138 UAV Rolling News, “UAV Roadmap defines reliability objectives,” March 18, 2003, Internet, 
February 2004. Available at: http://www.uavworld.com/_disc1/0000002 
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2. UAVs and Reliability 
The U.S. military UAV fleet (consisting of Pioneers, Hunters, and Predators) 

reached 100,000 cumulative flight hours in 2002. This milestone is a good point at which 

to assess the reliability of these UAVs. Reliability is an important measure of 

effectiveness for achieving routine airspace access, reducing acquisition system cost, and 

improving UAVs mission effectiveness. UAV reliability is important because it supports 

their affordability, availability, and acceptance.139 

UAV reliability is closely tied to their affordability primarily because UAVs are 

expected to be less expensive than manned aircraft with similar capabilities. Savings are 

based on the smaller size of the UAVs and the omission of pilot or aircrew systems.  

a. Pilot Not on Board140 
With the removal of the pilot and the tendency to produce a cheaper UAV, 

redundancy was minimized and component quality was degraded. Yet UAVs became 

more prone to in-flight loss and more dependent on maintenance. Therefore, their 

reliability and mission availability were decreased significantly. Being unmanned, they 

cannot provide flight cues to the user such as: 

• Acceleration sensation, 

• Vibration response, 

• Buffet response, 

• Control stick force feedback, 

• Any higher longitudinal, directional and lateral control sensitivities. 

• Direct feeling of the failure, in general. 

Ground testing and instrumentation data analysis are the only source for 

such cues. 

b. Weather Considerations141 

                                                 
139 OSD 2002, Appendix J, page 186. 
140 The material for this section is taken from: Williams Warren, Michael Harris, “The Challenges of 

Flight –Testing Unmanned Air Vehicles,” Systems Engineering, Test & Evaluation Conference, Sydney, 
Australia, October 2002. 
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Experience has shown that the most important operational consideration 

for flight is the weather, regardless of other technical characteristic, such as engine type, 

power or wingspan. Meteorological conditions affect both the platform and the GCS. 

Factors include winds, turbulence, cold temperatures at designated altitudes, icing, rain, 

fog, low cloudiness, humidity in general and lightning strikes. Meteorological conditions 

affect the GCS include extreme ambient temperatures, icing, rain, fog, low cloudiness, 

humidity and lightning strikes. These considerations can be mitigated because of the 

relaxed constraints of ground units compared to the restricted constraints for small aerial 

units. 

For the platform the most important weather condition is wind speed and 

direction at surface (the lowest 100 meters of the atmosphere) and upper levels. Other 

weather conditions are important but do not affect the flight unless they are extreme. 

Surface winds affect air-platforms during takeoff and landings, but also during preflight 

and post flight ground handling. Light winds are most favorable for routine operation and 

testing. High winds during flight can cause significant platform drift, which results in 

poor platform position controllability. This can render a mission profile infeasible and 

result in flight cancellation. 

Prior to deploying any UAV system, a study must be made of the 

prevailing meteorological conditions. If conditions are extreme (such as very high winds, 

extreme cold, or high altitude), then the UAV system may not be mission capable, and a 

different asset may be better suited. Alternate UAVs or manned systems should be 

considered in this case.  

                                                 
141 Teets, Edward H., Casey J. Donohue, Ken Underwood, and Jeffrey E. Bauer, National Aeronautics 

and Space Administration (NASA), NASA/TM-1998-206541, “Atmospheric Considerations for UAV 
Flight Test Planning,” January 1998, Internet, February 2004. Available at: 
http://www.dfrc.nasa.gov/DTRS /1998/PDF/H-2220.pdf 
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c. Gusts and Turbulence  
The high susceptibility of the platform to gusts and turbulence makes 

stabilizing flight operation points very difficult. The platform’s low-wing loading can 

lead to high-power loading due to gusts, and turbulence and the low inertia are the main 

reasons for that behavior142. 

During the development test and evaluation period (DT&E), an SUAV can 

be tested in aerodynamic/wind tunnels to establish its general flight characteristics. A 

basic flight manual can be produced during DT&E that will be tested and refined during 

the operational test and evaluation period (OT&E). The advantage of SUAVs is that the 

actual airframe can be tested in the wind tunnel, without any analogy or other factor 

involved in the calculations because the original platform (and not any miniaturized 

model) is being tested. 

d. Non Developmental Items (NDI) or Commercial Off-the-shelf 
(COTS)  

One of the factors in lack of reliability of inexpensive UAVs is the 
use of NDI/COTS components that were never meant for an aviation 
environment. In many cases, it would have been better to buy the more 
expensive aviation-grade components to begin with than to retrofit the 
system once constructed. Do not assume COTS components/systems will 
work for an application they were not designed for. In other words, they 
have to be COTS for that specific use.143 

Using NDI/COTS items may save money but require testing in order to 

ensure compatibility and to reduce uncertainty in mission efficiency.144 

e. Cost Considerations145 
By using COTS technology, distributed sensors, communications 

and navigation, it is also proposed that the total system reliability may be 
increased. It must be noted however that this approach does not currently 
account for issues of airworthiness certification. 

                                                 
142 NASA 1998. 
143 Clough. 
144 Hoivik, Thomas H., OA-4603 Test and Evaluation Lecture Notes, Version 5.5, “The Role of Test 

and Evaluation,” presented at NPS, winter quarter 2004. 
145 The material for this section is taken (in some places verbatim) from: Munro Cameron, and Petter 

Krus, AIAA’s 1st Technical Conference & Workshop on Unmanned Aerospace Vehicles, Systems, 
Technologies and Operations; a Collection of Technical Papers, AIAA 2002-3451,“A Design Approach for 
Low cost ‘Expendable’ UAV system,” undated. 
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It is a fact that the primary cost item in UAVs is not the vehicles but the 

guidance, navigation, control and sensor packages that they carry. Typically all those 

technology “miracles” can represent 70% of the system’s cost. Although sensors continue 

to decrease in cost, size and power consumption, the demands for more capabilities and 

mission types are increasing. As a result, cost is increasing. 

We can assume that acquisition cost is proportional to reliability, and wear 

out is not proportional to reliability. Then, a generic reliability trade-off can be seen as in 

Figure 35. We can conclude that a highly reliable UAV does not coincide with an overall 

low system cost. 

Another point of interest related to cost and reliability is that reliability is 

low for SUAVs because SUAVs are designed to be inexpensive. This statement is true 

because reliability is expensive and one truly gets what one pays for.146 

                                                 
146 Clough. 



158 

 

0 100%Reliability

C
os

t

Acq
uis

itio
n C

os
t

Wear Out

W
ea

r O
ut

 R
at

e

Life Cycle Cost

 
Figure 35.   Generic Cost Relationship. (After Munro) 

 
f. Man in the Loop  
The man-in-the-loop can be accomplished “through nearly all of the 

potential controlling equipment available.” UAV control equipment is the link between 

man and machine together with the data display mechanisms. Controlling equipment can 

be remotely piloted, semi-autonomous with a combination of programmed and remote 

piloted, and fully autonomous (full-auto) with pre-flight and/or in-flight programmed.147 

Another point of interface between man and machine is maintenance and 

pre-flight and after-flight servicing. Piloting a UAV resembles an instrumented manned 

flight. For that reason there are four main considerations: 

                                                 
147 Carmichael, Bruce W., and others, “Strikestar 2025,” Chapter 4, “Developmental Considerations, 

Man-in-the-Loop,” August 1996, Department of Defense , Internet, February 2004. Available at: 
http://www.au.af.mil/au/2025/volume3/chap13/v3c13-4.htm 
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(1) Collision avoidance 

(2) Multiple platforms control 

(3) Landing (recovery) 

(4) Loss of flight control and regain of it. 

g. Collision Avoidance  
For UAVs, a system is needed that can weigh tasks and put priorities only 

on the flight requirements or mission requirements. It is essential to have the capability, 

like the pilot does, to sense and to avoid obstacles that most of the time the remote pilot 

cannot see.148  

If an accurate collision avoidance system were developed, UAVs could 

become more responsive to the demanding needs of the battle commander.149 “NASA, 

the U.S military, and the aerospace community have joined forces to develop detect, see, 

and avoid (DSA) technologies for UAVs.”150 These technologies will also increase safety 

operations above residential areas and allow UAVs to join the piloted aerial vehicles in 

national airspace.   

h. Landing  
A lot of UAV mishaps are related to landing. The usual ways for UAVs to 

land are: 

• Using landing gear on runways or airstrips 

• Using landing gear and arresting gear on ship flight-decks 

• Making a calculated crash landing without using landing gear 

• Recovering in an arresting net 

                                                 
148 Finley, Barfield, Automated Air Collision Avoidance Program, Air Force Research Laboratory, 

AFRL/VACC, WPAFB,“Autonomous Collision Avoidance: the Technical Requirements,” 0-7803-6262-
4/00/$10.00(c)2000 IEEE. 

149 Coker, David, Kuhlmann, Geoffrey, “Tactical-Unmanned Aerial Vehicle ‘Shadow 200’ 
(T_UAV),” Internet, February 2004. Available at: http://www.isye.gatech.edu/~tg/cources/6219/assign 
/fall2002 /TUAVRedesign/ 

150 Lopez, Ramon, American Institute of Aeronautics and Astronautics (AIAA), “Avoiding Collisions 
in the Age of UAVs,” Aerospace America, June 2002, Internet, February 2004. Available at: 
http://www.aiaa.org /aerospace/Article.cfm?issuetocid=223&ArchiveIssueID=27 
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• Landing in sea water 

• Using a parachute 

• Vertical take-off-and-landing (VTOL) 

The most common problems with recovery are lack of experience by the 

remote pilot and low altitude winds, even for the VTOL UAVs. To resolve or mitigate 

this problem, automated recovery systems can be used. Those systems have been 

developed to improve precision, ease and safety of UAV recoveries, on land and sea, and 

in a variety of weather conditions.151 

i. Losing and Regaining Flight Control 
The need for uninterrupted communication between the operator in the 

GCS and the platform is a critical capability.152 An interruption of that link is always 

possible due to loss of Line-of-Sight (LOS), communication failure related to platform or 

GCS, and electromagnetic interference (EMI). The only way to overcome this problem is 

autonomy with dependable autopilot and mission control software.153 

Autonomy for a UAV platform is based on an onboard computer, which is 

responsible for most of the platform’s performance and “behavior”. Subprograms for 

time-related loss of communications, regaining communications, points of regaining 

communication efforts, and other functions related with mission effectiveness are very 

common among UAV software. Additionally, emission control applications help allocate 

bandwidth for different uses and may decrease the EMI hazard. For UAVs, which use 

different sensor configurations in the same type of platform, there is also a need for 

reconfigurable multi-mission processing.154 

j. Multiple Platforms Control  
                                                 

151 UAV Annual Report FY 1997: Subsystems, Key subsystem program, “UAV common recovery 
system (UCARS),” Internet, February 2004. Available at: http://www.fas.org/irp/agency/daro/uav97 
/page36.html 

152 Coker. 
153 Puscov, Johan, “Flight System Implementation,” Sommaren-Hosten 2002, Royal Institute of 

Technology (KTH), Internet, February 2004. Available at:  http://www.particle.kth.se/group_docs/admin 
/2002/Johan_2t.pdf 

154 Robinson, John, Technical Specialist Mercury Computers, COTS Journal, “UAV Multi-Mission 
Payloads Demand a Flexible Common Processor,” June 2003, Internet, February 2004. Available at:  
http://www.mc.com/literature/literature_files/COTSJ_UAVs_6-03.pdf 
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Demands for piloting a UAV require two operators in general. The aviator 

operator (AVO) is responsible for aviating and navigating, and the mission payload 

operator (MPO), or Sensor Operator (SENSO), is responsible for target search and 

system parameters monitoring. In smaller UAVs there may be only one operator who 

does both tasks. Requiring two operators limits the number of operators available for 

other missions. Is it possible for those two operators to control two or more platforms 

simultaneously?155 Is it also possible for the single operator for the smaller UAV to do 

the same? 

The SUAV operators are part of a battle team and their primary skill and 

training is to fight and then to operate the SUAVs. They operate SUAVs from a distance 

yet in the proximity of the battlefield. So, care must be taken in making excessive 

workload demands on the SUAV operators. Instead, by making the platform control and 

operation more user-friendly, we can optimize the benefits of SUAVs capabilities. When 

the operators can stand far enough from the battlefield, user-friendly control of SUAVs is 

advantageous, and multiple platform control can become a more realistic capability if 

SUAV autonomy is high.  

k. Reliability, Availability, Maintainability of UAVs  
Reliability is the probability that a UAV system or component will operate 

without failures for a specified time (the mission duration) as well as the preflight tests 

duration. This probability is related to the mean time between failures (MTBF) and 

availability.  

Availability is defined as the ability of a system to be ready for use when 

needed at an unknown (random) time. It is the natural interpretation of reliability of our 

everyday life. Availability is a function of reliability and maintainability.  

As discussed earlier, redundancy plays an important role to keep reliability 

high. Keeping redundancy at a high level increases system complexity and cost, however. 

                                                 
155 Dixon, Stephen R., and Christopher D. Wickens, “Control of multiple UAVs: A Workload 

Analysis,” University of Illinois, Aviation Human Factors Division, Presented to 12th International 
Symposium on Aviation Psychology, Dayton, Ohio 2003. 
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Volume, weight, and cost are also important for UAVs system’s operational usage and 

real system needs. There is a trade off as indicated in Figure 36.156 
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Figure 36.   Reliability Trade-Offs. (After Sakamoto, slide 8) 

 

Where redundancy is difficult to implement, fault avoidance or parts 

quality is the solution to improve reliability. In some cases adding redundancy in critical 

subsystems, like navigation aids, is unavoidable. Thus, cost and complexity increases.157 

Maintainability is a system effectiveness concept that measures the ease and rapidity with 

which a system or equipment is restored to its operational state after failing. Reliability, 

availability, and maintainability are discussed in Appendix D. 

3. Reliability Improvement for Hunter 

                                                 
156 Sakamoto, Norm, presentation: “UAVs, Past Present and Future,” Naval Postgraduate School, 

February 26, 2004. 
157 Clough. 
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The Army’s acquisition of the Hunter RQ-5 system is an example of reliability 

improvement after the implementation of a reliability improvement program. In 1995, 

during acceptance testing, three Hunter platforms crashed within a three week period. As 

a result, full rate production was canceled. The Program Management Office and the 

prime contractor Thompson Ramo Wooldridge (TRW) performed a Failure Mode Effect 

and Criticality Analysis (FMECA) for the whole system. Failures were identified and 

design changes were made after failure analyses and corrective actions were 

implemented. As a result, Hunter’s Mean Time Between Failures (MTBF) for its servo 

actuators, which were the main cause for many crashes, increased from 7,800 hours to 

57,300 hours.  

Hunter returned to flight status three months after its last crash. Over the next two 

years, the system’s MTBF doubled from four to eight hours and today stands close to 20 

hours. Prior to the 1995, Hunters mishap rate was 255 per 100,000 hours; afterwards 

(1996-2001) the rate was 16 per 100,000 hours. Initially canceled because of its 

reliability problems, Hunter has become the standard to which other UAVs are compared 

in reliability.158 

4. Measures of Performance (MOP) for SUAVs 
In manned aviation, the usual Measures Of Performance (MOPs) used for 

reliability tracking are 

• Accidents per 100,000 hours of flight 

• Accidents per 1,000,000 miles flown 

• Accidents per 100,000 departures159  

In the Vietnam War, the MOPs used for the Lightning Bug were 

• The percent of platforms returned from a mission, calculated as the 

number of platforms recovered from similar successful missions divided 

                                                 
158 OSD 2002, Appendix J. 
159 National Transportation Safety Board (NTSB), Aviation Accident Statistics,”Table 6. Accidents, 

Fatalities, and Rates, 1984 through 2003, for U.S. Air Carriers Operating Under 14 CFR 121, Scheduled 
Service (Airline), Internet, April 2004. Available at: http://www.ntsb.gov/aviation/Table6.htm 
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by the number of platforms launched for that mission in a certain time 

period.  

• Missions accomplished per platform per mission type in a certain time 

period.160  

The frequency of mishaps is the primary factor for choosing a MOP. In the SUAV 

case, we can use the following MOPs for reliability tracking: 

a. Crash Rate (CR): The total number of crashes divided by the total 

number of flight hours. A crash results in loss of platform. 

b. Operational CR: The total number of crashes divided by the total 

number of operating flight hours. 

c. Mishap Rate (MR): The total number of mishaps divided by the total 

number of flight hours. This thesis defines a mishap for a SUAV as significant platform 

damage or a total platform loss. A mishap requires repair less than or equal to a crash 

depending on the condition of the platform after the mishap. 

d. Operational MR: The total number of mishaps divided by the total 

number of operating flight hours. 

e. Current Crash Rate (CCR): The total number of crashes from the last 

system modification divided by the total number of flight hours from the last system 

modification. 

f. Operational CCR: The total number of crashes from the last system 

modification divided by the total number of operating flight hours since the last 

modification. 

g. Current Mishap Rate (CMR): The total number of mishaps from the last 

system modification divided by the total number of flight hours from the last 

modification. 

                                                 
160 Carmichael, Bruce W., Col (Sel), and others, “Strikestar 2025,” Appendix A,B & C, “Unmanned 

Aerial Vehicle Reliability,” Appendix A, Table 4August 1996, Department of Defense, Internet, February 
2004. Available at: http://www.au.af.mil/au/2025/volume3/chap13/v3c13-8.htm 



165 

h. Operational CMR: The total number of mishaps from the last system 

modification divided by the total number of operating flight hours from the last 

modification. 

i. Crash Rate “X” (CRX): The crash rate for the last “X” hours of 

operational flight hours, as in “CR50” which is the CR for the last 50 flight hours. 

j. Mishap rate “X”: The MR for the last “X” hours of operational flight 

hours, as in “MR50” which is the MR for the last 50 flight hours. 

k. Achieved Availability (AA): The total operating time (OT) divided by 

the sum of OT, plus the total corrective maintenance time, plus the total preventive 

maintenance time. 

l. Percent Sorties Loss: The total number of sorties lost (for any reason) 

divided by the total number of sorties assigned. 

m. Percent Sorties Mishap: The total number of sorties with a mishap 

divided by the total number of sorties assigned. 

SUAVs are generally low cost systems with prices from $15K to $300K. For that 

reason there is no official data collecting system in effect detailed enough to provide 

reliability data. Usually, only the number of flight hours and the number of crashes is 

known. For that reason, the most suitable reliability MOPs currently are CR, CCR and 

CRX. 

5. Reliability Improvement Program on SUAVs 
A reliability improvement program seeks to achieve reliability goals by improving 

product design. The objective of an improvement program is to identify, locate and 

correct, faulty and weak aspects of the design, manufacturing process, and operating 

procedures. For the SUAV, we first applied existing techniques for improving system 

reliability. 

Starting with the FMEA, which is the basis for the most common methodologies 

for improving reliability; we also discussed FMECA and FTA. After that, reliability 

centered maintenance, specifically MSG-3, was presented as the prevailing methodology 

for enhancing civil aviation reliability and maintenance preservation methodology. We 
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showed that MSG-3 is not suitable for UAVs applications because of its dependence on 

an in-board operator. We highlighted the need for a data collection system and presented 

FRACAS. FRACAS is best suited for SUAVs especially during their initial phases of 

development or operational test development. Finally, a method or technique is needed to 

keep track of reliability growth. Duane’s plots presented and recommended for their 

simplicity. 

6. Steps for Improving Reliability on SUAVs 
We can consider a FRACAS system as a part of a generic reliability improvement 

program. The first step of such a program is an environmental stress screening (ESS). 

ESS is a process that uses random vibration within certain operational limits, and 

temperature cycling to accelerate part and workmanship imperfections. Identification of 

infant mortality failures can be identified in a short time and relatively easily. 

In addition to ESS, the next actions should be taken: 

a. Verify/calibrate the instruments for the field tests or field operations. 

With calibrated instruments we can substantially reduce instrumentation errors. A rule of 

thumb is to use another instrument that is at least 10 times more accurate than the 

instrument we want to calibrate.161 

b. Set the initial weather restrictions for UAVs flights.  

c. Conduct a FMEA of the system and/or perform an FTA if it is necessary 

when we want to focus on a certain failure. For that purpose, we have tailored a form as 

in Table 18.162  

 

                                                 
161 Hoivik. 
162 Department of Defense, MIL-STD-1629A, “Procedures For Performing a Failure Mode Effects 

and Criticality Analysis,” Task 101 FMEA sheet, November 24, 1980. 
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UAVs FMEA Form FMEA Date 

System Name Page          of          Pages 

Part Name Prepared by 

Reference Drawing Approved by 

Mission Revisited by/Revision Date 

 
Failure Effects ID 

Number 
Item/ 
functional 
ID 

Design Function Failure 
Modes and 
Causes 

Operational 
Phase 

Local Next Higher Level End 
Effects 

Failure 
Detection 
Method 

Fault 
Acceptance 

Severity 
Classification 

Remarks 

 
 

Table 18. UAVs FMEA Form (After MIL-STD-1629A, Figure 101.3) 
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The cell definitions are: 163 

(1). ID Number, given to each entry on the FMEA form for record-

keeping purposes. 

(2). Item/Functional Identification, for the item or the functional 

block or subsystem, such as the carburetor or the fuel tank, for example. 

(3). Design Function, a brief statement about the item’s design 

function. State that the carburetor mixes fuel and air in order to feed the engine with the 

proper fuel-air density, for example. 

(4). Failure Modes and Causes, a brief statement about the way(s) 

in which the item may fail. In the case of the carburetor, the failure modes are improper 

adjustment, plugged needle valve, jammed leverage, servo failure, excess vibrations, 

throttle failure, insufficient fastening to the frame, etc. 

(5). Operational Phase, a brief statement about the item’s objective 

or task must be written; in the case of the carburetor, it controls engine running speed.  

(6). Local Failure Effects, explaining the immediate consequences 

of the item’s identified failure mode. In the case of the carburetor, we can state “Engine 

cannot be controlled.” 

(7). Next Higher Level, about the effect of the local failure on the 

next higher functional system level; in the case of the carburetor, we can state “Loss of 

engine.” 

(8). End Effects, explaining the effects of the indicated failure 

mode on the whole system. In the case of the carburetor, we can state “Loss of thrust.” 

(9). Failure detection method, explaining the way(s) by which a 

failure can be detected. In the case of the carburetor, it could be detected by the operator 

or by the control system itself. 

                                                 
163 The material from the following part of section is taken (in some places verbatim) from: RAC 

FMECA, pages 60-66. 
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(10). Fault Acceptance, statement of the ways that the system can 

overcome or bypass the effects of failure.  In the case of the carburetor the system design 

does not provide any alternatives so the word “None” can be placed under fault 

acceptance. 

(11). Severity Classification, representing the degree of damage 

that will be caused by the occurrence of the failure mode. It could be any of the following 

categories: 

(a) Classification I, for complete loss of system 

(b) Classification II, for degraded operation of the system 

(c) Classification III, for a failure status that still needs to be 

investigated 

(d) Classification IV, for no effect on systems functions. 

The failure effect for the carburetor can be classified as a Category I 

severity. 

(12). Remarks, relating details about the evaluation of the given 

failure mode. 

d. Establish a FRACAS. Implementation of FRACAS through the 

system’s life cycle, even for the ESS tests, should continue for all failures occurring 

during developmental and operational testing. 

For a reliability improvement program, FRACAS is the most critical 

facet.164 Failures must be identified and isolated to the root failure mode. After the failure 

analysis is complete, corrective actions are identified, documentation is completed and 

data is entered into FRACAS. The system’s manufacturer can use the information in 

FRACAS to incorporate the corrective actions into the product. We can use the same 

FRACAS forms we presented in the previous subsection. 

e. Track of reliability improvement by using Duane’s theory, MTBFs 

and/or achieved availability of the system. 
                                                 

164 Pecht, page 323. 
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f. Complete a reliability improvement plan. This plan must be completed, 

approved and coordinated by the manufacturer’s engineers and reliability manager in 

cooperation with the military personnel who operate the systems. The following need to 

be addressed in the plan: 

• Resources, 

• Test schedule and test equipment, 

• Personnel, 

• Test environment, 

• Procedures, 

• Data base establishment, and 

• Corrective action implementation program. 

Figure 37 outlines the reliability improving process for SUAVs. 
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Figure 37.   Reliability Improving Process on SUAVs 
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IV. EXAMPLE 

A. RQ-2 PIONEER 86 THROUGH 95  
From the US Navy’s Airborne Reconnaissance Office, 15 March 1996, come the 

following data regarding the RQ-2 Pioneer battlefield UAV mishaps from 1986 until 

1995.165 

Flight 
Year Mishaps hours
86 5 96.3
87 9 447.1
88 24 1050.9
89 21 1310.5
90 21 1407.9
91 28 2156.6
92 20 1179.3
93 8 1275.6
94 16 1568
95 16 1752
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Table 19. RQ-2 Pioneer data 

As discussed in Chapter 3, we can calculate only the Mishap Rate (MR) and the 

Current Mishap Rate (CMR) because we have data only for mishaps and total flight 

hours. Assuming that each year we have modifications in the system, we calculate the 

following: 

Mishap Current Mishap
Year Rate (MR) Rate (CMR)
86 0.051921 0.05192108
87 0.025764 0.020129725
88 0.023835 0.022837568
89 0.020311 0.016024418
90 0.01855 0.014915832
91 0.016694 0.0129834
92 0.016735 0.016959213
93 0.015239 0.006271558
94 0.014487 0.010204082
95 0.013721 0.00913242
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Table 20. MR and CMR 

 

                                                 
165 Carmichael, Bruce W., Col (Sel), and others, “Strikestar 2025,” Appendix A, B & C, “Unmanned 

Aerial Vehicle Reliability,” August 1996, Department of Defense school, Internet, February 2004. 
Available at: http://www.au.af.mil/au/2025/volume3/chap13/v3c13-8.htm 
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It is obvious that both MOPs provide the notion of rapid improvement during the 

first two years followed by a much slower rate of improvement. 

1. We follow Duane’s theory and analyze the data as seen in Table 21. We assume 

that reliability improvement efforts have been implemented every year on all similar 

systems. 

N T
Cum Mish Cum flight hours N/T ln(T) ln(N/T) Regression exp(regression)

5 96.3 0.051921 4.567468 -2.95803 -3.0499928 0.047359265
14 543.4 0.025764 6.297846 -3.658788 -3.4840591 0.030682613
38 1594.3 0.023835 7.37419 -3.736604 -3.7540609 0.023422437
59 2904.8 0.020311 7.97412 -3.896582 -3.9045536 0.020149947
80 4312.7 0.01855 8.369319 -3.987293 -4.0036897 0.018248183

108 6469.3 0.016694 8.774823 -4.092692 -4.1054106 0.016483249
128 7648.6 0.016735 8.942278 -4.090248 -4.1474168 0.015805192
136 8924.2 0.015239 9.096522 -4.183867 -4.186109 0.015205334
152 10492.2 0.014487 9.258387 -4.234507 -4.226713 0.014600302
168 12244.2 0.013721 9.412808 -4.288844 -4.2654495 0.014045553  

Table 21. Duane’s Theory Data Analysis 
 

The results from the regression analysis are the following: 

 

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.984226284
R Square 0.968701379
Adjusted R Square 0.964789051
Standard Error 0.073881376
Observations 10

ANOVA
df SS MS F Significance F

Regression 1 1.351526748 1.351526748 247.6023 2.65748E-07
Residual 8 0.043667661 0.005458458
Total 9 1.39519441

Coefficients Standard Error t Stat P-value
Intercept -1.90424026 0.129763159 -14.6747372 4.57E-07
ln(T) -0.25085068 0.015941821 -15.7353841 2.66E-07

Residuals vs fit
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Table 22. Regression Results 
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In that case α is -0.25 for the total 12,244.2 hours of operations. In the next figure, 
we can see Duane’s regression and failure rate versus time plots. 
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Figure 38.   Duane’s Regression and Failure Rate versus Time 

 
From the residual and the Duane’s plots we see a steeper descent for the failure 

rate in the first years followed by a short period of constant failure rate. The last year’s 
failure rate is not as steep as the first year’s. 

2. Using the same data set, we concentrate on the last six years, from 1990 to 

1995. 

Year Mishaps Fllight hours
90 21 1407.9
91 28 2156.6
92 20 1179.3
93 8 1275.6
94 16 1568
95 16 1752
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Table 23. RQ-2 Pioneer Data, 1990 to 1995 

 

We follow Duane’s theory and analyze the data as seen in the next table. 

 



174 

N T
Cum Mish Cum flight hours N/T ln(T) ln(N/T) Regression exp(regression)

21 1407.9 0.014916 7.249855 -4.205332 -4.173563 0.015397302
49 3564.5 0.013747 8.178779 -4.286959 -4.2891601 0.013716442
69 4743.8 0.014545 8.464594 -4.230487 -4.3247274 0.013237158
77 6019.4 0.012792 8.702743 -4.358937 -4.3543631 0.012850622
93 7587.4 0.012257 8.934244 -4.401645 -4.3831715 0.012485697
109 9339.4 0.011671 9.141997 -4.450649 -4.4090247 0.012167039  

Table 24. Duane’s Theory Data Analysis for 1990 to 1995 

 

Now the results from the regression analysis follow: 

 

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.864537515
R Square 0.747425115
Adjusted R Square 0.684281394
Standard Error 0.054749695
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 0.035481414 0.035481 11.83689 0.026282253
Residual 4 0.011990116 0.002998
Total 5 0.047471531

Coefficients Standard Error t Stat P-value
Intercept -3.271377559 0.306285094 -10.68083 0.000435
ln(T) -0.124441862 0.036169936 -3.440478 0.026282

Residuals vs fit

-0.05

0

0.05

0.1

1000 10000

Operating hours

R
es

id
ua

ls

residuals vs fit

 
Table 25. Regression Results for 1990 to 1995 

 

Now the parameter α is -0.12 for the last 9,339.4 hours of operations. That means 

we have less rapid reliability growth the last six years. Figure 39 depicts Duane’s 

regression and failure rate versus time plot: 
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Figure 39.   Duane’s Regression and Failure Rate versus Time for 1990 to 1995 

 

Comparing the two time periods, we can say that rate of reliability growth for the 

last six years (factor of -0.12) from 1990 to 1995 decreased compared to the overall 

factor -0.25 for the whole ten-year period from 1986 to 1995. 

3. Using the same data set, we concentrate in the first six years from 1986 to 

1991. 

 

Year Mishaps Fllight hours
86 5 96.3
87 9 447.1
88 24 1050.9
89 21 1310.5
90 21 1407.9
91 28 2156.6
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Table 26. RQ-2 Pioneer Data, 1986 to 1991 

 

We follow Duane’s theory and analyze the data as seen in the next table: 
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N T
Cum Mish Cum flight hours N/T ln(T) ln(N/T) Regression exp(regression)

5 96.3 0.051921 4.567468 -2.95803 -3.0470131 0.047500591
14 543.4 0.025764 6.297846 -3.658788 -3.4860799 0.030620672
38 1594.3 0.023835 7.37419 -3.736604 -3.7591921 0.023302559
59 2904.8 0.020311 7.97412 -3.896582 -3.9114186 0.020012093
80 4312.7 0.01855 8.369319 -3.987293 -4.0116967 0.018102654
108 6469.3 0.016694 8.774823 -4.092692 -4.1145894 0.016332645  

Table 27. Duane’s Theory Data Analysis for 1986 to 1991 
 

Now the results from the regression analysis follow: 

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.975768582
R Square 0.952124325
Adjusted R Square 0.940155406
Standard Error 0.099437813
Observations 6

ANOVA
df SS MS F Significance F

Regression 1 0.786578144 0.786578144 79.54973601 0.000873629
Residual 4 0.039551515 0.009887879
Total 5 0.826129659

Coefficients Standard Error t Stat P-value
Intercept -1.888061479 0.209552206 -9.009981407 0.000840246
ln(T) -0.25374049 0.028449223 -8.919065871 0.000873629

 Residuals vs fit

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

10 100 1000 10000

Operating hours

R
es

id
ua

ls

Residuals vs fit

 
Table 28. Regression Results for 1986 to 1991 

 

Now α is -0.25 for the first 6469.3 hours of operations. In the next figure, we see 

Duane’s regression and failure rate versus time plots: 
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Figure 40.   Duane’s Regression and Failure Rate versus Time for 1986 to 1991 

 

If we compare the first six years with the last six years, we can say that reliability 

growth for the last six years has increased according to the factor of -0.12, instead of the 

factor -0.25, which related to the first six years. We do not know why the reliability 

growth rate has decreased, but it has. 

4. We can use the Duane curve to predict the MTBF for the future. From the 

previous discussion on Duane’s plots on IIIB4, MTBF is K Tα⋅  where bK e= . Using the 

results for the last six years we have a is -0.1244 and b is -3.2714. So the equation for the 

curve is 3.2714 0.1244MTBF e T− −= ⋅ . This curve can be used as the prediction curve for the 

MTBF. For example, in 12,000 hours of operation after 1990, the MTBF will be 

0.011793 failures per hour of operation or 12 failures per 1,000 hours of operation. 
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Figure 41.   Prediction Plot Curve 
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V. CONCLUSION 

A. SUMMARY  
From the material presented in this thesis, we can conclude the following: 

1. There is a real need for reliability improvement in Small UAV systems.  

2. RCM (or MSG-3) is a system suitable for civil and military manned 

aviation and other industry fields in which experience is prevalent, hidden failures can be 

easily identified by personnel, and safety considerations are the primary factor. For small 

UAV systems in military applications, safety is not the primary factor. Experience has not 

reached the manned aviation levels and hidden failures for unmanned systems are very 

difficult to be observed. Therefore MSG-3 is not a suitable standard for SUAVs. 

3. FMEA may be used for almost any kind of reliability analysis that 

focuses on finding the causes of failure. A good and complete knowledge of the system is 

necessary prior to proceeding with the FMEA. FMEA is an appropriate method for 

SUAVs. This thesis has developed FMEA forms for the SUAV. 

4. FTA is another useful method of analysis based on the top-down 

approach and can be used to focus only on the weak points that need enhancing. It is 

appropriate for SUAVs, and can be used to focus on engine, control, and navigation 

subsystems that are among the most critical elements. We developed FTA diagrams for 

the SUAV in this thesis. 

5. Functional flow diagrams or block diagrams are used to give a quick 

and comprehensive view of the system design requirements illustrating series and parallel 

relationships, hierarchy and other relationships among system’s functions. Since a SUAV 

is essentially a series system it is less useful. 

6. FRACAS, a failure reporting analysis and corrective action system, 

should be implemented for a program during production, integration, test, and field 

deployment phases to allow for the collection and analyses of reliability and 

maintainability data for the hardware and software items. For a successful reliability 

improvement program, all failures should be considered. SUAVs need FRACAS system. 
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This research effort developed the framework of one aircraft, including the necessary 

forms. 

7. For SUAVs we have to use fault avoidance due to size and weight 

limitations. Redundancy cannot be easily implemented, especially due to platform cost 

and size constrains. 

8. In a series structure, like SUAVs, the component with the lowest 

reliability is the most important one for reliability improvement. Currently, there is no 

bans for estimating the reliability of a system for operational planners. 

9. We can track the overall reliability of a system for SUAVs under 

experimental development by implementing a method that records failure data. By 

analyzing the data we can calculate and predict reliability growth.  

10. Similarly we can track the reliability of subsystems of a SUAV 

system. We divide the system into: 

• Propulsion and power 

• Flight control and navigation 

• Communication 

• GCS (Human in the loop) 

• Miscellaneous 

and keep track of the reliability for each subsystem separately. The forms that we have 

developed can be used as data source for subsystem reliability separation. 

12. For a reliability improvement program, we need to: 

• Conduct an Environmental Stress Screening (ESS), 

• Calibrate and verify the instruments for the field tests or field operations, 

• Set the initial weather restrictions for UAVs flights, 

• Execute a FMEA of the system and/or perform an FTA, 

• Establish a FRACAS, 



181 

• Track of reliability improvement, 

• Complete a reliability improvement plan. 

13. Reliability costs, and benefits, are like an investment. One truly gets 

what one pays for. 

This thesis is a qualitative approach to the issue of reliability and UAVs. In order 

to obtain further benefit and value from that research effort, we must have data. For a 

specific type of UAV, we can start implementing FRACAS and collecting data. A 

database can be created easily after the implementation of FRACAS, and we can start 

analyzing and interpreting reliability improvement, if any, quite soon. 

 

B. RECOMMENDATIONS FOR FUTURE RESEARCHERS  
This thesis outlines methods of improving SUAV reliability. Methods must be 

defined for better data collections. Real data from SUAV systems must be collected in 

order to formulate reliability databases. The quantitative reliability analysis follows and 

detailed information about reliability improvement results. 

Researching many issues would be worthwhile. 

1. SUAVs are considered expendables since no pilot is onboard. As we 

increase their reliability, their cost, and their importance in the battlefield operations, we 

have to start considering their survivability. Being small in size may be is not enough to 

cope with enemy-fires. Researching survivability issues for SUAVs is another field of 

interest with many extensions and relations to design philosophy and cost. 

2. Some experts believe that difficult problems can be solved with better 

software, but software is not free. In the near network-centric future, software will 

probably be one of the most expensive parts of a UAV system. Additionally, software is a 

dynamic part of the system. It must be constantly upgraded to meet new expectations, or 

to integrate new equipment technologies. For that reason software reliability is another 

critical issue that will become more intense in the near future. The emerging question is 

how we can find the best means to maintain software reliability at acceptable levels. 
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3. Similar to the above issue, micro-technologies are quickly evolving.  

New ones are rapidly being inserted into UAV systems. In what way can our reliability 

tracking methodology cope with new subsystems?  

4. If there is a need to achieve a certain level of reliability, what would the 

economic consequences be? 

5. Generally, it would be of great interest to research the potential 

mechanisms for incorporating new equipment into a reliability improvement program. 

6. What is the best number of maintenance personnel to keep the system at 

a given level of availability?  

7. What should the spares policy be for SUAVs? 

8. What fraction of failures are due to software instead of hardware 

failures? 

Data collected using the methods developed in this thesis will provide the 

material with which to answer these essential questions. 
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APPENDIX A:  DEFINITION OF FMEA FORM TERMS 

 
1. First Part of the Analysis of Design FMEA166 

(1) Subsystem Identification: Name the subsystem or identification title of 

the FMEA. 

(2) Design Responsibility: Name the system design team and for (2A) 

name the head of the system design team. 

(3) Involvement of Others: Name other people or activities within the 

company that affect the design of the system. 

(4) Supplier Involvement: Name other people, suppliers and/or outside 

organizations that affect the design of the system. 

(5) Model/product: Name the model and/or the product using the system. 

(6) Engineering Release Date: This is the product release date. 

(7) Prepared by: The name of the FMEA design engineer. 

(8) FMEA Date: Record the date of the FMEA initiation. 

(9) FMEA Date, revision: Record the date of the latest revision. 

(10) Part Name: Identify the part name or number. 

2. The Second Part of the Analysis of Design FMEA167 

(11) Design Function: This is the objective function of the design. The 

function should be described in specific terms. Active verbs defining functions and 

appropriate nouns should be used.  

(12) Potential Failure Mode: The defect refers to the loss of a design 

function or a specific failure. “For each design function identified in Item 11 the 

corresponding failure of the function must be listed. There can be more than one failure 

from one function. ” To identify the failure mode ask the question: “How could this 

                                                 
166 The material from this section is taken (in some places verbatim) from: Stamatis, pages 130-132. 
167 Ibid, pages 132-149. 
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design fail?” or “Can the design break, wear, bind and so on?” Another way to identify a 

failure mode is through a FTA. In a FTA the top level is the loss of the part function and 

the lower levels are the corresponding failure modes. 

(13) Potential Effect(s) of failure: This is the ramification of the failure on 

the design. The questions usually asked are “What does the user experience as a result of 

that failure?” or “What are the consequences for the design?” To identify the potential 

effects, documents like historical data, warranty documents, field-service data, reliability 

data and others may be reviewed. If safety is an issue, then an appropriate notation should 

be made. 

(14) Critical Characteristics: Examples of critical items may be 

dimensions, specifications, tests, processes etc. These characteristics affect safety and/or 

compliance with rules and regulations and are necessary for special actions or controls. 

An item is indicated critical when its severity is rated 9 to 10 with occurrence and 

detection is higher than 3. 

(15) Severity of Effect: Indicates the seriousness of a potential failure. For 

critical effects severity is high while for minor effects severity is very low. Usually there 

is a rating table, which is used for evaluation purposes. This table is made in such a way 

that all designing issues have been taken into consideration. The severity rating should be 

based on the worst effect of the failure mode. An example of the severity guideline table 

for design FMEA is in Table 29. 
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Effect Rank Criteria 
None 1 No effect 
Very slight 2 User not annoyed. Very slight effect on the product performance. 

Non-essential fault noticed occasionally 
Slight 3 User slightly annoyed. Slight effect on the product performance. 

Non-essential fault noticed frequently. 
Minor 4 User’s annoyance is minor. Minor effect on the product 

performance. Non-essential faults almost always noticed. Fault 
does not require repair. 

Moderate 5 User has some dissatisfaction. Moderate effect on the product 
performance. Fault requires repair. 

Significant 6 User is inconvenienced. Degradation on product’s performance 
but safe and operable. Non-essential parts inoperable. 

Major 7 User is dissatisfied. Major degradation on product’s performance 
but safe and operable. Some subsystems are inoperable. 

Extreme 8 User is severely dissatisfied. Product is safe but inoperable. 
System is inoperable. 

Serious 9 Safe operation and compliance with regulations are in jeopardy. 
Hazardous 10 Unsafe for operation, non-compliance with regulations, 

completely unsatisfactory. 
 

Table 29. Example of Severity Guideline Table for Design FMEA (After Stamatis, page 
138) 
 

(16) Potential Cause of Failure: This identifies the cause of a failure mode. 

For a failure mode there may be a single cause or numerous causes, which in that case are 

symptoms, with one root cause. A good understanding of the system’s functional analysis 

is needed at that stage. Trying to find the real cause can identify the root cause. Asking 

“Why?” five times is the rule of thumb for finding the cause of a failure mode. It is 

essential to identify all potential failures while performing the FMEA. There is not 

always a linear or “one-to-one relationship” between the cause and failure mode. Listing 

as many causes as possible makes FMEA easier and less error prone. If the severity of a 

failure is rated 8 to 10, then an effort should be made to identify as many root causes as 

possible. 

(17) Occurrence: This is the value that corresponds to the estimated 

frequency of failures for a given cause over the life of the design. To identify the 

frequency for each cause, we need reliability mathematics, expected frequencies or the 
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cumulative number of component failures per 100 or 1000 components (CF/100 or 

CF/1000). If expected frequencies and/or the cumulative number of failures cannot be 

estimated, then alternative systems or components could be examined for similar data that 

could be used as a surrogate. Usually, the assumption of a single-point-failure is used in 

design FMEA. It is a component failure, which could cause the system to fail and is not 

balanced by an alternative method. So occurrence referred to a single-cause-failure. A 

guideline for occurrence is shown in Table 30. 

 

Occurrence Rank Criteria CF/1000 
Almost impossible 1 Failure unlikely. Historical data indicate 

no failures 
<0.00058 

Indifferent 2 Rare number of failures likely       0.0068 
Very slight 3 Very few failures likely       0.0063 
Slight 4 Few failures likely       0.46 
Low 5 Occasional number of failures likely       2.7 
Medium 6 Medium number of failures likely     12.4 
Moderately high 7 Moderately high number of failures 

likely 
    46 

High 8 High number of failures likely   134 
Very high 9 Very high number of failures likely   316 
Almost certain 10 Failure almost certain >316 

 
Table 30. Example of Occurrence Guideline Table for Design FMEA (After Stamatis, 

page 142) 
 

(18) Detection Method: This is a procedure, test, design or analysis used to 

detect a failure in a design or part. It can be very simple or very difficult, to identify 

problems before they reach the end user. If there is no method, then “None identified at 

this time” is the answer. Two of the leading questions are “How can this failure be 

discovered?” and “In what way can this failure be recognized?” A checklist may be 

helpful. Nevertheless, some of the most effective ways to detect a failure are simulation 

techniques, mathematical modeling, prototype testing, specific design tolerance studies 

and design and material review. The design review is an important way to revisit the 

suitability of the system or design. A design review can be quantitative or qualitative, 

using a systematic methodology of questioning and design. 
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(19) Detection: Is the “likelihood that the proposed design controls will 

detect” the root cause of a failure mode before it reaches the end user. The detection 

rating estimates the ability of each of the controls in (18) to detect failures before it 

reaches the customer. A typical detection guideline is shown in Table 31. 

 

Effect Rank Criteria 
Almost 
certain 

1 Has the highest effectiveness 

Very high 2 Has very high effectiveness 
High 3 Has high effectiveness 
Moderately 
high 

4 Has moderately high effectiveness. 

Medium 5 Has medium effectiveness 
Low 6 Has low effectiveness 
Slight 7 Has very low effectiveness. 
Very slight 8 Has the lowest effectiveness 
Indifferent 9 It is unproven, or unreliable, effectiveness unknown 
Almost 
impossible 

10 There is no design technique available or known 

 
Table 31. Example of Detection Guideline Table for Design FMEA (After Stamatis, page 

147) 

 

(20) Risk Priority Number (RPN): This is the product of severity, 

occurrence, and detection. RPN is just a number that represents the priority of the failure. 

Reducing RPN is the FMEA’s goal, and this is the result after the reduction in severity 

and/or occurrence and/or detection. So, changing the design, one can reduce the severity 

rating. By improving the requirements and engineering specifications while focusing on 

“preventing causes or reducing their frequencies,” one can reduce the occurrence rating. 

Adding detection equipment and tools or “improving the design evaluation technique” 

can reduce the detection rating. 

(21) Recommended Actions: These may be specific actions or suggestions 

for further study. Recommended actions intend to reduce the RPN for the different failure 

modes. Prioritization of failure modes according to their RPN, severity and occurrence, is 

needed while conducting a FMEA. 
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(22) Responsible Area or Person and Completion Date: Name the 

responsible person/area and the completion date for the recommended action. 

(23) Action Taken: This is about the follow-up actions. 

(24) Revised RPN: This is the reevaluation of RPN after the corrective 

actions have been implemented. If the revised RPN is less than the original then that 

indicates an improvement. 

3. Third Part of the Analysis of Design FMEA168 
(25) Approval signatures: Name the authority to conduct the FMEA. 

(26) Concurrence signatures: Names there responsible for carrying out the 

FMEA. 

                                                 
168 Stamatis, page 149. 
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APPENDIX B:  THE MRB PROCESS 

 

The Maintenance Review Process (MRB process) “is broadly defined as all of the 

activities necessary to produce and maintain a Maintenance Review Board Report 

(MRBR).” The process involves three major objectives, which are to ensure that: 

1. Scheduled maintenance instructions (tasks and intervals) which are 

developed for a specific aircraft, contribute to the continuing airworthiness and 

environmental requirements of the Regulatory Authorities and the Standards and 

Recommended Practices (SARPs) as published by the International Civil Aviation 

Organization (ICAO). 

2. The tasks are realistic and capable of being performed. 

3. The developed scheduled maintenance instructions may be performed 

with a minimum of maintenance expense.169 

“MRBRs are developed as a joint exercise involving the air operators, the type of 

certificate applicant,” ATA and other Regulatory Authorities. The MRB process  

consists of a number of specialist working groups who use an 
analytical logic plan to develop and propose maintenance/inspection tasks 
for a specific aircraft type. The proposed tasks are presented to an Industry 
Steering Committee (ISC) who, after considering the working group 
proposals, prepares a proposal for the MRBR. 

The MRB chairperson reviews the proposed MRBR, which is then published as 

the MRBR.170  

                                                 
169 Transport Canada Civil Aviation (TCCA), Maintenance Instruction Development Process, TP 

13850, Part B, “The Maintenance Review Board (MRB) Process(TP 13850), Chapter 1. General,” last 
updated: April 19, 2003, Internet, February 2004. Available at: http://www.tc.gc.ca/civilaviation 
/maintenance/aarpd/tp13850/partB.htm 

170 TCCA, Chapter 2. 
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APPENDIX C:  FAILURES 

 

1. Functions171 
A function statement should consist of a verb, an object and a desired standard of 

performance. For example: A SUAV platform flies up to 4,000 feet at a speed of at least 

on 55 knots sustained. The verb is “fly” while the object is “a SUAV platform” and the 

standard is “up to 4,000 feet at a sustained speed of at least 55 knots.” 

2. Performance Standards172 
In our example: One process that degrades the SUAV platform, in other words 

one failure mode for the SUAV, is engine failure. Engine failure happens due to many 

reasons. The question is how much an engine failure can impair the ability of the UAV to 

fly at the desired altitude on the designated sustained speed.  

In order to avoid degradation, the SUAV must be able to perform better than the 

minimum standard of performance desired by the user. What the asset is able to deliver is 

known as its “initial capability,” say 4,500 feet on 60 knots sustained speed. This leads 

one to define performance as: 

• Desired performance, which is what the user wants the asset to do (4,000 

feet on 55 knots sustained speed in our case). 

• Built-in capacity, which is what the asset really is (4,500 feet on 60 knots 

sustained speed in our case). 

3. Different Types of Functions173 
Every physical asset usually has more than one function. If the objective of 

maintenance is to ensure that the asset can continue to fulfill these functions, then they 

must all be identified together with their current standards of performance. 

Functions are divided in two main categories: primary and secondary functions. 
                                                 

171 Moubray, John, an excerpt of the first chapter of the book “Reliability-centered Maintenance,” 
Plant Maintenance Resource Center, “Introduction to Reliability-centered Maintenance,” Revised 
December 3, 2002, Internet, May 2004, Available at: http://www.plant-maintenance.com/RCM-intro.shtml 

172 Moubray, “Introduction.” 
173 The material from this section is taken (in some places verbatim) from: Moubray, “Introduction.” 



192 

a. Primary functions are fairly easy to recognize and most industrial assets 

are based on their primary functions. For example, the primary function of a “printer” is 

to print documents, and of a “crusher” is to crush something, etc. In the SUAV example 

the primary function is to provide lift and thrust so as the platform flies up to 4,000 feet at 

a sustained speed of at least 55 knots. 

b. In addition to their primary functions, most assets are expected to fulfill 

one or more additional functions, which are the secondary functions. For example, the 

primary function of the SUAV platform in the example, is to provide thrust and lift so as 

to fly up to 4,000 feet on 55 knots sustained speed at least. A secondary function could be 

to use an auto-recovery system. Secondary functions could include environmental 

expectations, safety, control, containment, and comforts aspects, appearance, protection, 

economy, efficiency and other extra functions. 

4. Functional Failure174 
If, for any reason, the asset is unable to do what the user wants, the user will 

consider it to have failed. “Failure is defined as the inability of any asset to do what its 

users want it to do.” This definition treats the concept of failure as if it applies to an asset 

as a whole.  

However, each asset has more than one function, and each function often has 

more than one desired standard of performance. It is possible for the asset to fail for each 

function, so the asset can fail in different states. Therefore, it is required that failure can 

be defined more accurately in terms of loss of specific functions rather than the failure of 

an asset as a whole. 

According to British Standard (BS) 4778 failure is defined as “The termination of 

an item’s ability to perform a required function.” 

5. Performance Standards and Failures175 
The limit between satisfactory performance and failure is specified by a 

performance standard. Failure can be defined by defining a functional failure as follows: 

                                                 
174 The material from this section is taken (in some places verbatim) from: Moubray, “Introduction.” 
175 The material from this section is taken (in some places verbatim) from: Hoyland, pages 11-12. 
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A functional failure is defined as the inability of any “asset to fulfill a function to a 

standard of performance, which is acceptable to the user.” 176 

A failure could have different aspects of functional failure: 

• Partial and total failure 

• Upper and lower limits 

• Gauges and indicators 

• The operating context 

Failures may be classified in many different ways: 

a. Sudden versus gradual failures 

b. Hidden versus evident failures 

c. According to effects of severity 

(1). Critical failure: A failure that is sudden and causes termination 

of one or more primary functions. 

(2). Degraded failure: A failure that is gradual and/or partial. 

(3). Incipient failure: A deficiency in the condition of an item so 

that a critical or degraded failure can be expected unless corrective action is not taken.  

d. Another classification according to the effects of severity by US Mil-Std 

882, “System Safety Program Requirements”: 

(1) Catastrophic, which results in loss of life and/or loss of system. 

(2) Critical, which results in severe injury and/or illness and/or 

severe system damage. 

(3) Marginal, which results in minor injury and/or illness and/or 

minor system damage. 

(4) Negligible with less than minor results.  

                                                 
176 The material from this part of section is taken (in some places verbatim) from: Aladon Ltd, 

“Introduction.” 



194 

e Another classification according to the effects of severity: 

(1) Primary failure due to aging. 

(2) Secondary failure due to excessive stresses. 

(3) Command fault or transient failures due to improper control 

signal or noise. 

6. Failure Modes177 
“Once each functional failure has been identified, the next step is to try to identify 

all the events that are reasonably likely to cause each failed state. These events are known 

as failure modes.” Failure modes are those that have occurred on the same or similar 

equipment operating with the same parameters and conditions, failures that can be 

prevented by existing maintenance policies, and failures that have not yet happened but 

they can be considered as likely to happen.178 

Failure mode is “the effect by which a failure is observed on the failed item.” 

Technical items are designed to perform one or more functions. So a failure mode can be 

defined as nonperformance of one of these functions. Failure modes may generally be 

subdivided as “demanded change of state is not achieved” and “change of conditions.” 

For example, an automatic valve may show one of the following failure modes: 

a. Fail to open on command 

b. Fail to close on command 

c. Leakage in closed position 

The first two failure modes are “demanded change of state is not achieved” while 

the third one is “change of condition.” 

7. Failure Effects179 

                                                 
177 The material from this section is taken (in some places verbatim) from: Hoyland, page 10. 
178 The material from this part of section is taken (in some places verbatim) from: Aladon Ltd, 

“Introduction,” page 5. 
179 The material from this section is taken (in some places verbatim) from: Aladon Ltd, 

“Introduction,” page 5. 



195 

The fourth of the seven questions in the RCM process, as previously mentioned in 

IIA2b of this thesis, is listing “What happens when each failure occurs?” These are 

known as “failure effects.” 

Failure effects describe what happens when a failure occurs. While describing the 

effects of a failure, the following should be recorded: 

a. What is the evidence that the failure has happened? 

b. In what way does it pose a threat to safety or the environment? 

c. In what way does it affect production or operation? 

d. What physical damage is caused by the failure? 

e. What must be done to repair the failure? 

8. Failure Consequences180 
Failures affect output, but other factors such as product quality, customer service, 

safety or environment also influence output. The nature and severity of these effects 

govern the consequences of the failure. The failure effects tell us what happens, and when 

a failure occurs. The consequences describe how and how much it matters. For example, 

if we can reduce the occurrence (frequency) and/or severity of failure effects, then we can 

reduce the consequences. 

Therefore, if a failure matters very much, efforts will be made to mitigate or 

eliminate the consequences. On the contrary, if the failure is of minor consequence, no 

proactive action may be needed. 

A proactive task is worth doing if it reduces the consequences of the failure mode 

and justifies the direct and indirect costs of doing the task. 

Failure consequences could be classified as: 

a. Environmental and safety consequences, when it is not able to fulfill the 

local and/or national and/or international environmental standards, or if the failure causes 

injury and/or death. 

                                                 
180 The material from this section is taken (in some places verbatim) from: Aladon Ltd, 

“Introduction,” page 5. 
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b. Operational, if the failure affects the operation, production output, 

quality, cost or customer satisfaction. 

c. Non-operational, when only maintenance and/or repair is involved, 

without affecting the environmental, safety or production. 

d. Hidden, when failures have no direct impact, but they expose the 

organization to multiple failures with serious and often catastrophic consequences.  
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APPENDIX D:  RELIABILITY 

 

1. Introduction to Reliability181 
Reliability is a concept that has dominated systems design, performance and 

operation for the last 60 years. It appeared after WWI, when it was used to compare 

operational safety of one, two, three, and four-engine airplanes. At that time reliability 

was measured as the number of accidents per flight hour. 

During WWII, a group of scientists, under Wernher von Braun in Germany, 

developed the V-I missile. After the war it was reported that the first ten V-I missiles 

were all ridiculous failures. All of the first missiles either exploded on the launching rail, 

or landed earlier than planned, in the English Channel. It was the mathematician Robert 

Lusser who analyzed the missile system and derived the “product probability law of 

series components.” The theorem states that “a system is functioning only if all the 

components are functioning and is valid under special assumptions.” It simply says that 

the reliability of the system is equal to the product of the system’s individual components 

reliabilities. If the system has many components, then its reliability is rather low, even 

though the individual components have high reliabilities. 

In order to avoid low system reliability, engineers in the USA, at that time tried to 

improve the individual system’s components. They used “better” materials and “better” 

designs for the products. The result was higher system reliability but broad and further 

analysis of the problem was not performed. 

By the end of 1950s and early 1960s, interest in the USA focused on production 

of the intercontinental ballistic missile and space research like the Mercury and Gemini 

programs. In the race to put a man on the moon, a reliable program was very important. 

The first association for engineers working with reliability issues was established. IEEE-

Transactions on Reliability was the first journal published on the subject in 1963. After 

that, a number of textbooks were published and in the 1970s many countries from Europe 

                                                 
181 The material from this section is taken (in some places verbatim) from: Hoyland, pages 1-2. 



198 

and Asia began dealing with the same issues. Soon it became clear that a low reliability 

level cannot be compensated by extensive maintenance. 

2. What is Reliability? 
“Until the 1960s, reliability was defined as the probability that an item will 

perform a required function under stated conditions for a stated period of time.” 

According to the International Standard Organization (ISO) 8402 and British Standard 

(BS) 4778, “reliability is the ability of an item to perform a required function, under 

given environmental and operational conditions and for a stated period of time.” The term 

“item” is used to denote any component, subsystem or an entity system. A “required 

function” may be a single function or a combination of functions necessary to provide a 

certain service.182 

For a defense acquisition system, reliability is a measure of effectiveness.183 It is 

one of the “ilities” that a system needs to comply with, in order to be operationally 

suitable. 

We can keep track of reliability by measuring or calculating some measures of 

performance such as: 

a. The probability of completing a mission  

b. The number of hours without a critical failure under specified mission 

conditions or mean time between critical failures (MTBCF) 

c. The probability of success as the number of successes divided by the 

total number of attempts 

d. The mean time to failure (MTTF) 

e. The failure rate (failures per unit time) 

f. The probability that the item does not fail in a time interval. 

3. System Approach  

A system is a group of elements, parts, or components that work together for a 

specified purpose. A failure of the system is related at least to one of its parts or elements 
                                                 

182Hoyland, page 3. 
183 Hoivik, slide 6. 
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or components failure. A part starts at its working state and for various reasons changes 

to a failed state after a certain time. The time to failure is considered a random variable 

that we can model by a failure-distribution function.184 

Failure occurs due to a complex set of interactions between the material properties 

and/or physical properties of the part and/or stresses that act on the part. The failure 

process is complex and is different for different types of parts or elements or 

components.185 

The strength or endurance of a part may be significantly and unpredictably varied 

because of manufacturing variability. So that strength, say “X”, must be modeled as a 

random variable. When the system is being used it is subjected to a stress, say “Y”. If 

“X” is less than “Y”, then the part fails immediately because its strength is not enough to 

withstand the magnitude of stress “Y”. If “Y” is less than “X”, then the strength of that 

part is enough to withstand the stress and the part is functional. 

Even though the failure mechanisms vary, they are basically divided into two 

categories, the overstress and the wear-out. The overstress failures are those due to 

fracture, yielding, buckling, large elastic deformation, electrical overstress, and thermal 

breakdown. Wear-out failures are those due to wear, corrosion, metal migration, inter-

diffusion, fatigue-crack propagation, diffusion, radiation, fatigue-crack initiation and 

creep.186 

For multi-component systems like a SUAV the number of parts may be very large 

and a multilevel decomposition of such a system is necessary. 

4. Reliability Modeling 

a. System Failures187 
System failures for a multi-component system can be modeled in several 

ways. A system failure is due to the failure of at least one of its components. So analysis 

                                                 
184 Hoyland, page 18. 
185 Pecht, page 93. 
186 Ibid, page 96. 
187 The material from this section is taken (in some places verbatim) from: Blischke, pages 204-205. 
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of failures at the component level is the initial point of a failure system analysis. “Henley 

and Kumamoto (1981) propose the following classification of failures: 

(1) Primary failure 

(2) Secondary failure 

(3) Command fault”  

Primary or “natural” is when the component fails due to natural causes 

like aging. In that case, replacement of the aging component is the remedy.  

Secondary or “induced” is the failure of a component due to excessive 

stress resulting from the primary failure of some other component(s) and/or 

environmental factors and/or user actions.  

“Command fault occurs when a component is in not working state because 

of improper control signals or noise.” This can be due to a user’s faulty operation or a 

logic controller’s faulty operation signal. 

b. Independent vs Dependent Failures188  
The failure times of components are often influenced by environmental 

conditions. As the environment becomes “harsher, the time it takes to reach a failure 

decreases.” Thus if the system’s components share the same environment their failure 

times are statistically dependent. If the dependence is weak, it can be ignored and failure 

times can be treated as statistically independent. In that way failure times can be modeled 

separately using univariate failure-distribution functions. But in case of significant 

dependence, multivariate failure distributions must be used and modeling becomes much 

more complicated. 

c. Black-Box Modeling189 
A system failure is due to the failure of one or more of its components. 

“The number of failed components that must be restored to their working state is usually 

small relative to the total number” of the system’s components. Replacing or repairing 

the defective component(s) restores the system to its operational state. If the restoration 

                                                 
188 The material from this section is taken (in some places verbatim) from: Blischke, page 205. 
189 Ibid. 
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time is very small relative to the mean time between failures, then it can be ignored, and 

we can model the failure system as a function reflecting the effect of age. In other words, 

the model function can be viewed as the failure rate of the system through time.  

After overhauls or major repairs or design alterations the failure rate of the 

system can be significantly reduced. Usually, it becomes smaller than the failure rate 

before.  

Therefore, in black-box modeling we can collect data through the life 

cycle time of a system and find a function that is the failure rate through time. A lot of 

data is needed in order for the function to be precisely estimated, so black-box modeling 

is not recommended for the design and development phase of a system because of the 

changes that continuously alter the failure rate.  

d. White-Box Modeling190 
“In a white-box modeling, system failure is modeled in terms of the 

failures of the components of the system.” We can reach system failures from component 

failures using the bottom-up (or forward) approach or the top-down (or backwards) 

approach. In the forward approach, we start with part-level failures, and then we proceed 

to the system level to evaluate the consequences of such failures on the system’s 

performance. FMEA uses this approach. In the backward approach, we start at the system 

level failures, and then we proceed downward to the part level to relate pure-system 

performance to part-level failures. FTA uses this approach. 

“The linking of the system performance to failures at the part level can be 

done either qualitatively or quantitatively.” In the qualitative case, we are interested in the 

causal relations between failures and system performance. In the quantitative case, we 

can use many measures of system effectiveness, like reliability, in terms of component 

reliabilities.  

For an example assuming independent failures, if a machine has a failure 

rate of 1 failure every 100 days then the probability of having a failure on any day is 

1/100. If a second redundant machine has the same failure rate, then a system that 

                                                 
190 Blischke, pages 206-207. 
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consists of both those machines has a probability that both machines fail on the same day 

as 1/100 squared or 1/10,000. 

e. Reliability Measures191  
In order to understand the reliability measures, we must determine the 

“time-to-failure” as a basic step. Time-to-failure of a system or component or part or unit 

or element (system) is the time elapsing from when the system is put into operation until 

the first failure. Let t=0, the operation starting time. The time to failure is subject to many 

variables. Consequently, we can represent time-to-failure as a random variable T. We can 

describe the condition or state of the system at time t by the condition random variable 

X(t) where 
1 if the system is functioning at           

( )
0 if the system is in failed condition at 

t
X t

t
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

The graphical representation of X(t) versus time t is shown in Figure 43. 
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Figure 42.   Condition Variable Versus Time.(From Hoyland, page 18) 
 

The time-to-failure may not always be measured in time but can also be 

measured in numbers of repetitions of operation, or distance of operation, or number of 

rotations of a bearing, etc. We can assume that the time-to-failure T is continuously 

distributed with a probability density f(t) and distribution function : 

                                                 
191 The material from this section is taken (in some places verbatim) from: Hoyland, pages 18-25. 
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1

0

( ) ( ) ( )    for 0F t P T t f u du t= ≤ = >∫ . 

The probability density f(t) is defined as : 

0 0

( ) ( ) ( )( ) ( ) lim lim
t t

d F t t F t P t T t tf t F t
dt t t∆ → ∆ →

+ ∆ − < ≤ + ∆
= = =

∆ ∆
. 

If ∆t is small then: 

( ) ( )f t t P t T t t⋅∆ = < ≤ + ∆ . 

A typical distribution function F(t) and the corresponding density function 

f(t) are shown in Figure 44. 

 

0.5

1.0

1 2 3 4

F(t)

f(t)

Time t

0.0

0  

 

Figure 43.   Distribution and Probability Density Functions (From Hoyland, page 18) 

 

There are three important measures of reliability: 

(1) The reliability or survivor function R(t) 

(2) The failure rate z(t) 

(3) The mean time to failure (MTTF) 
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(1).  Reliability or Survivor Function R(t). The reliability function 

of a system is defined as: 

( ) 1 ( ) ( ) for 0R t F t P T t t= − = > > .                                             (A) 

So R(t) is the probability that the system has operated without 

failure in the time interval (0,t]. Equivalently we can say that R(t) is the probability that 

the unit survives in the time interval (0,t]. The reliability function R(t) is also called the 

“survivor function”. A typical reliability function that corresponds to the distribution 

function of Figure 43 can be seen in Figure 44. 
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Figure 44.   Typical Distribution and Reliability Function 
 

(2).  Failure-rate or Hazard Function.  The probability that a system 

will fail in the time interval (t, t+∆t], given that it is in operating condition at time t, is 

( ) ( ) ( )( | )
( ) ( )

P t T t t F t t F tP t T t t T t
P T t R t
< ≤ + ∆ + ∆ −

< ≤ + ∆ > = =
>

. 

Failure-rate z(t) is the limit as 0t∆ →  of probability that a system will fail in the interval 

(t, t+∆t], given that it is in operating condition at time t, per unit length of time. If this 

unit length of time approaches 0, then we have the following expression for the failure 

rate:
0 0

( | ) ( ) ( ) 1( ) lim lim
( )t t

P t T t t T t F t t F tz t
t t R t∆ → ∆ →

< ≤ + ∆ > + ∆ −
= =

∆ ∆
⇒

( )( )
( )

f tz t
R t

=  (B)                              

because it is known that 
0

( ) ( )( ) lim
t

F t t F tf t
t∆ →

+ ∆ −
=

∆
 or equivalently    
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( ) ( )df t F t
dt

= .                                                                            (C) 

From the above it is implied that when ∆t is small: 

( | ) ( )P t T t t T t z t t< ≤ + ∆ > ≈ ⋅∆ . So the conditional probability is approximately equal to 

the failure rate z(t) at time t, times the length of the interval ∆t. 

From (A) and (C) we get: ( ) (1 ( )) '( )df t R t R t
dt

= − = − . 

So (B) becomes: 

1

0

'( )( ) ln ( )  since R(0)=1, ( ) ln ( )
( )

R t dz t R t z t dt R t
R t dt
−

= = − ⇒ = −∫ , so 

0

( )

( )

t

z u du

R t e
−∫

= . Finally we have: 

0 0

( ) ( )

( ) '( ) ( ) ( ) ( )

t t

z u du z u dudf t R t e f t z t e
dt

− −∫ ∫
= − = − ⇔ = , t>0. 

So the failure-rate or hazard function is very useful for modeling, 

because everything else can be derived from that. 

In the following table the relationships between the distribution 

function F(t), the density function f(t), the reliability or survivor function R(t), and the 

failure-rate or hazard function z(t) are presented.192  

                                                 
192 Hoyland, page 22. 
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 F(t) f(t) R(t) z(t) 

F(t)=  
0

( )
t

f u du∫  1 ( )R t−  
0

( )

1

t

z u du

e
−∫

−  

f(t)= ( )d F t
dt

  ( )d R t
dt

−  
0

( )

( )

t

z u du

z t e
−∫

 

R(t)= 1 ( )F t−  ( )
t

f u du
∞

∫   
0

( )
t

z u du

e
−∫

 

z(t)= 
( ) /

1 ( )
dF t dt

F t−
 

( )

( )
t

f t

f u du
∞

∫
 

ln ( )d R t
dt

−   

 
Table 32. Relationships Between Functions F(t), R(t), f(t), z(t) (From Hoyland, page 22) 

 

For the most mechanical and electronic systems the failure rate 

over the life of the system has three discrete periods, characterized by the well known 

“Bathtub Curve,” shown in Figure 45.193 
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Figure 45.   The Bathtub Curve 

                                                 
193 RAC Toolkit, page 38. 
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Infant mortality is the first phase of the bathtub curve where the 

failure rate is high because of early manufacturing tolerances and inadequate 

manufacturing skills. The failure rate is decreasing through time because of the maturity 

of the design and the manufacturing process. Useful life is the second phase, which is 

characterized as a relative constant failure rate. Wear-out is the last phase where 

components start to deteriorate to such a degree that they have reached the end of their 

useful life. This can be modeled either piece-wise or as the sum of three failure-rate or 

hazard functions, one for each phase. Then 0
( )

( )
t
z u du

R t e
−∫=  and 

1

2

3

( ),  
( ) ( ),  

( ),  

z t t a
z t z t a t b

z t t b

<⎧
⎪= < <⎨
⎪ >⎩

 ,or 
3

1
( ) ( )i

i
z t z t

=

= ∑ . 

These concepts are illustrated in Figure 45. 

(3).  Mean-Time-to-Failure (MTTF).  The MTTF of a system is the 

expected value of T, which is given by the density function f(t) and is defined as: 

0

( ) ( )MTTF E T tf t dt
∞

= = ∫ .                                                                                           (D) 

If the time needed to repair or replace a failed system is very short 

relative to MTTF, then the mean time between failures (MTBF) is represented by MTTF. 

If the repair time is comparable to MTTF, then the MTBF also includes the mean time to 

repair (MTTR). These concepts are illustrated in Figure 46. 
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Figure 46.   MTTF, MTTR, MTBF. (From Hoyland, page 25) 

 

Because f(t)=-R’(t) (D) becomes : 

0
0 0 0

( )'( ) [ ( )] ( ) ,  by partial integrationdR tMTTF tR t dt t dt tR t R t dt
dt

∞ ∞ ∞
∞= − = − = − +∫ ∫ ∫ , and if 

MTTF < ∞  which is what is happening in reality, then 0[ ( )] 0tR t ∞− =  and so 

0

( )MTTF R t dt
∞

= ∫  also.                                                                                              (E) 

f. Structure Functions  
The system and each component may only be in one of two states, 

operable or failed. Let xi indicate the state of component i, for 1 i n≤ ≤  , and 

1 if component  works
0 if component  failedi

i
ix ⎧= ⎨

⎩
 where 1 2( , ,... )nx x x=x  is the component state vector. 

The state of the system is also a binary random variable, which is 

determined by the states of its components. 

{1 if system works
0 if system failed( ) system stateΦ =Φ = =x , and 

1 2( ) ( , ,... )nx x xΦ =Φ =Φx  is the structure function of the system.194 
                                                 

194 Kuo, W., and Zuo, J. M., Optimal Reliability Modeling, John Wiley & Sons, 2003, page 87. 
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A series system with n components, works if and only if each of its n 

components work, and fails whenever any of its components fails. The structure function 

for a series system is  

1 2
1

( ) ...
n

n i
i

xx x x
=

⋅ ⋅ =Φ =Φ = ⋅ ∏x 195. 

It cannot usually be predicted with certainty whether or not a given 

component will be in a failed state after t time units. So we interpret the state variables of 

the n components at time t as random variables, and we denote them 

as 1 2( ), ( ), ( )... nt t tX X X . 

Now we focus on the following probabilities: 

( ( ) 1) ( ) for 1,2,...iiP t p t i nX = = = , which is the component’s i reliability, 

and ( ( )) 1) ( )( sP t p tX = =Φ , which is the system’s reliability. 

For the state variables ( )i tX  for 1,2,...i n= , we have 

( ) [ ( )] 0 ( ( ) 0) 1 ( ( ) 1),  for 1,2,...i i iip t t P t P t i nX X X= Ε = ⋅ = + ⋅ = =  

For the system reliability at time t, we have: 

( ) [ ( ))](Xsp t t= Ε Φ  where 1 2( ) ( ( ), ( ), ( ))X ... nt t t tX X X= , 

Assuming that 1 2( ), ( ), ( )... nt t tX X X  are independent, the system 

reliability is 
1

( ) ( )
n

i
i

sp t p t
=

=∏  or 1 2( ) ( ) ( ) ... ( )nR t r t r t r t= ⋅ ⋅ ⋅  
1

( )
n

i
i

r t
=

=∏ , where R(t) is the 

system’s reliability and ri(t) is the ith component’s reliability for a series system.196 

                                                 
195 Hoyland, page 99. 
196 Ibid, page 127-129. 
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g. Series System Reliability Function and MTTF197 

From Table 32 we find the failure rate function for the system is 

1 2( ) ln( ( )) ln( ( ) ( ) ( ))n
d dz t R t r t r t r t
dt dt

= − = − + + ⋅⋅⋅+  

which is 1 2( ) ( ) ( ) ( )nz t z t z t z t= + + ⋅⋅⋅+ . 

So the failure rate for a series system equals the sum of the failure rates of 

all its components. As a result, the failure rate of the system is greater than the failure rate 

of any of its components, and the whole system is driven by the worst component, which 

is the one with the larger failure rate or the least reliability. 

From the above, we can conclude that if we want to optimize a series 

system reliability, we must reduce the number of the components, and if that is not 

possible, then we must enhance the reliability for the worst component. 

For example, and to simplify, we may assume that each of the components 

in our system has an exponential lifetime distribution. Then the system also has an 

exponential lifetime distribution. If ( )i iz t λ=  is the failure rate for component i, then the 

failure rate for the system is 
1

( )
n

s i
i

Z t λ λ
=

= =∑ , and the reliability function of the system 

becomes: ( ) s tR t e λ− ⋅= . Then (E) becomes: 
0

1/s t
s sMTTF e dtλ λ

∞
− ⋅= =∫ . 

h. Quantitative Measures of Availability 
The quantitative measures of availability are listed in the following 

table.198 

                                                 
197 Kuo, pages 107-108. 
198 RAC Toolkit, page 12. 
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Measure Equation Reliability & Maintainability 
considerations 

Inherent 
Availability 

MTBF
MTBF+MTTRiA =  

   Assures operation under declared 
conditions in an ideal customer service 
environment. 
   It is usually not a field-measured 
requirement. 

Achieved 
Availability 

active

MTBM
MTBM+MTTRaA =

   Similar to Ai 

Operational 
Availability 

MTBM
MTBM+MDToA =  

   Extends Ai to include delays 
   Reflects the real world operating 
environment 
   Not specified as a manufacturer-
controllable requirement  

MTBF = Mean Time between Failure 
MTTR = Mean Time to Repair 
MTBM = Mean Time between Maintenance 
MTTRactive = Mean Time to Repair 
MDT = Mean Downtime 
(corrective maintenance only) 
 

 
Table 33. The Quantitative Measures of Availability (After RAC Toolkit, page 12) 
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APPENDIX E:  LIST OF ACRONYMS AND DEFINITIONS 

 

AAV - Advanced Air Vehicle 

ACTD - Advance Concept Technology Demonstrations 

AEA - American Engineering Association  

APU - Auxiliary Power Units  

ATA - Air Transport Association  

BDA - Battle Damage Assessment 

BS - British Standard  

CAA/UK - Civil Aviation Administration from the UK  

CHAE - Conventional High-Altitude Endurance 

CP – Counter-proliferation 

DARPA - Defence Advanced Research Projects Agency 

DS - Discard  

EO - Electro-Optical 

EPRI - Electric Power Research Institute  

ERAST - Environmental Research Aircraft and Sensor Technology 

FAA - Federal Aviation Authority 

FMA - Failure Mode Analysis  

FMCA - Failure Mode and Critical Analysis  

FMEA - Failure Mode and Effect Analysis  

FMECA - Failure Mode Effect and Criticality Analysis 

FRACAS – Failure Reporting And Corrective Action System 
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FTA - Fault Tree Analysis  

GCS – Ground Control Station 

GPS - Global Positioning System 

HAE - High-Altitude Endurance 

ICAO - International Civil Aviation Organization  

IN/FC - Inspection/Functional Check  

INS – Inertial Navigation System 

IR - Infrared 

ISC - Industry Steering Committee  

ISO - International Standard Organization  

JSF - Joint Strike Fighter 

L/HIRF - Lightning/High Intensity Radiated Field  

LOS - Line-Of-Sight 

LU/SV - Lubrication/Servicing  

MAV - Micro-Air Vehicle 

MDT - Mean Downtime 

MR - Mishap Rate 

MRB - Maintenance Review Board  

MRBR - Maintenance Review Board Report  

MSG-3 - Maintenance Steering Group-3  

MSI - Maintenance Significant Items  

MTBCF - Mean Time Between Critical Failure 

MTBF - Mean Time Between Failure 

MTBM - Mean Time between Maintenance 
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MTTR - Mean Time to Repair 

MUAV - Micro UAV 

NASA - National Aeronautics and Space Administration  

NAWC/AD - Naval Air Warfare Centre Aircraft Division 

NPS – Naval Postgraduate School 

NRL - Naval Research Laboratory 

O&S - Operation and Support  

OBC - Onboard Computer  

OBC - Onboard Computer 

OP/VC - Operational/Visual Check  

OTHT - Over The Horizon Targeting 

PM - Planned Maintenance  

QFD - Quality Function Deployment  

RC - Radio Control 

RCM - Reliability Centered Maintenance  

RECCE - Reconnaissance mission 

RPN - Risk Priority Number  

RPV - Remote Piloted Vehicles  

RS - Restoration  

RSTA - Reconnaissance Surveillance and Target Acquisition 

SAE - Society of the Automotive Engineers 

SAR - Synthetic Aperture Radar 

SARP - Standards and Recommended Practices  

SEAD - Suppression of the Enemy Air Defences 
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SIGINT – Signal Intelligence 

SSI - Structural Significant Items  

STAN - Surveillance and Tactical Acquisition Network 

SUAV - Small Unmanned Aerial Vehicle 

TAAF - Test, Analyze and Fix 

TR - Tactical Reconnaissance 

TUAV - Tactical UAV 

UCAV - Unmanned Combat Aerial Vehicle 

UHF - Ultra High Frequency 

VR - Vendor Recommendations  

VTOL - Vertical Take-Off and Landing 

WG - Working Group  
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